Давление в углекислотном баллоне сколько атмосфер: Давление в баллоне с углекислотой на 40 л: сколько атмосфер

Содержание

Какое давление в баллоне с углекислотой

Область использования двуокиси углерода обширна. Она применяется в пищевой промышленности, помогает тушить пожары, используется в машиностроении и многих других сферах.

Для того, чтобы закачивать, хранить, перевозить продукт, используются специальные герметичные баллоны. Важно, чтобы они находились в хорошем состоянии, регулярно проходили проверку, ремонт, официальное освидетельствование.

Один из важных параметров — контроль давления в баллоне с углекислотой. Это нужно для того, чтобы не допустить проблем при перевозке, потенциальных сложностей.

Использование углекислоты

Физические и химические свойства продукта объясняют его широкое распространение. При стандартных условиях использования, газ не имеет цвета. У него есть собственный запах. Он имеет слегка кисловатый привкус, потому, часто удается сразу распознать наличие утечки.

В баллон вещество может закачиваться и в жидком состоянии.

В таком случае требуется поддерживать постоянное давление от 5850 кПа.

Еще одно свойство продукта — способность изменять свое состояние при охлаждении. Если давление в емкости составляет от 519 кПа, а температура снижается до отметки −56 градусов, вещество твердеет.

Равномерное охлаждение с параллельным контролем давления позволяет получить сухой лед. Он также нашел применение во многих промышленных областях.

Варианты поставки двуокиси углерода

Продукция закачивается в баллоны. Она прибывает на место в полностью готовом к использованию состоянии. Есть три варианта поставки:

  • В виде сжиженного газа. Давление при поставке должно составлять 50 кг/см2. В местах хранения, а также непосредственно при эксплуатации, уровень температуры не должен превышать +31 градус.
  • Жидкость. При перевозке и хранении используются специально разработанные, проверенные и герметизированные термосы.
  • Сухой лед. Для производства требуется соблюдать требования, как по давлению, так и по температуре.

Для хранения вещества применяются специальные резервуары черного цвета. На них наносятся надписи желтого цвета, специальная маркировка, дающая полное представление о характеристиках товаров.

Типы вместительности емкостей для углекислоты

Чтобы получить углекислоту высокого уровня качества, нужно работать с компанией-изготовителем, которая также поставляет емкости, занимается освидетельствованием. На место поставляются баллоны, которые подключаются к эксплуатационным агрегатам.

Емкость баллона, л

Количество газа, кг

Диаметр, см

Высота, см

40

24

21,9

140

20

12

21,9

85

10

6

14

86,5

Это наиболее распространенная тара. Выбор зависит от целей использования и других факторов.

Конструктивные особенности емкостей для газа

Отправка клиентам обеспечивается в баллонах объемом от 0,4 до 50 литров. Как было показано в таблице, габариты упаковки меняются. Это важно учитывать при хранении, перевозке, складировании.

При изготовлении используется металл высокого качества. Он покрывается полимерным покрытием специально для защиты от контакта с катализаторами коррозии. Благодаря внимательному подбору материала, контролю давления, периодическим проверкам и обслуживанию, можно добиться десятков лет использования баллонов.

Есть несколько важных нормативов, которые касаются баллонов:

  • Метод производства — цельнолитой. Отливание емкостей без швов позволяет увеличить время использования, не допустить разрыва из-за скачков давления. При этом сварной шов потенциально может стать местом развития коррозии.
  • Материал — сталь. Контролируются используемые марки. Это может быть конструкционный вариант 45д, либо легированный 40ХГСА.
  • Защита от сильного внутреннего давления. Оно зависит от вместимости и других важных характеристик тары.
  • Толщина стенок. Минимальный параметр — от 7 мм. При изготовлении применяется заготовка в виде трубы.

На баллон наносится маркировка. Это дает понять, что именно закачано внутрь и какие особенности есть у конкретного варианта тары. Есть три варианта обозначения продукта:

  • «Углекислота».
  • «Двуокись углерода».
  • «CO2».

На поверхность нанесено полимерное покрытие черного цвета. Все надписи выполнены оранжевым. Это помогает сразу опознать емкость, которую вы используете.

Дополнительные элементы строения емкости для газа

Есть несколько деталей конструкции, увеличивающие удобство использования. К ним относятся такие, как:

  • Башмак. Имеет прямоугольную форму для стабилизации тары. Это важно, потому что нельзя допустить падения, сильного механического давления и других аналогичных угроз.
  • Запорный вентиль. Обычно используется изделие из латуни. На него наносится правая резьба. Такая мера важна для герметичности, чтобы не допустить утечек, гарантировать плотное соединение.
  • Стальной колпак. Применяется как дополнительное средство для предохранения.
  • Резиновые кольца. Установлены по всей цилиндрической части баллона. Помогают контролировать его состояние при увеличении давления.

Все технические элементы емкости из-за длительного использования могут изнашиваться. Чтобы вовремя заметить признаки поломок, нужно регулярно выполнять осмотр, обслуживание. Проверка выполняется каждые пять лет. О том, что было проведено правильное освидетельствование, говорит специальная надпись. Ее можно найти на горловине в желтом кружке.

Может потребоваться провести внеплановую проверку. Это инициируется, если есть потенциальные внешние признаки утечки, нарушения целостности, проблем с запорной арматурой.

Особенности закачивания углекислоты в тару для перевозки

Закачивать вещество можно исключительно в заранее проверенные резервуары. Если не контролировать тару, можно столкнуться с риском ЧП. Если после проверки баллон признается удовлетворительным, в него происходит заливка углекислого газа. Нужно помнить о пределе заполнения емкости — не более 80 %. Остальное место заполняется газом — это помогает стабилизировать давление, гарантировать безопасность перевозки.

Масса баллона и влияющие на нее параметры

Вес баллона, объемы закачиваемого внутрь вещества, масса самой углекислоты — это три связанных друг с другом параметра. На производстве при закачивании внутрь газа строго контролируется масса.

У нас установлены специальные весы, которые помогают определить вес баллона. Вычитается масса самого сосуда, всех дополнительных аксессуаров, запорной арматуры.

Вес дополнительных элементов зависит от того, из чего они изготовлены. Определение массы не менее важно, чем ответ на вопрос, какое давление должно быть в баллоне для углекислоты.

Область использования углекислого газа

Сфера применения вещества обширна:

  • Медицина. Так как продукт отличается способностью хорошо сохранять разные виды веществ, применяется сжиженная кислота. Она помогает долго обеспечивать сохранность тканей. Хлопья углекислоты забирают много тепла — это дает возможность быстро стабилизировать температуру образца.
  • Парфюмерия. Насыщенный, глубокий запах многих видов дорогого парфюма появляется именно по причине использования углекислого газа. Также вещество помогает компенсировать многие неприятные запахи, которые потенциально дают некоторые виды сырья в составе туалетной воды.
  • Пищевая промышленность. Производство газировки также построено на применении такого варианта вещества.
  • Строительные и ремонтные работы. Постоянными заказчиками такого продукта являются компании, которые занимаются проведением сварочных работ. Формирование специальной газовой среды помогает значительно повысить качество сварного шва, уменьшить количество нагара на поверхности детали.
  • Системы пожаротушения. Используется большое количество углекислотных огнетушителей, которые хорошо справляются с огнем в том случае, если нельзя использовать воду. Именно такая смесь закачивается в средства тушения в местах, где есть много электроники — исчезает риск возникновения короткого замыкания, порчи дорогих компонентов оборудования.

Главное — контролировать качество продукта, и следить за тем, какое давление в полном баллоне углекислоты, соответствует ли оно установленным нормативам.

Правила безопасности при работе с баллонами

Существует несколько правил, которые позволяют значительно увеличить уровень безопасности при работе с углекислым газом. К ним относятся такие, как:

  • Контроль давления в баллоне с углекислотой. На производстве используется оборудование, позволяющее закачивать смесь в емкость с точно установленными параметрами. Это помогает не допустить взрыва и других проблем.
  • Соблюдение требований по перевозке и складированию продукции. Не допускается сильное давление на резервуары, нагрев, перепады температур. В месте использования, нужно качественно закрепить баллон, чтобы не допустить его падения. То же относится и к транспортировке. Для увеличения безопасности практикуется использование специальных амортизирующих колец и прокладок.
  • Отслеживание утечек. При повышении содержания углекислого газа в помещении выше 5 %, есть вероятность, что человек столкнется с сильными проблемами с дыханием. Единственным средством контроля, становится регулярная проверка и обслуживание тары силами специалистов.
  • Работа с опытными поставщиками. Нужно помнить о том, что большинство проблем пропускают на стадии закачивания смеси и перевозки резервуаров. Наша компания контролирует каждый этап. Это не допускает вероятности развития ЧП, исключает большинство распространенных рисков.

Как проверяется баллон

Как понять, что емкость находится в хорошем состоянии, давление в полном баллоне углекислоты в пределах нормы? Для этого проводится специальная проверка. Наша организация имеет все полномочия и сертификаты для выполнения освидетельствования тары. Используем методы и оборудование, показывающие любые повреждения на ранней стадии.

Специалисты дают ответ на вопрос, безопасно ли использовать сосуд, нет ли повреждений. Работа состоит из нескольких этапов:

  • Внешний осмотр. Емкость должна быть без сильных вмятин, глубоких царапин. Особенно внимательно работники ищут первые следы коррозии. Именно она способна нанести сосудам самый большой вред, привести к утечкам. Если полимерное покрытие повреждено, сколото, оцарапано, место может стать точкой быстрого развития ржавчины.
  • Удаление газа из емкости. Нужно для того, чтобы проводить полный осмотр в безопасности. В работе используются специальные установки и инертные вещества. Внутри не остается никаких следов углекислоты.
  • Тестирование вентиля. Запорная арматура должна двигаться легко, без прокручивания или заедания. Исключается появление ржавчины или наличие механических повреждений с разных сторон.
  • Анализ толщины стенок. Это делается при помощи оборудования для взвешивания. Сотрудники хорошо знают, сколько весит пустая тара. Если вычесть массу всех аксессуаров и сравнить вес с эталонным, можно понять, что металл стал истончаться. Это происходит из-за коррозии, естественного износа и по другим причинам. Основной риск в том, что внутри не получится поддерживать нужное давление.
  • Гидравлические испытания. Хорошо демонстрируют работоспособность оборудования. Требуют применения специальной техники.
  • Просушивание баллона. Мы используем струю прогретого воздуха. Это нужно, чтобы вода не оставалась внутри. Исключается вероятность химической реакции и развития коррозии на стенках.

Результаты осмотра и все выявленные неисправности оформляются в форме отчета и предоставляются клиенту. Когда стенки слишком тонкие, есть проблемы с целостностью, повреждения, признается, что емкость не прошла проверку.

Если есть сильные повреждения, потребуется выполнить ремонт. Он может состоять из разных типов работ:

  • Окрашивание снаружи, замена полимерного покрытия на новое.
  • Удаление поверхностной коррозии, применение ингибиторов для исключения ее распространения.
  • Замена запорной арматуры, башмака.
  • Устранение механических повреждений.

После того, как ремонт был выполнен, совершается повторная проверка. Если ее результаты оказываются удовлетворительными, ставится соответствующая отметка и тара допускается к использованию.

Среди преимуществ работы с нашей компанией — возможность заказа освидетельствования баллонов, быстрого планового ремонта. Мы также предоставим вам новые емкости и сам углекислый газ высокого качества. Внимательно следим за тем, какое давление должно быть в баллонах с углекислотой на 40 литров и другого объема. Ответим на все интересующие вопросы, организуем быструю поставку.

Внимание! Осторожнее с Баллонами СО2!

 История из жизни. Люди осторожнее с баллонами
Хочу напомнить неприятную, но благополучно закончившуюся историю, о которой я уже как-то писал
Все кто имел дело с баллонами CO2 знают, что газ в баллоне сжиженный и находится под давлением насыщенных паров, которое в зависимости от температуры в квартире может варьироваться от 50 до 70 атмосфер. Давление держится таким все время, пока в баллоне есть жидкость.
Так вот, один раз я заправил баллон на станции, и затем около месяца не подключал его, поскольку не доходили руки. Все это время он спокойно валялся под моей кроватью. Когда наконец я решил его использовать и подключил к редуктору, то с ужасом обнаружил, что давление зашкаливает за 200 атмосфер! Ситуацию мне тогда разъяснил один очень опытный человек (Евгений).
Оказывается, на станции горе-заправщики залили сжиженый газ под краник, целиком, причем температура в помещении была уличной. По- нормальному же положено заправлять баллон не полностью, так чтобы над жидкостью оставалась газовая подушка. Дома баллон прогрелся и жидкость расширилась. По все видимости, меня выручило то, что баллон был не специальный для CO2, а перекрашенный кислородный, расчитанный на 300 атмосфер. Если бы не это, то вполне возможно, я бы не писал сейчас эти строки.

Сначала я не совсем согласился с Евгением, поскольку довольно длительное стравливание газа не приводило к падению давления до требуемых 70 атмосфер. Выпустив значительное количество газа, я получил около 100 атмосфер, и решил, что мне заправили нечистый газ, а с воздухом, и что жидкости там нет вообще, а давление так и будет постепенно падать до нуля. Однако я все же решил подключить баллон к системе, поскольку большой процент CO2 в баллоне очевидно присутствовал. И в течение недели, давление действительно падало, но остановилось на требуемом значении 70 атмосфер и держится таким уже несколько месяцев. Т.е. теперь все так, как и должно быть для правильно заправленного баллона. Евгений действительно оказался прав: баллон содержал пережатую жидкость. Длительное время понижения давления вначале, по всей видимости, было обусловлено повышенной, по сравнению, скажем, с водой сжимаемостью жидкого CO2.

Резюме: когда заправляете баллон, обязательно:
1) Убедитесь, что его не залили до самого верха.
2) Измерьте давление на станции.
3) Когда приносите баллон с холода, обязательно сразу подключите редуктор и следите за изменением давлением. Если становится больше 70-80 атмосфер, то несите назад на улицу и стравливайте часть газа.

Углекислота

Углекислота при обычных условиях – бесцветный газ, примерно в 1.5 раза тяжелее воздуха, благодаря чему ее можно переливать, как жидкость, из одного сосуда в другой. Масса одного литра углекислоты при 0 градусах Цельсия и 760 мм рт. ст. составляет 1.98 г. Вода растворяет значительное количество углекислоты; 1 объем воды при 20 градусах Цельсия растворяет 0.88 объема СО2, а при 0 градусах Цельсия – 1.7 объема. Под давлением около 60 атмосфер углекислота при обыкновенной температуре превращается в жидкость. Жидкую углекислоту хранят в стальных баллонах. При быстром выливании ее из баллона поглощается вследствие испарения так много тепла, что углекислота превращается в твердую, белую снегообразную массу, которая, не плавясь, возгоняется при – 78.5 градусах Цельсия.

В промышленных количествах углекислота выделяется из дымовых газов, или как побочный продукт химических процессов, например, при разложении природных карбонатов (известняк, доломит) или при производстве алкоголя. Смесь полученных газов промывают раствором карбоната калия, которые поглощают углекислый газ, переходя в гидрокарбонат. Раствор гидрокарбоната при нагревании или при пониженном давлении разлагается, высвобождая углекислоту. В современных установках получения углекислого газа вместо гидрокарбоната чаще применяется водный раствор моноэтаноламина, который при определённых условиях способен абсорбировать СО₂, содержащийся в дымовом газе, а при нагреве отдавать его; таким образом отделяется готовый продукт от других веществ.Также углекислый газ получают на установках разделения воздуха как побочный продукт получения чистого кислорода, азота и аргона.

В пищевой промышленности углекислота используется как консервант и разрыхлитель, обозначается на упаковке кодом Е290. Углекислый газ используется для газирования лимонада и газированной воды.

Углекислота в баллончиках применяется в пневматическом оружии (в газобаллонной пневматике) и в качестве источника энергии для двигателей в авиамоделировании.

Жидкая углекислота широко применяется в системах пожаротушения и в огнетушителях. Автоматические углекислотные установки для пожаротушения различаются по системам пуска, которые бывают пневматическими, механическими или электрическими.

Углекислый газ используется также в качестве защитной среды при сварке проволокой, но при высоких температурах происходит его диссоциация с выделением кислорода. Выделяющийся кислород окисляет металл. В связи с этим приходится в сварочную проволоку вводить раскислители, такие как марганец и кремний. Другим следствием влияния кислорода, также связанного с окислением, является резкое снижение поверхностного натяжения, что приводит, среди прочего, к более интенсивному разбрызгиванию металла, чем при сварке в аргоне или гелии.

Когда углекислота применяется в газовой фазе, то для хранения она используется под давлением, как сжиженный газ, в виде жидкой фазы. Хранение углекислоты в стальном баллоне в сжиженном состоянии намного выгоднее, чем в виде газа. Углекислота имеет сравнительно низкую критическую температуру +31 °С. Когда в 40-литровый баллон с нормальным давлением 100 кгс/см² залито 20 кг сжиженного углекислого газа, то при температуре +31 °С в баллоне будет только жидкая фаза с давлением 100 кгс/сm². Если температура будет выше, то следует уменьшить заполнение баллона или использовать баллоны с более высоким рабочим давлением. Если углекислота будет охлаждаться, то при температуре +21 °С при нормальном заполнении в баллоне появится газовая фаза.

Твёрдая углекислота — «сухой лёд» — используется в качестве хладагента в лабораторных исследованиях, в розничной торговле, при ремонте оборудования (например: охлаждение одной из сопрягаемых деталей при посадке внатяг) и т. д. Для сжижения углекислого газа и получения сухого льда применяются углекислотные установки.

Углекислота ГОСТ 8050-85 поступает клиенту в баллонах объемом 40, 30, 20,10,7 и 5 литров. НЕ РЕКОМЕНДУЕТСЯ использовать пищевую углекислоту, произведенную на спиртзаводах, для сварочных работ в связи с повышенным содержанием влаги в таком продукте. Баллоны под углекислоту принимаются под наполнение как с рабочим давлением 150, так и 125 атмосфер, за исключением 40л баллонов под наполнение 24 кг – это только под 150 атмосфер. Баллоны укомплектовываются вентилями ВК-86 и ВК-94, один раз в пять лет проводится техническое освидетельствование баллона.

Баллоны углекислотные 5л 10л 20л 40л 50л ГОСТ 949-73

Баллоны углекислотные, малого и среднего объема, из углеродистой и легированной стали ГОСТ 949-73. (Баллон СО2)
Баллон для углекислоты окрашивается эмалью черного цвета, надпись » УГЛЕКИСЛОТА » желтого цвета.
Масса баллона под углекислоту указана без вентилей, колпаков, колец и башмаков.
Ориентировочная масса: колпака металлического — 1,8 кг; кольца — 0,3 кг; башмака — 5,2 кг    

  


         

Рабочее давление,
МПа (кгс см2)
Диаметр,
мм
Баллоны
УГЛЕКИСЛОТНЫЕ 50 литров
Баллоны
УГЛЕКИСЛОТНЫЕ 40 литров
Баллоны
 УГЛЕКИСЛОТНЫЕ 20 литров
Сталь 45,Д Сталь 30ХГСА Сталь 45,Д Сталь 30ХГСА Сталь 45,Д
Длина,
мм
Вес,
кг
Длина,
мм
Вес,
кг
Длина,
мм
Вес,
кг
Длина,
мм
Вес,
кг
Длина,
мм
Вес,
кг
14,7 (150) 219 1685 71,3 1660 62,5 1370 58,5 1350 51,5 740 32,3
19,6 (200) 219 1755 93,0 1660 62,5 1430 76,5 1350 51,5 770 42,0

 

 

                                     

Рабочее давление, МПа (кгс см2) Диаметр, мм Баллоны 12 литров УГЛЕКИСЛОТНЫЕ Баллоны 10 литров УГЛЕКИСЛОТНЫЕ Баллоны 8 литров УГЛЕКИСЛОТНЫЕ Баллоны 5 литров УГЛЕКИСЛОТНЫЕ Баллоны 4
литра УГЛЕКИСЛОТНЫЕ
Баллоны 2
литра УГЛЕКИСЛОТНЫЕ
Сталь 45,Д Сталь 45,Д Сталь 45,Д Сталь 45,Д Сталь 45,Д Сталь 45,Д
Длина,
мм
Вес,
кг
Длина,
мм
Вес,
кг
Длина,
мм
Вес,
кг
Длина,
мм
Вес,
кг
Длина,
мм
Вес,
кг
Длина, мм / диаметр, мм Вес, кг
14,7 (150) 140 1020 17,6 865 13,0 710 12,4 475 8,5 400 7,3 330/108 3,7

 

 

 

       
                      Получить КП на БАЛЛОНЫ

Баллоны малого объема могут поставляться с плоским дном.

Освидетельствование углекислотных баллонов — каждые 5 лет.          
Срок службы углекислотного баллона — 20 лет.
Гарантийный срок эксплуатации — 24 месяца со дня ввода в эксплуатацию

Объем углекислоты в 40 литровом баллоне составляет 10-12 м3, 20-24кг

Хотите купить углекислотный баллон ?

ЗВОНИТЕ: (8442) 780-530
ПИШИТЕ [email protected]

Остальное мы сделаем все сами. Доставим в транспортную компанию или привезем в Ваш город.

Правила расчёта газа по в баллоне по формулам согласно ГОСТу

Этот вопрос очень часто волнует многих сметчиков. Это связано с тем, что многие поставщики указывают в накладных либо количество баллонов, либо м3, либо литры. Для расчета количества углекислого газа можно воспользоваться формулами, которые будут приведены ниже.

Согласно ГОСТ 8050-85, в котором речь идет о двуокиси углерода газообразном и жидком, это вещество применяется в качестве защитного газа при проведении работ по сварке. Если говорить о составе смеси, то она может обозначаться обозначается СО2; СО2+ Ar; Ar + О2 + СО2. Некоторые производители могут использовать еще маркировку смеси: MIX1, MIX2, MIX5.

Размеры баллонов и их параметры, предназначенные для ацетилена, можно найти в документах ГОСТ 949-73, в котором речь будет идти о баллонах стальных малого и среднего для газов на Рр≤ 19,7Мпа. Самыми часто встречающимися баллонами являются емкости объемом на 5, 10 и 40 л.

При создании рабочего давления углекислоты в баллоне до значения 14,7 Мпа (или 150 кгс/см2), коэффициент заполнения составит: 0,60 кг/л. Если давление 9,8 Мпа (или 100 кгс/см2), то коэффициент заполнения будет равен 0,29 кг/л. При давлении 12,25 Мпа (или 125 кгс/см2), этот коэффициент составит 0,47 кг/л.

При нормальных условиях объемный вес газообразной углекислоты составляет 1,98 кг/м3.

В качестве примера рассмотрим расчет веса углекислоты, находящегося в 40-литровом баллоне с рабочим значением давления в 14,7 Мпа (или 150 кгс/см2).

0,6 * 40л – 24 кг

Далее следует просчитать объем газообразной углекислоты:

24кг / 1,98 кг / м3 = 12,12м3

Можно сделать вывод,что 1 баллон равен 40л, или 24 кг, или 12,12 м3.

Полезная информация:

Особенности хранения углекислоты и ее транспортировка

Требования безопасности при работе с углекислотой

Оказание помощи при отравлении углекислотой

Кислород в баллонах | Завод по производству технических газов


В компании «Криогенсервис» вы можете купить кислород в баллонах 40 литров и по заказу 5, 10 и 20 литров, заправить баллоны кислородом, а также купитьжидкий кислород.

Кислород, наиболее востребованный технический газ который требуется на многих производствах включая металлургию, пищевую промышленность, медицину, косметологию и многие другие. Он необходим для окислительных процессов и без него невозможен процесс горения.

Этот газ тяжелее воздуха не имеет ни цвета, ни запаха. Очень важно и то, что он не ядовит, а значит безопасен для человека и окружающей среды. Однако большие концентрации кислорода вызывают воспламенение некоторых химических материалов.

Требует высокой культуры производства.

Хранение и транспортировка кислорода.

Упаковка и хранение кислорода осуществляется в соответствии с требованиями ГОСТ 26460. Для транспортировки технического и медицинского кислорода используются все виды транспорта, включая трубопровод. Транспортировка и хранение газообразного кислорода осуществляется в металлических кислородных баллонах, произведенных в соответствии с ГОСТ 949-73. Кислородные баллоны имеют голубой цвет и белую надпись «кислород». При температуре окружающей среды +20 C°, давление газа в кислородном баллоне не должно быть выше 14,7 МПа (150 кгс/см²) – в соответствии с требованиями ГОСТ 949-73, по которым производятся кислородные баллоны. В случая транспортировки кислорода по трубопроводу – давление кислорода в трубопроводе согласовывается между поставщиком и потребителем.

Требования безопасности.

Кислород в баллонах не является токсичным, пожароопасным или взрывоопасным газом. Кислород в баллонах является сильным окислителем, способным вызвать воспламенение некоторых материалов при прямом контакте или повышенной концентрации в помещении, которая не должна превышать 23%. Перед проведением освидетельствования кислородных баллонов или трубопровода – выполняется продувка обычным атмосферным воздухом (для снижения концентрации кислорода). Ремонт кислородных баллонов или трубопроводов осуществляется тоже с предварительной продувкой. При нахождении в помещениях с повышенной концентрацией кислорода (более 23%), строго запрещено курить, включать обогревательные электроприборы и наличие открытого огня, потому что это способствует возникновению пожара. Помещения с повышенной концентрацией кислорода обязательно должны быть оснащены вентилирующим оборудованием и средствами пожаротушения. Следует помнить, что кислородные баллоны не предназначены для хранения, транспортировки других газов! Для сохранения качества продукции, кислородный баллон или трубопровод должны быть чистыми внутри и не иметь посторонних загрязняющих веществ (пыль, песок и прочее). При транспортировке и осуществлении погрузо-разгрузочных работ, следует исключить возможности падения или ударов кислородных баллонов. В период хранения кислородных баллонов, они должны быть предохранены от воздействия прямых солнечных лучей, потому что повышение температуры способствует повышению давления газа внутри баллона. При повышенном давлении газа в кислородном баллоне, следует охладить баллон водой.

Правила приёмки кислорода.

Продажа и доставка кислорода к потребителю осуществляется партиями. Партией поставки кислорода может быть любой, с наличием сопроводительного документа качества.

Правила возврата кислородных баллонов поставщику.

Компания «Криогенсервис» практикует сдачу в аренду газовых баллонов различного типа. При возвращении газового баллона, потребитель должен обеспечить наличие остаточного давления в пустом кислородном баллоне не ниже 0,05 МПа (0,5кгс/см²).

Зависимость давления кислорода от температуры при наполнении, транспортировании и хранении баллонов

Температура, ºС Рабочее давление, МПа (кгс/см²) Давление газа при температуре наполнения, МПа (кгс/см²)
-50 9,7 (99) 12,4 (127)
-40 10,5 (107) 13,5 (137)
-30 11,2 (114) 14,5 (148)
-20 11,9 (121) 15,5 (158)
-10 12,6 (128) 16,6 (169)
-50 9,7 (99) 12,4 (127)
0 13,3 (136) 17,7 (179)
10 14,0 (143) 18,6 (190)
20 14,7 (150) 19,6 (200)
30 15,4 (157) 20,6 (210)

Примечание: При наполнении баллонов, а также хранении или транспортировании наполненных баллонов при температурах, превышающих указанные в таблице, давление газов в баллоне не должно превышать:

  • при температуре +40 ºС — 15,0 МПа (153 кгс/см²) для рабочего давления баллона 14,7 МПа (150 кгс/см²), 19,7 МПа (201 кгс/см²) 19,6 МПа (200 кгс/см²)
  • при температуре +50 ºС — 15,7 МПа (160 кгс/см²) 14,7 МПа (150 кгс/см²), 20,6 МПа (210 кгс/см²) 19,6 МПа (200 кгс/см²).

Продажа и доставка газовых баллонов с кислородом.

Компания «Криогенсервис» производит снабжение предприятий (различного профиля) техническими газами: азот, аргон, ацетилен, газовые смеси, гелий марки «А» и гелий марки «Б», технический кислород, пропан, а также углекислота. Кроме поставок технических газов, компания специализируется на торговле газовыми баллонами, произведёнными по ГОСТ 949-73 и ГОСТ 15860-84 (для пропана). Среди дополнительных

Какое давление в баллончике СО2 для пневматики

Пневматическое оружие с использованием стандартных баллончиков с газом СО2 появилось относительно не так давно – примерно 50 лет назад. Этот тип источника энергии для пневматики тут же стал популярным и актуален по сегодняшний день из-за относительно высокой мощности, надежности и простоты эксплуатации.

Баллончики СО2 для пневматического оружия

Газовые баллончики CO2 применяются для многих моделей пневматического оружия. Источником энергии является сжиженная углекислота. Как правило, находится в металлических баллонах 12 г под давлением. Газ имеет двухфазное состояние, то есть находится газообразное и жидкое вещество. Некоторые зарубежные фирмы изготавливают баллоны CO2 под своими брендами:

  • Умарекс;
  • Борнер;
  • Кросман;
  • Вальтер.

В баллончике 80% жидкого газа и только 20% готового к использованию. Во время стрельбы с учетом выхода углекислоты жидкость в незначительном количестве переходит в газовое состояние и заполняет появившийся свободный объем. Углекислый газ трансформируется мгновенно, что дает возможность соблюдать быстрый темп стрельбы. При этом давление в баллончике не меняется, обеспечивая так одинаковую начальную скорость полета пули. И только в конце, после того как вся жидкость перейдет в газовое состояние, давление постепенно снижается. Это заметно на последних выстрелах.

У газовых баллончиков СО2 существует один значительный недостаток – влияние пониженных температур. При отрицательных показателях углекислота из жидкости переходит в газовое состояние. Так сильно снижается мощность выстрела пневматического оружия. То есть, хранить и применять такие баллончики СО2 нужно при положительных температурах.

Что относительно продолжительности эксплуатации баллончика, это будет зависеть непосредственно от модели пневматики. Чаще всего его хватает примерно 50-100 полноценных выстрелов.

Давление в баллончиках CO2 для пневматики

Газ CO2 не самый подходящий для пневматики, так как у него относительно невысокое давление, это обуславливает получение значительно меньших начальных скоростей, в отличие от применения сжатого воздуха. Углекислота намного тяжелей воздуха и обладает большой вязкостью, это тоже не увеличивает скорость полета шарика, если сравнивать разгон пули воздухом. В составе баллончика для пневматического оружия применяется углекислота, которая находится в нем под давлением приблизительно 6 атм.

Углекислота в целом имеет значительные отличия по характеристикам от воздуха. Так, в баллончике с углекислотой при температуре 21°С газ находится под давлением 814 PSI. Если сифон немного нагреть, то определенное количество газа из жидкого состояния трансформируется в газообразное, и будет иметь давление, которое соответствует полученной температуре.

Когда часть газообразного вещества выходит из баллончика, к примеру, во время стрельбы, то давление в баллончике постепенно снижается, это провоцирует испарение определенного количества жидкости. Но такое испарение потребует тепловых затрат, при этом тепло забирается из баллончика и углекислоты в обоих состояниях. То есть, происходит снижение температуры, одновременно с этим и понижение давления на то время, пока сифон заново не прогреется от внешней температуры.

Владельцы пневматического оружия постоянно хотят максимально мощно стрелять из своих пистолетов, то есть, ждать после выстрела, когда газовый баллончик заново прогреется – многих сильно раздражает. Приведенная в качестве примера температура в 21°С – усредненный показатель для теплого весеннего дня, при этом показателе давление газа составляет 814 PSI, это гораздо ниже давления сжатого воздуха, который используется в ПСП-оружии.

Другим недостатком при эксплуатации баллончиков с углекислотой считается неприменимость некоторых материалов в качестве уплотнительных прокладок, так как они хоть и удерживают воздух, но могут пропускать углекислоту. К примеру, O-образные прокладки впитывают углекислый газ и разбухают, это в результате может привести к заклиниванию подвижных механизмов с этими уплотнителями. Так, при использовании углекислоты самым подходящим материалом для изготовления прокладок считается полиуретан.

Зависит ли от температуры давление в баллончике

Углекислый газ подчиняется физическим законам, с учетом них можно определить, что у любого газа существует критическое состояние, которое характеризуется критическим давлением и критической температурой.

Критическая температура – это температура, выше которой испарения газа не могут перейти в жидкое состояние, ни при каком давлении. Критическое давление – давление, когда пропадает отличие между жидким и парообразным состоянием. В этом случае оба вещества одинаковые по своей плотности, их показатель равняется нулю.

Что это обозначает? Критическая температура у углекислоты равняется 31,2°С, а давление 74 атмосферы, это обозначает, что в баллончике при 31,2°С появляется давление равное 74 атмосферам, а углекислый газ приобретает критическое состояние и при этом температурном показателе расход СО2 во время стрельбы значительно повышается, поскольку через воздушный клапан выходит не чистый газ, а усредненное вещество между жидкостью и газом, которое имеет плотность 0,47 г/дм. куб. (у углекислоты плотность составляет – 1,99 г/см. куб.).

Причем начинается настолько сильное охлаждение, что в ствольном канале непосредственно из такого состояния углекислый газ приобретает твердое состояние, так называемый «сухой лед», и давление в ствольном канале значительно снижается, это обуславливает уменьшение начальной скорости полета шарика. Потому в жаркие дни первые выстрелы из пневматического пистолета (пока газовый баллончик не охладится ниже критической отметки) могут быть довольно слабыми, а расход углекислоты происходит намного больше, причем из пистолета можно наблюдать вылет частичек «сухого льда». Для нормальной стрельбы газовый баллончик необходимо охладить до + 21…23°С.

Так, можно сделать вывод, что для применения в пневматическом пистолете лучше подходит газовое вещество с критической температурой + 31…36°С и критическим давлением 210 атмосфер, нетоксичное и дешевое. Но газ с этими показателями еще неизвестен.

Воздух под давлением (140,8°С/37,3 атмосферы), естественно, удобен для РСР оружия, но в небольшом многозарядном пистолете его применение невозможно из-за значительных габаритов баллончика и снижение давления после каждого выстрела либо установки редуктора (который также имеет большие размеры). Потому для использования в пневматических пистолетах пока рассматривается только углекислый газ.

Немного о мифах. Первый и самый часто встречающийся: в заграничных газовых баллончиках давление намного больше, в отличие от российских. Это абсолютно неверно, при любых условиях давление в любом баллончике вне зависимости от объема и страны производителя будет постоянно одинаковое. Это будет зависеть от физических законов, а не от компании-изготовителя.

Следующее заблуждение: не редко в тирах можно услышать: «Установите мне новый баллончик, из этого уже кто-то стрелял». Неправильное суждение состоит даже не в отсутствии минимальных знаний законов физики, а в нежелании выслушивать какие-либо объяснения, даже учебные пособия не убеждают многих людей: «Я не знаю, что тут в книге написано, но стреляет пистолет слабо и все тут!». Для этих недоверчивых людей даже проводились специальные испытания, еще раз нужно сказать: пока в баллончике есть хоть капля жидкого газа, при равном температурном режиме, который не превышает критический показатель (31,2°С для углекислоты), давление в баллончике не изменяется. Снижение температуры во время стрельбы не настольно сильно его понижает, чтобы это увидеть невооруженным взглядом.

Правила хранения газовых баллончиков

Чтобы обеспечить высокую начальную скорость стрельбы и экономный расход углекислоты, лучше всего стрелять из оружия при температуре не меньше +6°С.

Основные правила хранения:

  • нельзя нагревать баллончик до температуры выше +55°С;
  • углекислота находится под давлением, во время нагревания есть опасность взрыва;
  • место хранения должно проветриваться;
  • место хранения должно быть недоступно для маленьких детей;
  • применять исключительно по назначению;
  • место должно быть защищено от прямых солнечных лучей.

Любая пневматика на углекислом газе потребует извлечения баллона после стрельбы. Какое количество времени пистолет может быть в заряженном состоянии, будет зависеть от модели и компании-изготовителя. По разной информации держать заряженным оружие можно 2-4 часа, но не больше суток. Многие держат баллон несколько месяцев, этого не стоит делать, так как портятся резиновые уплотнители в пистолете. Помимо того, перед тем как достать баллончик, нужно его полностью отстрелять вхолостую, иначе газ при выкрутке повредит прокладки.

Проба газообразного диоксида углерода при давлении 1,07 атм и температуре 166 ° C занимает объем 686 мл. Если газ нагреть при постоянном давлении до объема 913 мл, температура пробы газа составит? ° C.

Идея состоит в том, что объем и температура газа имеют прямую зависимость , когда давление и количество молей газа поддерживаются постоянными # -> # это известно как Закон Чарльза .

Очень важно помнить, что температура газа должна быть выражена в градусах Кельвина [email protected] «C» + 273.15 = «439.15 K» #

Объем газа будет на увеличиваться на при повышении температуры на и на при понижении при понижении температуры на . Математически это можно записать как

# цвет (синий) (ul (цвет (черный) (V_1 / T_1 = V_2 / T_2))) #

Здесь

  • # V_1 # и # T_1 # представляют объем и температуру газа в исходном состоянии
  • # V_2 # и # T_2 # представляют объем и температуру газа в конечном состоянии.

Измените уравнение для решения относительно # T_2 #

# V_1 / T_1 = V_2 / T_2 подразумевает T_2 = V_2 / V_1 * T_1 #

Введите свои значения, чтобы найти

# T_2 = (913 цвет (красный) (отмена (цвет (черный) («мл»)))) / (686 цвет (красный) (отмена (цвет (черный) («мл»))) * «[email protected] «C»))) #

Ответ округляется до трех sig fig .

Давление газа и дыхание | Биология для майоров II

Результаты обучения

  • Опишите, как давление газа влияет на то, как газы входят и выходят из тела

Дыхательный процесс можно лучше понять, изучив свойства газов. Газы движутся свободно, но частицы газа постоянно ударяются о стенки своего сосуда, создавая давление газа.

Воздух представляет собой смесь газов, в основном азота (N 2 ; 78,6 процента), кислорода (O 2 ; 20,9 процента), водяного пара (H 2 O; 0,5 процента) и диоксида углерода (CO . 2 ; 0,04 процента). Каждый газовый компонент этой смеси оказывает давление. Давление отдельного газа в смеси — это парциальное давление этого газа. Примерно 21 процент атмосферного газа составляет кислород. Однако углекислый газ содержится в относительно небольших количествах, 0,04 процента.Парциальное давление кислорода намного больше, чем у углекислого газа. Парциальное давление любого газа можно рассчитать по:

[латекс] \ text {P} = \ left ({P} _ {\ text {atm}} \ right) \ times \ left (\ text {процент содержания в смеси} \ right) [/ latex]

[латекс] \ text {P} _ {\ text {atm}} [/ latex], атмосферное давление, представляет собой сумму всех парциальных давлений атмосферных газов, сложенных вместе,

[латекс] \ text {P} _ {\ text {atm}} = \ text {P} _ {\ text {N} _2} + \ text {P} _ {\ text {O} _2} + \ text {P} _ {\ text {H} _2 \ text {O}} + \ text {P} _ {\ text {CO} _2} = 760 \ text {мм рт. Ст.} \ Times \ left (\ text {процент содержания в смеси} \ right) [/ латекс]

Давление атмосферы на уровне моря 760 мм рт.Следовательно, парциальное давление кислорода составляет:

[латекс] \ text {P} _ {\ text {O} _2} = \ left (760 \ text {мм рт. Ст.} \ Right) \ left (0,21 \ right) = 160 \ text {мм рт. Ст.} [/ Латекс ]

и для двуокиси углерода:

[латекс] \ text {P} _ {\ text {CO} _2} = \ left (760 \ text {мм рт. Ст.} \ Right) \ left (0,0004 \ right) = 0,3 \ text {мм рт. Ст.} [/ Латекс ]

На больших высотах [латекс] \ text {P} _ {\ text {atm}} [/ latex] уменьшается, но концентрация не меняется; снижение парциального давления происходит из-за уменьшения [латекса] \ text {P} _ {\ text {atm}} [/ latex].

Когда воздушная смесь достигает легких, они увлажняются. Давление водяного пара в легких не влияет на давление воздуха, но его необходимо включить в уравнение парциального давления. Для этого расчета давление воды (47 мм рт. Ст.) Вычитается из атмосферного давления:

[латекс] 760 \ text {мм рт. Ст.} -47 \ text {мм рт. Ст.} = 713 \ text {мм рт. Ст.} [/ Латекс]

, а парциальное давление кислорода составляет:

[латекс] \ влево (760 \ text {мм рт. Ст.} -47 \ text {мм рт. Ст.} \ Вправо) \ times0.21 = 150 \ text {мм рт. Ст.} [/ Латекс]

Эти парциальные давления определяют скорость газообмена или расход газа в системе. Кислород и углекислый газ будут течь в соответствии с их градиентом давления от высокого к низкому. Следовательно, понимание парциального давления каждого газа поможет понять, как газы движутся в дыхательной системе.

Сделайте вклад!

У вас была идея улучшить этот контент? Нам очень понравится ваш вклад.

Улучшить эту страницуПодробнее

Сжатые газы — Опасности — Опасности: Ответы по охране труда

Воспламеняющиеся газы

Воспламеняющиеся газы, такие как ацетилен, бутан, этилен, водород, метиламин и винилхлорид, могут гореть или взорваться при определенных условиях:

Концентрация газа в диапазоне воспламеняемости: концентрация газа в воздухе (или в контакт с окисляющим газом) должен находиться между его нижним пределом воспламеняемости (LFL) и верхним пределом воспламеняемости (UFL) [иногда называемым нижним и верхним пределами взрываемости (LEL и UEL)].Например, НКП газообразного водорода в воздухе составляет 4 процента, а его НДП — 75 процентов (при атмосферном давлении и температуре). Это означает, что водород может воспламениться, если его концентрация в воздухе составляет от 4 до 75 процентов. Концентрация водорода ниже 4 процентов слишком «бедная», чтобы гореть. Уровень газообразного водорода выше 75 процентов слишком «богат», чтобы его можно было сжечь.

Диапазон воспламеняемости газа включает все его концентрации в воздухе между LFL и UFL. Диапазон воспламеняемости любого газа расширяется в присутствии окисляющих газов, таких как кислород или хлор, а также за счет более высоких температур или давлений.Например, диапазон воспламеняемости водорода в газообразном кислороде составляет от 4 до 85 процентов, а диапазон воспламеняемости водорода в газообразном хлоре составляет от 4,1 до 89 процентов.

Источник воспламенения: Для воспламенения горючего газа в пределах его воспламеняемости в воздухе (или окисляющем газе) должен присутствовать источник воспламенения. На большинстве рабочих мест существует множество возможных источников возгорания, включая открытое пламя, искры и горячие поверхности.

Температура самовоспламенения (или воспламенения) газа — это минимальная температура, при которой газ самовоспламеняется без каких-либо очевидных источников воспламенения.Некоторые газы имеют очень низкие температуры самовоспламенения. Например, температура самовоспламенения фосфина 100 ° C (212 ° F) достаточно низкая, чтобы его можно было воспламенить от паровой трубы или зажженной лампочки. Некоторые сжатые газы, такие как силан и диборан, являются пирофорными — они могут самовоспламеняться на воздухе.

Воспламенение может происходить с горючими газами. Многие горючие сжатые газы тяжелее воздуха. Если баллон протекает в плохо вентилируемом помещении, эти газы могут оседать и собираться в канализации, ямах, траншеях, подвалах или других низких местах.Газовый след может распространяться далеко от баллона. Если газовый след соприкасается с источником возгорания, возгорание может вернуться в цилиндр.

Окисляющие газы

Окисляющие газы включают любые газы, содержащие кислород в концентрациях выше атмосферных (более 23-25 ​​процентов), оксиды азота и газообразные галогены, такие как хлор и фтор. Эти газы могут быстро и бурно реагировать с горючими материалами, такими как:

  • органические (углеродсодержащие) вещества, такие как большинство горючих газов, легковоспламеняющиеся и горючие жидкости, масла, смазки, многие пластмассы и ткани
  • мелкодисперсные металлы
  • другие окисляемые вещества, такие как гидразин, водород, гидриды, сера или соединения серы, кремний и аммиак или соединения аммиака.

Это может привести к пожару или взрыву.

Нормальное содержание кислорода в воздухе — 21 процент. При немного более высоких концентрациях кислорода, например 25 процентов, горючие материалы, в том числе ткани для одежды, легче воспламеняются и горят намного быстрее. Пожары в атмосфере, обогащенной окисляющими газами, очень трудно потушить и могут быстро распространяться.

Опасно реактивные газы

Некоторые чистые сжатые газы химически нестабильны. При незначительном повышении температуры или давления или механическом ударе они могут легко подвергаться определенным типам химических реакций, таких как полимеризация или разложение.Эти реакции могут стать бурными и привести к пожару или взрыву. В некоторые опасно реактивные газы добавляются другие химические вещества, называемые ингибиторами, для предотвращения этих опасных реакций.

Распространенными опасными реактивными газами являются ацетилен, 1,3-бутадиен, метилацетилен, винилхлорид, тетрафторэтилен и винилфторид.


Двуокись углерода

Что такое двуокись углерода и как она обнаруживается?

Джозеф Блэк, шотландский химик и врач, впервые обнаружил углекислый газ в 1750-х годах.При комнатной температуре (20-25 o C) углекислый газ представляет собой бесцветный газ без запаха, слабокислый и негорючий.
Углекислый газ — это молекула с молекулярной формулой CO 2 . Линейная молекула состоит из атома углерода, который дважды связан с двумя атомами кислорода, O = C = O.
Хотя диоксид углерода в основном находится в газообразной форме, он также имеет твердую и жидкую формы. Он может быть твердым только при температурах ниже -78 o C. Жидкий диоксид углерода в основном существует, когда диоксид углерода растворен в воде.Двуокись углерода растворяется в воде только при поддержании давления. После падения давления газ CO2 попытается выйти в воздух. Это событие характеризуется образованием пузырьков CO2 в воде.

CO 2 -молекула

[../_adsense/adlink hori uk general.htm]

Свойства углекислого газа

Есть несколько физических и химических свойств относятся к углекислому газу.
Здесь мы суммируем их в таблице.

C

11 7 9011 моль

Растворимость в воде

Свойство

Значение

Молекулярный вес

44,01

Критическая плотность

468 кг / м 3

Концентрация в воздухе

79 79 90,3

Стабильность

Высокая

Жидкость

Давление <415.8 кПа

Твердый

Температура <-78 o C

Константа Генри для растворимости

0,9 об. / Об. При 20 o C

Где на Земле мы находим углекислый газ?

Углекислый газ можно найти в основном в воздухе, но также и в воде как часть углеродного цикла.Мы можем показать вам, как работает углеродный цикл, с помощью объяснения и схематического изображения. -> Перейти к углеродному циклу.

Применение углекислого газа людьми

Люди используют углекислый газ по-разному. Самый известный пример — его использование в безалкогольных напитках и пиве, чтобы сделать их газированными. Двуокись углерода, выделяемая разрыхлителем или дрожжами, заставляет тесто для торта подниматься.
В некоторых огнетушителях используется углекислый газ, потому что он плотнее воздуха. Углекислый газ может покрыть огонь из-за своей тяжести.Он предотвращает попадание кислорода в огонь, и в результате горящий материал лишается кислорода, необходимого для продолжения горения.
Двуокись углерода также используется в технологии, называемой сверхкритической жидкостной экстракцией, которая используется для удаления кофеина из кофе. Твердая форма углекислого газа, широко известная как сухой лед, используется в театрах для создания сценических туманов и создания пузырей вроде «волшебных зелий».

Роль диоксида углерода в экологических процессах

Двуокись углерода — один из самых распространенных газов в атмосфере.Углекислый газ играет важную роль в жизненно важных процессах растений и животных, таких как фотосинтез и дыхание. Эти процессы будут кратко объяснены здесь.

Зеленые растения превращают углекислый газ и воду в пищевые соединения, такие как глюкоза и кислород. Этот процесс называется фотосинтезом.

Реакция фотосинтеза следующая:
6 CO 2 + 6 H 2 O -> C 6 H 12 O 6 + 6 O 2

Растения и животные, в свою очередь, преобразовывают пищевые соединения, объединяя их с кислородом, чтобы высвободить энергию для роста и другой жизнедеятельности.Это процесс дыхания, обратный фотосинтезу.

Реакция дыхания следующая:
C 6 H 12 O 6 + 6 O 2 -> 6 CO 2 + 6 H 2 O

Воспроизведение фотосинтеза и дыхания важную роль в углеродном цикле и находятся в равновесии друг с другом.
Фотосинтез преобладает в более теплое время года, а дыхание — в более холодное время года. Однако оба процесса происходят круглый год.Таким образом, в целом содержание углекислого газа в атмосфере уменьшается в течение вегетационного периода и увеличивается в остальное время года.
Поскольку сезоны в северном и южном полушариях противоположны, углекислый газ в атмосфере увеличивается на севере и уменьшается на юге, и наоборот. Цикл более отчетливо присутствует в северном полушарии; потому что здесь относительно больше суши и наземной растительности. Океаны доминируют в южном полушарии.

Влияние двуокиси углерода на щелочность

Двуокись углерода может изменять pH воды.Вот как это работает:

Углекислый газ слегка растворяется в воде с образованием слабой кислоты, называемой угольной кислотой, H 2 CO 3 , в соответствии со следующей реакцией:
CO 2 + H 2 O — -> H 2 CO 3

После этого углекислота слабо и обратимо реагирует в воде с образованием катиона гидроксония H 3 O + и бикарбонат-иона HCO 3 — согласно следующему реакция:
H 2 CO 3 + H 2 O -> HCO 3 + H 3 O +

Это химическое поведение объясняет, почему вода, которая обычно имеет нейтральный pH 7 имеет кислый pH приблизительно 5.5 при контакте с воздухом.

Выбросы углекислого газа людьми

В результате деятельности человека количество CO 2 , выброшенное в атмосферу, за последние 150 лет значительно увеличилось. В результате он превысил количество, поглощенное биомассой, океанами и другими стоками.
Концентрация углекислого газа в атмосфере выросла с 280 ppm в 1850 году до 364 ppm в 1998 году, в основном из-за деятельности человека во время и после промышленной революции, которая началась в 1850 году.
Люди увеличивают количество углекислого газа в воздухе за счет сжигания ископаемого топлива, производства цемента, расчистки земель и сжигания лесов. Около 22% нынешних концентраций CO 2 в атмосфере существует из-за этой деятельности человека, если считать, что естественное количество диоксида углерода не изменилось. Мы более подробно рассмотрим эти эффекты в следующем абзаце.

Экологические проблемы — парниковый эффект

Тропосфера — это нижняя часть атмосферы толщиной около 10-15 километров.В тропосфере есть газы, называемые парниковыми газами. Когда солнечный свет достигает Земли, часть его превращается в тепло. Парниковые газы поглощают часть тепла и удерживают его у поверхности земли, так что земля нагревается. Этот процесс, широко известный как парниковый эффект, был открыт много лет назад и позже подтвержден лабораторными экспериментами и атмосферными измерениями.
Жизнь в том виде, в каком мы ее знаем, существует только благодаря этому естественному парниковому эффекту, потому что этот процесс регулирует температуру Земли.Когда не было бы парникового эффекта, вся земля была бы покрыта льдом.
Количество тепла, удерживаемого в тропосфере, определяет температуру на Земле. Количество тепла в тропосфере зависит от концентрации парниковых газов в атмосфере и количества времени, в течение которого эти газы остаются в атмосфере. Наиболее важными парниковыми газами являются диоксид углерода, CFC (хлор-фторуглероды), оксиды азота и метан.

С начала промышленной революции в 1850 году человеческие процессы стали причиной выбросов парниковых газов, таких как CFC и диоксид углерода.Это вызвало экологическую проблему: количество парниковых газов выросло настолько сильно, что климат Земли меняется из-за повышения температуры. Это неестественное дополнение к парниковому эффекту известно как глобальное потепление. Предполагается, что глобальное потепление может вызвать усиление штормовой активности, таяние ледяных шапок на полюсах, что вызовет затопление обитаемых континентов, и другие экологические проблемы.

Вместе с водородом основным парниковым газом является углекислый газ.Однако во время производственных процессов водород не выделяется. Люди не вносят вклад в количество водорода в воздухе, оно меняется естественным образом только в течение гидрологического цикла, и в результате не является причиной глобального потепления.
Увеличение выбросов углекислого газа вызывает около 50-60% глобального потепления. Выбросы углекислого газа выросли с 280 ppm в 1850 году до 364 ppm в 1990-х годах.

В предыдущем абзаце упоминались различные виды деятельности человека, которые способствуют выбросу углекислого газа.Из этих видов деятельности сжигание ископаемого топлива для производства энергии вызывает около 70-75% выбросов двуокиси углерода, являясь основным источником выбросов двуокиси углерода. Остальные 20-25% выбросов вызваны расчисткой и сжиганием земель, а также выбросами выхлопных газов автотранспортных средств.
Большинство выбросов углекислого газа происходит в результате промышленных процессов в развитых странах, таких как США и Европа. Однако выбросы углекислого газа в развивающихся странах растут.Ожидается, что в этом столетии выбросы углекислого газа увеличатся вдвое, а после этого они будут продолжать расти и вызывать проблемы.
Углекислый газ остается в тропосфере от пятидесяти до двухсот лет.

Первым, кто предсказал, что выбросы углекислого газа в результате сжигания ископаемого топлива и других процессов горения вызовут глобальное потепление, был Сванте Аррениус, опубликовавший статью «О влиянии углекислоты в воздухе на температуру земли. »в 1896 году.
В начале 1930 года было подтверждено, что содержание двуокиси углерода в атмосфере действительно увеличивается. В конце 1950-х годов, когда были разработаны высокоточные методы измерения, было найдено еще больше подтверждений. К 1990-м годам теория глобального потепления получила широкое признание, хотя и не всеми. Вопрос о том, действительно ли глобальное потепление вызвано увеличением содержания углекислого газа в атмосфере, все еще обсуждается.

Рост концентрации углекислого газа в воздухе в последние десятилетия

Киотский договор

Мировые лидеры собрались в Киото, Япония, в декабре 1997 года, чтобы обсудить всемирный договор, ограничивающий выбросы парниковых газов, в основном углерода диоксид, которые, как считается, вызывают глобальное потепление.К сожалению, хотя Киотские договоры какое-то время работали, Америка теперь пытается их уклониться.

Углекислый газ и здоровье

Углекислый газ необходим для внутреннего дыхания в организме человека. Внутреннее дыхание — это процесс, при котором кислород транспортируется к тканям тела, а углекислый газ уносится от них.
Двуокись углерода является гарантом pH крови, который необходим для выживания.
Буферная система, в которой диоксид углерода играет важную роль, называется карбонатным буфером.Он состоит из ионов бикарбоната и растворенного углекислого газа с угольной кислотой. Угольная кислота может нейтрализовать ионы гидроксида, которые при добавлении увеличивают pH крови. Ион бикарбоната может нейтрализовать ионы водорода, что может вызвать снижение pH крови при добавлении. Как увеличение, так и уменьшение pH опасно для жизни.

Известно, что двуокись углерода не только является важным буфером в организме человека, но и оказывает воздействие на здоровье, когда концентрация превышает определенный предел.

Углекислый газ представляет собой основную опасность для здоровья:
Удушье . Вызвано выбросом углекислого газа в замкнутом или непроветриваемом помещении. Это может снизить концентрацию кислорода до уровня, непосредственно опасного для здоровья человека.
Обморожение . Температура твердого углекислого газа всегда ниже -78 o C при обычном атмосферном давлении, независимо от температуры воздуха. Работа с этим материалом более одной-двух секунд без надлежащей защиты может вызвать серьезные волдыри и другие нежелательные эффекты.Газообразный диоксид углерода, выделяющийся из стального баллона, такого как огнетушитель, вызывает аналогичные эффекты.
Поражение почек или кома . Это вызвано нарушением химического равновесия карбонатного буфера. Когда концентрация углекислого газа увеличивается или уменьшается, вызывая нарушение равновесия, может возникнуть ситуация, угрожающая жизни.
[../_adsense/eng_hor.htm]

Ресурсы:

http://www.oism.org/pproject/s33p36.htm
http://cdiac.ornl.gov/pns/faq.html
http://www.ilpi.com/msds/ref/carbondioxide.html
Жизнь в окружающей среде, книга Дж. Тайлера Миллера

Влияние температуры и барометрического давления на датчики CO2 — Указания по применению


Двуокись углерода (CO2) в воздухе обычно измеряется в частях на миллион (ppm). При 1000 ppm CO2 объем воздуха, содержащий один миллион молекул воздуха, будет содержать смесь из 999000 молекул воздуха и 1000 молекул CO2.

На объем воздуха, необходимый для содержания одного миллиона молекул воздуха, влияют температура и давление воздуха, также называемое барометрическим давлением. По мере снижения давления объем, необходимый для содержания одного миллиона молекул воздуха, увеличивается. Обратное верно для температуры. С понижением температуры объем воздуха, необходимый для содержания одного миллиона молекул, уменьшается. Хотя на объем воздуха влияют температура и давление, на концентрацию CO2 это не влияет. Если вы начали с 1000 ppm CO2, то закончили с 1000 ppm CO2, несмотря на изменения в объеме воздуха.

Наиболее распространенные датчики CO2 известны под техническим термином «недисперсный инфракрасный» или NDIR. Датчик CO2 NDIR пропускает инфракрасный свет через образец газа в камере для образцов. Чувствительные фотодетекторы измеряют интенсивность инфракрасного света после его прохождения через пробу газа. Молекулы CO2 непрозрачны для инфракрасного света 4,26 мкм, в то время как остальные молекулы воздуха — нет. Таким образом, интенсивность инфракрасного света уменьшается пропорционально количеству присутствующих молекул CO2.Измерение результирующей интенсивности света позволяет измерить количество присутствующих молекул CO2.

Размер камеры отбора проб NDIR фиксирован и открыт для атмосферы, так что воздух может входить и выходить. Как объяснялось выше, количество молекул воздуха в данном объеме зависит от температуры и давления воздуха, но не от концентрации CO2. При низком давлении или высоких температурах в камере для образца будет меньше молекул воздуха, поэтому также будет меньше молекул CO2, даже если ppm CO2 не изменился.Меньшее количество молекул CO2 «обманывает» датчик, заставляя его думать, что концентрация CO2 ниже, чем есть на самом деле. При высоком давлении или низких температурах в камере для пробы находится больше молекул воздуха и больше молекул CO2, даже если концентрация CO2 не изменилась. Большее количество молекул CO2 «обманывает» датчик, заставляя его думать, что концентрация CO2 выше, чем есть на самом деле. Следовательно, калибровка датчика CO2 будет точной только при одной температуре и одном давлении воздуха.

Расчет влияния температуры и атмосферного давления на измерения CO2

Следующая формула, полученная из закона идеального газа, связывает изменения объема воздуха с температурой, давлением и количеством присутствующих молекул:

ppm CO2 с поправкой = ppm CO2 измерено * ((Tmeasured * pref) / (pmeasured * Tref))

  • pmeasured = Текущее давление в тех же единицах, что и эталонное давление (без поправки на уровень моря)
  • Tref = эталонная температура, обычно 25 ° C, 77 ° F, преобразованная в абсолютную (298.15 для ° C, 536,67 для ° F)
  • Tmeasured = Текущая абсолютная температура, ° C + 273,15, ° F +459,67
  • pref = эталонное барометрическое давление, обычно на уровне моря, 29,92 дюйма рт. Ст., 760 мм рт. Ст., 1013,207 гПа или 14,6959 фунт / кв. Дюйм

В таблице 1 используется приведенная выше формула закона идеального газа, чтобы показать, как измерение нескомпенсированного CO2 изменится при температуре от 32 ° F до 110 ° F. Начальные условия: 1000 ppm CO2, 77 ° F и атмосферное давление на уровне моря. Как видно из таблицы 1, концентрация CO2 изменяется на 150 частей на миллион.

Барометрическое давление

напрямую зависит от высоты, и в таблице 2 используется формула закона идеального газа, чтобы показать, как нескомпенсированные измерения CO2 будут изменяться с высотой от -1000 до 10000 футов. Начальные условия: 77 ° F и 1000 частей на миллион CO2 на уровне моря. Как видно из таблицы 2, концентрация CO2 изменяется на 349 частей на миллион.

Влияние погоды на атмосферное давление и измерения CO2

Тепло, проникающее в нашу атмосферу, создает погодные условия, и эти модели влияют на барометрическое давление, образуя системы высокого и низкого давления.Быстро движущиеся штормы могут резко изменить атмосферное давление и эффективную высоту всего за несколько минут.

Примерно в 15 милях от штаб-квартиры BAPI находится метеорологическая станция с подключением к Интернету на утесах реки Миссисипи над небольшим городком ДеСото. Если посмотреть на исторические данные с этой метеостанции за период с 2003 по 2011 год, то самое высокое давление, самое низкое давление и самый большой однодневный перепад давления показаны в таблице 3.

Если фактический уровень CO2 составлял 1000 частей на миллион на уровне моря, то в таблице 3 показано, какой была бы измеренная концентрация CO2 в DeSoto в те дни.С 15 января 2005 г. по 26 октября 2010 г. одни только погодные условия изменили измерение CO2 на 75 ppm, что является полной характеристикой точности для типичного датчика CO2 NDIR.

В один день 18 января 2005 г. погодные условия изменили измерение CO2 на 35 частей на миллион, что составляет почти 50% от заданной спецификации точности типичного датчика CO2 NDIR.

Совместное влияние температуры и барометрического давления на измерение CO2

Температура и барометрическое давление влияют на измерение CO2 по отдельности или в комбинации.В таблице 4 показаны измеренные концентрации CO2 для диапазона барометрических давлений, зарегистрированных в DeSoto с 2005 по 2010 год, а также температуры от 50 до 90 ° F.

Если бы фактическая концентрация CO2 составляла 1000 ppm при 77 ° F и уровне моря, измеренная концентрация CO2 изменилась бы на 161 ppm в различных диапазонах температуры и барометрического давления. Это отклонение превышает указанную точность датчика CO2 NDIR.

Компенсация динамического измерения CO2

Из-за постоянно меняющейся природы барометрического давления и температуры и их влияния на измерение CO2, единственный способ получить точное измерение CO2 с помощью датчика NDIR — это компенсация температуры и барометрического давления.Вот почему все датчики CO2 BAPI имеют встроенный датчик атмосферного давления и датчик температуры.

Каждые восемь секунд датчик BAPI снимает показания CO2, а затем компенсирует это значение на основе текущей температуры и атмосферного давления. Это одна из причин, почему датчики CO2 от BAPI являются самыми точными в отрасли HVAC / R. Техническому специалисту по HVAC также нет необходимости тратить драгоценное время на ручной ввод значения высоты для местоположения в каждый датчик при его установке.Это делает датчик CO2 BAPI одним из самых простых в установке, что позволяет сэкономить время и деньги.

Если у вас возникнут дополнительные вопросы, позвоните вашему представителю BAPI.


Версия этого документа в формате pdf для печати

опасностей теплового воздействия баллонов с CO2 | Алюминиевые газовые баллоны высокого давления

CO 2 баллонов объявляются заполненными, если вес заправки CO 2 эквивалентен 68% веса всей емкости баллона по воде .Это происходит из-за характеристик расширения заряда CO 2 , и резкое влияние на него оказывает повышение температуры. При повышении температуры заряд CO 2 сильно расширяется. В цилиндре, поскольку заряд ограничен объемом цилиндра, расширение измеряется как увеличение давления.

Ниже приводится описание взаимосвязи между давлением заряда CO 2 в баллоне на 20 фунтов CO 2 и влиянием на него воздействия повышенной температуры.

  • Баллон 20 фунтов CO 2 заполнен жидким CO 2 по весу. Во время заполнения температура заряда очень низкая, а давление составляет около 100 фунтов на квадратный дюйм.
  • Когда полностью заправленный 20 фунтами CO 2 баллон , заполненный на 68% по водному объему, нагревается до комнатной температуры (70 o F), давление внутри цилиндра увеличивается до 837 фунтов на квадратный дюйм.
  • Когда тот же баллон достигает 87,9 o F, весь заряд превращается в газ независимо от давления.Полностью заправленный баллон с CO 2 при температуре 87,9 o F будет иметь внутреннее давление примерно 1100 фунтов на квадратный дюйм.
  • При 120 o F в том же цилиндре будет внутреннее давление около 2000 фунтов на квадратный дюйм. Этот цилиндр при 120 o F теперь имеет внутреннее давление, превышающее указанное рабочее давление цилиндра, и он правильно заполнен, а не переполнен.
  • При 155 o F в том же цилиндре будет достигнуто давление 3000 фунтов на квадратный дюйм, достаточно большое давление активирует предохранитель, выпуская заряд через предохранитель.

Как видите, при повышении температуры полностью заправленного баллона давление увеличивается. Температура 155 o F при , при которой сработает предохранитель и вентилирует содержимое баллона, не является такой высокой температурой . Эта температура может быть легко достигнута во многих различных средах (например, в сарае или автомобиле в жаркий день или на кухне ресторана и т. Д.). Неожиданное удаление воздуха из цилиндра из-за его безопасности может испугать персонал. может привести к несчастным случаям, повреждению имущества или травмам.Попадание в контакт с выходом СО 2 заряда баллона может привести к травмам, например обморожениям.

При использовании, обращении, транспортировке и хранении баллона с CO 2 всегда помните о температуре, которой будет подвергаться баллон . Это не только температура, которой цилиндр подвергается в данный момент времени, , но также и максимальная температура, которой цилиндр будет подвергаться при в любое время в процессе эксплуатации.Catalina Cylinders, наряду с CGA, рекомендует не использовать баллоны CO 2 при температурах, превышающих 120 o F.

Опубликовано в: Углекислый газ

Общая информация о CO2

Двуокись углерода имеет 3 физических состояния: газ, жидкость и твердое тело, которые зависят от температуры и давления.

Откуда берется CO 2 ?
CO 2 получают из ряда источников, включая сжигание углеродсодержащего топлива, ферментацию, природные скважины, а также в качестве побочного продукта промышленных процессов, таких как производство окиси этилена и биоэтанола и синтез аммиака.


Твердое состояние (сухой лед):
Ниже тройной точки (5,18 бар, — 56,6 ° C) (7’512,96 psi, — 69,88 ° F) CO 2 может появляться только в его твердое и газообразное состояние. Сухой лед — это обычное торговое название твердого CO 2 . При атмосферном давлении он имеет температуру ок. -79 ° С (-110,2 ° F). Твердый CO 2 переходит непосредственно в газообразное состояние. Это испарение (сублимация) не оставляет никаких остатков. Сухой лед нетоксичен, негорючий, инертный, без запаха и бактериостатичен.Он белый и имеет плотность ок. 1’500 кг / м3 (93,64 фунта / фут3) в компактном состоянии. Сухой лед — идеальный хладагент, который особенно хорошо подходит для различных применений. Он обладает высокой охлаждающей способностью и очень высокой теплопередачей при прямом контакте с холодным материалом.

ASCO предлагает лучший ассортимент аппаратов для производства сухого льда.


Жидкое состояние:
В диапазоне температур от -56,6 ° C (-69,88 ° F) до 31 ° C (87,8 ° F) и давлении выше 5.2 бара и менее 74 бар (1’073,28 psi) соответственно CO 2 находится в жидком состоянии, за исключением очень высоких давлений. Это означает, что ниже 5,2 бар (754,20 фунта / кв. Дюйм) CO 2 существует только в твердом или газообразном состоянии. При 5,2 бар (754,20 фунтов на кв. Дюйм) и — 56,6 ° C (- 69,88 ° F) присутствуют все три состояния (твердое, жидкое и газообразное). Это называется тройной точкой.

Критическая точка CO 2 находится при температуре ок. 31 ° C (87,8 ° F) и давление прибл. 74 бар (1’073,28 фунтов на кв. Дюйм).Обычная жидкость CO 2 может образовываться только при температуре ниже 31 ° C (87,8 ° F). Выше критической точки нет физической разницы между жидкой и газовой фазами. Это сверхкритическое состояние также называют «жидкостью». Жидкое состояние важно для хранения и транспортировки CO 2 , а также во время охлаждения и замораживания. Во время выпуска жидкого CO 2 в атмосферу достигается температура -79 ° C (-110,2 ° F). Это связано с высокой охлаждающей способностью за счет тепла испарения, которое отбирается из окружающей среды при выделении жидкого CO 2 .