Индикатор 220 вольт на светодиоде: Индикаторы сети 220В на светодиодах, замена индикаторным неонкам

Содержание

Индикаторы сети 220В на светодиодах, замена индикаторным неонкам

Принципиальные схемы простых индикаторов наличия сети 220В на светодиодах, меняем старые неоновые индикаторные лампы на светодиоды. В электрооборудовании повсеместно применяются индикаторные неоновые лампы для индикации включения аппаратуры.

В большинстве случаев схема как на рисунке 1. То есть, неоновая лампа через резистор сопротивлением 150-200 киолом подключается к сети переменного тока. Порог пробоя неоновой лампы ниже 220V, потому она легко пробивается и светится. А резистор ограничивает ток через неё, чтобы она не взорвалась от превышения тока.

Бывают и неоновые лампы со встроенными токоограничительными резисторами, в таких схемах кажется как будто неоновая лампа включена в сеть без резистора. На самом деле резистор спрятан в её цоколе или в её проволочном выводе.

Недостаток неоновых индикаторных ламп в слабом свечении и только розовом цвете свечения, ну и еще в том что это стекло. Плюс, неоновые лампы сейчас в продаже встречаются реже светодиодов.

Понятно, что есть соблазн сделать аналогичный индикатор включения, но на светодиоде, тем более светодиоды бывают разных цветов и значительно более яркие чем «неонки», ну и нет стекла.

Но, светодиод низковольтный прибор. Прямое напряжение обычно не более ЗV, да и обратное тоже весьма низкое. Даже если светодиодом заменить неоновую лампу, он выйдет из строя за счет превышения обратного напряжения при отрицательной полуволне сетевого напряжения.

Рис. 1. Типовая схема подключения неоновой лампы к сети 220В.

Впрочем, есть двухцветные двухвыводные светодиоды. В корпусе такого светодиода есть два разноцветных светодиода, включенных встречно-параллельно. Такой светодиод можно подключить практически так же, как неоновую лампу (рис.2), только резистор взять сопротивлением поменьше, потому что для хорошей яркости через светодиод должен протекать ток больше чем через неоновую лампу.

Рис. 2. Схема индикатора сети 220В на двухцветном светодиоде.

В этой схеме одна половина двухцветного светодиода HL1 работает на одной полуволне, а вторая — на другой полуволне сетевого напряжения. В результате обратное напряжение на светодиоде не превышает прямого. Единственный недостаток — цвет. Он желтый. Потому что обычно два цвета — красный и зеленый, но горят они почти одновременно, потому зрительно выглядит как желтый цвет.

Резистор R1 в схеме на рисунке 2 сопротивлением ниже, чем с неоновой лампой, и на нем выделяется больше тепловой мощности. Полностью избавится от паразитной тепловой мощности можно, если заменить резистор конденсатором (рис. 3). Прямой ток через светодиод ограничивается реактивным емкостным сопротивлением конденсатора, а на нем тепло не выделяется.

Рис. 3. Схема индикатора сети 220В на двухцветном светодиоде и конденсаторе.

На рисунках 4 и 5 показана схема индикатора включения на двух светодиодах, включенных встречно-параллельно. Это почти то же, что на рис. 3 и 4, но светодиоды отдельные для каждого полупериода сетевого напряжения. Светодиоды могут быть как одного цвета, так и разного.

Рис. 4. Схема индикатора сети 220В с двумя светодиодами.

Рис. 5. Схема индикатора сети 220В с двумя светодиодами и конденсатором.

Но, если нужен только один светодиод, -второй можно заменить обычным диодом, например, 1N4148 (рис.6 и 7). И нет ничего страшного в том, что этот светодиод не рассчитан на напряжение электросети. Потому что обратное напряжение на нем не превысит прямого напряжения светодиода.

Рис. 6. Схема индикатора сети 220В со светодиодом и диодом.

Рис. 2. Схема индикатора сети 220В с одним светодиодом и конденсатором.

В схемах испытывались светодиоды, двухцветные типа L-53SRGW и одно-цветные типа АЛ307. Конечно же можно применить и любые другие аналогичные индикаторные светодиоды. Резисторы и конденсаторы так же могут быть других величин, — все зависит от того, какую силу тока нужно пустить через светодиод.

Андронов В. РК-2017-02.

Индикатор напряжения на светодиодах своими руками: схемы с описанием

Светодиоды давно применяется в любой технике из-за своего малого потребления, компактности и высокой надежности в качестве визуального отображения работы системы. Индикатор напряжения на светодиодах это полезное устройство, необходимое любителям и профессионалам для работы с электричеством. Принцип используется в подсветках настенных выключателей и выключателей в сетевых фильтрах, указателях напряжения, тестерных отвертках. Подобное устройство можно сделать своими руками из-за его относительной примитивности.

Индикатор переменного напряжения 220 В

Рассмотрим первый, наиболее простой вариант индикатора сети на светодиоде. Его применяют в отвертках для нахождения фазы 220 В. Для реализации нам понадобится:

  • светодиод;
  • резистор;
  • диод.

Светодиод (HL) вы можете выбрать абсолютно любой. Характеристики диода (VD) должны быть ориентировочно такими: прямое напряжение, при прямом токе 10-100 мА – 1-1,1 В. Обратное напряжение 30-75 В. Резистор (R) должен иметь сопротивление не меньше 100 кОм, но и не больше 150 кОм, иначе просядет яркость свечения индикатора. Такое устройство можно самостоятельно выполнить в навесной форме, даже без использования печатной платы.

Схема примитивного индикатора тока будет выглядеть аналогичным образом, только необходимо использовать емкостное сопротивление.

Индикатор переменного и постоянного напряжения до 600 В

Следующий вариант представляет собой немного более сложную систему, из-за наличия в схеме кроме уже известных нам элементов, двух транзисторов и емкости. Но универсальность этого индикатора вас приятно удивит. Ему доступна безопасная проверка наличия напряжения от 5 до 600 В, как постоянного, так и переменного.

Основным элементом схемы индикатора напряжения выступает полевой транзистор (VT2). Пороговое значение напряжения, которое позволит сработать индикатору фиксируется разностью потенциалов затвор-исток, а максимально возможное напряжение определяет падение на сток-истоке. Он выполняет функции стабилизатора тока. Через биполярный транзистор (VT1) осуществляется обратная связь для поддержания заданного значения.

Принцип работы светодиодного индикатора заключается в следующем. При подаче на вход разности потенциалов, в контуре возникнет ток, значение которого определяется сопротивлением (R2) и напряжением перехода база-эмиттер биполярного транзистора (VT1). Для того чтобы слабенький светодиод загорелся, достаточно тока стабилизации 100 мкА. Для этого сопротивление (R2) должно быть 500-600 Ом, если напряжение база-эмиттер примерно 0,5 В. Конденсатор (С) необходим неполярный, емкостью 0,1 мкФ, служит он защитой светодиода от скачков тока. Резистор (R1) выбираем величиной 1 МОм, он исполняет роль нагрузки для биполярного транзистора (VT1). Функции диода (VD) в случае индикации постоянного напряжения – это проверка полюсов и защита. А для проверки переменного напряжения он играет роль выпрямителя, срезая отрицательную полуволну. Его обратное напряжение должно быть не меньше 600 В. Что касается светодиода (HL), то выбирайте сверхъяркий, для того, чтобы его свечение при минимальных токах было заметно.

Автомобильный индикатор напряжения

Среди областей, где применение индикатора напряжения на светодиодах имеет неоспоримую пользу, можно выделить эксплуатацию автомобильного аккумулятора. Для того чтобы аккумулятор служил долго, необходимо контролировать напряжение на его клеммах и поддерживать в заданных пределах.

Предлагаем вам обратить внимание на схему автомобильного индикатора напряжения на RGB-светодиоде, с помощью которой вы поймете, как изготовить устройство самостоятельно. RGB-светодиод отличается от обычного, наличием 3-х разноцветных кристаллов внутри своего корпуса. Данное свойство мы будем использовать для того, чтобы каждый цвет сигнализировал нам об уровне напряжения.

Схема состоит из девяти резисторов, трех стабилитронов, трех биполярных транзисторов и одного 3-цветного светодиода. Обратите внимание, какие элементы рекомендуется выбирать для реализации схемы.

  1. R1=1, R2=10, R3=10, R4=2.2, R5=10, R6=47, R7=2.2, R8=100, R9=100 (кОм).
  2. VD1=10, VD2=8.2, VD3=5.6 (В).
  3. VT – BC847C.
  4. HL – LED RGB.

Результат такой системы следующий. Светодиод загорается:

  • зеленым – напряжение 12-14 В;
  • синим – напряжение ниже 11,5 В;
  • красным – напряжение свыше 14,4 В.

Это происходит за счет правильно собранной схемы. С помощью потенциометра (R4) и стабилитрона (VD2) выставляется низший предел напряжения. Как только разность потенциалов между клеммами батареи становится меньше указанного значения – транзистор (VT2) закрывается, VT3 открывается, синий кристалл индуцирует. Если напряжение на клеммах находится в указанном диапазоне, то ток проходит через резисторы (R5,R9), стабилитрон (VD3), светодиод (HL), естественно, светит зеленым, транзистор (VT3) находится в закрытом состоянии, а второй (VT2) – в открытом. С помощью настройки переменного резистора (R2), превышение напряжения больше 14,4 В будет отображаться свечением светодиода красного цвета.

Индикатор напряжения на двухцветном светодиоде

Еще одна популярная схема индикации, это схема с использованием двухцветного светодиода для отображения степени заряда батареи или же сигнализации о включении или выключении лампы в другом помещении. Это может быть очень удобно, например, если выключатель света в подвале расположен до лестницы ведущей вниз (кстати, не забудьте прочитать интересную статью о том как сделать подсветку лестницы светодиодной лентой). До того как спуститься туда, вы зажигаете свет, и индикатор загорается красным, в выключенном состоянии вы видите зеленое свечение на клавише. В этом случае вам не придется заходить в темную комнату и уже там нащупывать выключатель. Когда вы покинули подвал, вы по цвету светодиода знаете, горит свет в подвале или нет. Одновременно с этим, вы контролируете исправность лампочки, потому что в случае ее перегорания, красным светодиод светиться не будет. Вот схема индикатора напряжения на двухцветном светодиоде.

В заключении можно сказать, что это лишь основные возможные схемы использования светодиодов для индикации напряжения. Все они несложные, и в своей реализации под силу даже дилетанту. В них не использовалось никаких дорогостоящих интегральных микросхем и тому подобное. Рекомендуем обзавестись таким устройством всем любителям и профессионалам электрикам, чтобы никогда не подвергать свое здоровье опасности, приступая к ремонтным работам, не проверив наличие напряжения.

🛠 Индикатор сети 220 вольт 👈

Это самый простой и самый надежный индикатор сети который мне приходилось делать.

Раньше, чтобы вставить индикатор сети 220 в какой-либо прибор надо было мотать отдельную катушку на трансформатор или сооружать целую схему из диодов и конденсаторов, пока мне не попалась эта супер простая схема. На фото видно, что светодиод включён в розетку через резистор — краткость сестра таланта 🙂

Индикаторы сети часто используют для подсветки комнатных выключателей освещения в темное время суток. В качестве индикатора использовали неоновую лампу и резистор, эти лампы громоздки и к тому же мигают и иногда перегорают. Теперь вместо неоновых ламп можно использовать светодиод один или несколько. Я дома сделал подсветку выключателей с помощью четырёх светодиодов и одного резистора, все детали легко уместились по периметру крышки выключателя.

Схема устройства очень проста, полярность светодиода можно не учитывать. Постоянный резистор сопротивлением 100 кОм и мощностью не менее 0.5 Вт.

В своей схеме на фото я использовал резистор мощностью 2 Вт. потому, как он просто оказался под рукой. А вообще у меня есть целая гирлянда из 20 светодиодов и одного резистора 0.5 Вт. всё это работает от сети 220 в. и при этом резистор ни чуть не греется.




Написать комментарий

КОММЕНТАРИИ


  • Из подручных материалов парень своими руками на столе склеил комфортабельный гоночный автомобиль.

    Дмитрий ДА 08.08.2010

  • Сегодня дадим новую жизнь старому браслету.

    Yuseka 02.02.2012

  • Всё сделал сам, пишите, сбрасывайте интересные поделки, попробую что-нибудь ещё сделать.

    Алексей Лебедев 23.04.2015

Простейшие схемы подключения светодиодов в 220 вольт без драйвера (самое простое питание светодиода от сети напряжением 220В)

Потому что нужно грамотно решить сразу две задачи:

  1. Ограничить прямой ток через светодиод, чтобы он не сгорел.
  2. Обеспечить защиту светодиода от пробоя обратным током.

Если проигнорировать любой из этих пунктов, светодиод моментально накроется медным тазом.

В самом простейшем случае ограничить ток через светодиод можно резистором и/или конденсатором. А предотвратить пробой от обратного напряжения можно с помощью обычного диода или еще одного светодиода.

Поэтому самая простая схема подключения светодиода к 220В состоит всего из нескольких элементов:

Защитный диод может быть практически любым, т.к. его обратное напряжение никогда не будет превышать прямого напряжения на светодиоде, а ток ограничен резистором.

Сопротивление и мощность ограничительного (балластного) резистора зависит от рабочего тока светодиода и рассчитывается по закону Ома:

R = (Uвх — ULED) / I

А мощность рассеивания резистора рассчитывается так:

P = (Uвх — ULED)2 / R

где Uвх = 220 В,
ULED — прямое (рабочее) напряжение светодиода. Обычно оно лежит в пределах 1.5-3.5 В. Для одного-двух светодиодов им можно пренебречь и, соответственно, упростить формулу до R=Uвх/I,
I — ток светодиода. Для обычных индикаторных светодиодов ток будет 5-20 мА.

Пример расчета балластного резистора

Допустим, нам нужно получить средний ток через светодиод = 20 мА, следовательно, резистор должен быть:

R = 220В/0.020А = 11000 Ом (берем два резистора: 10 + 1 кОм)

P = (220В)2/11000 = 4.4 Вт (берём с запасом: 5 Вт)

Необходимое сопротивление резистора можно взять из таблицы ниже.

Таблица 1. Зависимость тока светодиода от сопротивления балластного резистора.

Сопротивление резистора, кОм Амплитудное значение тока через светодиод, мА Средний ток светодиода, мА Средний ток резистора, мА Мощность резистора, Вт
43 7.2 2.5 5 1.1
24 13 4.5 9 2
22 14 5 10 2.2
12 26 9 18 4
10 31 11 22 4.8
7.5 41 15 29 6.5
4.3 72 25 51 11.3
2.2 141 50 100 22

Другие варианты подключения

В предыдущих схемах защитный диод был включен встречно-параллельно, однако его можно разместить и так:

Это вторая схема включения светодиодов на 220 вольт без драйвера. В этой схеме ток через резистор будет в 2 раза меньше, чем в первом варианте. А, следовательно, на нем будет выделяться в 4 раза меньше мощности. Это несомненный плюс.

Но есть и минус: к защитному диоду прикладывается полное (амплитудное) напряжение сети, поэтому любой диод здесь не прокатит. Придется подобрать что-нибудь с обратным напряжением 400 В и выше. Но в наши дни это вообще не проблема. Отлично подойдет, например, вездесущий диод на 1000 вольт — 1N4007 (КД258).

Не смотря на распространенное заблуждение, в отрицательные полупериоды сетевого напряжения, светодиод все-таки будет находиться в состоянии электрического пробоя. Но благодаря тому, что сопротивление обратносмещенного p-n-перехода защитного диода очень велико, ток пробоя будет недостаточен для вывода светодиода из строя.

Внимание! Все простейшие схемы подключения светодиодов в 220 вольт имеют непосредственную гальваническую связь с сетью, поэтому прикосновение к ЛЮБОЙ точке схемы — ЧРЕЗВЫЧАЙНО ОПАСНО!

Для уменьшения величины тока прикосновения нужно располовинить резистор на две части, чтобы получилось как показано на картинках:

Благодаря такому решению, даже поменяв местами фазу и ноль, ток через человека на «землю» (при случайном прикосновении) никак не сможет превысить 220/12000=0.018А. А это уже не так опасно.

Как быть с пульсациями?

В обеих схемах светодиод будет светиться только в положительный полупериод сетевого напряжения. То есть он будет мерцать с частой 50 Гц или 50 раз в секунду, причём размах пульсаций будет равен 100% (10 мс горит, 10 мс не горит и так далее). Это будет заметно глазу.

К тому же, при подсветке мерцающими светодиодами каких-либо движущихся объектов, например, лопастей вентилятора, колес велосипеда и т.п., неизбежно будет возникать стробоскопический эффект. В некоторых случаях данный эффект может быть неприемлем или даже опасен. Например, при работе за станком может показаться, что фреза неподвижна, а на самом деле она вращается с бешенной скоростью и только и ждет, чтобы вы сунули туда пальцы.

Чтобы сделать пульсации менее заметными, можно удвоить частоту включения светодиода с помощью двухполупериодного выпрямителя (диодного моста):

Обратите внимание, что по сравнению со схемой #2 при том же самом сопротивлении резисторов, мы получили в два раза больший средний ток. И, соответственно, в четыре раза большую мощность рассеивания резисторов.

К диодному мосту при этом не предъявляется каких-либо особых требований, главное, чтобы диоды, из которых он состоит, выдерживали половину рабочего тока светодиода. Обратное напряжение на каждом из диодов будет совсем ничтожным.

Еще, как вариант, можно организовать встречно-параллельное включение двух светодиодов. Тогда один из них будет гореть во время положительной полуволны, а второй — во время отрицательной.

Фишка в том, что при таком включении максимальное обратное напряжение на каждом из светодиодов будет равно прямому напряжению другого светодиода (несколько вольт максимум), поэтому каждый из светодиодов будет надежно защищен от пробоя.

Светодиоды следует разместить как можно ближе друг к другу. В идеале — попытаться найти сдвоенный светодиод, где оба кристалла размещены в одном корпусе и у каждого свои выводы (хотя я таких ни разу не видел).

Вообще говоря, для светодиодов, выполняющих индикаторную функцию, величина пульсаций не очень-то и важна. Для них самое главное — это максимально заметная разница между включенным и выключенным состоянием (индикация вкл/выкл, воспроизведение/запись, заряд/разряд, норма/авария и т.п.)

А вот при создании светильников, всегда нужно стараться свести пульсации к минимуму. И не столько из-за опасностей стробоскопического эффекта, сколько из-за их вредного влияния на организм.

Какие пульсации считаются допустимыми?

Все зависит от частоты: чем она ниже, тем заметнее пульсации. На частотах выше 300 Гц пульсации становятся совершенно невидимыми и вообще никак не нормируются, то есть даже 100%-ные считаются нормой.

Не смотря на то, что пульсации освещенности на частотах 60-80 Гц и выше визуально не воспринимаются, тем не менее, они способны вызывать повышенную усталость глаз, общую утомляемость, тревожность, снижение производительности зрительной работы и даже головные боли.

Для предотвращения вышеперечисленных последствий, международный стандарт IEEE 1789-2015 рекомендует максимальный уровень пульсаций яркости для частоты 100 Гц — 8% (гарантированно безопасный уровень — 3%). Для частоты 50 Гц — это будут 1.25% и 0.5% соответственно. Но это для перфекционистов.

На самом деле, для того, чтобы пульсации яркости светодиода перестали хоть как-то досаждать, достаточно, чтобы они не превышали 15-20%. Именно таков уровень мерцания ламп накаливания средней мощности, а ведь на них никто и никогда не жаловался. Да и наш российский СНиП 23-05-95 допускает мерцание света в 20% (и только для особо кропотливых и ответственных работ требование повышено до 10%).

В соответствии с ГОСТ 33393-2015 «Здания и сооружения. Методы измерения коэффициента пульсации освещенности» для оценки величины пульсаций вводится специальный показатель — коэффициент пульсаций (Кп).

Коэфф. пульсаций в общем рассчитывается по сложной формуле с применением интегральной функции, но для гармонических колебаний формула упрощается до следующей:

Кп = (Еmax — Emin) / (Emax + Emin) ⋅ 100%,

где Емах — максимальное значение освещенности (амплитудное), а Емин — минимальное.

Мы будем использовать эту формулу для расчета емкости сглаживающего конденсатора.

Очень точно определить пульсации любого источника света можно при помощи солнечной панели и осциллографа:

Как уменьшить пульсации?

Посмотрим, как включить светодиод в сеть 220 вольт, чтобы снизить пульсации. Для этого проще всего подпаять параллельно светодиоду накопительный (сглаживающий) конденсатор:

Из-за нелинейного сопротивления светодиодов, расчет емкости этого конденсатора является довольно нетривиальной задачей.

Однако, эту задачу можно упростить, если сделать несколько допущений. Во-первых, представить светодиод в виде эквивалентного постоянного резистора:

А во-вторых, сделать вид, что яркость светодиода (а, следовательно, и освещенность) имеет линейную зависимость от тока.

Давайте попробуем приблизительно рассчитать емкость конденсатора на конкретном примере.

Расчет емкости сглаживающего конденсатора

Допустим, мы хотим получить коэфф. пульсаций 2.5% при токе через светодиод 20 мА. И пусть в нашем распоряжении оказался светодиод, на котором при токе в 20 мА падает 2 В. Частота сети, как обычно, 50 Гц.

Так как мы решили, что яркость линейно зависит от тока через светодиод, а сам светодиод мы представили в виде простого резистора, то освещенность в формуле расчета коэффициента пульсаций можем спокойно заменить на напряжение на конденсаторе:

Кп = (Umax — Umin) / (Umax + Umin) ⋅ 100%

Подставляем исходные данные и вычисляем Umin:

2.5% = (2В — Umin) / (2В + Umin) 100% => Umin = 1.9В

Период колебаний напряжения в сети равен 0.02 с (1/50).

Таким образом, осциллограмма напряжения на конденсаторе (а значит и на нашем упрощенном светодиоде) будет выглядеть примерно вот так:

Вспоминаем тригонометрию и считаем время заряда конденсатора (для простоты не будем учитывать сопротивление балластного резистора):

tзар = arccos(Umin/Umax) / 2πf = arccos(1.9/2) / (23.141550) = 0.0010108 с

Весь остальной остаток периода кондер будет разряжаться. Причем, период в данном случае нужно сократить в два раза, т.к. у нас используется двухполупериодный выпрямитель:

tразр = Т — tзар = 0.02/2 — 0.0010108 = 0.008989 с

Осталось вычислить емкость:

C = ILEDdt/dU = 0.02 0.008989/(2-1.9) = 0.0018 Ф (или 1800 мкФ)

На практике вряд ли кто-то будет ставить такой большой кондер ради одного маленького светодиодика. Хотя, если стоит задача получить пульсации в 10%, то нужно всего 440 мкФ.

Повышаем КПД

Обратили внимание, насколько большая мощность выделяется на гасящем резисторе? Мощность, которая тратится впустую. Нельзя ли ее как-нибудь уменьшить?

Оказывается, еще как можно! Достаточно вместо активного сопротивления (резистора) взять реактивное (конденсатор или дроссель).

Дроссель мы, пожалуй, сразу откинем из-за его громоздкости и возможных проблем с ЭДС самоиндукции. А насчет конденсаторов можно подумать.

Как известно, конденсатор любой емкости обладает бесконечным сопротивлением для постоянного тока. А вот сопротивление переменному току рассчитывается по этой формуле:

Rc = 1 / 2πfC

то есть, чем больше емкость C и чем выше частота тока f — тем ниже сопротивление.

Прелесть в том, что на реактивном сопротивлении и мощность тоже реактивная, то есть ненастоящая. Она как бы есть, но ее как бы и нет. На самом деле эта мощность не совершает никакой работы, а просто возвращается назад к источнику питания (в розетку). Бытовые счетчики ее не учитывают, поэтому платить за нее не придется. Да, она создает дополнительную нагрузку на сеть, но вас, как конечного потребителя, это вряд ли сильно обеспокоит =)

Таким образом, наша схема питания светодиодов от 220В своими руками приобретает следующий вид:

Но! Именно в таком виде ее лучше не использовать, так как в этой схеме светодиод уязвим для импульсных помех.

Включение или выключение распложенных на одной с вами линии мощной индуктивной нагрузки (двигатель кондиционера, компрессор холодильника, сварочный аппарат и т.п.) приводит к появлению в сети очень коротких выбросов напряжения. Конденсатор С1 представляет для них практически нулевое сопротивление, следовательно мощный импульс направится прямиком к С2 и VD5.

К сожалению, электролитические конденсаторы, из-за своей большой паразитной индуктивности, плохо справляются с ВЧ-помехами, поэтому большая часть энергии импульса пойдет через p-n-переход светодиода.

Еще один опасный момент возникает в случае включения схемы в момент пучности напряжения в сети (т.е. в тот самый момент, когда напряжение в розетке находится на пике своего значения). Т.к. С1 в этот момент полностью разряжен, то возникает слишком большой бросок тока через светодиод.

Все это со временем это приводит к прогрессирующей деградации кристалла и падению яркости свечения.

Во избежание таких печальных последствий, схему нужно дополнить небольшим гасящим резистором на 47-100 Ом и мощностью 1 Вт. Кроме того, резистор R1 будет выступать в роли предохранителя на случай пробоя конденсатора С1.

Получается, что схема включения светодиода в сеть 220 вольт должна быть такой:

И остается еще один маленький нюанс: если выдернуть эту схему из розетки, то на конденсаторе С1 останется какой-то заряд. Остаточное напряжение будет зависеть от того, в какой момент была разорвана цепь питания и в отдельных случаях может превышать 300 вольт.

А так как конденсатору некуда разряжаться, кроме как через свое внутреннее сопротивление, то заряд может сохраняться очень долго (сутки и более). И все это время кондер будет ждать вас или вашего ребенка, через которого можно будет как следует разрядиться. Причем, для того, чтобы получить удар током, не нужно лезть в недра схемы, достаточно просто прикоснуться к обоим контактам штепсельной вилки.

Чтобы помочь кондеру избавиться от ненужного заряда, подключим параллельно ему любой высокоомный резистор (например, на 1 МОм). Этот резистор не будет оказывать никакого влияния на расчетный режим работы схемы. Он даже греться не будет.

Таким образом, законченная схема подключения светодиода к сети 220В (с учетом всех нюансов и доработок) будет выглядеть так:

Значение емкости конденсатора C1 для получения нужного тока через светодиод можно сразу взять из Таблицы 2, а можно рассчитать самостоятельно.

Вот здесь можно посмотреть, как еще сильнее усовершенствовать данную схему, добавив в нее стабилизатор тока на одном транзисторе и стабилитроне. Это существенно понизит пульсации и продлит срок службы светодиодов.

Расчет гасящего конденсатора для светодиода

Не буду приводить утомляющие математические выкладки, дам сразу готовую формулу емкости (в Фарадах):

C = I / (2πf√(U2вх — U2LED)) [Ф],

где I — ток через светодиод, f — частота тока (50 Гц), Uвх — действующее значение напряжения сети (220В), ULED — напряжение на светодиоде.

Если расчет ведется для небольшого числа последовательно включенных светодиодов, то выражение √(U2вх — U2LED) приблизительно равно Uвх, следовательно формулу можно упростить:

C ≈ 3183 ⋅ ILED / Uвх [мкФ]

а, раз уж мы делаем расчеты под Uвх = 220 вольт, то:

C ≈ 15 ⋅ ILED [мкФ]

Таким образом, при включении светодиода на напряжение 220 В, на каждые 100 мА тока потребуется примерно 1.5 мкФ (1500 нФ) емкости.

Кто не в ладах с математикой, заранее посчитанные значения можно взять из таблицы ниже.

Таблица 2. Зависимость тока через светодиоды от емкости балластного конденсатора.

C1 15 nF 68 nF 100 nF 150 nF 330 nF 680 nF 1000 nF
ILED 1 mA 4.5 mA 6.7 mA 10 mA 22 mA 45 mA 67 mA

Немного о самих конденсаторах

В качестве гасящих рекомендуется применять помехоподавляющие конденсаторы класса Y1, Y2, X1 или X2 на напряжение не менее 250 В. Они имеют прямоугольный корпус с многочисленными обозначениями сертификатов на нем. Выглядят так:

Если вкратце, то:

  • X1 – используются в промышленных устройствах, подключаемых к трехфазной сети. Эти конденсаторы гарантированно выдерживают всплеск напряжения в 4 кВ;
  • X2 – самые распространенные. Используются в бытовых приборах с номинальным напряжением сети до 250 В, выдерживают скачек до 2.5 кВ;
  • Y1 – работают при номинальном сетевом напряжении до 250 В и выдерживают импульсное напряжение до 8 кВ;
  • Y2 – довольно-таки распространенный тип, может быть использован при сетевом напряжении до 250 В и выдерживает импульсы в 5 кВ.

Допустимо применять отечественные пленочные конденсаторы К73-17 на 400 В (а лучше — на 630 В).

Сегодня широкое распространение получили китайские «шоколадки» (CL21), но в виду их крайне низкой надежности, очень рекомендую удержаться от соблазна применять их в своих схемах. Особенно в качестве балластных конденсаторов.

Внимание! Полярные конденсаторы ни в коем случае нельзя использовать в качестве балластных!

Итак, мы рассмотрели, как подключать светодиод к 220В (схемы и их расчет). Все приведенные в данной статье примеры хорошо подходят для одного или нескольких маломощных светодиодов, но совершенно нецелесообразны для мощных светильников, например, ламп или прожекторов — для них лучше использовать полноценные схемы, которые называются драйверами.

Индикатор сети 220 вольт

В любой технике в качестве отображения режимов работы используют светодиоды. Причины очевидны – низкая стоимость, сверхмалое энергопотребление, высокая надёжность. Поскольку схемы индикаторов очень просты, нет необходимости в покупке фабричных изделий.

Из обилия схем, для изготовления указателя напряжения на светодиодах своими руками, можно подобрать наиболее оптимальный вариант. Индикатор можно собрать за пару минут из самых распространённых радиоэлементов.

Все подобные схемы по назначению делят на индикаторы напряжения и индикаторы тока.

Индикатор переменного напряжения 220 В

Рассмотрим первый, наиболее простой вариант индикатора сети на светодиоде. Его применяют в отвертках для нахождения фазы 220 В. Для реализации нам понадобится:

  • светодиод;
  • резистор;
  • диод.

Светодиод (HL) вы можете выбрать абсолютно любой. Характеристики диода (VD) должны быть ориентировочно такими: прямое напряжение, при прямом токе 10-100 мА – 1-1,1 В. Обратное напряжение 30-75 В. Резистор (R) должен иметь сопротивление не меньше 100 кОм, но и не больше 150 кОм, иначе просядет яркость свечения индикатора. Такое устройство можно самостоятельно выполнить в навесной форме, даже без использования печатной платы.

Схема примитивного индикатора тока будет выглядеть аналогичным образом, только необходимо использовать емкостное сопротивление.

Проверка постоянного напряжения

Нередко возникает необходимость прозвонить низковольтную цепь бытовых приборов, либо проверить целостность соединения, например, провод от наушников.

В качестве ограничителя тока можно использовать маломощную лампу накаливания либо резистор на 50-100 Ом. В зависимости от полярности подключения загорается соответствующий диод. Этот вариант подходит для цепей до 12В. Для более высокого напряжения потребуется увеличить сопротивления ограничивающего резистора.

Индикатор переменного и постоянного напряжения до 600 В

Следующий вариант представляет собой немного более сложную систему, из-за наличия в схеме кроме уже известных нам элементов, двух транзисторов и емкости. Но универсальность этого индикатора вас приятно удивит. Ему доступна безопасная проверка наличия напряжения от 5 до 600 В, как постоянного, так и переменного.

Основным элементом схемы индикатора напряжения выступает полевой транзистор (VT2). Пороговое значение напряжения, которое позволит сработать индикатору фиксируется разностью потенциалов затвор-исток, а максимально возможное напряжение определяет падение на сток-истоке. Он выполняет функции стабилизатора тока. Через биполярный транзистор (VT1) осуществляется обратная связь для поддержания заданного значения.

Принцип работы светодиодного индикатора заключается в следующем. При подаче на вход разности потенциалов, в контуре возникнет ток, значение которого определяется сопротивлением (R2) и напряжением перехода база-эмиттер биполярного транзистора (VT1). Для того чтобы слабенький светодиод загорелся, достаточно тока стабилизации 100 мкА. Для этого сопротивление (R2) должно быть 500-600 Ом, если напряжение база-эмиттер примерно 0,5 В. Конденсатор (С) необходим неполярный, емкостью 0,1 мкФ, служит он защитой светодиода от скачков тока. Резистор (R1) выбираем величиной 1 МОм, он исполняет роль нагрузки для биполярного транзистора (VT1). Функции диода (VD) в случае индикации постоянного напряжения – это проверка полюсов и защита. А для проверки переменного напряжения он играет роль выпрямителя, срезая отрицательную полуволну. Его обратное напряжение должно быть не меньше 600 В. Что касается светодиода (HL), то выбирайте сверхъяркий, для того, чтобы его свечение при минимальных токах было заметно.

Пробник электрика: принцип работы и изготовление

Простой определитель на двух светодиодах и с неоновой лампочкой, получивший среди электриков название «аркашка», несмотря на несложное устройство, позволяет эффективно определять наличие фазы, сопротивления в электроцепи, а также обнаруживать в схеме КЗ (короткое замыкание). Универсальный пробник для электрика в основном используется для:

  • Диагностики на обрыв катушек и реле.
  • Прозвонки моторов и дросселей.
  • Проверки выпрямительных диодов.
  • Определения выводов на трансформаторах с несколькими обмотками.

Это далеко не полный перечень задач, которые решают с помощью пробника. Но и перечисленного достаточно, чтобы понять, насколько полезно это устройство в работе электромонтера.

В качестве источника питания для этого устройства используется обычная батарейка с показателем напряжения 9 В. Когда щупы тестера замкнуты, величина потребляемого тока не превышает 110 мА. Если же щупы разомкнуты, то устройство не потребляет электроэнергию, поэтому ему не нужен ни переключатель режима диагностики, ни выключатель энергопитания.

Пробник способен выполнять свои функции в полной мере, пока напряжение на источнике питания не падает ниже 4 В. После этого его можно использовать в качестве указателя напряжения в цепях.

Во время прозвонки электрических цепей, показатель сопротивления которых составляет 0 – 150 Ом, загорается два светоизлучающих диода – желтого и красного цвета. Если показатель сопротивления составляет 151 Ом – 50 кОм, то светится только желтый диод. Когда на щупы прибора подается напряжение сети величиной от 220 В до 380 В, начинает светиться неоновая лампа, одновременно с этим наблюдается легкое мерцание LED-элементов.

Схема этого индикатора напряжения имеется в интернете, а также в специализированной литературе. Изготавливая такой пробник своими руками, его элементы устанавливают внутри корпуса, который изготовлен из изоляционного материала.

Зачастую для этих целей используется корпус от ЗУ любого мобильного телефона или планшетного компьютера. С передней части корпуса следует вывести штырь-щуп, с торцевой – качественно изолированный кабель, конец которого снабжен щупом или зажимом-«крокодильчиком».

Сборка простейшего пробника напряжения со светодиодным индикатором – на следующем видео:

Автомобильный индикатор напряжения

Среди областей, где применение индикатора напряжения на светодиодах имеет неоспоримую пользу, можно выделить эксплуатацию автомобильного аккумулятора. Для того чтобы аккумулятор служил долго, необходимо контролировать напряжение на его клеммах и поддерживать в заданных пределах.

Предлагаем вам обратить внимание на схему автомобильного индикатора напряжения на RGB-светодиоде, с помощью которой вы поймете, как изготовить устройство самостоятельно. RGB-светодиод отличается от обычного, наличием 3-х разноцветных кристаллов внутри своего корпуса. Данное свойство мы будем использовать для того, чтобы каждый цвет сигнализировал нам об уровне напряжения.

Схема состоит из девяти резисторов, трех стабилитронов, трех биполярных транзисторов и одного 3-цветного светодиода. Обратите внимание, какие элементы рекомендуется выбирать для реализации схемы.

  1. R1=1, R2=10, R3=10, R4=2.2, R5=10, R6=47, R7=2.2, R8=100, R9=100 (кОм).
  2. VD1=10, VD2=8.2, VD3=5.6 (В).
  3. VT – BC847C.
  4. HL – LED RGB.

Результат такой системы следующий. Светодиод загорается:

  • зеленым – напряжение 12-14 В;
  • синим – напряжение ниже 11,5 В;
  • красным – напряжение свыше 14,4 В.

Это происходит за счет правильно собранной схемы. С помощью потенциометра (R4) и стабилитрона (VD2) выставляется низший предел напряжения. Как только разность потенциалов между клеммами батареи становится меньше указанного значения – транзистор (VT2) закрывается, VT3 открывается, синий кристалл индуцирует. Если напряжение на клеммах находится в указанном диапазоне, то ток проходит через резисторы (R5,R9), стабилитрон (VD3), светодиод (HL), естественно, светит зеленым, транзистор (VT3) находится в закрытом состоянии, а второй (VT2) – в открытом. С помощью настройки переменного резистора (R2), превышение напряжения больше 14,4 В будет отображаться свечением светодиода красного цвета.

Устройства индикации со светодиодами

Индикатор напряжения на двухцветном светодиоде

Еще одна популярная схема индикации, это схема с использованием двухцветного светодиода для отображения степени заряда батареи или же сигнализации о включении или выключении лампы в другом помещении. Это может быть очень удобно, например, если выключатель света в подвале расположен до лестницы ведущей вниз (кстати, не забудьте прочитать интересную статью о том как сделать подсветку лестницы светодиодной лентой). До того как спуститься туда, вы зажигаете свет, и индикатор загорается красным, в выключенном состоянии вы видите зеленое свечение на клавише. В этом случае вам не придется заходить в темную комнату и уже там нащупывать выключатель. Когда вы покинули подвал, вы по цвету светодиода знаете, горит свет в подвале или нет. Одновременно с этим, вы контролируете исправность лампочки, потому что в случае ее перегорания, красным светодиод светиться не будет. Вот схема индикатора напряжения на двухцветном светодиоде.

В заключении можно сказать, что это лишь основные возможные схемы использования светодиодов для индикации напряжения. Все они несложные, и в своей реализации под силу даже дилетанту. В них не использовалось никаких дорогостоящих интегральных микросхем и тому подобное. Рекомендуем обзавестись таким устройством всем любителям и профессионалам электрикам, чтобы никогда не подвергать свое здоровье опасности, приступая к ремонтным работам, не проверив наличие напряжения.

Индикатор сети 220 вольт

Это самый простой и самый надежный индикатор сети который мне приходилось делать.

Раньше, чтобы вставить индикатор сети 220 в какой-либо прибор надо было мотать отдельную катушку на трансформатор или сооружать целую схему из диодов и конденсаторов, пока мне не попалась эта супер простая схема. На фото видно, что светодиод включён в розетку через резистор — краткость сестра таланта

Индикаторы сети часто используют для подсветки комнатных выключателей освещения в темное время суток. В качестве индикатора использовали неоновую лампу и резистор, эти лампы громоздки и к тому же мигают и иногда перегорают. Теперь вместо неоновых ламп можно использовать светодиод один или несколько. Я дома сделал подсветку выключателей с помощью четырёх светодиодов и одного резистора, все детали легко уместились по периметру крышки выключателя.

Схема устройства очень проста, полярность светодиода можно не учитывать. Постоянный резистор сопротивлением 100 кОм и мощностью не менее 0.5 Вт.

В своей схеме на фото я использовал резистор мощностью 2 Вт. потому, как он просто оказался под рукой. А вообще у меня есть целая гирлянда из 20 светодиодов и одного резистора 0.5 Вт. всё это работает от сети 220 в. и при этом резистор ни чуть не греется.


Как быть с пульсациями?

В обеих схемах светодиод будет светиться только в положительный полупериод сетевого напряжения. То есть он будет мерцать с частой 50 Гц или 50 раз в секунду, причём размах пульсаций будет равен 100% (10 мс горит, 10 мс не горит и так далее). Это будет заметно глазу.

К тому же, при подсветке мерцающими светодиодами каких-либо движущихся объектов, например, лопастей вентилятора, колес велосипеда и т.п., неизбежно будет возникать стробоскопический эффект. В некоторых случаях данный эффект может быть неприемлем или даже опасен. Например, при работе за станком может показаться, что фреза неподвижна, а на самом деле она вращается с бешенной скоростью и только и ждет, чтобы вы сунули туда пальцы.

Чтобы сделать пульсации менее заметными, можно удвоить частоту включения светодиода с помощью двухполупериодного выпрямителя (диодного моста):

Обратите внимание, что по сравнению со схемой #2 при том же самом сопротивлении резисторов, мы получили в два раза больший средний ток. И, соответственно, в четыре раза большую мощность рассеивания резисторов.

К диодному мосту при этом не предъявляется каких-либо особых требований, главное, чтобы диоды, из которых он состоит, выдерживали половину рабочего тока светодиода. Обратное напряжение на каждом из диодов будет совсем ничтожным.

Еще, как вариант, можно организовать встречно-параллельное включение двух светодиодов. Тогда один из них будет гореть во время положительной полуволны, а второй — во время отрицательной.

Фишка в том, что при таком включении максимальное обратное напряжение на каждом из светодиодов будет равно прямому напряжению другого светодиода (несколько вольт максимум), поэтому каждый из светодиодов будет надежно защищен от пробоя.

Светодиоды следует разместить как можно ближе друг к другу. В идеале — попытаться найти сдвоенный светодиод, где оба кристалла размещены в одном корпусе и у каждого свои выводы (хотя я таких ни разу не видел).

Вообще говоря, для светодиодов, выполняющих индикаторную функцию, величина пульсаций не очень-то и важна. Для них самое главное — это максимально заметная разница между включенным и выключенным состоянием (индикация вкл/выкл, воспроизведение/запись, заряд/разряд, норма/авария и т.п.)

А вот при создании светильников, всегда нужно стараться свести пульсации к минимуму. И не столько из-за опасностей стробоскопического эффекта, сколько из-за их вредного влияния на организм.

Какие пульсации считаются допустимыми?

Все зависит от частоты: чем она ниже, тем заметнее пульсации. На частотах выше 300 Гц пульсации становятся совершенно невидимыми и вообще никак не нормируются, то есть даже 100%-ные считаются нормой.

Не смотря на то, что пульсации освещенности на частотах 60-80 Гц и выше визуально не воспринимаются, тем не менее, они способны вызывать повышенную усталость глаз, общую утомляемость, тревожность, снижение производительности зрительной работы и даже головные боли.

Для предотвращения вышеперечисленных последствий, международный стандарт IEEE 1789-2015 рекомендует максимальный уровень пульсаций яркости для частоты 100 Гц — 8% (гарантированно безопасный уровень — 3%). Для частоты 50 Гц — это будут 1.25% и 0.5% соответственно. Но это для перфекционистов.

На самом деле, для того, чтобы пульсации яркости светодиода перестали хоть как-то досаждать, достаточно, чтобы они не превышали 15-20%. Именно таков уровень мерцания ламп накаливания средней мощности, а ведь на них никто и никогда не жаловался. Да и наш российский СНиП 23-05-95 допускает мерцание света в 20% (и только для особо кропотливых и ответственных работ требование повышено до 10%).

В соответствии с ГОСТ 33393-2015 «Здания и сооружения. Методы измерения коэффициента пульсации освещенности» для оценки величины пульсаций вводится специальный показатель — коэффициент пульсаций (Кп).

Коэфф. пульсаций в общем рассчитывается по сложной формуле с применением интегральной функции, но для гармонических колебаний формула упрощается до следующей:

Кп = (Еmax — Emin) / (Emax + Emin) ⋅ 100%,

где Емах — максимальное значение освещенности (амплитудное), а Емин — минимальное.

Мы будем использовать эту формулу для расчета емкости сглаживающего конденсатора.

Очень точно определить пульсации любого источника света можно при помощи солнечной панели и осциллографа:

Как уменьшить пульсации?

Посмотрим, как включить светодиод в сеть 220 вольт, чтобы снизить пульсации. Для этого проще всего подпаять параллельно светодиоду накопительный (сглаживающий) конденсатор:

Из-за нелинейного сопротивления светодиодов, расчет емкости этого конденсатора является довольно нетривиальной задачей.

Однако, эту задачу можно упростить, если сделать несколько допущений. Во-первых, представить светодиод в виде эквивалентного постоянного резистора:

А во-вторых, сделать вид, что яркость светодиода (а, следовательно, и освещенность) имеет линейную зависимость от тока.

Давайте попробуем приблизительно рассчитать емкость конденсатора на конкретном примере.

Расчет емкости сглаживающего конденсатора

Допустим, мы хотим получить коэфф. пульсаций 2.5% при токе через светодиод 20 мА. И пусть в нашем распоряжении оказался светодиод, на котором при токе в 20 мА падает 2 В. Частота сети, как обычно, 50 Гц.

Так как мы решили, что яркость линейно зависит от тока через светодиод, а сам светодиод мы представили в виде простого резистора, то освещенность в формуле расчета коэффициента пульсаций можем спокойно заменить на напряжение на конденсаторе:

Кп = (Umax — Umin) / (Umax + Umin) ⋅ 100%

Подставляем исходные данные и вычисляем Umin:

2.5% = (2В — Umin) / (2В + Umin) 100% => Umin = 1.9В

Период колебаний напряжения в сети равен 0.02 с (1/50).

Таким образом, осциллограмма напряжения на конденсаторе (а значит и на нашем упрощенном светодиоде) будет выглядеть примерно вот так:

Вспоминаем тригонометрию и считаем время заряда конденсатора (для простоты не будем учитывать сопротивление балластного резистора):

tзар = arccos(Umin/Umax) / 2πf = arccos(1.9/2) / (23.141550) = 0.0010108 с

Весь остальной остаток периода кондер будет разряжаться. Причем, период в данном случае нужно сократить в два раза, т.к. у нас используется двухполупериодный выпрямитель:

tразр = Т — tзар = 0.02/2 — 0.0010108 = 0.008989 с

Осталось вычислить емкость:

C = ILED dt/dU = 0.02 0.008989/(2-1.9) = 0.0018 Ф (или 1800 мкФ)

На практике вряд ли кто-то будет ставить такой большой кондер ради одного маленького светодиодика. Хотя, если стоит задача получить пульсации в 10%, то нужно всего 440 мкФ.

Вариант №3 » альтернативная схема подключения светодиода к 220 с защитой от обратного напряжения.

Эта схема похожа не предидущую. Она также имеет защиту от чрезмерного напряжения обратной полуволны переменного напряжения. Если в первой схеме защитный диод стоял последовательно со светодиодом, то в данной схеме диод подключен параллельно, и имеет уже обратное включение относительно светодиоду. При одной полуволне переменного напряжения будет гореть индикаторный светодиод (на котором будет падение напряжения до рабочей величины светодиода), а при обратной полуволне диод будет находится в открытом состоянии и на нем также будет падение напряжения до величины (порядка 1 вольта) недостаточной для пробоя светодиода. Как и в предыдущей схеме недостатками будет значительный нагрев резистора и видимое мерцание светодиода, вдобавок эта схема будет больше потреблять электроэнергии из-за прямого включения диода.

Хотя вместо обычного диода можно поставить еще один светодиод.

Тогда в одну полуволну будет гореть один светодиод, ну а в обратную второй. Хотя в этом случае и будут светодиоды обезопасены от высокого обратного напряжения, но гореть каждый из них будет все равно с частотой 25 герц (будут оба мерцать).

Благодаря таким своим свойствам как: низкое энергопотребление, малые габариты и простота необходимых для работы вспомогательных цепей, светодиоды (имеются ввиду светодиоды видимого диапазона длин волн) получили очень широкое распространение в радиоэлектронной аппаратуре самого разного назначения. Используются они в первую очередь как универсальные устройства индикации режимов работы или устройства аварийной индикации. Реже (обычно только в радиолюбительской практике) встречаются светодиодные автоматы световых эффектов и светодиодные информационные панели (табло).

Для нормального функционирования любого светодиода достаточно обеспечить протекание через него в прямом направлении тока не превышающего максимально допустимый для применяемого прибора. Если величина этого тока не будет слишком низкой, светодиод будет светиться. Для управления состоянием светодиода необходимо обеспечить регулировку (коммутацию) в цепи протекания тока. Это можно сделать с помощью типовых последовательных или параллельных схем коммутации (на транзисторах, диодах и т.п.). Примеры таких схем приведены на рис. 3.7-1, 3.7-2.

Рис. 3.7-1. Способы управления состоянием светодиода с помощью транзисторных ключей

Рис. 3.7-2. Способы управления состоянием светодиода от цифровых микросхем ТТЛ

Примером применения светодиодов в цепях сигнализации могут служить следующие две простые схемы индикаторов сетевого напряжения (рис. 3.7-3, 3.7-4).

Схема на рис. 3.7-3 предназначена для индикации наличия в бытовой сети переменного напряжения. Ранее в подобных устройствах обычно использовались малогабаритные неоновые лампочки. Но светодиоды в этом отношении гораздо более практичны и технологичны. В данной схеме ток через светодиод проходит только во время одной полуволны входного переменного напряжения (во время второй полуволны светодиод шунтируется работающим в прямом направлении стабилитроном). Этого оказывается достаточно для нормального восприятия человеческим глазом света от светодиода как непрерывного излучения. Напряжение стабилизации стабилитрона выбирается несколько большим, чем прямое падение напряжения на используемом светодиоде. Емкость конденсатора \(C1\) зависит от требуемого прямого тока через светодиод.

Рис. 3.7-3. Индикатор наличия сетевого напряжения

На трех светодиодах выполнено устройство, информирующее об отклонениях сетевого напряжения от номинального значения (рис. 3.7-4). Здесь также свечение светодиодов происходит только во время одного полупериода входного напряжения. Коммутация светодиодов осуществляется через включенные последовательно с ними динисторы. Светодиод \(HL1\) горит всегда, когда сетевое напряжение присутствует, два пороговых устройства на динисторах и делителях напряжения на резисторах обеспечивают включение двух других светодиодов только при достижении входным напряжением установленного порога срабатывания. Если их отрегулировать так, чтобы при нормальном напряжении в сети горели светодиоды \(HL1\), \(HL2\), то при повышенном напряжении будет загораться и светодиод \(HL3\), а при понижении напряжения в сети будет гаснуть светодиод \(HL2\). Входной ограничитель напряжения на \(VD1\), \(VD2\) предотвращает выход устройства из строя при значительном превышении нормального значения напряжения в сети.

Рис. 3.7-4. Индикатор уровня сетевого напряжения

Схема на рис. 3.7-5 предназначена для сигнализации о перегорании предохранителя. Если предохранитель \(FU1\) цел, падение напряжения на нем очень мало, и светодиод не светится. При перегорании предохранителя напряжение питания через незначительное сопротивление нагрузки прикладывается к цепи индикатора, и светодиод загорается. Резистор \(R1\) выбирается из условия, что через светодиод будет протекать требуемый ток. Не все виды нагрузок могут подойти для данной схемы.

Рис. 3.7-5. Светодиодный индикатор перегорания предохранителя

Устройство индикации перегрузки стабилизатора напряжения представлено на рис. 3.7‑6. В нормальном режиме работы стабилизатора напряжение на базе транзистора \(VT1\) стабилизировано стабилитроном \(VD1\) и примерно на 1 В больше, чем на эмиттере, поэтому транзистор закрыт и горит сигнальный светодиод \(HL1\). При перегрузке стабилизатора выходное напряжение уменьшается, стабилитрон выходит из режима стабилизации и напряжение на базе \(VT1\) уменьшается. Поэтому транзистор открывается. Поскольку прямое напряжение на включенном светодиоде \(HL1\) больше, чем на \(HL2\) и транзисторе, в момент открывания транзистора светодиод \(HL1\) гаснет, а \( HL2\) — включается. Прямое напряжение на зеленом светодиоде \(HL1\) приблизительно на 0,5 В больше, чем на красном светодиоде \(HL2\), поэтому максимальное напряжение насыщения коллектор-эмиттер транзистора \(VT1\) должно быть меньше 0,5 В. Резистор R1 ограничивает ток через светодиоды, а резистор \(R2\) определяет ток через стабилитрон \(VD1\).

Рис. 3.7-6. Индикатор состояния стабилизатора

Схема простого пробника, позволяющего определять характер (постоянное или переменное) и полярность напряжения в диапазоне 3…30 В для постоянного и 2,1…21 В для действующего значения переменного напряжения приведена на рис. 3.7-7. Основу пробника составляет стабилизатор тока на двух полевых транзисторах, нагруженный на встречно-параллельно включенные светодиоды. Если на клемму \(XS1\) подается положительный потенциал, а на \(XS2\) — отрицательный, то загорается светодиод HL2, если наоборот — светодиод \(HL1\). Когда на входе переменное напряжение, зажигаются оба светодиода. Если ни один из светодиодов не горит, это означает, что входное напряжение менее 2 В. Потребляемый устройством ток не превышает 6 мА.

Рис. 3.7-7. Простой пробник-индикатор характера и полярности напряжения

На рис. 3.7-8 дана схема еще одного простого пробника со светодиодной индикацией. Он используется для проверки логического уровня в цифровых цепях, построенных на микросхемах ТТЛ. В исходном состоянии, когда к клемме \(XS1\) ничего не подключено, светодиод \(HL1\) светится слабо. Его режим задается установкой соответствующего напряжения смещения на базе транзистора \(VT1\). Если на вход будет подано напряжение низкого уровня, транзистор закроется, и светодиод погаснет. При наличии на входе напряжения высокого уровня транзистор открывается, яркость свечения светодиода становится максимальной (ток ограничен резистором \(R3\)). При проверке импульсных сигналов яркость HL1 возрастает, если в последовательности сигналов преобладает напряжение высокого уровня, и убывает, если преобладает напряжение низкого уровня. Питание пробника можно осуществлять как от источника питания проверяемого устройства, так и от отдельного источника питания.

Рис. 3.7-8. Пробник-индикатор логического уровня ТТЛ

Более совершенный пробник (рис. 3.7-9) содержит два светодиода и позволяет не только оценивать логические уровни, но и проверять наличие импульсов, оценивать их скважность и определять промежуточное состояние между напряжениями высокого и низкого уровней. Пробник состоит из усилителя на транзисторе \(VT1\), повышающего его входное сопротивление, и двух ключей на транзисторах \(VT2\), \(VT3\). Первый ключ управляет светодиодом \(HL1\), имеющим зеленый цвет свечения, второй — светодиодом \(HL2\), имеющим красный цвет свечения. При входном напряжении 0,4…2,4 В (промежуточное состояние) транзистор \(VT2\) открыт, светодиод \(HL1\) выключен. В то же время закрыт и транзистор \(VT3\), поскольку падение напряжения на резисторе \(R3\) недостаточно для полного открывания диода \(VD1\) и создания требуемого смещения на базе транзистора. Поэтому \(HL2\) тоже не светится. Когда входное напряжение становится меньше 0,4 В, транзистор \(VT2\) закрывается, загорается светодиод \(HL1\), индицируя наличие логического нуля. При напряжении на входе более 2,4 В открывается транзистор \(VT3\), включается светодиод \(HL2\), индицируя наличие логической единицы. Если на вход пробника подано импульсное напряжение, скважность импульсов можно оценить по яркости свечения того или иного светодиода.

Рис. 3.7-9. Улучшенный вариант пробника-индикатора логического уровня ТТЛ

Еще один вариант пробника представлен на рис. 3.7-10. Если клемма \(XS1\) никуда не подсоединена, все транзисторы закрыты, светодиоды \(HL1\) и \(HL2\) не работают. На эмиттер транзистора \(VT2\) с делителя \(R2-R4\) поступает напряжение около 1,8 В, на базу \(VT1\) — около 1,2 В. Если на вход пробника подать напряжение выше 2,5 В, напряжение смещения база-эмиттер транзистора \(VT2\) превысит 0,7 В, он откроется и своим коллекторным током откроет транзистор \(VT3\). Светодиод \(HL1\) включится, индицируя состояние логической единицы. Ток коллектора \(VT2\), примерно равный току его эмиттера, ограничивается резисторами \(R3\) и \(R4\). При превышении напряжением на входе уровня 4,6 В (что возможно при проверке выходов схем с открытым коллектором) транзистор \(VT2\) входит в режим насыщения, и если не ограничить ток базы \(VT2\) резистором \(R1\), транзистор \(VT3\) закроется и светодиод \(HL1\) выключится. При уменьшении напряжения на входе ниже 0,5 В открывается транзистор \(VT1\), его коллекторный ток открывает транзистор \(VT4\), включается \(HL2\), индицируя состояние логического нуля. С помощью резистора \(R6\) регулируется яркость свечения светодиодов. Подбором резисторов \(R2\) и \(R4\) можно установить необходимые пороги включения светодиодов.

Рис. 3.7-10. Пробник-индикатор логического уровня на четырех транзисторах

Для индикации точной настройки в радиоприемниках часто применяются простые устройства, содержащие один, а иногда и несколько, светодиодов разного цвета свечения.

Схема экономичного светодиодного индикатор настройки для приемника с питанием от батареек приведена на рис. 3.7-11. Ток потребления устройства не превышает 0,6 мА в отсутствие сигнала, а при точной настройке составляет 1 мА. Высокая экономичность достигается за счет питания светодиода импульсным напряжением (т.е. светодиод не светится непрерывно, а часто мигает, однако из-за инерционности зрения такое мерцание не заметно на глаз). Генератор импульсов выполнен на однопереходном транзисторе \(VT3\). Генератор вырабатывает импульсы длительностью около 20 мс, следующие с частотой 15 Гц. Эти импульсы управляют работой ключа на транзисторе \(DA1.2\) (один из транзисторов микросборки \(DA1\)). Однако в отсутствие сигнала светодиод не включается, так как при этом сопротивление участка эмиттер-коллектор транзистора \(VT2\) велико. При точной настройке транзистор \(VT1\), а за ним и \(DA1.1\) и \(VT2\) откроются настолько, что в моменты, когда открыт транзистор \(DA1.2\), будет загораться светодиод \(HL1\). Чтобы уменьшить потребляемый ток, эмиттерная цепь транзистора \(DA1.1\) подключена к коллектору транзистора \(DA1.2\), благодаря чему последние два каскада (\(DA1.2\), \(VT2\)) также работают в ключевом режиме. При необходимости подбором резистора \(R4\) можно добиться слабого начального свечения светодиода \(HL1\). В этом случае он выполняет и функцию индикатора включения приемника.

Рис. 3.7-11. Экономичный светодиодный индикатор настройки

Экономичные светодиодные индикаторы могут понадобиться не только в радиоприемниках с батарейным питанием, но и во множестве других носимых устройств. На рис. 3.7‑12, 3.7‑13, 3.7‑14 приведено несколько схем таких индикаторов. Все они работают по уже описанному импульсному принципу и по сути представляют собой экономичные генераторы импульсов, нагруженные на светодиод. Частота генерации в таких схемах выбирается достаточно низкой, фактически на границе зрительного восприятия, когда мигания светодиода начинают отчетливо восприниматься человеческим глазом.

Рис. 3.7-12. Экономичный светодиодный индикатор на однопереходном транзисторе

Рис. 3.7-13. Экономичный светодиодный индикатор на однопереходном и биполярном транзисторах

Рис. 3.7-14. Экономичный светодиодный индикатор на двух биполярных транзисторах

В УКВ ЧМ приемниках для индикации настройки можно применять три светодиода. Для управления таким индикатором используется сигнал с выхода ЧМ детектора, в котором постоянная составляющая положительна при незначительной расстройке в одну сторону от частоты станции и отрицательна при незначительной расстройке в другую сторону. На рис. 3.7-15 приведена схема простого индикатора настройки, работающего по описанному принципу. Если напряжение на входе индикатора близко к нулю, то все транзисторы закрыты и светодиоды \(HL1\) и \(HL2\) не излучают, а через \(HL3\) при этом протекает ток, определяемый напряжением питания и сопротивлением резисторов \(R4\) и \(R5\). При указанных на схеме номиналах он примерно равен 20 мА. Как только на входе индикатора появляется напряжение, превышающее 0,5 В, транзистор \(VT1\) открывается и включается светодиод \(HL1\). Одновременно открывается транзистор \(VT3\), он шунтирует светодиод \(HL3\), и тот гаснет. Если напряжение на входе отрицательное, но по абсолютному значению больше 0,5 В, то включается светодиод \(HL2\), а \(HL3\) выключается.

Рис. 3.7-15. Индикатор настройки для УКВ-ЧМ приемника на трех светодиодах

Схема еще одного варианта простого индикатора точной настройки для УКВ ЧМ приемника представлена на рис. 3.7-16.

Рис. 3.7-16. Индикатор настройки для УКВ ЧМ приемника (вариант 2)

В магнитофонах, низкочастотных усилителях, эквалайзерах и т.п. находят применение светодиодные индикаторы уровня сигнала. Число индицируемых такими индикаторами уровней может варьироваться от одного-двух (т.е. контроль типа “сигнал есть – сигнала нет”) до нескольких десятков.

Схема двухуровнего двухканального индикатора уровня сигнала приведена на рис. 3.7‑17. Каждая из ячеек \(A1\), \(A2\) выполнена на двух транзисторах разной структуры. При отсутствии сигнала на входе оба транзистора ячеек закрыты, поэтому светодиоды \(HL1\), \(HL2\) не горят. В таком состоянии устройство находится до тех пор, пока амплитуда положительной полуволны контролируемого сигнала не превысит примерно на 0,6 В постоянное напряжение на эмиттере транзистора \(VT1\) в ячейке \(A1\), заданное делителем \(R2\), \(R3\). Как только это произойдет, транзистор \(VT1\) начнет открываться, в цепи коллектора появится ток, а поскольку он в то же время является и током эмиттерного перехода транзистора \(VT2\), транзистор \(VT2\) тоже начнет открываться. Возрастающее падение напряжения на резисторе \(R6\) и светодиоде \(HL1\) приведет к увеличению тока базы транзистора \(VT1\), и он откроется еще больше. В результате очень скоро оба транзистора окажутся полностью открыты и светодиод \(HL1\) включится. При дальнейшем росте амплитуды входного сигнала аналогичный процесс протекает в ячейке \(A2\), после чего загорается светодиод \(HL2\). С уменьшением уровня сигнала ниже установленных порогов срабатывания ячейки возвращаются в исходное состояние, светодиоды гаснут (сначала \(HL2\), затем \(HL1\)). Гистерезис не превышает 0,1 В. При указанных в схеме значениях сопротивлений, ячейка \(A1\) срабатывает при амплитуде входного сигнала примерно 1,4 В, ячейка \(A2\) — 2 В.

Рис. 3.7-17. Двухканальный индикатор уровня сигнала

Многоканальный индикатор уровня на логических элементах представлен на рис. 3.7‑18. Такой индикатор можно применять, например, в усилителе НЧ (организовав из ряда светодиодов индикатора световую шкалу). Диапазон входного напряжения этого устройства может колебаться от 0,3 до 20 В. Для управления каждым светодиодом используется \(RS\)-триггер, собранный на элементах 2И‑НЕ. Пороги срабатывания этих триггеров задаются резисторами \(R2\), \(R4-R16\). На линию “сброс” периодически должен подаваться импульс гашения светодиодов (разумным будет подавать такой импульс с периодичностью 0,2…0,5 с).

Рис. 3.7-18. Многоканальный индикатор уровня НЧ сигнала на \(RS\)-триггерах

Приведенные выше схемы индикаторов уровня обеспечивали резкое срабатывание каждого канала индикации (т.е. светодиод в них либо светится с заданным режимом яркости, либо погашен). В шкальных индикаторах (линия последовательно срабатывающих светодиодов) такой режим работы совсем не обязателен. Поэтому для этих устройств могут использоваться более простые схемы, в которых управление светодиодами осуществляется не отдельно по каждому каналу, а совместно. Последовательное включение ряда светодиодов при увеличении уровня входного сигнала достигается за счет последовательного включения делителей напряжения (на резисторах или других элементах). В таких схемах происходит постепенное увеличение яркости свечения светодиодов при нарастании уровня входного сигнала. При этом для каждого светодиода устанавливается свой токовый режим, такой, что свечение указанного светодиода визуально наблюдается только при достижении входным сигналом соответствующего уровня (при дальнейшем увеличении уровня входного сигнала светодиод горит все более ярко, но до определенного предела). Простейший вариант индикатора, работающего по описанному принципу приведен на рис. 3.7-19.

Рис. 3.7-19. Простой индикатор уровня сигнала НЧ

При необходимости увеличения количества уровней индикации и повышения линейности индикатора схема включения светодиодов должна быть несколько изменена. Подойдет, например, индикатор по схеме рис. 3.7-20. В нем, кроме прочего, имеется и достаточно чувствительный входной усилитель, обеспечивающий работу как от источника постоянного напряжения, так и от сигнала звуковой частоты (при этом индикатор управляется только положительными полуволнами входного переменного напряжения).

Рис. 3.7-20. Линейный индикатор уровня со светодиодной шкалой

Подключение светодиода к сети 220В

Для питания светодиодов необходим источник постоянного тока. Кроме этого, этот ток должен быть стабилизирован. В бытовой сети напряжение 220В, что значительно больше, чем нужно для питания обычных светодиодов. Плюс, это напряжение переменное. Как же совместить несовместимое и подключить светодиод к сети 220В? Нет ничего невозможного, но сначала попробуем разобраться, для чего это подключение может вообще потребоваться.

Прежде всего, речь может идти о подключении мощных источников света. В этом случае совсем простыми способами не обойтись, потребуются специализированные драйвера или аналогичные приборы, которые будут способны выдать стабилизированный ток большой мощности. Оставим этот вариант напоследок.

Также часто бывает необходимо к 220В подключить маломощный индикаторный светодиод — для, собственно, индикации того, что напряжение в данный момент присутствует. Или может потребоваться маломощное дежурное освещение, для которого городить сложную электронику совсем не хочется. В этих случаях, если нужные токи светодиодов не превышают 20-25мА, можно обойтись минимальным количеством дополнительных деталей. Рассмотрим эти подключения подробнее.

Самый простой способ ограничения тока — использование резистора. Этот вариант подойдет и для сети переменного тока с напряжением 220В. Необходимо только учесть один важный нюанс: 220В — это ДЕЙСТВУЮЩЕЕ напряжение. Фактически же напряжение в бытовой сети меняется в более широких пределах — от -310В до +310В. Это, так называемое, АМПЛИТУДНОЕ напряжение. Подробнее, почему так — читайте в Википедии. Для нас же важно, что для расчета значений токоограничиваюжего резистора нужно использовать не действующее, а именно амплитудное значение сети переменного тока, т.е. 310В.

Сопротивление резистора рассчитывается по привычному закону Ома:

R = (Ua — UL) / I, где Ua — амплитудное значение напряжения (310В), UL — падение напряжения на светодиодах, I — требуемая сила тока.

Токоограничивающий резистор должен быть очень мощным, поскольку на нем будет рассеиваться большое количество тепла, которое будет зависеть от рабочего тока и сопротивления резистора:

P = I2 * R

Резистор будет греться и, если окажется, что он не рассчитан на рассеивание того количества тепла, которое на нем выделяется, он достаточно эффектно сгорит. Поэтому про допустимую мощность резистора забывать ни в коем случае не следует, а для реального использования подбирать ее еще и с запасом. Если вам не хочется заниматься собственными расчетами значений резистора, можете воспользоваться «Калькулятором светодиодов».

Простые схемы для подключения светодиода к сети 220В с токоограничивающим резистором

Светодиоды способны выдержать только небольшое обратное напряжение (до 5-6В) и для работы в сети переменного тока им нужна защита. В самом простом случае для этого может быть использован диод, которые включается в цепь последовательно светодиоду. Требования к диоду — он должен быть рассчитан на обратное напряжение не менее 310В и на прямой ток, который нам нужен. Подойдет, например, диод 1N4007 — обратное напряжение 1000В, прямой ток 1А.

Второй вариант — включить диод параллельно светодиоду, но в обратном направлении. В этом случае подойдет любой маломощный диод, например, КД521 или аналогичный. Более того, можно вместо диода подключить второй светодиод (как и изображено на правой схеме). В этом случае они будут защищать друг друга и одновременно светиться.

Для ограничения тока в переменной сети можно использовать и, так называемый, балластный конденсатор. Это неполярный керамический конденсатор, который включается в цепь последовательно. Его допустимое напряжение должно быть, по меньшей мере, с полуторным запасом больше напряжения сети — не менее 400В. Ограничение тока будет зависеть от емкости конденсатора, которая может быть рассчитана по следующей эмпирической формуле:

C = (4,45 * I) / (Ua — UL), где I — требуемый ток в миллиамперах. Значение емкости при этом получится в микрофарадах.

Использование балластного конденсатора для подключения светодиода к сети 220В

В приведенной выше схеме резистор R1 необходим для разряда конденсатора после отключения питания. Без его использования конденсатор C1 заряд в себе сохранит и пребольно ударит, если потом коснуться его выводом. Резистор R2 служит для ограничения начального тока заряда конденсатора C1. Использование его очень желательно, поскольку он продлевает срок службы других деталей, кроме того, при пробое конденсатора он будет служить предохранителем и сгорит первым, защитив остальную часть схемы.

Оставшиеся детали — светодиод D1 и защитный диод D2 уже знакомы нам с предыдущих схем.

Почему не использовать конденсаторы вместо токоограничивающего резистора все время? Дело в том, что высоковольтные конденсаторы достаточно крупные по размеру да и при их использовании резисторы все равно нужны — готовая схема в итоге займет больше места. Преимущество же их в том, что они практически не греются.

Приведенные схемы подключения светодиодов к сети 220В часто используются на практике. Индикаторные светодиоды можно встретить в выключателях с подсветкой.

Схема обычного выключателя с подсветкой

Как можно увидеть, здесь даже не используется защитный диод! Дело в том, что сопротивление резистора очень велико, итоговый ток получается очень небольшой — около 1мА. Светодиод светится совсем не ярко, но этого свечения хватает, чтобы подсветить выключатель в темной комнате.

Схемы с балластным конденсатором используются в простых светодиодных лампах.

Схема светодиодной лампы мощностью до 5Вт

Здесь ток выпрямляется диодным мостом. Резисторы R2 и R3 служат для защиты моста и светодиодов соответственно. Для уменьшения мерцания света используется конденсатор С2.

Как же быть, если к бытовой сети переменного тока необходимо подключить светодиоды общей мощностью в десятки и даже сотни ватт? Самый правильный вариант — использовать специализированные драйвера, которые позволят это сделать. Их можно приобрести уже готовыми или собрать самому. Подробнее об этом написано в статье «Схема драйвера для светодиода от сети 220В».

Есть еще один не совсем правильный, но достаточно простой и работающий способ — можно переделать электронный балласт компактной люминесцентной лампы (обычной домашней энергосберегайки). Несложные манипуляции позволят подключить светодиоды к сети 220В, используя старую лампу, которая стала светить тускло или перестала светить вовсе. Как это сделать — читайте в статье «Простой драйвер светодиода от сети 220В».

Как подключить светодиод к 220В: резистор, конденсатор, способы подключения

На чтение 9 мин Просмотров 2.8к. Опубликовано Обновлено

Без светодиодов трудно обойтись при проектировании электронной аппаратуры, а также при изготовлении экономичных осветительных приборов. Их надежность, простота монтажа и относительная дешевизна привлекают внимание разработчиков бытовых и промышленных светильников. Поэтому многих пользователей интересуют схемные решения по включению светодиода, предполагающие прямую подачу на него фазного напряжения. Неспециалистам в области электроники и электрики полезно будет узнать, как подключить светодиод к 220В.

Технические особенности диода

По определению светодиод, схема которого схожа с обычным диодом, – это тот же полупроводник, пропускающий ток в одном направлении и излучающий свет при его протекании. Его рабочий переход не рассчитан на высокие напряжения, поэтому для загорания светодиодного элемента вполне достаточно всего нескольких вольт. Другой особенностью этого прибора является необходимость подачи на него постоянного напряжения, так как при переменных 220 Вольт светодиод будет мигать с частотой сети (50Герц). Считается, что глаз человека не реагирует на такие мигания и что они не причиняют ему вреда. Но все же согласно действующим стандартам для его работы нужно использовать постоянный потенциал. В противном случае приходится применять особые меры защиты от опасных обратных напряжений.

Большинство образцов осветительной техники, в которых диоды используются в качестве элементов освещения, включаются в сеть через специальные преобразователи – драйверы. Эти устройства необходимы для получения из исходного сетевого напряжения постоянных 12, 24, 36 или 48 Вольт. Несмотря на их широкое распространение в быту нередки ситуации, когда обстоятельства вынуждают обходиться без драйвера. В этом случае важно уметь включать светодиоды в 220 В.

Полюса светодиода

Полярность светодиода

Чтобы ознакомиться со схемами включения и распайкой диодного элемента, нужно узнать, как выглядит распиновка светодиода. В качестве его графического обозначения используется треугольник, к одному из углов которого примыкает короткая вертикальная полоса – на схеме она называется катодом. Он считается выходным для постоянного тока, втекающего с обратной стороны. Туда подается положительный потенциал от источника питания и поэтому входной контакт называется анодом (по аналогии с электронными лампами).

Выпускаемые промышленностью светодиоды имеют всего два вывода (реже – три или даже четыре). Известны три способа определения их полярности:

  • визуальный метод, позволяющий определить анод элемента по характерному выступу на одной из ножек;
  • с помощью мультиметра в режиме «Проверка диодов»;
  • посредством блока питания с постоянным выходным напряжением.

Для определения полярности вторым способом плюсовой конец измерительного шнура тестера в красной изоляции подсоединяется к одному контактному выводу диода, а черный минусовой – к другому. Если прибор показывает прямое напряжение порядка полвольта, со стороны плюсового конца расположен анод. Если на табло индикации появляется знак бесконечности или «0L», с этого конца располагается катод.

При проверке от источника питания на 12 Вольт его плюс следует соединить с одним концом светодиода через ограничивающий резистор 1 кОм. Если диод загорается, его анод находится со стороны плюса блока питания, а если нет – с другого конца.

Способы подключения

Установка дополнительного резистора гасит излишки мощности электричества

Простейший подход к решению проблемы недопустимого для диода обратного напряжения – установка последовательно с ним дополнительного резистора, который способен ограничить 220 Вольт. Этот элемент получил название гасящего, так как он «рассеивает» на себе излишки мощности, оставляя светодиоду необходимые для его работы 12-24 Вольта.

Последовательная установка ограничивающего резистора также решает проблему обратного напряжения на переходе диода, которое снижается до тех же величин. В качестве модификации последовательного включения с ограничением напряжения рассматривается смешанная или комбинированная схема подключения светодиодов в 220 В. В ней на один резистор последовательный резистор приходится несколько параллельно соединенных диодов.

Подключение светодиода можно организовать по схеме, в которой вместо резистора используется обычный диод, имеющий высокое напряжение обратного пробоя (желательно – до 400 Вольт и более). Для этих целей удобнее всего взять типовое изделие марки 1N4007 с заявленным в характеристиках показателем до 1000 Вольт. При его установке в последовательную цепочку (при изготовлении гирлянды, например), обратная часть волны выпрямляется полупроводниковым диодом. Он в этом случае выполняет функцию шунта, защищающего чип светового элемента от пробоя.

Шунтирование светодиода обычным диодом (встречно-параллельное подключение)

Встречно-параллельное подключение

Другой распространенный вариант «нейтрализации» обратной полуволны состоит в использовании совместно с гасящим резистором еще одного светодиода, включаемого параллельно и навстречу первому элементу. В этой схеме обратное напряжение «замыкается» через параллельно подключенный диод и ограничивается дополнительным сопротивлением, включенным последовательно.

Такое соединение двух светодиодов напоминает предыдущий вариант, но с одним отличием. Каждый из них работает со «своей» частью синусоиды, обеспечивая другому элементу защиту от пробоя.

Существенный недостаток схемы подключения через гасящий резистор – значительная величина непроизводительно расходуемой мощности, выделяемой на нем вхолостую.

Подтверждением этому является следующий пример. Пусть используется гасящий резистор номиналом 24 кОм и светодиод с рабочим током 9 мА. Рассеиваемая на сопротивлении мощность будет равна 9х9х24=1944 мВт (после округления – порядка 2-х Ватт). Чтобы резистор работал в оптимальном режиме, он выбирается со значением P не менее 3 Вт. На самом светодиоде расходуется совсем ничтожная часть энергии.

С другой стороны, при использовании нескольких последовательно подключенных LED элементов ставить гасящий резистор из соображений оптимального режима их свечения нецелесообразно. Если выбрать очень маленькое по номиналу сопротивление, оно быстро сгорит из-за большого тока и значительной рассеиваемой мощности. Поэтому функцию токоограничивающего элемента в цепи переменного тока естественнее выполнять конденсатору, на котором энергия не теряется.

Ограничение с помощью конденсатора

Использование накопительного конденсатора

Простейшая схема подключения светодиодов через ограничительный конденсатор C характеризуется следующими особенностями:

  • предусматриваются цепочки заряда и разряда, обеспечивающие режимы работы реактивного элемента;
  • потребуется еще один светодиод, необходимый для защиты основного от обратного напряжения;
  • для расчета емкости конденсатора используется полученная опытным путем формула, в которую подставляются конкретные цифры.

Для вычисления значения номинала C нужно умножить силу тока в цепи на выведенный эмпирически путем коэффициент 4,45. После этого следует разделить полученное произведение на разницу между предельным напряжением (310 Вольт) и его падением на светодиоде.

В качестве примера рассмотрим подключение конденсатора к RGB или обычному LED-диоду с падением напряжения на его переходе, равным 3 Вольта и током через него в 9 мА. Согласно рассмотренной формуле его емкость составит 0,13 мкФ. Для введения поправки на ее точное значение следует учитывать, что на величину этого параметра в большей мере влияет токовая составляющая.

Выеденная опытным путем эмпирическая формула действительна лишь для расчета емкостей и параметров светодиодов на 220 В., установленных в сетях частотой 50 Гц. В других частотных диапазонах питающих напряжений (в преобразователях, например), коэффициент 4,45 нуждается в перерасчете.

Нюансы подключения к сети 220 Вольт

Схема подключения светодиода к сети 220В

При использовании различных схем подключения светодиода к сети 220 В возможны некоторые нюансы, учет которых поможет избежать элементарных ошибок в коммутации электрических цепей. Они в основном связаны с величиной тока, протекающего через цепочку при подаче на нее питания. Для их понимания потребуется рассмотреть простейший прибор типа подсветки для декорирования, состоящий из целого набора светодиодных элементов или обычный светильник на их основе.

Значительное внимание обращается на особенности процессов, протекающих в выключателе в момент подачи питания. Для обеспечения «мягкого» режима включения к его контактам потребуется подпаять в параллель гасящий резистор и светодиод-индикатор, обозначающий включенное состояние.

Значение сопротивления подбирается по методикам, описанным ранее.

Только после выключателя с резистором в схеме располагается сама лента с чипами светодиодных элементов. В ней не предусмотрены защитные диоды, так что величина гасящего резистора подбирается из расчета протекающего по цепи тока, он не должен превышать значения порядка 1 мА.

Светодиодный индикатор-лампочка в этой схеме выполняет функцию нагрузки, еще больше ограничивающей ток. Из-за небольшой величины он будет светиться очень тускло, но этого вполне хватает для ночного режима. При действии обратной полуволны напряжение частично гасится на резисторе, что защищает диод от нежелательного пробоя.

Схема лед драйвера на 220 вольт

Более надежный способ, позволяющий запитать светодиоды от сети, – применение специального преобразователя или драйвера, понижающего напряжение до безопасного уровня. Основное назначение драйвера под светодиод 220 вольт – ограничить ток через него в рамках допустимого значения (согласно паспорту). В его состав входят формирователь напряжения, выпрямительный мостик и микросхема токового стабилизатора.

Вариант драйвера без стабилизатора тока

При желании собрать устройство питания светодиодов от 220 В своими руками потребуется знать следующее:

  • при использовании выходного стабилизатора амплитуда пульсаций существенно снижается;
  • в этом случае на самой микросхеме теряется часть мощности, что сказывается на яркости свечения излучающих приборов;
  • при использовании вместо фирменного стабилизатора фильтрующего электролита большой емкости пульсации не полностью сглаживаются, но остаются в допустимых пределах.

При самостоятельном изготовлении драйвера схему можно упростить, поставив на место выходной микросхемы электролит.

Безопасность при подключении

Не следует устанавливать в цепь диодов полярные конденсаторы

При работе со схемой включения диодов в сеть 220 Вольт основную опасность представляет соединенный последовательно с ними ограничивающий конденсатор. Под воздействием сетевого напряжения он заряжается до опасного для человека потенциала. Чтобы избежать неприятностей в этой ситуации рекомендуется:

  • предусмотреть в схеме специальную разрядную резисторную цепочку, управляемую отдельной кнопкой;
  • если сделать это невозможно, перед началом настойки после отключения от сети следует разряжать конденсатор с помощью жала отвертки;
  • не устанавливать в цепь питания диодов полярные конденсаторы, обратный ток которых достигает значений, способных «выжечь» схему.

Подключить светодиодные элементы на 220 Вольт удается лишь с помощью специальных элементов, вводимых в схему дополнительно. В этом случае можно обойтись без понижающего трансформатора и блока питания, традиционно используемых для подключения низковольтных осветителей. Основная задача добавочных элементов в схеме подключения светодиода в 220В – ограничить и выпрямить ток через него, а также защитить полупроводниковый переход от обратной полуволны.

Простой светодиодный индикатор сети 220 В

У нас есть множество подходов к выделению или обозначению основной линии переменного тока. Раньше, когда в проводах системы подавалось 220 В переменного тока, неоновая лампа использовалась для обозначения сети. В настоящее время широко используется светодиодная схема индикатора напряжения сети переменного тока. Таким образом, это может быть идеальным решением, если в вашем магазине есть более типичные детали. Это также побуждает вас сэкономить деньги на дополнительных счетах и ​​обслуживании.

Вот ценный учебник по простой схеме светодиодного индикатора сети 220 В переменного тока.Схема может работать с одним светодиодом 3,6 В напрямую от 220 В переменного тока. Это также продемонстрирует близость сетевого напряжения переменного тока. Между тем, он, как правило, используется с многочисленными проектами DIY или самостоятельно, чтобы показать наличие переменного тока.

В схеме используется всего четыре сегмента: конденсатор 250 нФ / 630 В, диод 1N4004, светодиод и резистор 5,1 кОм / 1 Вт.

Компоненты оборудования

Принципиальная схема

Работа цепи

Между тем, эта первичная цепь индикатора переменного тока становится все более распространенной для использования в качестве светового индикатора благодаря своей простоте и большему сроку службы.К сожалению, светодиод работает при низком напряжении всего 5 В. Следовательно, вы должны использовать резистор последовательно. Однако не стоит ограничивать ток при более высоких напряжениях с помощью резистора, потому что рассеянная мощность будет чрезмерно высокой, а резистор будет потреблять.

Поэтому рекомендуется использовать светодиод на 220 В, подключив последовательно конденсатор для ограничения тока. Более того, небольшая свобода действий в том, что конденсатор не нагревается! Задача диода — защитить светодиод от высокого напряжения.Во время положительного полупериода D1 ограничивает напряжение на светодиодах и R1 на уровне 2,7 В. Напротив, полупериод D1 действует как типичный диод, предотвращающий резкое увеличение напряжения.

Цепь не использует гибкую силу. Это законно связано с электросетью. Таким образом, не прикасайтесь к нему, когда он включен или правильно подключен к сети. Эту схему нужно поставить в укромном уголке.

Приложения и способы использования

  • Используется для индикации сети переменного тока большой мощности

Одноцветные светодиодные индикаторы 230 В переменного тока

656-1209-304F

74Y9593

Светодиодный индикатор на панели, высокой интенсивности, зеленый, 230 В перем. Тока, 12.7 мм, 3 мА, IP66, NEMA 4X

DIALIGHT

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

Зеленый 230 В переменного тока 12.7мм 3 мА IP66, NEMA 4X 656 серии
RAD223P

33R0927

Светодиодный индикатор на панели, контрольная лампа, зеленый, 230 В перем. Тока, 22 мм, IP65

MULTICOMP

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

Зеленый 230 В переменного тока 22мм IP65
19510431

93K6745

Светодиодный индикатор на панели, зеленый, 230 В перем. Тока, 8 мм, 3 мА, 5 мкд, IP67

ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ CML

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

Зеленый 230 В переменного тока 8мм 3 мА 5 мкд IP67
RAD225P

33R0932

Светодиодный индикатор на панели, контрольная лампа, желтый, 230 В перем. Тока, 22 мм, IP65

MULTICOMP

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

Янтарь 230 В переменного тока 22мм IP65
RAD224P

33R0929

Светодиодный индикатор на панели, контрольная лампа, красный, 230 В перем. Тока, 22 мм, IP65

MULTICOMP

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

красный 230 В переменного тока 22мм IP65
19510430

93K6744

Светодиодный индикатор на панели, красный, 230 В перем. Тока, 8 мм, 3 мА, 22 мкд, IP67

ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ CML

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

красный 230 В переменного тока 8мм 3 мА 22мкд IP67
556-1609-304F

06X2683

Светодиодный индикатор на панели, зеленый, 230 В перем. Тока, 25.4 мм, 7 мА, 1800 футов ламберта, IP66, NEMA 4X

DIALIGHT

Каждый

Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

Зеленый 230 В переменного тока 25.4мм 7 мА 1800 футов ламберт IP66, NEMA 4X
1SFA619403R5232

69AC6936

ПИЛОТНАЯ ЛАМПА, GRN, 230VAC, 22.3MM, ВИНТ

ABB

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

Зеленый 230 В переменного тока 22.3мм 17 мА IP66, IP67, IP69K, NEMA 1, 3R, 4, 4X, 12, 13 Компактный
1SFA619403R5231

69AC6935

ПИЛОТНАЯ ЛАМПА, КРАСНАЯ, 230 В ~, 22,3 ММ, ВИНТ

ABB

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

красный 230 В переменного тока 22.3мм 17 мА IP66, IP67, IP69K, NEMA 1, 3R, 4, 4X, 12, 13 Компактный
19500230

26M6156

Светодиодный индикатор на панели, сатинированная хромированная рамка, красный, 230 В перем. Тока, 8 мм, 3 мА, 22 мкд, IP67

ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ CML

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

красный 230 В переменного тока 8мм 3 мА 22мкд IP67
ZB4BVM3

67Ah4587

КОРПУС СИД, 230В

SCHNEIDER ELECTRIC

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

Зеленый 230 В переменного тока 22.5мм 14 мА IP65 Гармония
1SFA619403R5233

69AC6937

ПИЛОТНАЯ СВЕТА, ЖЕЛТАЯ, 230 В ~, 22,3 ММ, ВИНТ

ABB

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

Желтый 230 В переменного тока 22.3мм 17 мА IP66, IP67, IP69K, NEMA 1, 3R, 4, 4X, 12, 13 Компактный
19501231

23M8534

Светодиодный индикатор на панели, черная хромированная рамка, зеленый, 8 мм, 230 В переменного тока, 3 мА, 5 мкд, IP67 Соответствие RoHS: Да

ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ CML

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

Зеленый 230 В переменного тока 8мм 3 мА 5 мкд IP67
3SU1156-6AA20-1AA0

06AC6940

ПИЛОТНЫЙ ФОНАРЬ, 22ММ, КРАСНЫЙ, 230VAC

SIEMENS

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

красный 230 В переменного тока 22мм IP20, IP66, IP67, IP69, IP69K СИРИУС ДЕЙСТВИЕ
C027700MAA

96K8301

Светодиодный индикатор на панели, красный, 230 В перем. Тока, 10 мм, 3 мА, без номинала

ARCOLECTRIC (BULGIN LIMITED)

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

красный 230 В переменного тока 10мм 3 мА Не оценен
19500232

26M6158

Светодиодный индикатор на панели, сатинированная хромированная рамка, желтый, 8 мм, 230 В перем. Тока, 3 мА, 7 мкд, IP67 Соответствие RoHS: Да

ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ CML

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

Желтый 230 В переменного тока 8мм 3 мА 7мкд IP67
C027500MAB

96K8292

Светодиодный индикатор на панели, желтый, 230 В перем. Тока, 10 мм, 3 мА, IP40

ARCOLECTRIC (BULGIN LIMITED)

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

Янтарь 230 В переменного тока 10мм 3 мА IP40
OXL / CLH / 100/230 / FL30 / ЗЕЛЕНЫЙ

11N5747

Светодиодный индикатор на панели, зеленый, 230 В перем. Тока, 10.15 мм, 2,5 мА, 160 мкд, IP66

ОКСЛИ

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

Зеленый 230 В переменного тока 10.15мм 2,5 мА 160 мкд IP66
C057900MAC

60K7484

Светодиодный индикатор на панели, зеленый, 230 В перем. Тока, 14 мм, 3 мА, без номинала

ARCOLECTRIC (BULGIN LIMITED)

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

Зеленый 230 В переменного тока 14мм 3 мА Не оценен
L024500MAA

97K4042

Светодиодный индикатор для монтажа на панель, красный, 7.1 мм, 230 В переменного тока, 3 мА, не соответствует требованиям RoHS: Да

ARCOLECTRIC (BULGIN LIMITED)

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

красный 230 В переменного тока 7.1мм 3 мА Не оценен
19501232

35M0440

Светодиодный индикатор на панели, черная хромированная рамка, желтый, 8 мм, 230 В перем. Тока, 3 мА, 7 мкд, IP67 Соответствие RoHS: Да

ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ CML

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

Желтый 230 В переменного тока 8мм 3 мА 7мкд IP67
L024500MAB

97K4043

Светодиодный индикатор на панели, желтый, 230 В перем. Тока, 7.1 мм, 3 мА, без номинала

ARCOLECTRIC (BULGIN LIMITED)

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

Янтарь 230 В переменного тока 7.1мм 3 мА Не оценен
L024500MAC

97K4044

Светодиодный индикатор на панели, зеленый, 230 В перем. Тока, 7,1 мм, 3 мА, без номинала

ARCOLECTRIC (BULGIN LIMITED)

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

Зеленый 230 В переменного тока 7.1мм 3 мА Не оценен
C0276AAMAA

96K8296

Светодиодный индикатор на панели, красный, 230 В перем. Тока, 9,5 мм, 3 мА, без номинала

ARCOLECTRIC (BULGIN LIMITED)

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

красный 230 В переменного тока 9.5мм 3 мА Не оценен
C287000MAB

96K8358

Светодиодный индикатор на панели, желтый, 230 В перем. Тока, 12,7 мм, 3 мА, без номинала

ARCOLECTRIC (BULGIN LIMITED)

Каждый

Доставка в течение 2-4 рабочих дней с нашего склада в Великобритании для товаров, имеющихся в наличии.
Запрещенный товар

Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество

Добавлять

Мин .: 1 Mult: 1

Янтарь 230 В переменного тока 12.7мм 3 мА Не оценен

14 мм 12 В 220 В 110 В Светодиодные индикаторы

Светодиодные индикаторы на 110 вольт Введение в продукт

— это светодиодные индикаторные лампы на 110 вольт, его модель FL1P-14QW-1, это пластиковый индикатор, корпус индикатора является комплексным, все индикаторы отображают красный свет, сильное проникновение света, высокая водонепроницаемость.

Индикаторы светятся как бриллианты, светодиодные индикаторы на 110 вольт имеют 4 цвета: красный, зеленый, желтый и синий. В дополнение к светодиодному напряжению 110 В он также может производить 12 В, 24 В, 220 В, 250 В.

Вопросы и ответы для светодиодных индикаторов на 110 В

— Можно ли изменить его монтажный порт?

Монтажный порт этой модели составляет 14 мм. Вообще говоря, это не может быть изменено. Каждая модель имеет фиксированные параметры, но у нас есть и другие модели того же типа.Параметры монтажного порта у других моделей отличаются. Конечно, мы также можем настроить световой индикатор.

— Для какого оборудования используются светодиодные индикаторы на 110 вольт?

Светодиодные индикаторные лампы на 110 В имеют новую форму, прозрачные светоизлучающие части, энергосберегающие и энергосберегающие, а также длительный срок службы. Он подходит для всех видов мелкой бытовой техники, электронного оборудования, оборудования для автоматизации, инструментов, коммуникационного оборудования, автомобилей, мотоциклов, фотографии, игрушек, холодильников, морозильников, электросварщиков, генераторов, медицинского оборудования и других электрических цепей, используемых для различного освещения. индикаторные сигналы, предупреждающие сигналы, аварийные сигналы и другие сигналы.

— Каков срок службы светодиодных индикаторов на 110 вольт? Есть ли большая вероятность поломки?

Срок службы светодиода — 50 000 часов, вероятность поломки невелика. Перед доставкой мы прошли проверку качества. Качество продукции может быть гарантировано, поэтому покупать можно с уверенностью.

— Этот светодиодный индикатор на 110 вольт должен быть водонепроницаемым, высокий ли уровень водонепроницаемости? Есть ли международная сертификация?

Светодиодные индикаторные лампы на 110 вольт имеют высокий уровень водонепроницаемости, который может достигать IP67.Он также получил несколько международных сертификатов, таких как сертификация UL из США, сертификация VDE из Германии, сертификация CE из ЕС, сертификация системы менеджмента качества ISO и т. Д. Наши показатели соответствуют международным стандартам.

Популярная категория: металлические кнопки

Приборная панель автомобиля 8 мм Световой индикатор 220 Вольт

Световой индикатор 220 В FL1M-8FJ-3 — введение

1.Металлический корпус индикаторной лампы 220 вольт использует технологию числового управления, чтобы обеспечить красивый внешний вид атмосферы, высокую точность.

Светодиодный индикатор на 2,220 В использует неполярный светодиод, который может использоваться клиентами без какого-либо положительного или отрицательного уровня. Срок службы светодиода — 50 000 часов.

Световой индикатор 3,220 вольт IP67, монтажное отверстие 8 мм 5/16 дюйма.

Индикатор напряжения 4,220 вольт может делать 3 В, 6 В, 12 В, 24 В, 110 В, 220 В, 380 В и так далее.

Световой индикатор 5,220 вольт может быть 5 цветов: красный, желтый, зеленый, синий и белый.

6,220 вольт индикаторного напряжения может делать 3 В, 6 В, 12 В, 24 В, 110 В, 220 В, 380 В и так далее.

Световой индикатор 220 вольт очень универсален и обычно используется в кофемашине, водонагревателе, диспенсере для воды, печи для запекания, мясорубке, автоматизации, испытательном оборудовании, шкафу для дезинфекции, посудомоечной машине, барбекю, очистительной машине, пищевом оборудовании, Морозильник, Блендер, блендер, Неисправность, Модифицированный автомобиль, Обувная машина, Холодильное оборудование, Изолированная подставка для риса, Кухонная плита, Водонепроницаемый воздушный шкаф, Аудиооборудование индукционной плиты, Распределительный ящик, Медицинское оборудование, Плеер с усилителем мощности, Образование, школьная лаборатория , Генератор, Электросварочный аппарат, Кабельный лоток, инвертор, Регулятор напряжения, Устройство контроля доступа, Аксессуары для автомобилей и мотоциклов, Промышленный очиститель воздуха.

FILN Световой индикатор 220 вольт через сертификацию UL США, сертификацию VDE в Германии, сертификацию Европейского союза CE, сертификацию системы менеджмента качества ISO и т. Д., Качество стабильное, стиль завершен, может быть настроен в соответствии с потребностями клиента. разные стили светового индикатора.

Если вам что-нибудь понадобится, свяжитесь с нами по [email protected]

Популярные категории: автомобильные световые индикаторы, кнопочный выключатель с проводом

Цепь светодиодного индикатора питания

для 230 В

Как правило, мы видели, что все индикаторы в нашем доме на настенном распределительном щите представляют собой неоновую лампочку, которая небольшого размера и подключается к резистору 68 кОм последовательно.Вы можете сделать индикатор, который светится очень красиво и так здорово, используя светодиоды, и сделать светодиодный индикатор для сети. Светодиодный индикатор имеет более длительный срок службы, чем другие. Здесь я описываю схему светодиодного индикатора, которую можно использовать с 230 В — 240 В сети переменного тока.

Светодиодный индикатор

имеет преимущество в том, что он доступен в различной цветовой гамме, не требуется никакого дополнительного защитного стекла для изменения цвета и защиты. Если вам нужно использовать двухцветный или трехцветный светодиод (двух- или трехцветный), то никакой внешней цепи не требуется, потому что светодиод имеет встроенное свойство с этим свойством.Он более прочный, чем другие.

Светодиодная лампа светится ярче и красивее, чем неоновая лампа. Но проблема со светодиодами заключается в том, что они работают только с постоянным током, а не с переменным током. Если я подключу его к сети переменного тока с резистором. Мы видим, что светодиод имеет незначительное свечение.

Если после резистора соединить выпрямитель с анодной точкой светодиода и заземлить непосредственно с катодом, то в качестве индикатора получится надлежащая и достаточная яркость.

Резистор 68 кОм или 100 кОм напрямую подключается к клемме линии переменного тока (+) для уменьшения сигнала, подходящего для светодиода, после резистора необходимо последовательно подключить выпрямительный диод с резистором, чтобы преобразовать сигнал переменного тока в постоянный, а затем он подключается к светодиоду. положительный терминал.Отрицательный вывод светодиода напрямую подключен к заземлению переменного тока. Если вы хотите сделать светодиоды более яркими, то вместо резистора 100 кОм подключают резистор 50 кОм. .
Будьте осторожны при подключении вывода диода и светодиода. При неправильном или обратном подключении индикатор работать не будет. Используйте диод 1N4007. Ниже приведена схема подключения светодиодного индикатора с напряжением 230 В переменного тока.

ПРИМЕЧАНИЕ. Не прикасайтесь ни к каким частям цепи во время тестирования. Это опасно .

Вот еще одна принципиальная схема светодиодного индикатора питания, который можно подключить к любой линии переменного тока 220-230 В .

Эта схема надежнее 1-й.

Рекомендуется резистор номиналом 1 Вт

Купить диод 1N4007 https://amzn.to/2UrkaGZ

Купить резисторы (смешанные номиналы) — https://amzn.to/2OvAra4

Похожие сообщения

Могу ли я сэкономить деньги, используя светодиодные лампы для выращивания растений на 220/240 В вместо 110 В?

Распространенное заблуждение относительно светодиодных светильников для выращивания растений состоит в том, что их использование на 220 или 240 В позволит сэкономить на счете за электроэнергию.Использование ламп для выращивания растений на 220/240 В не снизит мощность и не сэкономит денег на счетах за электроэнергию.

Работа при 220/240 В снизит силу тока примерно наполовину, но потребляемая мощность останется прежней.

Закон Ома утверждает, что V = I * R, а формула мощности утверждает, что P = I * V.

В — напряжение (вольт) количество доступной электрической энергии

I — ток (амперы) количество электричества, проходящего через провод

R — сопротивление (Ом) способность материала сопротивляться току

P — мощность (ватт) сколько работы выполняет электричество

Следовательно, удвоение напряжения (В-вольт) уменьшит ток (I-ампер) вдвое, но потребляемая мощность (P-ватт) останется прежней.Количество потребляемой электроэнергии, измеряемое в ваттах, будет одинаковым при 110 В или 220 В. Коммунальная компания не взимает плату за силу тока, они взимают плату за мощность, поэтому на счетах за электроэнергию не будет экономии при работе от сети 220 В.

Пример — Закон Ома для светодиодных ламп для выращивания

G8-900 Лампа для выращивания овощей / цветов

P = I * V

Энергопотребление — 540 Вт (0,544 кВт)

при 110 / 120В ток (I) равен 4.6 А

При 220/240 В ток (I) составляет 2,3 А

Количество потребляемой мощности, измеренное в ваттах, одинаково в обоих случаях — 540 Вт (0,544 кВт) в час.

В чем преимущество работы от сети 220В?

Преимущество работы при 220 В состоит в том, что сила тока будет вдвое меньше, а это означает, что вы можете подключить к цепи больше устройств. Хотя вы не сэкономите на электроэнергии, использование более высокого напряжения для работы оборудования в некоторых случаях может оказаться полезным.Одна из основных причин использования 240-вольтного питания — недостаточная электрическая сила тока для работы всего оборудования при более низком напряжении.

Цепь ограничена автоматическими выключателями в электрической панели для предотвращения перегрева проводов и возникновения пожара. Автоматические выключатели регулируют силу тока, которая может протекать по цепи, независимо от напряжения. При более низкой силе тока к данной комнате для выращивания можно подключить больше источников света. Однако помните, что ваш счет за электроэнергию рассчитывается по потребляемым ваттам, а не по напряжению или силе тока.

Светодиодный индикатор, зеленый, 220 В переменного тока, 22 мм, L22 по цене 200 рупий / штука | Светодиодный индикатор

Светодиодный индикатор Зеленый 220 В переменного тока 22 мм L22 по 200 рупий / штука | Светодиодный индикатор | ID: 16746651548

Описание продукта

Описание продукта

Размер монтажного отверстия: 22 мм, Цвет линзы: Синий, Тип лампы: Светодиод, Напряжение лампы: 220 В переменного тока, Глубина за панелью: 2 дюйма

  • Промышленный стандарт 22 мм
  • Светодиод для низких затрат на техническое обслуживание
  • Ударопр. Устойчивость к вибрации
  • Сертификат безопасности CE
Технические характеристики для этого изделия

Фирменное наименование Indetouch
Цвет Зеленый
EAN 66009389 Форма изделия Круглый
Толщина изделия 22.00 миллиметров
Вес изделия 57,0 г
Количество деталей 1
Номер детали IEE-LED-220G
Размер L22
Особенности Светодиодный индикатор для электрической панели 220 В, промышленный стандарт 22 мм; Устойчивость к ударам и вибрации, соответствует требованиям безопасности CE
UPC 661092426385

Заинтересовал этот товар? Получите последнюю цену у продавца

Связаться с продавцом

Изображение продукта


О компании

Юридический статус фирмы Частное лицо — Собственник

Характер бизнеса Производитель

Участник IndiaMART с октября 2017 г.