Замерзание воды под давлением: Ваш браузер устарел

Содержание

Вода под давлением замерзает при какой температуре

Температура — замерзание — вода

Температура замерзания воды в строительном растворе или бетоне практически должна быть ниже температуры замерзания, соответствующей данной концентрации водного раствора взятой соли, поскольку процесс замерзания происходит и в мелких порах и капиллярах. Кроме того, по мере твердения раствора или бетона с добавкой солей концентрация их меняется ( стр. [1]

Температура замерзания воды с увеличением давления понижается, а не повышается, как этого следовало бы ожидать. [2]

Температура замерзания воды с повышением давления уменьшается, почти линейно. [3]

Температура замерзания воды при нормальном атмосферном давлении принята за нулевую точку шкалы Цельсия, а температура ее кипения — за 100 этой шкалы. [5]

Температура замерзания воды с увеличением давления до 2000 ат понижается, а не повышается. [6]

Температура замерзания воды с увеличением давления по нижается, а не повышается, как этого следовало бы ожидать. [7]

Температура замерзания воды , находящейся в грунте, зависит от степени связанности ее с минеральными частицами грунта и от наличия в ней растворимых солей. При начальной стадии замерзания грунта в нем одновременно содержатся кристаллы льда и вода. Промерзает грунт только через 5 — 20 дней после наступления устойчивых холодов. [8]

Температура замерзания воды при нормальном атмосферном давлении принята за нулевую точку шкалы Цельсия, а температура ее кипения — за 100 этой шкалы. [10]

Температура замерзания воды из-за неточности термометра может не совпадать с нулем на шкале. В этом случае показание термометра, соответствующее температуре замерзания воды, принимается за 0 С ( I в дальнейшем другие температуры отсчитываются от этого показания. [11]

Температура замерзания воды с такой минерализацией составляет 251 К. [12]

Снижение температуры замерзания воды , а также изменение сроков схватывания цементных растворов в сторону их сокращения и улучшения характеристик цемент ного камня достигается усилением минерализации вод. м специальными химическими добавками солей и щелочей. [14]

Снижение температуры замерзания воды определяет количество введенного антифриза: поташа К2С03; хлористого магния MgCl2; хлористого кальция СаС12 и гликоля НО-СН2-СН2-ОН. Например, температура замерзания 20 % — ного водного раствора этиленгликоля составляет — 10 С. [15]

Чистая вода — считается самой лучшей жидкостью, которая отлично очищает и увлажняет организм. Человеческое тело состоит из воды где-то на 70%.

Если вы испытываете усталость, сонливость или вялость, то рекомендуется выпить один стакан теплой воды. По результатам эксперимента, человеку на один килограмм массы тела следует выпивать около 30 мл воды. Поэтому если ваш вес составляет 70 кг, то советуется каждый день потреблять 2,1 л воды. Чтобы удовлетворить потребности организма в жидкости, рекомендуется ежедневно выпивать не менее 1,5 литра воды, можно пить каждые 40-50 минут по пол стакана водички.

Вода обладает многими полезными свойствами и без неё невозможно жизнь на Земле. Все знают, чтобы вода замерзла, температура замерзания должна быть 0 градусов Цельсия, но это в случае нормальных природных условиях.

Стоит отметить, что давление в разных точках земного шара существенно отличается, поэтому температура замерзания воды зависит от определенного показателя давления.

Важно понять тот факт, что чем выше будет давление в окружающей среде, тем больше температура замерзания или наоборот, чем ниже в природной среде давление, тем меньше температура кристализации.

Температура замерзания воды в океанах и морях

Не забывайте учитывать наличие молекул и примесей в воде. Они сильно влияют на температуру замерзания воды. К примеру, солёная вода способна замерзать при очень низких температурах (около -2 градусов Цельсия).

Если взять абсолютно чистую воду, то она может даже не замерзнуть при температуре -70 градусов Цельсия. Кровь рыб обычно замерзает при температуре -1 °С. Многие ученые задавались вопросом, как рыбам удается не замерзнуть при слишком низких температурах. Оказывается, существуют такие виды рыб, которые способны вырабатывать в поджелудочной железе белки. Именно они впитываются кровью и не дают возможности начать процесс кристализации.

Интересные свойства и значения воды
  1. Дистиллированная вода является отличным диэлектриком и почти не способна проводить ток.
  2. При замерзании и испарении она расширяется.
  3. Единственное вещество, которому удается находиться сразу в трёх агрегатных состояниях.
  4. Способна растворить практически все вещества на Земле.
  5. Ледники содержат в себе около 2/3 части всего мирового запаса пресной воды.
  6. Принято считать, что температура замерзания пресной воды составляет 0 градусов по Цельсию, а морская вода замерзает при температуре — -1,8°С.
Моментальная заморозка воды — видео

И вот, начались отрицательные температуры. Сегодня под утро обещают до -3, и уже сейчас на термометре 0.

Выпал снег, и появилась угроза замерзания воды в садовом водопроводе:

Компостная куча и деревья в снегу:

Ветви ели и электрические провода в снегу:

Все сливают воду из летних водопроводов. Я пока не слил, и на то у меня есть две причины — побудительная и рассудительная. Побудительная — не хочется несколько дней до намеченного отъезда в город пользоваться холодным рукомойником. А рассудительная причина объясняет, почему этого можно действительно не делать.

Начну с того, что на даче я живу только в тёплое время года, когда температуры воздуха исключительно положительные. Дом у меня хотя и утеплённый, но по своим теплоизоляционным характеристикам не предназначен для зимнего проживания. Да, он утеплён слоями пенопласта и фольгированной изоляцией, но это утепление недостаточно для существенных температурных минусов. Поэтому и с водопроводом я особенно не стал заморачиваться. Погружной насос в колодце накачивает воду в гидроаккумулятор, находящийся в неотапливаемом хозблоке, по трубе ПНД диаметром 32 мм, а раздача на восемь точек на участке идёт трубами ПНД диаметром 25 мм. Трубы, где они не мешают, лежат прямо на поверхности земли, а в других местах просто слегка углублены в грунт.

Из школьного курса физики я точно знаю, что точка перехода воды из жидкого состояния в твёрдое находится на отметке 0 градусов. Но что-то мне подсказывало, что температура замерзания воды в трубе будет немного ниже. Чётко объяснить причину такого ощущения я не мог, и полез в Интернет, чтобы узнать точно, при какой температуре вода в трубах реально замерзает. И действительно, я нашёл информацию, что для замерзания воды в трубе нужны температуры -5 — -7 градусов, стоящие в течение несколько дней! Не знаю, насколько это правда, но это означало, что, по крайней мере, одну ночь при температуре -3 водопровод точно должен выдержать.

То, что чёрная пластиковая труба ПНД идёт в верхнем плодородном слое земли, в котором продолжают происходить процессы гниения с непременным выделением тепла, внушает мне дополнительный оптимизм. Ну и, наконец, я особенно ничем не рискую — труба ПНД переносит достаточное количество циклов замерзания-оттаивания воды в ней. Максимум что может произойти — ослабнут фитинги, но их всегда можно подкрутить. Гидроаккумулятор стоит хоть в неотапливаемом, но закрытом помещении, что тоже должно способствовать его защите от небольшого минуса. В общем, я решил пока что воду не сливать. Хотя тревожат закрытые шаровые краны, те, что на улице. Пожалуй, это единственное слабое место. Если они не переживут ночь, придётся думать дальше. Но эксперимент есть эксперимент. Завтра отпишусь о результатах (если будет время в перерывах между проливами труб кипятком )))

P.S.: Знаю ещё, что не замерзает текущая вода. Видимо потому, что не успевает выстроится кристаллическая решётка. Ну и если речь о водопроводе, то новые порции воды всегда на несколько градусов теплее нуля. Так, на дне колодца температура воды около +4 градусов. Так что при экстремальном минусе можно немного приоткрыть краники на концах раздаточных водопроводных линий. Главное, чтобы вода в колодце не кончилась )))

А вот статическое давление на температуру замерзания влияет очень слабо. Так, чтобы точку замерзания сместить на 1 градус ниже нуля, нужно 130 атмосфер. В водопроводе же всего около 3 атмосфер. Так что часто встречающийся в Интернете и безбожно растиражированный бред про незамерзающие из-за давления колонки в деревнях — полная чушь. В колонке выше глубины промерзания грунта воды просто нет. Она там появляется только при нажатии на рычаг, и стекает обратно при его отпускании. Чтобы убедиться в этом, достаточно посчитать количество времени, проходящее между нажатием на рычаг и появлением из колонки воды, или просто изучить конструкцию колонки в Интернете.

UPD 18.10.2014 18:10:

Отчитываюсь. Ночью было -1,5 градуса.

  1. Трубы ПНД диаметром 32 и 25 мм, проложенные просто по земле, а также слега присыпанные землёй не замёрзли. То же и с трубами рядом со стенами неотапливаемых помещений, расположенных у меня до высоты 150 см. То есть трубы ПНД никакие не замёрзли нигде несмотря на полное отсутствие в них движения воды.
  2. Закрытые шаровые краны 15 мм (1/2″) замёрзли, но их не порвало. Очень быстро оттаили после полива их сверху горячей водой.
  3. Узкие гибкие подводки и керамические краны рукомойника замёрзли, но тоже быстро оттаили после полива их сверху горячей водой.
  4. Гидроаккумулятор 50 литров в неотапливаемом помещении не замёрз.
  5. Температура в 30-литровом бойлере, установленном в неотапливаемом душе, за ночь упала с 75 до 45 градусов.

Таким образом констатирую, что несмотря на критичную температуру -1,5 градуса, система выдержала. А вот на участке catslover ситуация иная. Там труба ПНД 25 мм, проложенная в 2 метрах над землёй не замёрзла, а такая же труба, проложенная по забору в 50-80 см над землёй — замёрзла. Возможно, в полуметре над землёй температура ниже, чем на высоте 2 метров, а у самой земли температура снова поднимается за счёт выделения тепла из недр, тепла, накопленного за день, а также за счёт выделения тепла в процессе гниения органики в плодородном слое.

Сейчас температура держится у отметки -0,5 градусов. Ещё утром все шаровые краны и краны уличного умывальника я немножко приоткрыл, чтобы из них тоненькой струйкой сочилась вода. За день они не замёрзли. Надеюсь, что в таком режиме они переживут и ночь. Расход воды небольшой, колодец опустошиться не должен. О том, как система переживёт вторую ночь отрицательных температур, отпишусь завтра.

UPD 19.10.2014 02:10:

В общем, эксперимент пришлось прервать из-за отсутствия достаточного количества воды в колодце )))
У меня из 8 точек разбора воды 7 находятся на улице. Поскольку они все были приоткрыты во избежание порчи шаровых кранов, то за день они высосали у меня весь колодец! Осень была довольно сухая, и дебет колодца сейчас весьма низок. В итоге я слил таки всю воду из системы и вытащил насос.

В следующем году думаю докупить 15 метров ПНД 25 мм и пару шаровых, и разделить всю свою систему на 2 части — дом и всё остальное. При минусах буду сливать всё, кроме линии на дом. Если 7 струек выкачали колодец за 10 часов, то одна струйка выкачает его за 3 дня. Возможно, в этом случае дебет колодца будет достаточным для того, чтобы он успевал восполнять выкаченное. Вот так )

UPD 19.10.2014 17:10:

Интересное наблюдение. Ночью было -7,5 градусов. На бочках лёд около 2 сантиметров, причём и сверху, и на стенках. А вот на дне нет! Значит, тепло от земли идёт. Стало быть, правильно я водопровод по земле проложил, а не по забору. А ведь хотел по забору.

замерзает ли и при какой t°, в зависимости от чего (таблица соотношений)?

Замерзает ли?

При атмосферном давлении в 760 мм рт.ст (или 0,101 МПа), вода превращается в лед уже при 0°С, как известно из школьного курса.

Но при уменьшении этого показателя меняется и точка кипения, и t°, при которой происходит превращение в лед – последняя как раз повышается.

В горах, где разреженный воздух, на определенной высоте она может уже составлять +2…+4°С. И наоборот, чем больше среда давит на воду, тем ниже находится точка замерзания на графиках.

Интересно, что при давлении в 611,73 Па совпадают температура кипения воды и плавления льда. Она составляет +0,01°С. Этот показатель называют тройной точкой воды из-за того, что она находится сразу в трех состояниях.

Считается, что при более низком показателе она просто не сможет сохранять жидкое состояние и будет превращаться в водяной пар. Причем температура плавления льда и точка замерзания воды обычно не совпадают, это разные величины.

Хотя для удобства бытовых расчетов их часто отождествляют, поскольку при 760 мм рт.ст. они как раз будут одинаковыми.

Но при этом нет такого давления, при котором бы вода совсем не замерзала. Другое дело, что в лабораторных условиях можно создать такую ситуацию, при которой вода будет замерзать только при -20…-40°С.

Кроме того, возможно получение и нестабильного состояния – переохлажденной жидкости. Но если в ней появится центр кристаллизации, она сразу же превратится в лед.

Температура в зависимости от показателя

Чтобы четко определить температуру замерзания, нужно сначала понять, как связаны эти 2 параметра.


Как они взаимосвязаны?

При увеличении давления, температура замерзания снижается, при уменьшении – t° растет. Существуют специальные формулы, которые помогают рассчитать конкретное значение.

Таблица таких соотношений выглядит следующим образом:

Температура, °СДавление, мПа
00,1
-11
-230
-340
-450
-560
-10110
-22210

Как происходит процесс?

Снижение температуры замерзания при увеличении давления имеет физическое обоснование.

Пресная жидкость при замерзании расширяется примерно на 10%. У соленой морской воды расширение будет меньшим, но оно все равно происходит.

Поэтому, когда внешнее давление растет, то температура замерзания снижается. Суть процесса замерзания состоит в кристаллизации воды.

Но в отличие от других жидкостей, вязкость воды при увеличении давления уменьшается. Что и обусловило более медленные процессы кристаллизации.

Это объясняется структурными особенностями молекул и некоторыми механизмами взаимодействия между ними. Для того, чтобы процесс начался, нужен центр кристаллизации, состоящий из нескольких десятков молекул.

В природных условиях пресная вода всегда содержит примеси – пылинки, молекулы соли и т.д. Все они могут стать центрами кристаллизации, поэтому процесс будет протекать быстрее, чем при тех же условиях, но в очищенной воде в лабораторных условиях.

Каково давление замерзающей жидкости?

Давление замерзающей воды обусловлено тем, что происходит ее расширение. Однако давление она оказывает и в жидком виде, просто при отрицательных температурах оно увеличивается примерно на 10%.

Как влияет тип воды?

Дистиллированная влага в принципе замерзает медленнее даже при нормальном атмосферном давлении. В отличие от других видов пресной воды, она не содержит сторонних примесей.

В ней отсутствуют ядра кристаллизации, и поэтому она замерзает только при очень низких температурах – эксперименты показали, что при -42°С.

Физики называют такую жидкость переохлажденной. Любопытно, что если постучать по сосуду с такой дистиллированной водой, она практически моментально превратится в лед.

В лабораторных условиях проводились эксперименты, при которых давление увеличивали до очень высоких значений, так что дистиллят замерзал только при -70°С.

Наличие любых примесей, в том числе и тех, что находятся в минеральной воде, повышает температуру замерзания, даже, если прочие условия остаются теми же.

Что касается остальных растворов, то здесь, помимо давления, важную роль играет еще и плотность – например, у соленой воды она намного выше.

Но при этом при отрицательных температурах частицы соли как бы выталкиваются. И если растопить многолетний морской лед, то окажется, что он состоит из пресной воды, даже пригодной для питья.

Применение знаний в быту человека

В основном сведения о температуре замерзания воды нужны тем, кто сталкивается с прокладкой водопровода.

Как правило, ее замерзание в таких случаях проходит не на подземном участке трубы, а над поверхностью почвы, и далее идет процесс кристаллизации уже в наземном участке.

Чтобы этого не происходило, поскольку замерзание и расширение воды выводит из строя всю систему и нарушает целостность труб, принимают активные и пассивные меры – от утепления трубы до специально обустроенной системы обогрева.

Но очень важно с самого начала правильно сделать расчеты, подбирая производительность оборудования и диаметр труб таким образом, чтобы создать такое давление, при котором вода не будет замерзать при климатических условиях, характерных для этого региона.

Сведения об этих показателях и их соотношениях также нужны тем, кто занимается прокладкой отопительных систем. Важны они и для автомобилистов, которым приходится часто сталкиваться с замерзанием жидкости в радиаторе.

Заключение

Температура замерзания воды под давлением – вопрос более сложный, чем могло бы показаться на первый взгляд. Иногда даже в быту для ее расчета нужно применять громоздкие формулы или готовые таблицы соотношений.

Загадки простой воды. Раритетные издания. Наука и техника

Всеволод Арабаджи

Вода вокруг нас

Воде принадлежит огромная роль в природе. В самом деле, ведь именно море явилось первой ареной жизни на Земле. Растворенные в морской воде аммиак и углеводы в контакте с некоторыми минералами при достаточно высоком давлении и воздействии мощных электрических разрядов могли обеспечить образование белковых веществ, на основе которых в дальнейшем возникли простейшие организмы. По мнению К.Э. Циолковского, водная среда способствовала предохранению хрупких и несовершенных вначале организмов от механического повреждения. Суша и атмосфера стали впоследствии второй ареной жизни.

Можно сказать, что все живое состоит из воды и органических веществ. Без воды человек, например, мог бы прожить не более 2…3 дней, без питательных же веществ он может жить несколько недель. Для обеспечения нормального существования человек должен вводить в организм воды примерно в 2 раза больше по весу, чем питательных веществ. Потеря организмом человека более 10% воды может привести к смерти. В среднем в организме растений и животных содержится более 50% воды, в теле медузы ее до 96, в водорослях 95…99, в спорах и семенах от 7 до 15%. В почве находится не менее 20% воды, в организме же человека вода составляет около 65% (в теле новорожденного до 75, у взрослого 60%). Разные части человеческого организма содержат неодинаковое количество воды: стекловидное тело глаза состоит из воды на 99%, в крови ее содержится 83, в жировой ткани 29, в скелете 22 и даже в зубной эмали 0,2%.

В первичной водной оболочке земного шара воды было гораздо меньше, чем теперь (не более 10% от общего количества воды в водоемах и реках в настоящее время). Дополнительное количество воды появилось впоследствии в результате освобождения воды, входящей в состав земных недр. По расчетам специалистов, в составе мантии Земли воды содержится в 10…12 раз больше, чем в Мировом океане. При средней глубине в 4 км Мировой океан покрывает около 71% поверхности планеты и содержит 97,6% известных нам мировых запасов свободной воды. Реки и озера содержат 0,3% мировых запасов свободной воды.

Большими хранилищами влаги являются и ледники, в них сосредоточено до 2,1% мировых запасов воды. Если бы все ледники растаяли, то уровень воды на Земле поднялся бы на 64 м и около 1/8 поверхности суши было бы затоплено водой. В эпоху оледенения Европы, Канады и Сибири толщина ледяного покрова в горных местностях достигала 2 км. В настоящее время вследствие потепления климата Земли постепенно отступают границы ледников. Это обусловливает медленное повышение уровня воды в океанах.

Около 86% водяного пара поступает в атмосферу за счет испарения с поверхности морей и океанов и только 14% за счет испарения с поверхности суши. В итоге в атмосфере концентрируется 0,0005% общего запаса свободной воды. Количество водяного пара в составе приземного воздуха изменчиво. При особо благоприятных условиях испарения с подстилающей поверхности оно может достигать 2%. Несмотря на это, кинетическая энергия движения воды в морях составляет не более 2% от кинетической энергии воздушных течений. Происходит это потому, что более трети солнечного тепла, поглощаемого Землей, тратится на испарение и переходит в атмосферу. Кроме того, значительное количество энергии поступает в атмосферу за счет поглощения проходящего через нее солнечного излучения и отражения этого излучения от земной поверхности. Прошедшая же через водную поверхность лучистая энергия Солнца и небесного свода уменьшается в интенсивности наполовину уже в верхнем полуметре воды вследствие сильного поглощения в инфракрасной части спектра.

Очень большое значение в жизни природы имеет то обстоятельство, что наибольшая плотность у воды наблюдается при температуре 4°C. При охлаждении пресных водоемов зимой по мере понижения температуры поверхностных слоев более плотные массы воды опускаются вниз, а на их место поднимаются снизу теплые и менее плотные. Так происходит до тех пор, пока вода в глубинных слоях не достигнет температуры 4°C. При этом конвекция прекращается, так как внизу будет находиться более тяжелая вода. Дальнейшее охлаждение воды происходит только с поверхности, чем и объясняется образование льда в поверхностном слое водоемов. Благодаря этому подо льдом не прекращается жизнь.

Вертикальное перемешивание морской воды осуществляется за счет действия ветра, приливов и изменения плотности по высоте. Ветровое перемешивание воды происходит в направлении сверху вниз, приливное – снизу вверх. Плотностное перемешивание возникает за счет охлаждения поверхностных вод. Ветровое и приливное перемешивания распространяются на глубину до 50 м, на больших глубинах может сказываться действие только плотностного перемешивания.

Интенсивность перемешивания придонных и поверхностных вод способствует их освежению, обогащению кислородом и питательными веществами, необходимыми для развития жизни. Растворенный в воде воздух всегда более богат кислородом, чем воздух атмосферный. Имеющийся в воде кислород оказывает благотворное влияние на развитие в ней жизненных процессов. За счет повышенного количества кислорода в растворенном воздухе погруженные в воду металлы усиленно подвергаются разрушению (коррозии).

При замерзании чистая вода расширяется почти на 10%, у морского льда изменение объема происходит на меньшую величину. Поскольку вода при замерзании расширяется, увеличение внешнего давления понижает температуру ее замерзания; температура плавления льда, наоборот, повышается с давлением. В лабораторных условиях при давлении более 40 тыс. атмосфер можно получить лед, который будет плавиться при температуре 175°C. Теплоемкость и теплота плавления льда уменьшаются с температурой, теплопроводность же почти не зависит от температуры. Когда толщина льда на поверхности водоема достигает 15 см, он становится надежным теплоизолятором между водой и воздухом.

Морская вода замерзает при температуре – 1,91°C. При дальнейшем понижении температуры до – 8,2°C начинается осаждение сернокислого натрия, и только при температуре – 23°C из раствора выпадает хлористый натрий. Так как часть рассола при кристаллизации уходит изо льда, соленость его меньше солености морской воды. Многолетний морской лед настолько опресняется, что из него можно получать питьевую воду. Температура максимальной плотности морской воды ниже температуры замерзания. Это является причиной довольно интенсивной конвекции, охватывающей значительную толщу морской воды и затрудняющей замерзание. Теплоемкость морской воды стоит на третьем месте после теплоемкости водорода и жидкого аммиака.

Иногда вода замерзает при положительной температуре. Такое явление наблюдается в трубопроводах и почвенных капиллярах. В трубопроводах вода может замерзнуть при температуре +20°C. Объясняется это присутствием в воде метана. Поскольку молекулы метана занимают примерно в 2 раза больший объем, чем молекулы воды, они «расталкивают» молекулы воды, увеличивают расстояние между ними, что приводит к понижению внутреннего давления и повышению температуры замерзания. В почвенной влаге аналогичную роль выполняют молекулы белка. За счет влияния белковых молекул температура замерзания воды в почвенных капиллярах может возрасти до +4,4°C.

Снежинки, как правило, бывают в виде шести- и двенадцатилучевых звездочек, шестиугольных пластинок, шестигранных призм. При понижении температуры воздуха уменьшаются размеры образующихся кристаллов и возрастает разнообразие их форм. Особенности роста кристаллов в воздухе связаны с наличием в нем водяного пара.

Все знают, что сода в море соленая. Это зависит от концентрации растворенных в ней солей, но не всем известно, что в разных морях и океанах соленость воды неодинакова. Средняя соленость вод океана составляет 35%; соленость морской воды может изменяться от нуля вблизи мест впадения крупных рек до 40% в тропических морях. Вода для питья должна содержать менее 0,05% растворенных солей. Растения погибают при наличии в поливной воде в виде примеси более 0,25% солей.

Существующие в природе жидкости можно разделить на нормальные и ассоциированные. Нормальными называются те жидкости, у которых молекулы не объединяются в группы (ассоциации). Жидкости, не подчиняющиеся этому условию, называются ассоциированными. Вода принадлежит к числу ассоциированных жидкостей. Если бы вода была неассоциированной жидкостью, температура плавления льда в нормальных условиях была бы +1,43°C, а температура кипения воды 103°C. Как правило, теплоемкость жидкостей с температурой растет, но у воды с приближением к температуре +35°C теплоемкость после роста спадает до минимума, а затем снова переходит к монотонному росту. Происходит это из-за того, что при такой температуре разрушаются молекулярные ассоциации. Чем проще молекулярная структура, тем меньше теплоемкость вещества. Температура наибольшей плотности воды понижается с увеличением давления и при давлении 150 атмосфер достигает 0,7°C. Это также объясняется изменением структуры молекулярных ассоциаций.

Среди существующих в природе жидкостей вода обладает наибольшей теплоемкостью. Это предопределяет большое ее влияние на климат. Основным терморегулятором климата являются воды океанов и морей: накапливая тепло летом, они отдают его зимой. Отсутствие водоемов на местности обычно приводит к образованию резко континентального климата. Благодаря влиянию океанов на значительной части земного шара обеспечивается перевес осадков на суше над испарением, и организмы растений и животных получают нужное им для жизни количество воды. Водная и воздушная оболочки земного шара постоянно обмениваются углекислотой с горными породами, растительным и животным миром, что также способствует стабилизации климата.

Известно, что молекулы, находящиеся на поверхности жидкости, имеют избыток потенциальной энергии и поэтому стремятся втянуться внутрь так, что при этом на поверхности остается минимальное количество молекул. За счет этого вдоль поверхности жидкости всегда действует сила, стремящаяся сократить поверхность. Это явление в физике получило название поверхностного натяжения жидкости.

Среди существующих в природе жидкостей поверхностное натяжение воды уступает только ртути. С поверхностным натяжением воды связано ее сильное смачивающее действие (способность «прилипать» к поверхности многих твердых тел). Кроме того, вода является универсальным растворителем. Теплота ее испарения выше теплоты испарения любых других жидкостей, а теплота кристаллизации уступает лишь аммиаку.

В природе существует шесть изотопов кислорода. Три из них радиоактивны. Стабильными изотопами являются О16, О17 и О18. При испарении в водяной пар в основном переходит изотоп О16, неиспарившаяся же вода обогащается изотопами О17 и О18. В водах морей и океанов отношение О18 к О16 больше, чем в водах рек. В раковинах животных тяжелые изотопы кислорода встречаются чаще, чем в воде. Содержание изотопа О18 в атмосферном воздухе зависит от температуры. Чем выше температура воздуха, тем больше воды испаряется и тем большее количество О18 переходит в атмосферу. В период оледенений планеты содержание изотопа О18 в атмосфере было минимальным.

Как известно, молекула воды состоит из двух атомов водорода и одного атома кислорода. В составе обычной воды H2O имеется небольшое количество тяжелой воды D2O и совсем незначительное количество сверхтяжелой воды T2O. В молекулу тяжелой воды вместо обыкновенного водорода H – протия входит его тяжелый изотоп D – дейтерий, в состав молекулы сверхтяжелой воды входит еще более тяжелый изотоп водорода Т – тритий. В природной воде на 1 000 молекул H2O приходится две молекулы D2O и на одну молекулу T2O – 1019 молекул H2O.

Тяжелая вода D2O бесцветна, не имеет ни запаха, ни вкуса и живыми организмами не усваивается. Температура ее замерзания 3,8°C, температура кипения 101,42°C и температура наибольшей плотности 11,6°C. По гигроскопичности тяжелая вода близка к серной кислоте. Ее плотность на 10% больше плотности природной воды, а вязкость превышает вязкость природной воды на 20%. Растворимость солей в тяжелой воде примерно на 10% меньше, чем в обычной воде. Поскольку D2O испаряется медленнее легкой воды, в тропических морях и озерах ее больше, чем в водоемах полярных широт.

Комбинируя различные сочетания изотопов водорода и стабильных изотопов кислорода, можно получить следующие разновидности молекул воды: H2O16, H2O17, H2O18, HDO16, HDO17, HDO18, D2O16, D2O17, D2O18, T2O16, T2O17, T2O18, THO16, THO17, THO18, TDO16, TDO17, TDO18. Если же использовать и нестабильные изотопы кислорода O14, O15 и O19, то всего можно получить 36 разновидностей воды. В природе чаще встречаются молекулы воды, построенные из наиболее распространенных изотопов. Молекул H2O16 в природной воде содержится 99,73%, молекул H2O18…0,2% и молекул H2O17…0,04%.

Рассмотрим некоторые наиболее важные оптические свойства воды и льда. Не все знают, что вода прозрачна только для видимых лучей и сильно поглощает инфракрасную радиацию. Поэтому на инфракрасных фотографиях водная поверхность всегда получается черной. При прохождении света через слой морской воды толщиной в 0,5 м поглощаются только инфракрасные лучи, ниже поглощаются последовательно красные, желтые, а затем и сине-зеленые тона. По наблюдениям из батискафа человеческий глаз может обнаружить присутствие солнечного света на глубине до 600…700 м. Эталоном прозрачности воды является Саргассово море. Белый диск в этом море виден на глубине до 66,5 м. Дальность видимости снизу вверх в приповерхностном слое моря составляет около 100 м.

Не весь солнечный свет поглощается водой. Вода отражает 5% солнечных лучей, в то время как снег – около 85%. Под лед океана проникает только 2% солнечного света.

Синий цвет чистой океанской воды объясняется избирательным поглощением и рассеянием света в воде. В условиях диффузного освещения морской поверхности вследствие преобладания при этом отраженного света море выглядит более серым. При наличии ряби и волнения насыщенность цвета увеличивается (с подветренной стороны более, чем с наветренной).

Существенную роль в жизни растений играют оптические свойства водяного пара. Дело в том, что водяной пар сильно поглощает инфракрасные лучи с длиной волны от 5,5 до 7 микрон, что важно для предохранения почвы от заморозков. Еще более действенным средством от заморозков является выпадение росы и образование тумана: конденсация влаги сопровождается выделением большого количества тепла, задерживающего дальнейшее охлаждение почвы.

Зная физические свойства воды и льда, человек давно использует их в своей практической деятельности. Так, например, иногда применяется прокладка голых электрических проводов прямо по льду, так как электропроводность сухого льда и снега весьма мала. Она во много раз меньше электропроводности воды. Различные примеси оказывают значительное влияние на электропроводность воды и почти не изменяют электропроводности льда. Электропроводность химически чистой воды обусловлена частичной диссоциацией молекулы воды на ионы H+ и OH. Основное значение для электропроводности и воды и льда имеют перемещения ионов H+ («протонные перескоки»). Электропроводность химически чистой воды при 18°C равна 3,8·10–8 Ом–1·см–1 а электропроводность морской воды около 5·10–2 Ом–1·см–1. Электропроводность пресной природной воды может быть 1 000 раз меньше, чем морской. Это объясняется тем, что в воде морей и океанов растворено большее количество солей, чем в речной воде.

Существенную характеристику электрических свойств вещества дает относительная диэлектрическая проницаемость. У воды она имеет величину в пределах 79…81, у льда 3,26, у водяного пара 1,00705.

Без воды не было бы на Земле ни жизни, ни производства.

 

Судьбы и нравы рек

Оглавление

 

Текст издания:

Арабаджи Всеволод Исидорович. Загадки простой воды. М.: «Знание», 1973

Дата публикации:

7 сентября 2001 года

При какой температуре замерзает вода?

В моем детстве в магазинах мало чего было, а летом в жару очень хотелось мороженого. Я, как и многие советские детишки, в морозильной камере замораживал воду с разведенным вареньем, то и дело заглядывал, готово ли.

Еще тогда изучил, что лед получается при температуре ниже 0 градусов. Став старше, узнал, как проходит процесс замерзания, какая температура нужна для этого разным водным растворам.

При какой температуре замерзает вода

Вода – это самая загадочная субстанция на планете. Она бывает разной:

  • пресной и питьевой;
  • минеральной;
  • морской и солоноватой;
  • дистиллированной и деионизированной.

От ее состава как раз и зависит температура замерзания. Обычная питьевая вода превращается в лед при температуре 0 градусов по Цельсию.

Но если добавить в нее различные соли, сахар или спирт, тогда потребуется температура значительно ниже. Дистиллированная вода, в которой отсутствуют примеси, и вовсе замерзает, если охладить ее ниже -42 градусов, в обычном холодильнике такой опыт не получится. При давлении даже простая водопроводная вода начнет замерзать только при отметке -2 градуса, чем больше оно будет, тем ниже потребуется температура. Чтобы понять, отчего так происходит, надо поближе познакомиться с процессом замерзания.

Как замерзает вода

В обыкновенной воде есть микроскопические частички, это может быть пыль, глина, песок. При понижении температуры и достижении отметки в 0 градусов они становятся центрами, вокруг которых появляются кристаллы льда. Пузырьки воздуха, трещины на посуде тоже могут стать такими ядрами кристаллизации. Чем их больше, тем быстрее пойдет процесс.

Для воды с примесью соли и прочих добавок требуется больше времени для замерзания потому, что у нее высокая плотность, и чем она выше, тем дольше жидкость будет замерзать. Дистиллированную воду вообще невозможно заморозить в домашних условиях из-за отсутствия таких центров, если в ней нет пузырьков воздуха и трещинок на емкости, в которую она налита.

Может ли вода замерзнуть при положительной температуре

Мне известны 2 фактора, при которых лед образуется при плюсовых показателях температуры. На высоте более 1000 км вода начинает замерзать уже при температуре +2 градуса.

И совсем уж предстает загадочная картина, если в нее добавить каустическую соду. Чем выше концентрация, тем выше температура замерзания. Например, 44% раствор превратится в лед при температуре +7 градусов.

Температура плавления льда = температура замерзания воды в зависимости от давления 1-2100 бар. Таблица.


Таблицы DPVA.ru — Инженерный Справочник



Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Физический справочник / / Тепловые величины: теплоемкость, теплопроводность, температуры кипения, плавления, пламени. Удельные теплоты сгорания и парообразования. Термические константы. Коэффициенты теплообмнена и расширения / / Температуры, кипения, плавления, прочие… Перевод единиц измерения температуры. Воспламеняемость. / / Температуры плавления, застывания, замерзания  / / Температура плавления льда = температура замерзания воды в зависимости от давления 1-2100 бар. Таблица.

Поделиться:   

Температура плавления льда = температура замерзания воды в зависимости от давления 1-2100 бар. Таблица.

Имеется в виду обычный Лед I. Практически несжимаем, сжимаемость в 4 раза хуже, чем у воды. Плотность примерно 920 кг/м3

Температура плавления(oC) Давление (МПа)
0,00 0,1
-0,06 1
-0,14 2
-0,21 3
-0,29 4
-0,36 5
-0,74 10
-1,52 20
-2,32 30
-3,15 40
-4,02 50
-4,91 60
-5,83 70
-6,79 80
-7,78 90
-8,80 100
Температура плавления(oC) Давление (МПа)
-9,86 110
-10,95 120
-12,07 130
-13,22 140
-14,40 150
-15,62 160
-16,85 170
-18,11 180
-19,39 190
-20,69 200
-22,00 210
Данные по: Wagner W., Saul A., Pruss A. International equations for the pressure along the melting and along the sublimation curve of ordinary water substance // J. Phys. 1994
Поиск в инженерном справочнике DPVA. Введите свой запрос:
Поиск в инженерном справочнике DPVA. Введите свой запрос:
Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста.
Вложите в письмо ссылку на страницу с ошибкой, пожалуйста.
Коды баннеров проекта DPVA.ru
Начинка: KJR Publisiers

Консультации и техническая
поддержка сайта: Zavarka Team

Проект является некоммерческим. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Владельцы сайта www.dpva.ru не несут никакой ответственности за риски, связанные с использованием информации, полученной с этого интернет-ресурса. Free xml sitemap generator

Инженеры определили минимальную температуру замерзания воды

Ученые из Хьюстонского университета в США определили самую низкую температуру замерзания воды. Эксперимент показал, что вода способна оставаться жидкой при показателях до -44 градусов Цельсия, сообщает Nature Communications.

Инженеры отметили, что эксперимент позволил лучше понять механизм превращения воды в лед. Это важно для целого ряда научных областей, от метеорологии до криоконсервации.

В эксперименте задействовали крошечные капли размером около 150 нанометров. Их поместили на мягкую поверхность, такую как гель.

Наблюдения показали, что мягкая граница между поверхностью материала и каплей воды препятствовала возникновению льда даже при сильном замораживании. Возможно, это было связано с давлением.

Ученые пояснили, что температура замерзания воды падает по мере повышения давления окружающей среды. Наиболее выраженный эффект наблюдался в капле воды диаметром всего 2 нанометра.

«Мы обнаружили, что если капля воды соприкасается с мягкой поверхностью, температура замерзания может быть значительно ниже, чем на твердых поверхностях», – подчеркнули авторы.

Авторы научной работы доказали, что при определенных условиях капля воды размером в несколько нанометров может избежать замерзания до -44 градусов по Цельсию. Это критически важно для криоконсервации. Крошечные капли воды внутри организма, замерзая, могут привести к разрыву или гибели клеток. С помощью новых данных ученых смогут найти способ избежать этого.

Исследование также помогает лучше понять природные процессы в атмосфере. Ученые полагают, что его результаты позволят разработать эффективные противообледенительные системы для авиации, ветроэнергетики и объектов инфраструктуры.

Ранее сообщалось, что ученые открыли новую форму льда. Исследование провели в Австрии.

Физические свойства воды

> Физические свойства воды

  • Состояние (ст.усл.): жидкость
  • Плотность: 0,9982 г/куб.см
  • Динамическая вязкость (ст.усл.): 0,00101 Па•с (при 20°C)
  • Кинематическая вязкость (ст.усл.): 0,01012 кв.см/с (при 20°C)

Термические свойства воды:

  • Температура плавления: 0°C
  • Температура кипения: 99,974°C
  • Тройная точка: 0,01 °C, 611,73 Па
  • Критическая точка: 374°C, 22,064 MПа
  • Молярная теплоёмкость(ст.усл.): 75,37 Дж/(моль•К)
  • Теплопроводность(ст.усл.): 0,56 Вт/(м•K)

Агрегатные состояния воды:

  • Твёрдое — лёд.
  • Жидкое — вода.
  • Газообразное — водяной пар.

При атмосферном давлении вода замерзает (превращается в лёд) при температуре в 0°C и кипит (превращается в водяной пар) при температуре 100°C.

При снижении давления температура плавления воды медленно растёт, а температура кипения — падает.

При давлении в 611,73 Па (около 0,006 атм) температура кипения и плавления совпадает и становится равной 0,01°C. Такое давление и температура называются тройной точкой воды.

При более низком давлении вода не может находиться в жидком состоянии, и лёд превращается непосредственно в пар. Температура возгонки льда падает со снижением давления.

При росте давления температура кипения воды растёт, плотность водяного пара в точке кипения тоже растёт, а жидкой воды — падает.

При температуре 374°C (647 K) и давлении 22,064 МПа (218 атм) вода проходит критическую точку. В этой точке плотность и другие свойства жидкой и газообразной воды совпадают.

При более высоком давлении нет разницы между жидкой водой и водяным паром, следовательно, нет и кипения или испарения.

Так же возможны метастабильные состояния — пересыщенный пар, перегретая жидкость, переохлаждённая жидкость. Эти состояния могут существовать длительное время, однако они неустойчивы и при соприкосновении с более устойчивой фазой происходит переход. Например, нетрудно получить переохлаждённую жидкость, охладив чистую воду в чистом сосуде ниже 0°C, однако при появлении центра кристаллизации жидкая вода быстро превращается в лёд.


Вода обладает рядом необычных особенностей:

  • При таянии льда, его плотность увеличивается (с 0,9 до 1 г/куб.см). Почти у всех остальных веществ при плавлении плотность уменьшается.
  • При нагревании от 0°C до 4°C (точнее 3,98°C), вода сжимается. Благодаря этому могут жить рыбы в замерзающих водоёмах: когда температура падает ниже 4°C, более холодная вода, как менее плотная остаётся на поверхности и замерзает, а под льдом сохраняется положительная температура.
  • Высокая температура и удельная теплота плавления (0°C и 333,55 кДж/кг), температура кипения (100°C) и удельная теплота парообразования (2250 КДж/кг), по сравнению с соединениями водорода с похожим молекулярным весом.
  • Высокая теплоёмкость жидкой воды.
  • Высокая вязкость.
  • Высокое поверхностное натяжение.
  • Отрицательный электрический потенциал поверхности воды.

Все эти особенности связаны с наличием водородных связей. Из-за большой разности электроотрицательностей атомов водорода и кислорода электронные облака сильно смещены в сторону кислорода. По причине этого, а также того, что ион водорода не имеет внутренних электронных слоев и обладает малыми размерами, он может проникать в электронную оболочку отрицательно поляризованного атома соседней молекулы. Благодаря этому, каждый атом кислорода притягивается к атомам водорода других молекул и наоборот. Каждая молекула воды может участвовать максимум в четырёх водородных связях: 2 атома водорода — каждый в одной, а атом кислорода — в двух; в таком состоянии молекулы находятся в кристалле льда. При таянии льда часть связей рвётся, что позволяет уложить молекулы воды плотнее; при нагревании воды связи продолжают рваться, и плотность её растёт, но при температуре выше 4°С этот эффект становится слабее, чем тепловое расширение. При испарении рвутся все оставшиеся связи. Разрыв связей требует много энергии, отсюда высокая температура и удельная теплота плавления и кипения и высокая теплоёмкость. Вязкость воды обусловлена тем, что водородные связи мешают молекулам воды двигаться с разными скоростями.

По сходным причинам вода является хорошим растворителем полярных веществ. Каждая молекула растворяемого вещества окружается молекулами воды, причём положительно заряженные участки молекулы растворяемого вещества притягивают атомы кислорода, а отрицательно заряженные — атомы водорода. Поскольку молекула воды мала по размерам, много молекул воды могут окружить каждую молекулу растворяемого вещества.

Это свойство воды используется живыми существами. В живой клетке и в межклеточном пространстве вступают во взаимодействие растворы различных веществ в воде. Вода необходима для жизни всех без исключения одноклеточных и многоклеточных живых существ на Земле.

Чистая (не содержащая примесей) вода — хороший изолятор. При нормальных условиях вода слабо диссоциирована и концентрация протонов (точнее, ионов гидроксония H3O+) и гидроксильных ионов HO — составляет 0,1 мкмоль/л. Но поскольку вода — хороший растворитель, в ней практически всегда растворены те или иные соли, то есть в воде присутствуют положительные и отрицательные ионы. Благодаря этому вода проводит электричество. По электропроводности воды можно определить её чистоту.

Вода имеет показатель преломления n=1,33 в оптическом диапазоне. Однако она сильно поглощает инфракрасное излучение, и поэтому водяной пар является основным естественным парниковым газом, отвечающим более чем за 60% парникового эффекта. Благодаря большому дипольному моменту молекул, вода также поглощает микроволновое излучение, на чём основан принцип действия микроволновой печи.


Понравилось? Поделись с друзьями!

Please enable JavaScript to view the comments powered by Disqus.blog comments powered by

термодинамика — Если жидкая вода удерживается в сосуде, а температура падает ниже точки замерзания, образуется ли лед?

термодинамика — Если жидкая вода удерживается в сосуде, а температура падает ниже точки замерзания, образуется ли лед? — Stack Overflow на русском
Сеть обмена стеками

Сеть Stack Exchange состоит из 179 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.

Посетите биржу стека
  1. 0
  2. +0
  3. Авторизоваться Зарегистрироваться

Physics Stack Exchange — это сайт вопросов и ответов для активных исследователей, ученых и студентов, изучающих физику.Регистрация занимает всего минуту.

Зарегистрируйтесь, чтобы присоединиться к этому сообществу

Любой может задать вопрос

Любой может ответить

Лучшие ответы голосуются и поднимаются на вершину

спросил

Просмотрено 272 раза

$\begingroup$

Если жидкая вода находится в сосуде, а температура падает ниже точки замерзания, какое давление будет измерено, если предположить, что сосуд небьющийся? Или, другими словами, образуется ли лед, если не дать воде расшириться?

Кьюмеханик♦

164k3030 золотых знаков406406 серебряных знаков19151915 бронзовых знаков

спросил 27 марта 2020 г. в 2:13

$\endgroup$ 1 $\begingroup$

В зависимости от скорости замерзания, если очень быстро, образуется неупорядоченное твердое вещество, которое заполнит сосуд без избыточного давления.

Если заморозить медленно, кристаллы льда с меньшей плотностью сформируются и расширятся. В конце концов лед перестанет образовываться, и из-за повышения давления температура воды будет ниже точки замерзания.