Антенна внешняя для радиоприемника: телескопические УКВ-антенны и другие для радиоприемника. Какую функцию они выполняют? Как их подключить?

Содержание

Балконные КВ антенны для начинающих

Предисловие

Сегодня, когда большая часть старого жилого фонда приватизирована, а новое, уж точно является частной собственностью, то радиолюбителю становится всё труднее устанавливать на крыше своего дома полноразмерные антенны.  Кровля жилого дома является частью собственности каждого жителя дома, где они проживают, и они никогда не позволят вам лишний раз ходить по ней, и уж тем более установить некую антенну и портить фасад здания. Тем не менее, сегодня известны такие случаи, когда радиолюбитель заключает договор с ЖЭУ на аренду части кровли своей антенной, но на это нужны дополнительные финансовые средства и это совершенно другая тема. По этому,  многие начинающие радиолюбители могут позволить себе только  те антенны, которые можно установить на балконе или лоджии, рискуя получить замечание от управдома за порчу фасада здания нелепой выпирающей конструкцией.

 

Молиться Богу, чтобы какой-то «активист-всезнайка» не заикнулся о вредном излучении антенны, как от антенн сотовой связи. К сожалению надо признать, что для радиолюбителей наступила новая эра скрытности своего хобби и своих КВ антенн, несмотря на парадокс законности их  в юридическом плане данного вопроса. То есть, государство разрешает выход в эфир на основании «Закона о связи РФ», а уровни разрешенной мощности соответствуют нормативам на ВЧ излучения СанПиН 2.2.4/2.1.8.055-96, но им приходится быть незаметными во избежание беспредметных доказательств законности своей деятельности.

 

Предлагаемый материал поможет разобраться радиолюбителю в антеннах с большим укорочением, способным размещаться на пространстве балкона, лоджии, на стене жилого дома или на ограниченном антенном поле.  В материале «Балконные КВ антенны для начинающих»  обзорно рассматриваются варианты антенн разных авторов, ранее опубликованные как в бумажном, так и в электронном виде,  и подобраны для условий их установки на ограниченном пространстве.

 

Разъясняющие   комментарии помогут понять новичку, как работает антенна. Представленные материалы нацелены на начинающих радиолюбителей для обретения навыков построения и выбора мини-антенн. 

Оглавление: 

  1. Диполь Герца. 
  2. Укороченный диполь Герца.  
  3. Спиральные антенны. 
  4. Магнитные антенны. 
  5. Емкостные антенны.

1. Диполь Герца

Самым классическим типом антенн неоспоримо является диполь Герца.  Это длинный провод, чаще всего с размером полотна антенны в полволны. Провод антенны имеет свою емкость и индуктивность, которые распределены по всему полотну антенны, их называют распределенными параметрами антенны. Емкость антенны создает электрическую составляющую поля (Е), а индуктивная составляющая антенны, магнитную поля (Н).

 

 

Классический диполь Герца от своей природы имеет внушительные размеры и составляет половину длинный волны. Посудите сами, на частоте 7МГц длина волны составляет 300/7=42,86метра, а полволны составит 21,43метра!  Немаловажными параметрами любой антенны являются её характеристики со стороны пространства, это ее апертура, сопротивление излучения, действующая высота антенны, диаграмма направленности и пр, а также со стороны питающего фидера, это входное сопротивление, наличие реактивных составляющих и взаимодействие фидера с излучаемой волной. Полуволновый диполь, это линейный широко распространенный излучатель на практике антенных технологий. Тем не менее, у любой антенны имеются свои достоинства и недостатки. 

 

Сразу отметим, что для хорошей работы любой антенны требуется, по меньшей мере, два условия, это наличие оптимального тока смещения и эффективного формирования электромагнитной волны.  КВ антенны могут быть как вертикальными, так и горизонтальными. Устанавливая полуволновый диполь вертикально, и уменьшая его высоту путём превращения четвёртой части в противовесы, мы получаем так называемый четвертьволновый вертикал. Вертикальные четвертьволновые антенны, для своей эффективной работы требует наличия хорошей «радиотехнической земли», т.к. почва планеты «Земля», обладает плохой проводимостью. Радиотехническую землю заменяют подключением противовесов. Практика показывает, что минимально необходимое число противовесов должно быть около 12, но лучше, если их количество будет превышать 20… 30, а в идеале необходимо иметь 100-120 противовесов.

 

 

Никогда не следует забывать о том, что идеальная вертикальная антенна со ста противовесами имеет КПД 47 %, а КПД антенны с тремя противовесами — менее 5 %, что наглядно отражено на графике. Мощность, подводимая к антенне с малым количеством противовесов, поглощается земной поверхностью и окружающими предметами, нагревая их. Точно такой же низкий КПД ожидает низко расположенный горизонтальный вибратор. Проще говоря, земля плохо отражает и хорошо поглощает излучаемую радиоволну, особенно когда волна ещё не сформирована в ближней зоне от антенны, подобно замутнённому зеркалу. Лучше отражает морская водная гладь и совсем не отражает песчаная пустыня. Согласно теории взаимности, параметры и характеристики антенны одинаковы как на приём, так и на передачу. Это значит, что в режиме приёма у вертикала с малым количеством противовесов происходят большие потери полезного сигнала и как следствие этого, —  увеличение шумовой составляющей принимаемого сигнала.

 

Противовесы классического вертикала должны быть длиной не менее длины основного штыря, т.е. протекающие между штырём и противовесами токи смещения занимают определённый объём пространства, который участвует не только в формировании диаграммы направленности, но и в формировании напряженности поля. С большим приближением можно сказать, что каждой точке на штыре соответствует своя зеркальная точка на противовесе, между которыми протекают токи смещения. Дело в том, что токи смещения, как и все обычные токи, протекают по пути наименьшего сопротивления, которое в данном случае сосредоточено в объёме, ограниченном радиусом штыря. Создаваемая диаграмма направленности и будет суперпозицией (наложением) этих токов. Возвращаясь к выше сказанному, это означает, что  КПД классической антенны зависит от количества противовесов, т.е. чем больше противовесов, тем больше ток смещения, тем эффективнее антенна, ЭТО ПЕРВОЕ УСЛОВИЕ хорошей работы антенны.

 

Идеальным случаем считается полуволновый вибратор, расположенный в открытом пространстве при отсутствии поглощающей почвы, или вертикал расположенный на цельно металлической поверхности с радиусом в 2-3 длины волны. Это необходимо для того, что бы почва земли или окружающие антенну предметы не мешали эффективному формированию электромагнитной волны. Дело в том, что формирование волны и совпадение по фазе магнитной (Н) и электрической (Е) составляющих электромагнитного поля происходит не в ближней зоне диполя Герца, а в средней и дальней зоне на расстоянии 2-3 длины волны, ЭТО ВТОРОЕ УСЛОВИЕ хорошей работы антенны. В этом и заключается основной недостаток классического диполя Герца.

 

Сформированная электромагнитная волна в дальней зоне, менее подвержена воздействию земной поверхности,  огибает ее, отражается и распространяется в среде. Все выше изложенные весьма краткие понятия нужны для того, чтобы понимать дальнейшую суть построения любительских балконных антенн, -искать такой конструктив антенны, в котором волна формируется внутри самой антенны.

 

Теперь понятно, что размещение полноразмерных антенн, четверть волновой штыря с противовесами или полуволновой диполь Герца КВ диапазона практически невозможно разместить в пределах балкона или лоджии. И если радиолюбителю удалось найти доступную точку крепления антенны на противоположном от балкона или окна здании, то сегодня это считается большим везением. 

2. Укороченный диполь Герца.

Имея в своём распоряжении ограниченное пространство, радиолюбителю приходится идти на компромисс и уменьшать размеры антенн. Электрически малыми считаются антенны, размеры которых не превосходят 10…20% длины волны λ. В таких случаях часто используется укороченный  диполь. При укорочении антенны, уменьшается её распределённые емкость и индуктивность, соответственно её резонанс изменяется в сторону верхних частот. Для компенсации такого недостатка в антенну вводят дополнительные катушки индуктивности L и емкостные нагрузки C, как сосредоточенные элементы (рис. 1).

Примечание: Здесь и в последующих темах мы будем искать возможные варианты увеличения КПД укороченных антенн, и без того потерявших свою эффективность.

 

Максимальное КПД антенны достижимо при размещении удлиняющих катушек на концах диполя, т.к. ток на концах диполя максимален и распределен равномернее, что обеспечивает максимальную действующую высоту антенны hд = h. Включение катушек индуктивности ближе к центру диполя уменьшат её собственную индуктивность, в этом случае  ток к концам диполя падает, действующая высота уменьшается, а вслед за ней и КПД антенны. 

 

 

Для чего же нужна емкостная нагрузка в укороченном диполе? Дело в том, что при большом укорочении добротность антенны сильно повышается, а полоса пропускания антенны становится уже радиолюбительского диапазона. Введение емкостных нагрузок, увеличивает ёмкость антенны, снижает добротность образованного LC-контура и расширяет его полосу пропускания до приемлемой. Укороченный диполь, настраивают на рабочую частоту в резонанс либо  катушками индуктивности, либо длиной проводников и емкостных нагрузок.  Это обеспечивает компенсацию их реактивных сопротивлений на резонансной частоте, что необходимо по условиям согласования с фидером питания.  

Примечание: Таким образом, мы компенсируем необходимые характеристики укороченной антенны для согласования её с фидером и пространством, но уменьшение её геометрических размеров ВСЕГДА ведёт  уменьшению её эффективности (КПД). 

 

Одним из примеров расчёта удлиняющей катушки индуктивности доступно описан был расчёт в Журнале «Радио», номер 5, 1999г, где расчёт ведётся от имеющегося излучателя. Катушки индуктивности L1и L2  здесь размещена в точке питания четвертьволнового диполя  A и противовеса D (рис.2.). Это одно диапазонная антенна.

 

 

Рассчитать индуктивность укороченного диполя можно так же на сайте радиолюбителя RN6LLV — он даёт ссылку для скачивания калькулятора способного помочь в расчёте удлиняющей  индуктивности.  

 

Существуют и фирменные укороченные антенны (Diamond HFV5), которые имеют многодиапазонный вариант, см. Рис.3, там же её электрическая схема.

 

 

Работа антенны основана на параллельном включении резонансных элементов, настроенных на разные частоты.  При переходе с одного диапазона на другой, они практически не влияют друг на друга. Катушки индуктивности L1-L5 являются удлиняющими, каждая расчитана на свой диапазон частот, точно так же как и емкостные нагрузки (продолжение антенны). Последние имеют телескопическую конструкцию, а изменением их длины способны подстраивать антенну в небольшом диапазоне частот. Антенна очень узкополосна.

 

*  Мини — антенна на диапазон 27МГц, автором которой является С. Заугольный. Рассмотрим её работу подробнее. У автора антенна расположена на 4-м этаже панельного 9-этажного дома в проёме окна и по существу является комнатной, хотя такой вариант антенны лучше будет работать за периметром окна  (балкона, лоджии). Как видно из рисунка, антенна состоит из колебательного контура L1C1, настроенного в резонанс на частоту канала связи, а катушка связи L2, выполняет роль согласующего элемента с фидером, рис. 4.а. Основным излучателем здесь являются емкостные нагрузки в виде рамок из проволоки с размерами 300*300мм и укороченный симметричный диполь состоящий из двух кусков провода по 750мм. Если учесть, что вертикально расположенный полуволновый диполь занял бы в высоту 5,5м., то антенна высотой всего 1,5м очень удобный вариант для размещения в проёме окна.

 

 

Если исключить из схемы резонансный контур и подключить коаксиальный кабель непосредственно к диполю, то резонансная частота окажется в пределах 55-60МГц. Исходя из этой схемы понятно, что частотозадающим элементом в данной конструкции является колебательный контур, а антенна укорочена в 3,7раза не в сильной степени снизила своё КПД. Если в этой конструкции использовать колебательный контур, настроенный на другие более низкие частоты КВ диапазона, конечно антенна будет работать, но с гораздо меньшим КПД. Например, если такую антенну настроить на 7МГц любительского диапазона, то коэффициент укорочения антенны от половины волны этого диапазона составит 14,3, а эффективность антенны упадёт ещё больше (на корень квадратный из 14), т.е. в 200 с лишним раз. Но с этим ни чего не поделать, приходится выбирать такой конструктив антенны, который бы был максимально эффективен. Эта конструкция ярко показывает, что излучающими элементами здесь выступает емкостные нагрузки в виде проволочных квадратов, и они луче выполняли бы свои функции, если бы были цельнометаллическими. Слабым звеном здесь является колебательный контур L1C1, который должен иметь высокую добротность-Q , а часть полезной энергии в данной конструкции бесполезно расходуется внутри пластин конденсатора С1. По этому увеличение емкости конденсатора хоть и снижает частоту резонанса, но она и снижает общий КПД данной конструкции. Проектируя данную антенну на более низкие частоты КВ диапазона, следует уделить внимание тому, что бы на резонансной частоте L1 было максимально, а C1-минимально, не забывая при этом, что емкостные излучатели являются частью резонансной системы в целом. Максимальное же перекрытие по частоте желательно проектировать не более 2-х, а излучатели находились как можно дальше от стен здания. Балконный вариант данной антенны с камуфляжем от посторонних глаз изображён на рис. 4.б. Именно подобная антенна использовалась какое-то время середины 20-го века на войсковых автомобилях в диапазоне КВ с частотой настройки 2-12МГц.

 

*  Одно-диапазонный вариант «Неумирающая антенна Фукса» (21МГц) изображён на рис.5.а. Штырь длиной 6,3 метра (почти полволны) питается с конца параллельным колебательным контуром с таким же большим сопротивлением. Господин Фукс решил, что именно так согласуются между собой параллельный колебательный контур L1C1 и полуволновый диполь, так оно и есть… Как известно, полуволновый диполь самодостаточен и работает сам на себя, ему не нужны противовесы как четвертьволновому вибратору. Излучатель (медный провод)  можно разместить в пластиковой удочке.  Такую удочку на время работы в эфире можно выдвигать за пределы перил балкона и убирать обратно, но в зимнее время это создаёт ряд неудобств. В качестве «земли» для колебательного контура используется кусок провода всего 0,8 м, что очень удобно при размещении такой антенны на балконе. Одновременно это является исключительным случаем, когда в качестве заземления можно использовать цветочный горшок (шутка). Индуктивность резонансной катушки L2 составляет 1,4мкГн, она выполнена на каркасе диаметром 48мм и содержит 5 витков провода 2,4мм шагом 2,4мм. В качестве резонансного конденсатора емкостью 40 пФ, в схеме применено два отрезка коаксиального кабеля RG-6. Отрезок (С2 по схеме) является неизменной частью резонансного конденсатора длиной не более 55-60см, а более короткий отрезок (С1 по схеме) используется для точной подстройки в резонанс (15-20см).  Катушка связи L1 в виде одного витка поверх катушки L2 выполняется кабелем RG-6 с разрывом в 2-3 см его оплётки, а настройка по КСВ осуществляется перемещением этого витка от средины в сторону противовеса. 

Примечание: Антенна Фукса хорошо работает только в полуволновом варианте излучателя, который может быть и укороченным по типу спиральных антенн (читать ниже).

 

 

*   Многодиапазонный варианта балконной антенны    изображен на рис. 5.б. Она была испытана ещё в 50-х годах прошлого века. Здесь индуктивность играет роль удлиняющей катушки в режиме автотрансформатора. А конденсатор С1 на 14 МГц  настраивает антенну в резонанс. Такому штырю необходима хорошее заземление, которое трудно найти на балконе, хотя для этого варианта можно использовать разветвлённую сеть труб отопления вашей квартиры, но подводить мощность более 50 Вт не рекомендуется. Катушка индуктивности L1 имеет 34 витка медной трубки диаметром 6мм, намотана на каркасе диаметром 70мм. Отводы от 2,3 и 4 витков. В диапазоне 21МГц переключатель П1замкнут, П2 разомкнут, В диапазоне 14МГц, П1 и П2 замкнуты. На 7 МГц положение переключателей как на 21МГц. В диапазоне 3,5МГц П1 и П2 разомкнуты.. Переключателем П3 определяется согласование с фидером. В обоих случаях возможно применение удилища около 5м, тогда остальная часть излучателя будет свисать к земле. Понятно, что применение таких вариантов антенн должно быть выше 2-го этажа здания.

 

В данном разделе представлены далеко не все примеры  укорочения дипольных антенн, другие примеры укорочения линейного диполя будут представлены ниже.

3. Спиральные антенны. 

Продолжая обсуждение темы укороченных антенн балконного назначения, нельзя обойти стороной спиральные антенны диапазона КВ.  И конечно, необходимо напомнить о их свойствах, обладающими практически всеми свойствами диполя Герца. 

 

Любая укороченная антенна, размеры которой не превосходят 10-20% от длины волны, относится к электрически малым антеннам.

Особенности малых антенн: 

 

  1. Чем меньше антенна, тем меньше должны быть в нём омические потери.  Малые антенны, собранные из  тонких проводов эффективно работать не могут, так как они испытывают увеличенные токи, а скин-эффект требует низких поверхностных сопротивлений. Особенно это касается антенн с  размерами излучателей значительно менее четверти длины волны.
  2. Так как напряженность поля обратно пропорциональна размерам антенны, то уменьшение размеров антенны приводит к возрастанию очень больших напряженностей полей вблизи нее, а с увеличением подводимой мощности приводит к появлению эффекта «огней Святого Эльма». 
  3. Силовые линии электрического поля, укороченных антенн имеют некоторый эффективный объем, в котором это поле сосредоточено. Оно имеет форму, близкую к эллипсоиду вращения. По сути, это объем ближнего квазистатического поля антенны. 
  4. Малая антенна с габаритами λ/10 и менее имеет добротность около 40-50 и относительную полосу пропускания не более 2%. По этому, в  такие антенны  приходится вводить элемент перестройки в пределах одного любительского диапазона. Такой пример легко наблюдать у магнитных антенн с малыми размерами. Расширение полосы пропускания снижает КПД антенны, по этому, нужно всегда стремиться к увеличению КПД сверхмалых антенн разными путями. 

 

*  Уменьшение размеров симметричного полуволнового диполя привело сначала к появлению удлиняющих катушек индуктивности (рис.6.а), а уменьшение её межвитковой ёмкости и максимального повышения КПД привело к появлению катушки индуктивности к конструктиву спиральных антенн с поперечным излучением. Спиральная антенна (рис.6.б.), это укороченный свернутый в спираль классический  полуволновый (четвертьволновый) диполь с распределёнными индуктивностями и  ёмкостями по всей  длине. У такого диполя повысилась добротность, а  полоса пропускания стала уже. 

 

 

Для расширения полосы пропускания, укороченный спиральный диполь, как и  укороченный линейный диполь, иногда оснащают емкостной нагрузкой, рис.6.б.

Поскольку при расчетах  одновибраторных антенн, понятие эффективная площадь антенны (А эфф.)  практикуется достаточно широко,   рассмотрим возможности повышения эффективности спиральных антенн при помощи концевых дисков (емкостной нагрузки) и обратимся к графическому примеру распределения токов рис. 7.  Благодаря тому, что в классической спиральной антенне катушка индуктивности (свёрнутое полотно антенны) распределена по всей длине, распределение тока вдоль антенны получается линейным, а площадь тока увеличивается незначительно. Где, Iап — ток пучности спиральной антенны, рис.7.а. А эффективная площадь антенны Аэфф. определяет ту часть площади фронта плоской волны, с которой снимает энергию антенна.

 

 

Для расширения полосы пропускания и увеличения площади эффективного излучения, практикуется установка  концевых дисков, что увеличивает эффективность антенны в целом, рис.7.б. 

 

Когда речь идет о несимметричных  (четвертьволновых) спиральных антеннах, всегда нужно помнить, что Аэфф. в большой степени зависит от  качества земли.  По этому, следует знать, что одинаковые КПД четвертьволнового вертикала обеспечивают четыре противовеса длиной λ/4, шесть противовесов длиной λ /8 и восемь противовесов длиной λ /16. Более того, двадцать противовесов длиной λ /16 обеспечивают такой же КПД, как и восемь противовесов длиной λ /4. Становится понятным, почему балконные радиолюбители пришли к полуволновому диполю. Он работает сам на себя (см. рис. 7.в.), силовые линии замкнуты на свои элементы и «земля», как в конструкциях на рис.7.а;б. ему не нужна. Кроме того спиральные антенны так же могут снабжаться сосредоточенными элементами удлинения-L  (или укорочения-C) электрической длины спирального излучателя, а их длина спирали может отличаться от полноразмерной спирали.  Примером тому может послужить конденсатор переменной ёмкости (будет рассмотрен ниже), который можно рассматривать не только как элемент настройки последовательного колебательного контура, но и элементом укорочения. Так же спиральная антенна для носимых станций на диапазон 27МГц (рис.8). Здесь присутствует удлиняющая катушка индуктивности для короткой спирали.

 

 

*  Компромиссное  решение можно углядеть в конструкции Валерия Проданова (UR5WCA), — балконная спиральная антенна 40-20м с коэффициентом укорочения К=14, вполне достойна внимания радиолюбителей лишённых кровли, см. Рис.9.

 

 

Во первых она много-диапазонная (7/10/14МГц), во вторых, для увеличения её эффективности, автор удвоил количество спиральных антенн и соединил их синфазно. Отсутствие емкостных нагрузок в данной антенне обусловлено тем, что расширение полосы пропускания и Аэфф. антенны достигается  синфазным включением в параллель двух одинаковых элементов излучения. Каждая антенна мотается медным проводом на ПХВ трубе диаметром 5см, длина провода каждой антенны составляет полволны на диапазон 7МГц. В отличие от антенны Фукса, эта  антенна имеет согласование с фидером посредством  широкополосного трансформатора. Выход трансформатора 1 и 2 имеет синфазное напряжение. Вибраторы в авторском варианте стоят друг от друга на расстоянии всего 1м, это ширина балкона. С расширением этого расстояния в пределах балкона, усиление будет возрастать незначительно, но полоса пропускания антенны  расширится ощутимо. 

 

*  Радиолюбитель Гарри Элингтон (WA0WHE, источник «QST», 1972, январь. Рис.8.) построил спиральную антенну на 80м с коэффициентом укорочения около К=6,7, которая в своём саду может быть замаскирована под опору ночного фонаря или флагштока. Как видно из его комментарий, зарубежные радиолюбители тоже заботятся о своём относительном спокойствии, хотя антенна установлена на частном подворье.  Со слов автора, спиральная антенна с емкостной нагрузкой на трубе диаметром 102мм, высотой около 6-ти метров и противовесом из четырех проводов, легко достигает КСВ в 1,2-1,3, а при КСВ=2 работает в полосе пропускания шириной до 100 кГц. Электрическая длина провода в спирали составила так же полволны.  Питание полуволновой антенны осуществляется с конца антенны по коаксиальному кабелю с волновым сопротивлением 50 Ом через КПЕ -150пФ, который превратил антенну в последовательный колебательный контур (L1C1)с излучающей индуктивностью спирали.

 

 

Конечно, в эффективности на передачу вертикальная спираль уступает классическому диполю, но по утверждению автора, на приём эта антенна на много лучше.

 

*   Свёрнутые в комок антенны

Чтобы уменьшить размеры линейного полуволнового диполя, его не обязательно скручивать в спираль. 

 

В принципе, спираль можно заменить и другими формами сворачивания полуволнового диполя, к примеру, по Минковскому, рис. 11. На подложке с размерами 175мм х175мм можно разместить диполь с фиксированной частотой в 28,5МГц.  Но фрактальные антенны очень узкополосны, а для радиолюбителей представляют только познавательный интерес  преобразования своих конструкций.

 

 

Используя другой метод укорочения размеров антенн, полуволновый вибратор, или вертикал можно укоротить, сжимая его в форму меандра, рис.12.  При этом, параметры антенны типа вертикал или диполь изменяются незначительно при сжимании их не более чем вдвое. При равенстве горизонтальной и вертикальной частей меандра, усиление меандр-антенны уменьшается примерно на 1 дБ, а входное сопротивление близко к 50 Ом, что позволяет питать такую антенну непосредственно 50-омным кабелем. Дальнейшее уменьшение размеров (НЕ длины провода) приводит к уменьшению коэффициента усиления и входного сопротивления антенны. Тем не менее, производительность меандр-антенны для коротковолнового диапазона характеризуется повышенным сопротивлением излучения относительно линейных антенн с таким же укорочением провода. Экспериментальные исследования показали, что с высотой меандра 44см и с 21 элементами на резонансной частоте 21.1 МГц,  импеданс антенны составил 22 Ом, в то время как линейный вертикал той же длины имеет импеданс в 10-15раз меньше. Благодаря наличию горизонтальных и вертикальных участков меандра, антенна принимает и излучает электромагнитные волны как горизонтальной, так и вертикальной поляризации. 

 

 

Сжимая или растягивая его, можно добиться резонанса антенны на требуемой частоте. Шаг меандра может составлять 0,015λ, однако этот параметр некритичен. Вместо меандра можно использовать проводник с треугольными изгибами или спиралью. Необходимую длину вибраторов можно определить экспериментально. За отправную точку можно положить, что длина «распрямленного» проводника должна быть около четверти длины волны для каждого плеча разрезного вибратора.

 

* «Спираль Тесла» в балконной антенне. Следуя заветной цели, уменьшить размеры балконной антенны и свести к минимуму потери в  Аэфф, радиолюбители  вместо концевых дисков стали использовать более технологичную, чем меандр, плоскую «спираль Тесла», используя её как удлиняющую индуктивность укороченного диполя и концевую ёмкость одновременно (рис.6.а.). Распределение магнитного и электрического полей в плоской катушке индуктивности Тесла показано на рис. 13. Это соответствует теории распространения радиоволны, где поле-Е и поле-Н взаимно перпендикулярны.

 

 

В антеннах с двумя плоскими спиралями Тесла также нет ни чего сверхъестественного, а потому правила построения антенны «спираль Тесла», остаются классическими: 

  • электрическая длина спирали может представлять из себя антенну с несимметричным питанием как четвертьволновый вертикал, так и  свёрнутый полуволновый диполь. 
  • Чем больше шаг намотки и больше её диаметр, тем выше её эффективность и наоборот. 
  • Чем больше расстояние между концами свёрнутого полуволнового вибратора, тем выше его эффективность и наоборот.

Словом, мы получили свёрнутый полуволновой диполь в виде плоских катушек индуктивности по его концам, см. Рис.14. В какой степени уменьшить или увеличить ту или иную конструкцию, решает  радиолюбитель после выхода на свой балкон с рулеткой (после согласования с последней инстанцией, с мамой или с женой).

 

 

Использование плоской катушки индуктивности с большими зазорами между витками на концах диполя, решается сразу две задачи. Это компенсация электрической длины укороченного вибратора распределённой индуктивностью и ёмкостью, а так же увеличения эффективной площади укороченной антенны Аэфф, расширения ее полосы пропускания  одновременно, как на рис. 7.б.в. Такое решение упрощает конструкцию укороченной антенны и позволяет работать всем рассредоточенным LC – элементам антенны с максимальной отдачей. Здесь отсутствуют нерабочие элементы антенны,  к примеру как ёмкость в магнитных ML-антеннах, и индуктивность в ЕН-антеннах. Следует помнить, что скин-эффект последних требует толстых и высоко-проводимых поверхностей, но рассматривая антенну с катушкой индуктивности Тесла, мы видим, что свёрнутая антенна повторяет электрические параметры обычного полуволнового вибратора.  При этом распределение токов и напряжений по всей его длине полотна антенны подчинены законам линейного диполя и остаются без изменений за некоторым исключением. По этому, необходимость в утолщении  элементов антенны (спираль Тесла) полностью отпадает. Кроме того не расходуется мощность на нагрев элементов антенны. Перечисленные выше факты заставляет задуматься о высокой бюджетности данной конструкции. А простота её изготовления с руки тому, кто хоть раз в жизни  держал в руках молоток и бинтовал свой палец.

 

Такую антенну с некоторым натягом можно назвать индуктивно емкостной, в которой присутствуют LC-элементы излучения или антенной «спираль Тесла». Кроме того, учет ближнего поля (квазистатического) теоретически может дать еще большие значения напряженностей, что подтверждают полевые испытания данной конструкции. ЕН-поле создаётся в теле антенны и соответственно эта антенна менее зависима от качества земли и окружающих предметов, что по сути является находкой для семейства балконных антенн. Не секрет, что такие антенны уже давно существуют в среде радиолюбителей, а в этой публикации подаётся материал по трансформации линейного диполя в  спиральную антенну  с поперечным излучением, далее в укороченную антенну с условным названием «спираль Тесла». Плоскую спираль можно мотать проводом 1,0-1,5мм, т.к. на конце антенны присутствует высокое напряжение, а ток минимален. Провод диаметром 2-3мм, ненамного улучшит КПД антенны, но ощутимо истощит ваш кошелёк.

 

Примечание: Проектирование и изготовление укороченных антенн типа «спиральная» и «спираль Тесла» с электрической длиной λ/2, выгодно отличается от спирали электрической длиной λ/4 ввиду отсутствия хорошей «земли» на балконе.  

 

Питание антенны.

Антенну со спиралями Тесла мы рассматриваем как симметричный полуволновой диполь, свёрнутый в две  параллельные спирали по его концам. Их плоскости параллельны друг другу, хотя могут быть в одной плоскости, рис. 14. Его входное сопротивление лишь немногим отличается от классического варианта, поэтому здесь применимы классические варианты согласования.

 

 

 

Линейная антенна Windom см. Рис.15. относится к вибраторам с несимметричным питанием, она  отличается «неприхотливостью» в части касающейся согласования с трансивером. Уникальность антенны Windom заключается в её применении на нескольких диапазонах и простоте изготовления. Преобразуя данную антенну в «спирали Тесла», в пространстве симметричная антенна будет выглядеть как на рис. 16.а,- с Гамма-согласованием, а несимметричный диполь Windom, рис.16.б. 

 

 

   Решать, какой вариант антенны выбрать для осуществления своих планов по превращению своего балкона в «антенное поле» лучше ознакомившись с этой статьёй до конца.  Конструктив балконных антенн выгодно отличается о полноразмерных тем, что их параметры и прочие комбинации можно производить не выходя на крышу своего дома и не травмировать лишний раз управдома. Кроме того, эта антенна является  практическим пособием для начинающих радиолюбителей, когда можно практически «на коленках» узнать все азы построения элементарных антенн.

 

Сборка антенны

   Исходя из практики, длину провода составляющего полотно антенны лучше взять с небольшим запасом, чуть большим на 5- 10% его расчетной длины, это должен быть изолированный одножильный медный провод для электромонтажа диаметром 1,0-1,5мм. Несущая конструкция будущей антенны собирается (методом пайки) из труб ПВХ отопления. Конечно, ни в коем случае нельзя применять трубы с армированной алюминиевой трубой. Для проведения эксперимента подойдут и сухие деревянные палки, см. Рис.17.

 

 

Российскому радиолюбителю нет необходимости рассказывать пошаговую сборку несущей конструкции, ему достаточно взглянуть на оригинал изделия издалека. Тем не менее, при сборке антенны Windom или симметричного диполя, стоит сначала отметить расчётную точку питания на полотне будущей антенны и закрепить её посреди траверсы, где и будет производиться питание антенны. Естественно, что длина траверсы входит в общий электрический размер будущей антенны и чем она длиннее, тем выше эффективность антенны. 

 

Трансформатор 

Импеданс антенны  симметричного диполя, составит чуть меньше 50 Ом, по этому, схему подключения см. рис.18.а. можно устроить простым включением магнитной защёлки или использовать гамма согласование. 

 

 

 

Сопротивление  свёрнутой антенны «Windom» имеет чуть меньше 300 Ом, по этому можно воспользоваться  данными таблицы 1, которая подкупает своей универсальностью с использованием всего одной магнитной защёлки. 

 

Ферритовый сердечник (защёлку) перед установкой на антенну необходимо протестировать. Для этого вторичную обмотку L2 подключают к передатчику, а первичную L1 к эквиваленту антенны. Проверяют КСВ, нагрев сердечника, а так же потери мощности в трансформаторе. Если при заданной мощности сердечник греется, то кол-во ферритовых защёлок нужно удвоить. Если есть недопустимые потери в мощности, то необходимо подобрать феррит. Отношение потерь по мощности к дБ см. табл.2.

 

 

Как бы не был удобен феррит, я всё же считаю, что для излучаемой радиоволны любой мини-антенны, где сосредоточено огромное ЕН-поле, он является «чёрной дырой». Близкое расположение феррита, уменьшает  эффективность мини-антенны в µ/100 раз, а все попытки сделать антенну как можно эффективнее становятся напрасными. По этому, в мини-антеннах наибольшее предпочтение отдаётся трансформаторам с воздушным сердечником, рис. 18.б. Такой трансформатор, работающий в диапазоне 160-10м, мотается сдвоенным проводом 1,5мм на каркасе диаметром 25 и длиной 140мм, 16 витков с длиной намотки100мм.

     Стоит ещё помнить, что фидер такой антенны испытывает на своей оплётке большую напряжённость излучаемого поля и создает в ней напряжение, отрицательно влияющее на работу трансивера в режиме передачи. Устранить антенный эффект лучше запирающим фидер-дросселем без использования ферритовых колец, см. Рис.19. Это 5-20 витков коаксиального кабеля, намотанных на каркасе диаметром 10 — 20 сантиметров.  

 

 

Такие фидер-дроссели можно устанавливать в непосредственной близости от полотна (тела) антенны, но лучше выйти за предел большой концентрации поля и установить на расстоянии около 1,5-2м от полотна антенны. Не помешает второй такой дроссель, установленный на расстоянии λ/4 от первого.

 

Настройка антенны

 

Настройка антенны приносит огромное удовольствие и более того, такой конструктив рекомендуется использовать для проведения лабораторных работ в профильных колледжах и ВУЗах, не выходя из лаборатории, по теме «Антенны». 

Настройку можно начать  с поиска частоты резонанса и настройки КСВ антенны. Она заключается в перемещении точки питания антенны в ту или другую сторону. Нет  необходимости для и уточнения точки питания передвигать трансформатор или питающий кабель вдоль траверсы и нещадно резать провода. Здесь всё рядом и просто.

 

 

Достаточно на внутренних  концах плоских спиралей с одной и с другой стороны сделать ползунки в виде «крокодильчиков», как показано на рис.20. За ранее предусмотрев несколько увеличить длину спирали с учётом настройки, передвигаем ползунки с разных сторон диполя на одинаковую длину, но в противоположных направлениях, тем самым мы перемещаем точку питания. Результатом настройки будет ожидаемый  КСВ не более 1,1-1,2 на найденной частоте. Реактивные составляющие должны быть минимальны. Конечно, как и любая антенна, она должна находиться на месте, максимально приближенном к условиям места установки.

 

    Вторым этапом будет настройка антенны точно в резонанс, это достигается методом укорочения или удлинения вибраторов с обоих сторон на равные кусочки провода теми же ползунками. Т.е, увеличить частоту настройки можно укорочением обоих витков спирали на одинаковый размер, а уменьшить частоту, напротив, удлинением.  По окончании настройки на будущем месте установки, необходимо все элементы антенны надёжно соединить, изолировать и закрепить.  

 

Усиление антенны, полоса пропускания и угол излучения 

Со слов практикующих радиолюбителей эта антенна имеет более низкий углом излучения около 15 градусов, чем полноразмерный диполь и больше пригоден для DX-связей.  Диполь «спираль Тесла», имеет ослабление -2,5 дБ по отношению к полноразмерному диполю, установленному на такой же высоте от земли (λ/4). Полоса пропускания антенны по уровню -3Дб составляет 120—150кГц!  При горизонтальном размещении, описываемая антенна имеет восьмерочную диаграмму направленности как у полноразмерного полуволнового диполя, а минимумы диаграммы направленности обеспечивают затухание до  – 25 дБ. Улучшить эффективность антенны можно,  как и в классическом варианте, путем увеличения высоты размещения. Но при размещении антенн в одинаковых условиях на высотах λ/8 и ниже, антенна «спираль Тесла» будет эффективнее полуволнового  диполя.

Примечание: Все данные антенны «спираль Тесла» выглядят идеально, но даже если такая компоновка антенны будет хуже диполя на 6дБ, т.е. на один балл по шкале S-метра, то это уже замечательно.

 

Другие конструктивы антенн.   

С диполем на диапазон 40 метров и с другими конструкциями диполей вплоть до диапазона 10м теперь всё понятно, но вернёмся к спиральному вертикалу на диапазон 80м (рис.10.). Здесь предпочтение отдаётся спиральной антенне в полволны, а потому «земля» здесь необходима только номинально.

Питание таких антенн можно осуществлять как на рис.9 посредством суммирующего трансформатора или на рис.10. конденсатором переменной ёмкости. Конечно, во втором случае полоса пропускания антенны будет значительно уже, но у антенны есть возможность перестраиваться по диапазону и всё же согласно авторской информации необходимо хоть какое-то заземление. Наша задача, — находясь на балконе, избавиться от него. Так как питание антенны осуществляется с конца (в «пучности» напряжения), то входное сопротивление укороченной полуволновой спиральной антенны может  составлять около 800-1000 Ом. Эта величина  зависит от высоты вертикальной части антенны, от диаметра  «спирали Тесла» и от расположения антенны относительно окружающих предметов. Для согласования высокого входного сопротивления антенны с низким сопротивлением фидера (50Ом) можно использовать высокочастотный автотрансформатор в виде катушки индуктивности с отводом (рис.21.а), что широко практикуется в полуволновых, вертикально расположенных линейных антеннах на 27МГц фирмами  SIRIO, ENERGY и пр.  

 

 

Данные согласующего автотрансформатора для полуволновой антенны Си-Би диапазона 10-11м:

D = 30мм; L1=2 витка; L2 = 5 витков; d=1,0мм; h=12-13 мм. Расстояние между L1 и L2 = 5мм.  Катушки мотается на одном пластиковом каркасе виток к витку. Кабель подключается центральной жилой к отводу 2 витка. Полотно (конец) полуволнового вибратора подключается к «горячему» выводу катушки L2. Мощность, на которую рассчитан автотрансформатор, до 100 Вт. Возможен подбор отвода катушки.

 

Данные согласующего автотрансформатора для полуволновой антенны типа спираль диапазона 40м: 

D = 32мм; L1=4,6мкГн; h=20 мм; d=1,5мм; n=12 витков. L2=7,5мкГн; ; h=27 мм; d=1,5мм; n=17 витков. Катушка мотается на одном пластиковом каркасе. Кабель подключается центральной жилой к отводу. Полотно антенны (конец спирали) подключается к «горячему» выводу катушки L2. Мощность, на которую рассчитан автотрансформатор, 150 -200Вт. Возможен подбор отвода катушки.

 

Размеры антенны «спираль Тесла» диапазона 40м: общая длина провода 21м, траверса высотой 0,9-1,5м диаметром 31мм, на радиально установленных спицах по 0,45м. Наружный диаметр спирали составит 0,9м

 

Данные согласующего автотрансформатора для антенны типа спираль диапазона 80м: D = 32мм; L1=10,8мкГн; h=37 мм; d=1,5мм; n=22 витков. L2=17,6мкГн; ; h=58 мм; d=1,5мм; n=34 витков. Катушка мотается на одном пластиковом каркасе. Кабель подключается центральной жилой к отводу. Полотно антенны (конец спирали) подключается к «горячему» выводу катушки L2. Возможен подбор отвода катушки.

 

Размеры антенны «спираль Тесла» диапазона 80м: общая длина провода 43м, траверса высотой 1,3-1,5м диаметром 31мм, на радиально установленных спицах по 0,6м. Наружный диаметр спирали составит 1,2м

 

Согласование с полуволновым спиральным диполем при питании его с конца, можно осуществлять не только посредством автотрансформатора, но и по Фуксу, параллельным колебательным контуром, см. Рис.5.а.

Примечание:
  • При питании полуволновой антенны с одного конца, настройку в резонанс можно производить с любого конца антенны.
  • При отсутствии хоть какого-то заземления, на фидер необходимо установить запирающий фидер-дроссель. 

Вариант вертикальной направленной антенны

Имея пару антенн  «спираль Тесла» и некоторую территорию для их размещения, можно создать  антенну направленного действия. Напомню, что все операции с этой антенной полностью идентичны с антеннами линейных размеров, а необходимость свёртывания их обусловлена не модой на мини-антенны, а на отсутствие мест размещения линейных антенн. Использование двухэлементных направленных антенн с расстоянием между ними 0,09-0,1λ позволяет спроектировать и построить антенну «спираль Тесла» направленного действия.

 

Данная идея взята из  «KB ЖУРНАЛ» N 6 за 1998г. Эта антенна отлично описана  Владимиром Поляковым   (RA3AAE), которую можно найти на просторах Интернет. Суть антенны заключается в том, что две вертикальные антенны, расположенные на расстоянии 0,09λ питаются противофазно одним фидером (одна оплёткой, другая центральной жилой). Питание производится по типу той же антенны Windom, только с однопроводным питанием, рис.22.. Сдвиг фаз между противоположными антеннами создаётся их настройкой ниже и выше по частоте, как в классических направленных антеннах Яги. А согласование с фидером осуществляется простым перемещения точки питания вдоль полотна обоих антенн, уходя от нулевой точки питания (середины вибратора). При передвижении точки питания от середины на некоторое расстояние Х, можно добиться сопротивления от 0 до 600 Ом  как в антенне Windom. Нам же понадобится сопротивление всего около 25 Ом, поэтому смещение точки питания от середины вибраторов будет очень незначительным.

 

 

 

Электрическая схема предлагаемой антенны с ориентировочными размерами, приведенными в длинах волн, показана на рис.22. А практическая настройка антенны «спираль Тесла» на нужное сопротивление нагрузки вполне выполнима по технологии рис.20. Питание антенны производится в точках ХХ непосредственно фидером с волновым сопротивлением 50 Ом, а его оплётку необходимо изолировать запирающим фидер-дросселем см. Рис.19.   

 

Вариант вертикальной направленной спиральной антенны на 30м по RA3AAE 

Если по каким-то причинам радиолюбителя не устраивает вариант антенны «спираль Тесла», то вполне осуществим вариант антенны со спиральными излучателями, рис.23. Приведём её расчёт.  

 

Используем длину провода спирали полволны:

λ=300/МГц =З00/10,1; λ /2                                -29,7/2=14,85. Примем 15м

Рассчитаем шаг на мотки на трубе диаметром 7,5см, длиной намотки спирали =135см:

Длина окружности L=D*π =                               -7,5см*3,14=23,55см.=0,2355м;

кол-во витков полуволнового диполя                 -15м/ 0,2355=63,69= 64 витка;

шаг намотки на рубе длиной 135см.              — 135см./64=2,1см.. 

Ответ: на трубе диаметром 75мм наматываем 15 метров медного провода диаметром 1-1,5мм в количестве 64 витка с шаг намотки =2см.

Расстояние между одинаковыми вибраторами составит 30*0,1=3м.

Примечание: расчёты антенны велись с округлением на возможность укорачивания провода намотки  во время настройки.

 

 

Для увеличения тока смещения и удобства настройки, по концам вибраторов необходимо сделать небольшие регулируемые емкостные нагрузки, а на фидер, в месте подключения необходимо одеть запирающий –фидер-дроссель. Смещённые точки питания соответствуют размерам на рис. 22. Следует помнить, что однонаправленность в данной конструкции достигается сдвигом фаз между противоположными спиралями за счёт настройки их с разностью на 5-8% по частоте, как в классических направленных антеннах Уда-Яги.

 

Свёрнутая «Базука»

Как известно, шумовая обстановка в любом городе оставляет желать лучшего. Это касается и частотного радиоспектра ввиду татального использования импульсных преобразователей питания  бытовой техники. По этому мной была принята попытка использовать в антенне «спираль Тесла» хорошо зарекомендовавшую себя в этом отношении антенну типа «Базука». В принципе это тот же полуволновый вибратор с замкунтой системой, как и все петлевые антенны. Разместить её на траверсе представленную выше не составило особого труда. Эксперимент проводился на частоте 10,1МГц. В качестве полотна антенны использовался телевизионный кабель диаметром 7мм. (рис.24). Главное, что бы оплётка кабеля была не алюминиевая как его оболочка, а медная. 

 

 

На этом «прокалываются» даже опытные радиолюбители, принимая при покупке оплётку кабеля серого цвета за лужёную медь. Поскольку здесь идёт речь QRP – антенне для балкона, а подводимые мощности до 100 Вт, то такой кабель будет вполне пригоден. Коэффициент укороения такого кабеля с вспененным полиэтиленом сосотавляет около 0,82. По этому длина L1  (рис.25.) для частоты 10,1МГц. Составила по 7.42см, а длина удлиняющих проводников L2 с данной компоновке антенны составила по 1,83см. Входное сопротивление свёрнутой«Базуки» после монтажа на открытой местности составило около 22-25 Ом и ни чем не регулируется. По этому здесь потребовался трансформатор 1:2. В пробном варианте он был сделан на ферритовой защёлке простыми проводами от звуковых колонок с соотношением витков по табл.1. Другой вариант трансформатора 1:2 изображён на рис. 26.

 

 

Апериодическая широкополосная антенна «Базука»

Ни один радиолюбитель, имеющий в своём распоряжении даже антенное поле на кровле своего дома или во дворе котеджа, не откажется от обзорной широкополосной антенны на основе фидера свёрнутого в спираль Тесла. Классический вариант апериодической антенны с нагрузочным резистором известен многим, здесь антенна «Базука» выполняет роль широкополосного вибратора, а её полоса пропускания как и в классических вариантах имеет большое перекрытие в сторону высших частот.

 

 

Схема антенны изображена на рис. 27, а мощность резистора составляет около 30% от подводимой мощности к антенне. Если антенна используется только как приёмная, вполне достаточно мощности резистора 0,125Вт. Стоит отметить, что антенна «спираль Тесла», установленная горизонтально имеет восьмерочную диаграмму направленности и способна для проведения пространственной селекции радиосигналов. Установленная вертикально, она имеет круговую диаграмму направленности. 

 

4. Магнитные антенны. 

    Вторым, не менее популярным типом антенн выступает индуктивный излучатель с укороченными размерами, это магнитная рамка. Магнитная рамка была открыта в 1916 году К. Брауном и использовалась до 1942 года, как приемная в радиоприемниках и радиопеленгаторах. Это тоже открытый колебательный контур с периметром рамки менее ≤ 0,25 длины волны, ее называют “magnetic loop” (магнитная петля), а сокращённое название приобрело аббревиатуру — ML . Активным элементом magnetic loop является индуктивность. В 1942 году, радиолюбитель с позывным радиосигнала W9LZX впервые использовал подобную антенну на вещательной миссионерской станции HCJB, расположенной в горах Эквадора. Благодаря этому магнитная антенна сразу завоевала радиолюбительский мир и с тех пор широко используется в любительской и профессиональной связи. Магнитные рамочные антенны являются одним из интереснейших типов малогабаритных антенн, которые удобно располагать как на балконах, так и на подоконниках.

 

Она имеет вид петли из проводника, которая подключена к конденсатору переменной емкости для достижения резонанса, где петля является излучающей индуктивностью колебательного LC-контура. Излучателем здесь является только индуктивность в виде петли. Размеры такой антенны очень малы, а периметр рамки  составляет как правило 0,03- 0,25 λ.  Максимальное КПД magnetic loop может достигать 90% относительно диполя Герца, см. рис.29.а. Емкость С в этой антенне не участвует в процессе излучения и несет в себе чисто резонансный характер как в любом колебательном контуре, рис. 29.б..

 

 

КПД антенны сильно зависит от активного сопротивления полотна антенны,  от ее размеров, от размещения в пространстве, но в большей мере от материалов, используемых для конструкции антенны. Полоса пропускания рамочной антенны обычно составляет от единиц до десятков килогерц, что связано с высокой добротностью образованного LC-контура. По этому, эффективность ML-антенны в сильной степени зависит от её добротности, чем выше добротность, тем выше ее эффективность. Такую антенну применяют и в качестве передающей. При малых размерах рамки амплитуда и фаза тока, протекающего в рамке, практически постоянны по всему периметру. Максимум интенсивности излучения соответствует плоскости рамки. В перпендикулярной плоскости рамки, диаграмма направленности имеет острый минимум, а общая диаграмма рамочной антенны имеет форму «восьмёрки».

 

Напряжённость электрического поля Е электромагнитной волны (В/м) на расстоянии d  от передающей рамочной антенны, вычисляется по формуле:

 

 

ЭДС E, индуктируемая в приёмной рамочной антенне, вычисляется по формуле:

 

 

Восьмерочная диаграмма направленности рамки позволяет использовать ее минимумы диаграммы с целью отстройки её в пространстве от близко расположенных помех или нежелательного излучения в определенном направлении в ближних зонах до 100 км.    

 

При изготовлении антенны, требуется соблюдение соотношений диаметров излучающего кольца и витка связи D/d как 5/1. Виток связи изготавливается из коаксиального кабеля, находится в непосредственной близости от излучающего кольца в противоположной стороне от конденсатора, и выглядит как на рис.30.

 

 

Поскольку в излучающей рамке протекает большой ток, достигающий десятки ампер, рамка в диапазонах частот 1,8-30 МГц изготавливается из медной трубки диаметром порядка 40-20 мм, а конденсатор настройки в резонанс не должен иметь трущихся контактов. Его пробивное напряжение должно составлять не менее 10 кВ при подводимой мощности до 100 Вт. Диаметр излучающего элемента зависит от диапазона используемых частот и рассчитывается от длины волны высокочастотной части диапазона, где периметр рамки Р = 0,25λ, считая от верхней частоты.

 

Пожалуй одним из первых после W9LZX , германский коротковолновик DP9IV с антенной ML установленной на окне, при мощности передатчика всего 5 Вт, в диапазоне 14 МГц провел QSO с многими странами Европы, а при мощности 50 Вт — и с другими континентами. Именно эта антенна стала отправной точкой для проведения экспериментов российских радиолюбителей, см. Рис.31.

 

 

 

Желание создать экспериментальную компактную комнатную антенну, которую так же смело можно называть ЕН-антенной, при плотном сотрудничестве с Александром Грачёвым (UA6AGW), Сергей Тетюхин (R3PIN) сконструировал следующий шедевр, см. Рис.32.

Именно такой, невысоко бюджетный конструктив комнатного варианта ЕН-антенны может порадовать радиолюбителя-новосёла или дачника. Схема антенны включает в себя, как магнитный излучатель L1;L2, так и емкостной в виде телескопических «усов».

 

 

Особого внимания в этой конструкции (R3PIN) заслуживает резонансная система согласования фидера с антенной Lсв; С1, которая ещё раз увеличивает добротность всей антенной системы и позволяет несколько поднять усиление антенны в целом. В качестве первичного контура совместно с «усами» как в конструкции Якова Моисеевича, здесь выступает оплётка кабеля полотна антенны. Длиной этих «усов» и положением их в пространстве, легко добиться резонанса и наиболее эффективной работы антенны

Конструкции радиоантенн для приема радиовещательных станций

Находясь вдали от передающих антенн радиовещательных станций, для увеличения дальнобойности приемника и улучшения приема, как правило, подключают к радиоприемникам наружную антенну, а иногда и заземление. Выбор типа антенны зависит от конкретных условий приема в данной местности. Установить антенну на открытой местности, на даче или в деревне не очень сложно. Сложнее это сделать в больших жилых домах, где нет места для проводки антенны. В любом случае, антенна должна быть как можно длиннее (минимум 5…Ю м). Ее надо вертикально или, в крайнем случае, наискось подвесить на открытом пространстве. Провод антенны должен находиться как можно дальше от стен здания, деревьев, столбов, проводов и т.д. От правильности сделанной антенны зависит качество и сила звука радиоприемника. Если в приемник от антенны будет приходить мало энергии, то он будет работать неудовлетворительно.

Форм антенн существует очень много, но наиболее распространенными, благодаря своей простоте, являются так называемые Г-образные и Т-образные. В зависимости от того, в каком месте антенны делается снижение провода, который соединяет горизонтальную часть антенны с приемником, антенна и получает свое название. Если антенна имеет снижение в начале горизонтальной части, напоминая своим видом букву «Г», то ее называют Г-образной (рис. 26.1). Если снижение сделано в ее средней части, то антенна — Т-образная. Г-образная антенна чаще применяется в сельской местности, где нет сильных помех радиоприему (рис. 26.1).

Рис. 26.1. Конструкция Г-образной радиоантенны

Эта антенна хорошо работает с детекторным приемником. Т-образная антенна по качеству приема не уступает Г-образной. Она хорошо работает с детекторным приемником, если ее высота и длина такие как у Г-образной антенны. Горизонтальная часть антенны обычно делается из специального бронзового канатика, если его нет, то можно использовать любой провод диаметром 1,5…4 мм. Материал провода особого значения не имеет. Можно применить даже стальной провод, желательно, чтобы он был оцинкованный. Если провод имеет шелковую изоляцию или ей подобную, ее необходимо снять, так как она во время дождя намокнет и утяжелит антенну, что может привести к ее обрыву.

Горизонтальную часть антенны располагают на высоте не менее 2…3 метров от земли или крыши дома. Необходимо заметить, что при приеме на внешнюю антенну большое значение имеет высота антенны над землей. Чем выше будет подвешена антенна, тем лучше будет работать приемник. У Г-образной антенны горизонтальная и вертикальная (снижение) части должны быть выполнены из одного куска провода или канатика. В то время как у Т-образной антенны снижение обязательно припаивают. Горизонтальная часть антенны составляет обычно 15…20 м, в условиях сельской местности ее увеличивают до 40 м. Практически между антенной длинной 10 м и 30 м нет никакой разницы в силе принятых сигналов. Значительно более короткая антенна проигрывает в коэффициенте полезного действия. Более длинная антенна не примет больше станций, а лишь примет больше местных помех, т.е. помех, возникающих в районе от работы электрических установок.

Горизонтальная часть антенны крепится на цепочке изоляторов. В цепочке должно быть не менее 2 изоляторов, обычно устанавливают по 3 изолятора с каждой стороны антенны. Делается это с целью избежать токов утечки между антенной и мачтами крепления. Изоляторы используют различного типа промышленного изготовления, обычно орешковые. Если нет орешковых роликов, то можно использовать обычные фарфоровые, которые используются для открытой комнатной электропроводки. В крайнем случае, можно изготовить антенные изоляторы из прямоугольных кусочков текстолита, гетинакса или дерева, размером 300×100 мм. Дерево должно быть твердой породы: дуб, бук или береза. После вырезки дощечек их необходимо проварить в парафине в течение 1 часа и только потом использовать как изоляторы.

Установка внешней антенны

Установку внешней антенны обычно начинают с выбора места. Антенна должна располагаться подальше (порядка 10 м) от высоковольтных линий электропередач, радиотрансляционных линий и других антенн. Один конец антенного провода крепится к цепочке изоляторов, которая, в свою очередь, прикрепляется стальной проволокой к деревянному шесту или высокому дереву. Другой конец антенны, который будет подключаться к приемнику в случае Г-образной антенны укрепляют на крыше дома аналогично первому. У Т-образной антенны конец закрепляют, предварительно припаяв снижение антенны в ее средней части.

Место пайки необходимо обязательно защитить от воздействия внешней среды и покрыть влагозащитной краской или липкой изоляцией. С целью предотвращения обрыва горизонтального провода антенны при сильном ветре желательно один из ее концов крепить с помощью блока и груза. Подбирая массу груза, можно регулировать натяжение провода антенны. Если деревья, к которым крепится антенна, не очень высокие и необходимо увеличить высоту подвеса антенны, то на вершинах деревьев крепят деревянные шесты.

Снижение антенны вводят в помещение через предварительно сделанное отверстие в стене или оконной раме. В отверстие желательно вставить фарфоровую или резиновую трубку и уже через них вводить снижение антенны. Снижение подводится вертикально таким образом, чтобы оно не касалось стен и крыши. Провод снижения должен проходить на расстоянии 30 см от стены дома, чем дальше, тем лучше. С этой целью его прикрепляют к изолятору, находящемуся на специальной стойке, укрепленной на крыше.

В больших городах, где много различных промышленных помех, иногда устанавливают самую простую внешнюю антенну, вертикальную или штырьевую. Эта антенна подобна снижению антенны. Сделать такую антенну гораздо проще, чем вышеупомянутые. Вертикальная антенна дает меньшее напряжение сигнала, нежели Г- и Т-образные антенны и имеет коэффициент полезного действия до 75%. Такую антенну применяют только для ламповых и транзисторных приемников, у которых есть запас чувствительности. Детекторный приемник работает с такой антенной удовлетворительно в том случае, если она поднята на высоту более 20 метров. Конструктивно вертикальная антенна представляет собой металлический штырь длиной 2…6 м, закрепленный на изоляторе, установленном на высоком шесте. Иногда свободный конец штыря расщепляют на три части. Другой вариант конструктивного исполнения такой антенны представляет шест, к вершине которого крепится провод антенны через два изолятора. Вертикальная антенна работает лучше всего, если она настроена таким образом, что имеет длину /, равную / = 1/4, где / — длина рабочей волны.

Известные типы антенн, метелки, ежи и т.д. по существу являются штырьевыми антеннами и своими формами и усложнениями не увеличивают коэффициент полезного действия. Штырьевую антенну желательно устанавливать как можно выше над землей. Нужно помнить, что железная крыша или заземленная труба представляют собой землю. Исходя из этого, установка антенны на пятиэтажном или семиэтажном доме мало скажется на коэффициенте полезного действия антенны.

Заземление

Кроме самой антенны и снижения, составной частью каждогс радиоприемника является заземление, которое как бы есть вторыіѵ полюсом антенного устройства. Надежное заземление особенно необходимо для радиоприемников с невысокой чувствительностью, например, детекторных. Заземление, к тому же защищает радиоприемник от ударов молнии в антенну. Заземление представляет собой закопанный в землю металлический лист с припаянным к нему проводником, который включается в гнездо «Земля» радиоприемника. Главным для заземления является то, чтобы земля, в которую закопан лист, была достаточно влажной, то есть была хорошим проводником. На даче или в сельской местности заземление можно сделать таким образом (рис. 26.2). Взять ненужный металлический предмет, например, оцинкованное ведро, корыто и т. д.

 

Рис. 26.2. Варианты устройства заземления

Главное, чтобьгон не был покрыт краской. К металлическому предмету припаивают железный или медный провод диаметром 3…4 мм и место пайки покрывают масляной краской. Выкопав яму глубиной 1…1,5 м, кладут в нее сделанную деталь, закапывают и плотно утрамбовывают землю. Для повышения качества заземления, в яму насыпают слой древесного угля. Древесный уголь легко втягивает воду и долго удерживает влажность, увеличивая тем самым электропроводность. Время от времени при сухой погоде необходимо поливать водой или еще лучше раствором поваренной соли (стакан соли на ведро воды) место расположения заземления. Если же поблизости есть колодец, то его можно использовать для установки заземления. Для этого на его дно опускают оцинкованный лист железа или оцинкованное ведро, с припаянным толстым медным проводом диаметром 1,5.ью предотвращения отравления воды.

Сделать качественное заземление в сельской местности как видим не проблема, в то время как в городе это не всегда удается. Чаще всего приходится мириться с несовершенством сделанного заземления. В городе лучше использовать в качестве заземления водопроводные трубы. Место на водопроводной трубе тщательно очищается от краски и ржавчины. Лучше поверхность зачистить до блеска, так как плохой контакт является источником помех. На подготовленное место крепят с помощью винта и гайки металлическую скобу, к которой и припаивают заземление. Для заземления можно использовать и трубы центрального отопления, но качество его в этом случае будет ниже. Нужно ПОМНИТЬ, что использовать в качестве заземления газовые трубы и телефонные кабели строго запрещается.

Рис. 26.3. Конструкция грозового переключателя

Заведенные в помещение снижение антенны и провод заземления подсоединяют к грозовому переключателю (рис. 26.3). Переключатель необходим для отключения антенны от приемника и переключения ее на заземление при приближении грозы, а также после окончания радиоприема. Лучше всего держать антенну заземленной и подключать ее только при радиоприеме. Заземленная антенна представляет собой хороший молниеотвод. Следуя этому правилу, вы полностью обезопасите себя при пользовании радиоприемником. Если не удастся достать готовый грозовой переключатель, то его можно сделать самому. Для этого вырезают металлические полоски шириной 10 мм и делают из них 6 уголков с отверстиями диаметром 3 мм для крепления. Далее вырезают из металла две одинаковые пластинки размером 20×200 мм с зубцами. Нож переключателя представляет собой прямоугольную пластину 10×90 мм из листовой латуни толщиной 1 мм. На одном конце ножа закрепляют деревянную или пластмассовую ручку, а на другом — отверстие диаметром 3 мм. Собирают переключатель на панели размером 160×40 мм из дерева или пластмассы.

Только теперь, когда антенна, заземление и грозовой переключатель готовы, можно пользоваться внешней антенной для приема радиопередач промышленным или самодельным радиоприемником.

Литература: В.М. Пестриков. Энциклопедия радиолюбителя.

Мастер Винтик. Всё своими руками!Малогабаритная антенна для FM диапазона своими руками

Добавил: Chip,Дата: 23 Мар 2018

Укороченная антенна на 88-108МГц.

При сборке радиомикрофона, передатчика или приёмника на диапазон УКВ в качестве антенны удобнее использовать не обычный кусок провода, а антенну, предложенную в этой статье.  Она меньше по размерам и эффективнее обычной.

Для изготовления антенны нам понадобится:
  • коаксиальный кабель или высоковольтный провод;
  • термоусадочная трубка;
  • обмоточный провод типа ПЭВ-2 0,2-0,5 мм;
  • штангиль-циркуль;
  • линейка;
  • клей для пластика;
  • и желание доделать все до конца 🙂

Описание изготовления антенны

Шаг 1. Берем любой высокочастотный коаксиальный кабель, на фото РК75.

Шаг 2. Снимаем оплетку и наружнюю изоляцию. Можно использовать высоковольтные провода от высоковольтных трансформаторов, используемых в ЭЛТ-телевизорах и мониторах. Они по жестче и хорошо подходят для антенн приемников, для радиомикрофонов советую выбрать провод по мягче .

Шаг 3. Также нарежем наш коаксиальный или высоковольтный провод кусок 72мм и кусок 74мм. С точностью +/- 1мм и любой отрезок пластика диаметром 3,6мм и длинной 18 мм +/-1мм

Шаг 4. Припаиваем к кабелю кусок провода, из которого будет, потом намотана катушка из любого подходящего отрезка пластика диаметром 3,6мм и наматываем 45витков провода. В данной конструкции был использован кусок внутренней изоляции длинной 18мм. Можно пересчитать катушку под другой диаметр. Соблюдая два условия длинна катушки 18мм, а индуктивность 1.3-1.4мкГн

Шаг 5. Теперь аккуратно наматываем расчетные витки. У меня вышло 45 витков при диаметре 3,6мм.

Шаг 6 . Катушка намотана, с ее торцов видны зазоры в них мы зальем клей для укрепления конструкции, мне из клеев очень нравится «Бизон» но можно применить другие способные клеить целлофан.

Шаг 7. Одеваем термоусадочную трубку.

Трубку можно нагреть любым удобным способом лучшие результаты получаются на закрытом огне. Я «усаживаю» строительным феном до его появления просто нагревал над газовой плитой.

Это готовый вариант антенны он гибкий и надежный! «Веселенький» цвет связан с отсутствием под рукой трубки нужного диаметра. Я сделал две антенны на вторую одену сверху черную трубку так будет менее заметной и значит более пригодной для радио жучка.

Тут вы видите антенны разных конструкций. Две антенны свежее изготовленные «веселенькая» (желтая с зеленым) и черная. Кусок провода около 35 см. Антенна заводская и телескопическая в 40 см длинной.

Не могу выразить в точных цифрах, но эффективность этой антенны выше, чем у всех лежащих антенн, кроме «заводской» — с ней она на ровне.

Выбор за Вами!

Автор: Werewolf (сайт:vrtp.ru)



ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ



П О П У Л Я Р Н О Е:

  • Переделка радиостанции ЭСТАКАДА
  • Радиостанция «Эстакада» (18Р22С) или «Маяк» (16Р22В) ещё используется некоторыми радиолюбителями. Она отличается высокой надежностью и хорошими техническими характеристиками. Радиостанции работают в диапазоне от 162МГц до 168МГц. Радиолюбителям же выделен диапазон в районе 145МГц. Поэтому радиостанцию нужно перестроить в данный радиолюбительский диапазон частот.

    Подробнее…

  • Настройка радиостанции «Транспорт» РН-12Б,РН-14Б.
  • Целью настройки радиостанции является улучшение основных технических характеристик радиостанции:

    • улучшение качества звучания принимаемой и передаваемой информации;
    • увеличение дальности связи;
    • снижение энергопотребления. Подробнее…
  • Простая телевизионная антенна своими руками
  • Телевизионная антенна «баночного типа»

    Простую телевизионную антенну можно сделать всего за несколько минут из доступных предметов.

    Нам потребуются: обычный экранированный телевизионный кабель (волновое сопротивление 75 Ом), две пустые металлические банки от газировки (с сохраненными ушками) и ве­шалка-плечики. Подробнее…


Популярность: 10 292 просм.

Как сделать антенну для радио FM своими руками дома ?

Несмотря на широкое распространение телевидения и интернета, прослушивание радиостанций не теряет популярности. Но часто качество приема радиостанций оставляет желать лучшего. Для того чтобы это исправить, необходимо разобраться, что влияет на качество приема, и как улучшить ситуацию?

Антенна для приема радио своими руками

Немного теории

Для нормальной работы любого радиоприемного устройства: телевизора, сотового телефона, радиоприемника, необходимо обеспечить на его входе минимальный уровень сигнала, превышающий определенный порог.

Этот порог называется чувствительностью. Если уровень сигнала выше порога чувствительности, то устройство работает нормально, в ином случае прием пропадает полностью или резко ухудшается его качество.

Такие условия могут возникать не только из-за удаленности от радиостанции, но и в условиях города. Чаще всего они бывают в радиоприемниках на диапазонах УКВ и FM, это связано с особенностями распространения этого сигнала.

Частота этих сигналов 66-108 мГц. Радиоволны этого диапазона распространяются в пределах прямой видимости и очень плохо огибают возвышенности рельефа местности, а в городе – высокие здания.

Расстояние прямой видимости можно вычислить по следующей формуле, км:

r = 3,57 (√h2 + √h3), где

r – расстояние прямой видимости;

h2 – высота передающей антенны;

h3 – высота приемной антенны.

Типы антенн

Назначение приемных антенн состоит в том, чтобы принять сигнал, усилить его и передать на вход приемника. В зависимости от диапазона антенны имеют различную конструкцию и габариты.

Типов антенн существует несколько десятков, некоторые из них представляют собой сложнейшие инженерные сооружения, весом сотни тонн и размерами тысячи квадратных метров.

В простейшем случае приемной антенной может быть проводник, подвешенный на изоляторах над землей. Электромагнитные волны, пересекая его, наводят в нем, согласно законам физики, переменное напряжение высокой частоты и по фидеру перед

Немного об антеннах для радиоприемников

Радиоэлектроника, схемы, статьи и программы для радиолюбителей.
  • Схемы
    • Аудио аппаратура
      • Схемы транзисторных УНЧ
      • Схемы интегральных УНЧ
      • Схемы ламповых УНЧ
      • Предусилители
      • Регуляторы тембра и эквалайзеры
      • Коммутация и индикация
      • Эффекты и приставки
      • Акустические системы
    • Спецтехника
      • Радиомикрофоны и жучки
      • Обработка голоса
      • Защита информации
    • Связь и телефония
      • Радиоприёмники
      • Радиопередатчики
      • Радиостанции и трансиверы
      • Аппаратура радиоуправления
      • Антенны
      • Телефония
    • Источники питания
      • Блоки питания и ЗУ
      • Стабилизаторы и преобразователи
      • Защита и бесперебойное питание
    • Автоматика и микроконтроллеры
      • На микроконтроллерах
      • Управление и контроль
      • Схемы роботов
    • Для начинающих
      • Эксперименты
      • Простые схемки
    • Фабричная техника
      • Усилители мощности
      • Предварительные усилители
      • Музыкальные центры
      • Акустические системы
      • Пусковые и зарядные устройства
      • Измерительные приборы
      • Компьютеры и периферия
      • Аппаратура для связи
    • Измерение и индикация
    • Бытовая электроника
    • Автомобилисту
    • Охранные устройства
    • Компьютерная техника
    • Медицинская техника
    • Металлоискатели
    • Оборудование для сварки
    • Узлы радиаппаратуры
    • Разные схемы
  • Статьи
    • Справочная информация
    • Аудиотехника

Как выбрать радиоприемник (2019) | Радиоприёмники | Блог

Современный рынок электроники предлагает десятки различных моделей радиоприемников. Как выбрать подходящий, какими критериями руководствоваться при оценке технических характеристик прибора, если вы мало в этом разбираетесь? Подобные и другие вопросы лучше решить еще до похода в магазин.

Виды радиоприемников

Привычные с детства «транзисторы», которые в прошлом веке занимали свое законное место в каждом доме, и в наше время не сдают своих позиций. Сегодня производители оснащают радиовещательные приборы различными дополнениями, что делает их незаменимыми во многих бытовых ситуациях, особенно во время загородных поездок. Большую часть современных радиоприемников невозможно сравнить с обычным встроенным FM-тюнером мобильного устройства, они намного сложнее и функциональнее.

Радиоприемник — это прибор, способный избирательно принимать радиоволны и воспроизводить модулированный звуковой сигнал. Но в настоящее время появились аппараты, принимающие радиовещание не в реальном эфире, а в интернете. Их назвали — интернет-радиоприемники.

Все радиоприемники можно разделить на группы по разным параметрам. Самый простой — размер, вес или исполнение прибора.

1. Стационарные — это габаритные приборы, которые оснащены устойчивым корпусом и возможностью зарядки от сети 220 В. Они предназначены для получения громкого и качественного звучания, но имеют вес от 1000 гр. и более, поэтому их переноска на большие расстояния не слишком удобна.

2. Портативные, которые в свою очередь делятся на переносные и карманные приемники, само собой, предназначены для транспортировки. Такие устройства обязательно имеют автономный источник питания, легкий вес и небольшие габариты. Чаще всего, они воспроизводят звук в режиме моно, а многие могут «ловить» радиостанции только с помощью FM-модуляции. Несмотря на это, портативный гаджет — отличный помощник в поездках. Хорошо если прибор может хорошо держать заряд батареи или аккумулятора.

Диапазон радиоволн и виды модуляции приемника

Существуют два вида модуляции — два способа, с помощью которых звук накладывается на радиоволну. Это — амплитудная (АМ) и частотная (FM). Так как в обоих случаях получение и преобразование звуковой волны происходит только в определенном волновом диапазоне, в не технических текстах понятие модуляции для удобства объединяют с диапазоном радиовещания.

FM используется только на ультракоротком диапазоне, и звучание в нем всегда наиболее качественное. Большинство производителей ставит обозначение частоты от 87,5 до 108 МГц, но иногда вы можете встретить другие цифры — от 65,8 МГц, это означает, что приемник хорошо принимает отечественные радиостанции на УКВ. В FM-диапазоне вещают большинство лучших музыкальных радиостанций, поэтому городским меломанам вполне достаточно будет устройства с возможностью принимать передачи в ультракоротком волновом диапазоне.

АМ охватывает остальные три диапазона — ДВ, СВ и КВ. Такой приемник способен улавливать дальние вещательные станции, но в условиях городских помех качество звука не всегда сможет удовлетворить взыскательный слух. Но далеко от городов и передающих антенн, лучше иметь приемник с возможностью принимать волны диапазона АМ. В дальних поездках, турпоходах, во время проживания в загородном доме радио, принимающее только УКВ (FM) диапазон волн, может отказаться работать.

Технические особенности радиоприемников

Цифровые и аналоговые

По способу преобразования и обработки радиосигнала все радиоприемники делятся на цифровые и аналоговые.

Производители часто не указывают, какой именно способ преобразования и усиления сигнала используется в приборе, но вы с легкостью сможете это определить самостоятельно. Если на приборной панели находится обычное колесо для настройки частоты, то это аналоговый приемник. Здесь поиск радиостанции происходит вручную, путем подбора.

Автоматический поиск осуществляется только цифровыми устройствами. Это дает стабильность частоты и многие другие плюсы. Например, возможность сохранения радиостанций. Удобство данной функции очевидно. Во-первых, вы не занимаетесь детальным поиском нужного канала — достаточно просто нажать кнопку или клавишу цифровой клавиатуры, и прибор сам зафиксирует все возможные частоты для прослушивания. Во-вторых, приемник сохранит список найденного, и в следующий раз вам достаточно будет только нажать на кнопку, чтобы началось вещание. Количество предустановок FM-радиостанций может быть от 5 до 50. Чем большее число предустановок доступно вашему аппарату, тем проще прослушивание любимых передач.

Автопоиск радиостанций имеет и свои минусы. Большинство цифровых тюнеров не фиксирует частоты с сильными помехами. Поэтому, если вы радиолюбитель, то ручной поиск будет предпочтительней.

Избирательность и чувствительность

Хорошие производители обязательно укажут в руководстве к приемнику эти два показателя. Они взаимосвязаны и рассматривать их отдельно неправильно. Избирательность или селективность помогает отделить одну частоту от другой. Если в приемнике эта функция представлена слабо, то вы можете получить накладку и слышать два канала одновременно. Причем самый мощный будет забивать слабый. За избирательность отвечают встроенные полосные фильтры, которые бывают: керамическими, кварцевыми, электромеханическими или цифровыми. В обычных бытовых радиоприемниках используются в основном керамические дешевые фильтры.

Чувствительность приемника не является ни хорошим, ни плохим показателем. Дело в том, что приборы с низкой чувствительностью приема могут быть «глухими», но слишком чувствительные без хорошего селективного фильтра будут осуществлять накладку одной радиостанции на другую, что приводит к неизбежной перегрузке радиоприемника. В более дорогих моделях присутствует переключатель Local/DX, снижающий чувствительность прибора, или плавный регулятор высоких частот.

Дисплей и шкала настройки

Жидкокристаллический дисплей есть не в каждой модели, но его присутствие облегчает работу. На нем высвечиваются не только цифры, обозначающие канал вещания, но и многие другие данные. Например, система RDS помогает передать на дисплей различную текстовую информацию, которую передает в цифровом виде радиостанция вещания вместе со звуком. Это и обозначение самой радиостанции, номер и название композиции, текущее время, погода и многое другое.

Если говорить о шкале настройки, то она бывает цифровой или линейной (аналоговой). Уже из названия понятно, что цифровая присутствует в соответствующих моделях и осуществляет отображение цифр. Она более точная и надежная, чем шкала с передвигающейся вдоль нее чувствительной нитью (тросиком).

Выходная мощность

Этот показатель в радиоприемниках отвечает за громкость звучания. Он существенно различается от модели к модели и может составлять от нескольких сотен миллиВатт в карманных до нескольких десятков Ватт в стационарных приборах. Обычный портативный приемник имеет выходную мощность от 1 до нескольких Ватт.

Максимальную мощность звучания воспроизводит один или два динамика. В этом случае приемник обеспечивает формат аудио моно или стерео.

Тип питания

Радиоприемники имеют один или несколько источников питания. Работа от сети 220 В характерна в основном для стационарных приборов. Таким устройствам не страшна разрядка батарей, но вот переноске они не подлежат.

Питание от собственного встроенного аккумулятора дает прибору автономность. Ему не требуется постоянное подключение к сети, а элемент питания уже входит в комплект поставки. Недостатком аккумулятора является необходимость зарядки от той же электрической сети в течение определенного времени. Приблизительное время автономной работы разных приемников — от 2 до 100 часов.

Максимальную свободу передвижения, то есть независимость от стационарной сети и зарядки аккумуляторов дают батарейные приборы. Батарейки, вышедшие из строя, можно заменить на новые достаточно легко. Основным недостатком является необходимость приобретения и регулярной замены батареек. Но они «живут» достаточно долго, и купить их можно в любом магазине.

Самые удобные модели — имеющие несколько видов питания. Например, при разрядке аккумулятора можно поставить батарейки. Для подключения адаптера зарядки в приборе имеются специальные гнезда: разъем для подключения блока питания, micro USB, mini USB.

Дополнительный интерфейс поможет воспроизведению через USB Type A. А если модель осуществляет поддержку МР3, то вы сможете наслаждаться собственными подборками музыки со своего внешнего носителя. Выход на наушники позволит не мешать окружающим.

Интересная особенность есть у некоторых приемников — защита IPX4. Эта международная маркировка указывает, что ваше устройство защищено от проникновения влаги и пыли.

Варианты выбора

Если вы часто бываете на природе, то лучше приобрести переносной радиоприемник, имеющий автономный вид питания.

Необходимость часто уезжать далеко от крупных городов, а значит от передающих антенн, диктует необходимость покупки приемника, принимающего АМ-диапазон.

Меломанам можно порекомендовать модели с возможностью воспроизведения через USB Type A собственных флеш-накопителей.

Отзывы на внешняя антенна

для fm — интернет-магазины и отзывы на внешняя антенна для fm на AliExpress

Отличные новости !!! Вы попали в нужное место для установки внешней антенны для FM. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене.Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, так как эта лучшая внешняя антенна для FM скоро станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели внешнюю антенну для FM на AliExpress. Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в внешней антенне для FM и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов.Мы поможем вам решить, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь. А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе.Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца. Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет. Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести external antenna for fm по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы. На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

Лучшая внешняя антенна для радио — Отличные предложения на внешнюю антенну для радио от глобальной внешней антенны для продавцов радио

Отличные новости !!! Вы попали в нужное место для установки внешней антенны для радио.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку эта лучшая внешняя антенна для радио вскоре станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели внешнюю антенну для радио на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще сомневаетесь в выборе внешней антенны для радио и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам решить, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести external antenna to radio по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

Лучшая цена внешняя FM-антенна — Отличные предложения на внешнюю FM-антенну от глобальных продавцов внешних FM-антенн

Отличные новости !!! Вы находитесь в нужном месте для внешней FM-антенны.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку эта внешняя FM-антенна должна в кратчайшие сроки стать одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели внешнюю FM-антенну на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в выборе внешней FM-антенны и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам решить, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести внешняя антенна fm по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

7 лучших антенн AM / FM 2021

Amateur Radio Wiki поддерживается читателями. Когда вы совершаете покупку по ссылкам на нашем сайте, мы можем получать партнерскую комиссию бесплатно для вас.

Вы можете подумать, что радио устарели. Особенно, если вы живете в мире YouTube и Spotify.Но во многих частях света радио — главный источник новостей и развлечений. Кроме того, вы можете оказаться на открытом шоссе во время похода или автомобильной поездки.

Во время затишья в разговоре, когда GPS выходит из строя, ваш FM-сигнал может спасти вам жизнь … и ваше здравомыслие! Итак, покупаете ли вы передвижной дом или новую антенну для своей деревенской мотыги, давайте взглянем на лучшую FM-радиоантенну на рынке.

Лучшая AM / FM-радиоантенна Сравнительная таблица 2021

AM стерео FM с усилителем FM Антенна

Всенаправленная комнатная FM-антенна TERK

6 футов 75 Ом, коаксиальный, трансформатор 75

Кабельная электронная внутренняя FM-телескопическая антенна

Stellar Labs Всенаправленная внешняя FM-антенна

FM: 88-108 МГц
AM: 540-1700 кГц

6-футовый коаксиальный кабель 75 Ом, согласующий трансформатор 75 Ом и адаптер питания переменного / постоянного тока

Двойная электроника Антенна морской радиосвязи дальнего действия

FM: 88-108 МГц
AM: 5 40-1700 кГц

Поворотное основание на 180 градусов и кабель 54 дюйма

RGTech Monarch Indoor AM FM-антенна

DAB: 170-240 МГц
FM: 88-108 МГц
AM: 540-1700 кГц

Разъем F-типа и разъем F-типа для адаптера разъема PAL

Terk Indoor AM Antenna Advantage

6-футовый соединительный кабель, 75 Ом трансформатор

Лучшие обзоры антенн AM / FM 2021

1.Лучшая комнатная антенна FM-радио: TERK FM +

Широкополосные и СШП антенны для беспроводных приложений: всесторонний обзор

Всесторонний обзор геометрии, производственных технологий, материалов и численных методов, принятый для анализа и проектирования широкополосных и сверхширокополосные (СШП) антенны для беспроводных приложений. Учитываются плоские, печатные, диэлектрические и носимые антенны, достижимые на ламинатных (жестких и гибких) и текстильных диэлектрических подложках.Характеристики небольших низкопрофильных антенн с диэлектрическим резонатором показаны с уделением особого внимания областям применения портативных устройств (мобильные телефоны, планшеты, очки, ноутбуки, носимые компьютеры и т. Д.) И базовых радиостанций. Эта информация представляет собой руководство по выбору антенн различной геометрии с точки зрения ширины полосы, усиления, поляризации поля, отклика во временной области, размеров и материалов, полезных для их реализации и интеграции в современные системы связи.

1. Введение

Конструкция антенны для высокоскоростного мультимедийного соединения представляет собой сложную задачу для разработчиков фиксированных и мобильных систем беспроводной связи. Фактически, быстрый рост мобильных систем в направлении пятого поколения (системы 5G) требует многополосных, широкополосных и сверхширокополосных антенн, подходящих для покрытия мобильных и беспроводных услуг и уменьшения сложности системы, общих размеров устройства и стоимости. В настоящее время предпринимаются многочисленные усилия по определению новой геометрии антенн, подходящей для удовлетворения сложных требований современных систем беспроводной связи [1–4].Это особенно актуально для приложений СШП, работающих в расширенных полосах частот, перечисленных в таблице 1, где указаны стандарты связи, принятые в основных странах мира [5].

9019CC )

Страна Полосы частот Регулируются

Америка, Канада 3,1–10,6 ГГц Нелицензионный диапазон связи без ограничений

Европа 3.1–4,8 ГГц с ограничениями «обнаруживать и избегать» (DAA); Диапазон 6–8,5 ГГц без ограничений Комитет по электронной связи (ECC)

Япония 3,4–4,8 ГГц с ограничениями DAA; Нелицензированный диапазон 7,25–10,25 ГГц Министерство внутренних дел и связи (MIC)

Корея 3,1–4,8 ГГц с ограничениями DAA; Диапазон 7,2–10,2 ГГц без ограничений Исследовательский институт электроники и телекоммуникаций (ETRI)

Сингапур Диапазон 6–9 ГГц без ограничений; 3.Диапазон 4–4,2 ГГц с ограничениями DAA Управление развития информационных технологий (IDA)

Планарные, печатные (2D-профиль) и 3D-антенны были разработаны с целью удовлетворения требований интеграции и транспортабельность портативных устройств (мобильных телефонов, ноутбуков, планшетов и т. д.), а также базовых радиостанций и транспортных средств (автомобилей, самолетов, кораблей и т. д.). Кроме того, совместимость антенны может быть полезным требованием для уменьшения размера и улучшения внешнего вида мобильных устройств, в то время как она приводит к существенному требованию для систем связи на теле.Это особенно важно в беспроводных телесетях (WBAN), где важными проблемами являются высокая производительность, а также гибкость антенны в условиях изгиба.

В целом технологии 2D и 3D антенн, разработанные для широкополосных, многополосных и СШП приложений, можно разделить на следующие группы: микрополосковые антенны, монопольные антенны на металлических пластинах, печатные монопольные / дипольные антенны, широкополосные антенны, антенны из метаматериалов, и диэлектрические резонаторные антенны (ДРА).Эти антенны могут в некоторых случаях отвечать строгим требованиям существующих систем связи, в то время как они могут быть отправной точкой для разработки новых излучающих систем, подходящих для будущих требований к связи. С этой целью в данной статье принимается во внимание всесторонний обзор научной литературы последнего десятилетия, касающейся этих аспектов, с целью предоставить исследователям и разработчикам ценный вспомогательный инструмент для проектирования антенн. Особое внимание уделяется геометрии, механизмам излучения, методам расширения диапазона, материалам и численным инструментам прогнозирования, используемым для анализа и проектирования этих важных классов антенн.

Работа состоит из 12 разделов. В разделе 2 представлены особенности некоторых широкополосных микрополосковых антенн. В разделе 3 обсуждаются характеристики монопольных антенн над металлическими пластинами. В разделах 4, 5 и 6 проиллюстрированы характеристики плоских печатных монопольных, широкослотовых и дипольных антенн для широкополосных и СШП приложений. В Разделе 7 представлены направленные СШП-антенны, в Разделе 8 обсуждаются антенны из метаматериалов, а в Разделе 9 рассматриваются антенны и материалы, полезные для изготовления носимых антенн, а в Разделе 10 проиллюстрированы самые последние достижения DRA-антенн.Основные методы, принятые для реализации СШП антенн с полосами с прорезями, выделены в Разделе 11. Наконец, в Разделе 12 изложены некоторые замечания, касающиеся современного состояния, будущих тенденций и основных ограничений различных рассматриваемых технологий производства антенн.

2. Широкополосные планарные микрополосковые антенны

Микрополосковые патч-антенны (MPA) были впервые представлены в 1950-х годах [6], но они нашли успех только в 1970-х годах, благодаря быстрому развитию технологии интеграции с активными устройствами, которая позволяет создавать очень компактные конструкции.Однако, хотя эти антенны обладают низким профилем, небольшими размерами, ограниченными производственными затратами и простой схемной интеграцией, они обычно имеют низкую относительную полосу пропускания (FBW = 7%), несовместимую с современными системами беспроводной связи. Чтобы преодолеть этот недостаток, за последние двадцать лет была проведена значительная исследовательская деятельность по выявлению новых геометрических форм, подходящих для удовлетворения этих требований. Это потребовало идентификации физических механизмов, управляющих радиационными процессами, происходящими в указанных антеннах.В этом разделе приведены некоторые примеры новейших антенн, принадлежащих к этому важному классу.

В качестве первой структуры проиллюстрирована широкополосная патч-антенна, имеющая диаграмму направленности, аналогичную диаграмме направленности монополя, и состоящая из двух металлических колец, соединенных с круглым патч-излучателем, представленная в [7]. Антенна напечатана на круглой заземленной диэлектрической подложке (DiClad 527) с относительной диэлектрической проницаемостью, толщиной и диаметром, а коаксиальный зонд, расположенный в центре круглого пятна, используется для возбуждения антенны (см. Рисунок 1). .Антенна была проанализирована с использованием двухполупериодной HFSS на основе МКЭ [8]. На обратные потери антенны в основном влияют расстояния между кольцами, между первым кольцом и центральным излучающим элементом, а также радиус круглой металлической полосы. Характеристики излучения схемы, подобные монополю, обусловлены центральным положением возбуждающего зонда, а также симметричными конфигурациями поля, возбуждаемого в каждой щели, через которую происходит излучение электромагнитной энергии.Измеренная полоса пропускания импеданса охватывает диапазон частот 5,45–7,16 ГГц (FBW = 27,1%), что делает антенну полезной для использования в стандартах беспроводной связи (WLAN, WiMAX). Реализованное измеренное пиковое усиление находится в диапазоне от 1,9 дБи до 6,3 дБи, в то время как уровни кросс-поляризации составляют примерно 15 дБ и 20 дБ в плоскости и плоскости соответственно.


Другое конструктивное решение для широкого покрытия, состоящее из компактной возмущенной патч-антенны E-образной формы, напечатанной на заземленной диэлектрической подложке RT / duroid 5880 с размерами (около, где — длина волны в свободном пространстве на центральной частоте антенны ГГц) и диэлектрической проницаемости, представлена ​​в [9].В патч вставлены два зигзагообразных паза и два прямоугольных паза для достижения более широкой полосы импеданса с более высокими уровнями возвратных потерь. Для возбуждения антенны между первыми зубцами зигзагообразных пазов вставляется зонд (см. Рисунок 2). Зигзагообразные прорези расширяют пути тока на металлической пластине, делая антенну менее длинной в направлении зубцов, уменьшая таким образом размеры антенны. Кроме того, они возбуждают две резонансные моды с низкой добротностью, в результате чего полоса пропускания антенны с полным сопротивлением находится в пределах 4.96 ГГц и 6,69 ГГц (FBW = 30%), что обеспечивает покрытие диапазонов частот Hiperlan / 2, IEEE 802.11a и HiSWaNa. Самодельный инструмент численного прогнозирования, основанный на локально конформной схеме конечных разностей во временной области (FDTD), вместе с теоремой эквивалентности поверхностей, использующей диадические функции Грина в свободном пространстве, был принят для вычисления распределений полей вблизи и вне вычислительной FDTD. домен [10]. На более низкой частоте диаграммы направленности аналогичны диаграмме направленности простой прямоугольной патч-антенны, а на более высоких частотах они показывают наклон около 16.