Датчики скорости потока воздуха: Датчики скорости потока воздуха

Содержание

Запускаем датчик скорости потока газа / Блог компании ЭФО / Хабр

Почти год назад была опубликована статья с обзором датчиков скорости потока газов и жидкостей производства компании IST-AG.

В прошлый раз у меня была возможность только на пальцах пояснить основной принцип работы этих элементов, зато сейчас я публикую вполне содержательный рассказ о термоанемометрическом датчике потока серии FS7.

Мы начнём с теоретической базы, а закончим видео, где с помощью велосипедного насоса и скотча демонстрируется работа прототипа измерительного устройства на базе FS7.



Итак, все датчики потока производства IST используют тепловой принцип измерений — скорость потока рассчитывается либо из количества тепла, которое отдает потоку нагретое тело, либо из разницы показаний двух датчиков температуры, расположенных вдоль потока симметрично относительно нагретого тела.

В первом случае датчик потока называется термоанемометрическим и не позволяет определять направление потока, а во втором случае датчик называется калориметрическим и позволяет определить и скорость, и направление потока.

Принцип работы термоанемометрического датчика


Сегодня мы говорим о чувствительных элементах самой простой конструкции — о термоанемометрических датчиках. Термоанемометрический чувствительный элемент состоит из датчика температуры и нагревательного элемента.

В отсутствии потока температура нагревателя остается неизменной,

а при наличии потока нагреватель начинает отдавать своё тепло окружающей среде.

Количество тепла, которое отдается потоку нагретым элементом, зависит от теплофизических характеристик среды, от параметров трубы и от скорости потока. Для приложений, где характеристики среды и размеры трубы известны, теплоотдача нагревателя может использоваться для расчета скорости потока.

И датчик температуры, и нагреватель представляют собой платиновые термосопротивления — элементы, сопротивление которых практически линейно зависит от температуры среды.

Всё что нужно знать термосопротивлениях — в статьях «Термосопротивления: теория» и «Термосопротивления: производственный процесс»

Оба термосопротивления включаются в мостовую схему, которая в отсутствии потока уравновешена. Когда скорость потока увеличивается, нагреватель охлаждается, его сопротивление изменяется и мост разбалансируется. Сигнал разбаланса поступает на усилитель, выходной сигнал усилителя сообщает нагревателю более высокую температуру и приводит мост обратно в равновесное состояние. Величина напряжения, которое требуется чтобы уравновесить мост, является функцией от скорости потока.

Структура датчика


Процесс производства датчиков скорости потока IST очень похож на производство обычных термосопротивлений (датчиков температуры). На статью, посвященную производству тонкопленочных термосопротивлений, я ссылаюсь чуть выше.

На керамическую подложку, обладающую низкой теплопроводностью, напыляются платиновые меандры — токопроводящие дорожки, из которых формируются два термосопротивления.

Первое термосопротивление — нагреватель — имеет номинальное сопротивление R0 = 45 Ом, второе — датчик температуры — имеет номинальное сопротивление R0 = 1200 Ом.

На подложку также наносятся необходимые соединения и контактные площадки для крепления выводов. Конструкция с обеих сторон покрывается пассивационным слоем из стекла, после чего к датчику крепятся выводы.

Формула расчета скорости потока


Я не вижу смысла углубляться в физику и разбирать вывод формулы для расчета скорости потока, отмечу лишь основные законы, на которых эта формула базируется.

1. Уравнение теплового баланса — зависимость количества теплоты , которую отдал среде нагреватель, от разности температур нагревателя и среды , площади поверхности нагревателя и коэффициента теплообмена нагревателя .

2. Закон Кинга, связывающий количество теплоты с мгновенной скоростью потока

, где

Формула для расчета скорости потока, в который помещен элемент FS7, является результатом преобразований и упрощений закона Кинга. Формула имеет следующий вид:

— выходное напряжение схемы
— напряжение при отсутствии потока (величина отражает — изначальную разницу между температурой нагревателя и температурой среды)
— коэффициент, который зависит от профиля потока и от положения датчика; значение принадлежит диапазону (0. 9…0.93)
— коэффициент, для датчиков FS7 равный 0.51
— искомая скорость потока

В работе также используют обратную формулу .

Коэффициенты и подбираются в процессе калибровки датчика (см. ниже).

Схема включения датчика


Датчик FS7 имеет три вывода: контакт нагревателя, контакт датчика температуры, земля.

Универсальной схемы включения датчика, как и детальных рекомендаций по его монтажу, нет. Причина очевидна — отношение скорости потока к напряжению зависит не только от геометрии чувствительного элемента, но и от параметров среды (температура, состав, давление, наличие механических частиц), а также от геометрии трубы, положения датчика в трубе и от профиля потока. В каждой конкретной задаче этот набор параметров будет отличаться, поэтому подбор номиналов для схемы включения и расчет коэффициентов для расчета скорости потока подбираются для каждой задачи отдельно.

Однако всегда нужно от чего-то отталкиваться, в данном случае оттолкнуться лучше всего из схемы, приведенной в документации на FS7:

Пример зависимости выходного напряжения от скорости потока:

Для калибровки датчика используют три точки — нулевая скорость, максимальная скорость потока и точка посередине.

В отсутствии потока фиксируется значение . Пусть В.

При В и м/c формула принимает вид .

При В при м/c формула принимает вид

Получаем систему из двух уравнений с двумя неизвестными, из которой находим и .

Подставив значения , и напряжение в формулу , получим простое выражение для вычисления скорости потока.

Типы датчиков FS7 и модуль FS-flowmodul


Выпускается три стандартных исполнения датчика FS7, которые отличаются друг от друга наличием круглого пластмассового корпуса и рабочим диапазоном температур.
  FS7.0.1L.195 FS7.0.4W.015 FS7.A.1L.195
Диапазон измерений 0…100 м/c
Разрешение 0,01 м/c
Время отклика ~200 мс
Диапазон рабочих температур −20… +150 °C −20… +400 °C −20… +150 °C
Размеры элемента 6. 9 x 2.4 мм
Выводы изолированные длиной 195 мм не изолированные длиной 15 мм изолированные длиной 195 мм
Размеры корпуса Ø 6 мм, длина 14 мм
Розничная цена 21,29 EUR
UPD от 4 июля 2017:
16 EUR
21,29 EUR 25,44 EUR

На этапе знакомства с датчиками серии FS7 можно также использовать готовый модуль FS-Flowmodul, на котором реализована схема включения.

Плата FS-Flowmodul имеет три контакта для подключения датчика FS7 с одной стороны и контакты Питание, Земля и Выходной сигнал с другой стороны. Кроме прочего, плата оснащена потенциометром для подстройки выходного напряжения (см. резистор R2 на схеме включения).

Важно отметить, что модуль не предназначен для использования в серийных устройствах. Плата может использоваться только на этапе прототипирования, когда кому-то проще собирать схему самостоятельно, а кому-то удобнее заплатить мне лишние 108 евро и получить готовую отладочную плату 🙂

Демонстрация


Естественно, для демонстрации работоспособности датчика был выбран самый простой путь.
Датчик подключается к FS-Flowmodul, а выход модуля — ко входу АЦП на управляющей плате.
Отладочная плата построена на базе микроконтроллера от SiLabs и подключена к сенсорному TFT-дисплею от Riverdi.

Процессу создания программы для вывода информации на этот дисплей было посвящено целых пять статьей на хабре. Теперь к описанному ранее прототипу для измерения температуры и влажности добавился модуль для измерения скорости потока.


Кстати говоря, когда мы показываем этот прототип живьем, то для демонстрации работы датчиков на них достаточно просто подуть — от дыхания одновременно увеличиваются и влажность, и температура, и скорость потока. К сожалению, этот процесс никак не получается красиво снять на видео, поэтому работа датчика HYT-271 демонстрировалась на кружке кипятка, а для FS7 пришлось соорудить кустарный воздуховод из трубки для чистики аквариума, в которую с помощью велосипедного насоса подается воздух.

Важно: датчик должен быть установлен по центру диаметра трубы, рабочей поверхностью ровно вдоль направления потока.

Примечания


  1. Я допускаю некоторые упрощения при описании описании физических явлений, которые на практике работы с датчиками потока должны быть учтены. Цель сегодняшней публикации — продемонстрировать базовые принципы работы чувствительных элементов FS7. Однако если найдутся комментаторы, готовые раскрыть физику процесса поподробнее, то такие пояснения будут приняты автором с благодарностью, выраженной в скидке на покупку FS7.
  2. Вся информация, которую можно найти в интернете для flow sensor FS5, актуальна и для датчика FS7. В первую очередь рекомендую Application Note FS5 и статью, в которой кроме прочего есть описание профиля потока.

Заключение


В заключении традиционно благодарю читателя за внимание и напоминаю, что вопросы по применению продукции, о которой мы пишем на хабре, можно также задавать на email, указанный в моем профиле.

upd: все упомянутые датчики и модули доступны со склада. Больше информации на efo-sensor.ru

68845-17: СД-1.В Датчики скорости воздуха стационарные

Назначение

Датчики скорости воздуха стационарные СД-1.В (далее — датчик) предназначены для непрерывных автоматических измерений скорости воздушного потока и передачи информации об измеренном значении скорости потока на внешнее устройство в аналоговом или цифровом виде.

Описание

Принцип действия датчиков скорости воздуха стационарных СД-1.В заключается в определении частоты срыва вихрей, образующихся при обтекании воздушным потоком цилиндрического профиля. Частота срывов вихрей преобразуется в цифровой электрический сигнал, пропорциональный скорости воздушного потока. Результаты измерений отображаются на ЖК-индикаторе, на аналоговых выходах датчика формируются соответствующие выходные сигналы напряжения постоянного тока.

Датчик скорости воздуха состоит из корпуса датчика и измерительного зонда VA фирмы Hontzsch GmbH.

Корпус датчика изготовлен из поликарбоната и состоит из двух отделений одинакового размера. В отделении для кабельных вводов размещены клеммы соединения. В аппаратном (измерительном) отделении располагаются электронные платы, служащие для обработки, отображения информации и формирования выходных сигналов.

В отделении кабельных вводов датчика расположена плата коммутации, на которой расположены шесть клеммных разъемов, служащих для подключения питания, аналоговых сигналов (0,4 — 2,0) В, интерфейса RS485, измерительного зонда и внешнего исполнительного устройства, которое использует «сухой» контакт.

Датчики скорости воздуха стационарные СД-1.В изготавливаются в двух модификациях СД-1.В.1, СД-1.В.2, отличающихся пределом допускаемой абсолютной погрешности.

Внешний вид датчика скорости воздуха стационарного СД-1.В показан на рисунке 1.

Программное обеспечение

Датчики скорости воздуха стационарные СД-1.В имеют встроенное, метрологически значимое программное обеспечение (ПО), предназначенное для обработки измерительной информации, индикации результатов измерений на ЖКИ, формирования выходных сигналов. Данное ПО устанавливается в датчик на заводе-изготовителе во время производственного цикла, что исключает возможность несанкционированных настроек и вмешательства, приводящим к искажению результатов измерений.

Уровень защиты программного обеспечения «высокий» в соответствии с Р 50.2.077-2014.

Таблица 1 — Идентификационные данные программного обеспечения

Идентификационные признаки

Значение

Идентификационное наименование ПО

SD-1V firmware

Номер версии (идентификационный номер) ПО

Не ниже 1.30

Цифровой идентификатор ПО

Технические характеристики

Таблица 2 — Метрологические характеристики

Наименование характеристики

Значение

Диапазон измерений скорости воздушного потока, м/с

от 0,1 до 40,0

Пределы допускаемой абсолютной погрешности измерений скорости воздушного потока, м/с

—    для модификации СД-1. В.1

—    для модификации СД-1.В.2

±(0,12+0,03V) ±(0,12+0,015V), где V-измеряемая скорость, м/с

Таблица 3 — Основные технические характеристики

Напряжение питания постоянного тока, В

от 8 до 15

Уровень и вид взрывозащиты

РО Exiasl Ma X

Степень защиты от внешних воздействий по ГОСТ 14254-2015

IP54

Г абаритные размеры без учета выносного измерительного зонда, мм, не более

265x140x52

Масса, с учетом выносного измерительного зонда, г, не более

2500

Условия эксплуатации:

—    температура окружающего воздуха, °С

—    относительная влажность воздуха, %

—    атмосферное давление, кПа

от -10 до +40 от 20 до 90 от 80 до 120

Знак утверждения типа

наносится на титульный лист паспорта типографским способом. Комплектность средства измерений

Таблица 4 — Комплектность средства измерений

Наименование

Обозначение

Количество

Датчик скорости воздуха стационарный

СД-1.В

1 шт.

Паспорт

СД-1.В 00.000ПС

1 экз

Руководство по эксплуатации

С Д- 1 00 00 000РЭ

1 экз

Методика поверки

РТ-МП-4484-443-2017

1 экз

Поверка

осуществляется по документу РТ-МП-4484-443-2017 «ГСИ. Датчики скорости воздуха стационарные СД-1.В. Методика поверки», утвержденному ФБУ «Ростест-Москва» 15 мая 2017 г. Основные средства поверки:

— рабочий эталон 1-го разряда по ГОСТ 8.886-2015

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде голографической наклейки или оттиска поверительного клейма.

Сведения о методах измерений

приведены в эксплуатационном документе.

Нормативные документы

ГОСТ Р 8.886-2015 ГСИ. Государственная поверочная схема для средств измерений скорости воздушного потока

ТУ4215-023-50151796-09 Датчик стационарный СД-1. Технические условия

Датчики, реле потока воздуха и промышленных газов

Датчики, реле потока воздуха и промышленных газов

Каталог датчиков реле потока воздуха для вентиляции и применения на производстве, предназначенные для интеграции в системы автоматики. Представлены датчики потока промышленных газов от ведущих производителей IFM Electronic, EGE-Elektronik, Turck для монтажа на различные диаметры трубопровода.

дополнительная информация

Для контроля скорости потока воздуха в системах вентиляции и подачи промышленных газов в трубопроводах на производстве применяются датчики и реле, функционирующие на механическом или электронном калориметрическом принципе измерения. Довольно популярные приборы — механические, с подпружиненной лопаткой, которые, хоть и имеют относительно невысокую стоимость, но являются громоздкими и не очень надежными. Чтобы повысить надежность системы и снизить затраты на обслуживание, мы рекомендуем применять современные электронные, работающие на калориметрическом (тепловом) принципе измерения. Данный тип промышленных датчиков реле потока воздуха не требует обслуживания, имеет очень большой ресурс и позволяет надежно детектировать поток газа, отличаясь компактными размерами и отсутствием движущихся частей в своей конструкции. 
Наиболее популярные датчики потока воздуха для вентиляции и промышленных трубопроводов в нашем каталоге представлены производителями из Германии, такими компаниями как: IFM Electronic, EGE-Elektronik и Turck. Выбор этих производителей обусловлен тем, что они являются пионерами в разработке и производстве электронных датчиков потока. Достаточно посмотреть на представленный ассортимент датчиков от IFM, EGE и Turck, чтобы убедиться в правильности выбора. В нашем каталоге датчиков реле потока воздуха возможно подобрать модели с релейным или транзисторным выходом для контроля точки переключения, а также для датчики скорости потока воздуха с аналоговым выходным сигналом 4-20 мА. Использование аналогового выхода позволяет оценивать скорость потока и расход в реальном времени. Для заказа доступны исполнения сенсоров с зондами из пластмассы, для монтажа в системы с небольшим давлением, или из металла, с резьбовым монтажом в трубопроводы с давлением в несколько десятков бар. Простота монтажа и широкий набор сигналов на выходе, позволяет интегрировать реле потока воздуха из нашего каталога в любую систему автоматизации на современном промышленном производстве.

Серия датчиков дифференциального давления D6F-PH от Omron.Часть 2. Тестирование и применение

Начало в Control Engineering Россия, №3’2014

Аппаратное и программное обеспечение тестирования датчика

При автономном тестировании датчика достаточно иметь некоторую установку, регулирующую параметры среды, и два контролирующих прибора — образцовый и тестируемый. В такой схеме ЭВМ необходима лишь для регистрации показаний приборов в целях их сравнительной оценки. Поскольку формат интерфейса для обмена данными между ЭВМ и тестируемым датчиком предопределен как I2C, а подавляющее большинство ЭВМ таким интерфейсом не оборудованы, необходим специальный адаптер, конвертирующий имеющийся во всех ЭВМ интерфейс USB в требуемый I2C. С одной стороны адаптер через разъем мини-USB отдельным кабелем соединяют с ЭВМ, а с другой стороны подключают к датчику через четырехпроводной кабель со специальным гнездовым разъемом. Все вышеперечисленные элементы составляют аппаратное обеспечение, необходимое для тестирования датчика.

Однако впервые подключенный адаптер с присоединенным к нему датчиком ЭВМ воспринимает как неизвестное оборудование. Для его распознавания необходимо установить драйвер устройства, для чего потребуется скачать с сайта производителя модуля [4] архив CDM 2.08.30 WHQL Certified.zip, разархивировать его и указать установщику оборудования полученный каталог как источник. При успешной установке драйвера в диспетчере устройств ЭВМ появится виртуальный COM-порт, как это выделено красной рамкой на рис. 7. Теперь при отключении адаптера от ЭВМ дополнительный виртуальный порт будет исчезать из перечня оборудования, при повторном подключении — снова появляться.

Рис. 7. Результат установки виртуального последовательного порта на ЭВМ

После проведения указанных операций датчик готов для включения в измерительную схему, но для обращения ЭВМ к датчику и получения результатов измерения необходима отдельная управляющая программа D6_Flow_demo_v1.0.exe, которую можно заказать и получить в компании Omron. При запуске исполняемой программы на экране монитора разворачивается рабочее окно D6F Digital Flow Sensor Monitor (FTDI — I2C) v1.0 интерфейса общения с датчиком (рис. 8), где для типа D6F-PH5050AD3 в разделе Select Mode выбирают Mode3, в разделе Mesure ModePressure, Interval time1 ms, на электронной клавише вместо предустановленного по умолчанию расхода 5 л/мин выбирают перепад давления ±500 Па, а затем последовательно нажимают экранные кнопки Normal Mode и Start. В результате кнопка Start изменит свое функциональное назначение, о чем будет свидетельствовать появившаяся на ней надпись Stop, и с выбранной периодичностью 1 мс в соответствующих показанных на рисунке окнах будут обновляться цифровые данные, сигнализирующие о текущем значении измеряемого перепада давления и температуры контролируемой среды. Одновременно поток отображаемых цифровых данных аккумулируется в файле, который можно просмотреть после нажатия на кнопку Stop. Для этого необходимо нажать перешедшую в активное состояние экранную кнопку CSV Gen, а затем в выпадающем рабочем окне FileSelection выбрать директорию для сохранения файла и присвоить ему некоторое идентификационное имя.

Рис. 8. Интерфейс выбора режима датчика и регистрации результатов измерения

Открывают сгенерированный программой файл результатов измерения с помощью офисной программы Microsoft Excel. Для корректного переноса данных из сохраненного файла результаты измерения импортируют в созданный заранее файл формата . xlc. При этом в качестве разделителя столбцов указывают символ «,», а в качестве разделителя целой и дробной части числа — символ «.». После переноса данных в файл Microsoft Excel для их анализа и графического представления можно использовать весь богатый математический аппарат Microsoft Excel, в том числе и средства построения графиков требуемого формата.

 

Измерение статического давления

Поскольку принцип работы датчика D6F-PH основан на измерении теплоотдачи при движении воздуха через термоанемометрический чувствительный элемент, при измерении давления через датчик должен постоянно проходить некоторый расход воздуха. Это принципиально отличает его от датчиков, использующих в качестве чувствительного элемента снабженные тензорезистором мембраны различной формы. В таких датчиках используется закрытая полость, в которой под воздействием сил давления деформируется тонкая мембрана, и затем ее деформация преобразуется в сигнал тензорезистора. Поэтому для исследователей представляет большой практический интерес сравнение результатов измерения статического давления с помощью датчиков, основанных на столь разных физических принципах. Такое исследование коренным образом отличается от типовой схемы применения (Часть 1, рис. 2) и способно продемонстрировать широкую универсальность применения исследуемых датчиков серии D6F-PH. В качестве образцовых мембранных датчиков были выбраны многодиапазонные датчики давления АИР-10 НПП ЭЛЕМЕР [5].

Для проведения сравнительных испытаний была собрана лабораторная установка, схема которой представлена на рис. 9. Ввиду особенностей конструкции датчиков АИР-10 давление с их помощью может определяться только в одну сторону — или больше атмосферного, или меньше. Поэтому в установке были использованы два образцовых датчика АИР-10, один из которых измерял давление выше атмосферного, другой — ниже. Тестируемый датчик D6F-PH позволяет определять давление как выше атмосферного, так и ниже, которое индицируется со знаком «–». На рисунке видно, что давление в сосуде создается за счет нагрева воздуха. Так как примененный в испытаниях датчик D6F-PH5050AD3 имеет ограничение по измеряемому давлению в пределах ±500 Па, то на установке было предусмотрено устройство по ограничению уровня давления в системе. При достижении уровня давления 500 Па (50 мм водного столба) излишний воздух уходит из сосуда. Рабочий диапазон датчиков АИР-10 был предустановлен в интервале значений 0–1000 Па, что в соответствии с рабочей документацией позволило получить значение их инструментальной погрешности в 1,2% (12 Па).

Рис. 9. Схема лабораторной установки при испытании датчика D6F–PH в условиях статического давления

При проведении эксперимента включался нагреватель, при этом давление поднималось до предельного значения и фиксировалось на этом уровне. Через некоторое время нагреватель выключался, при охлаждении воздуха в замкнутом объеме сосуда давление опускалось ниже атмосферного. Для проверки повторяемости результатов цикл «нагрев–охлаждение» проводился несколько раз. Результаты измерения одного из повторяющихся циклов представлены на рис. 10. На графиках представлены три кривые: для датчика D6F-PH, для давления выше атмосферного (датчик АИР-10+), для давления ниже атмосферного (датчик АИР-10).

Рис. 10. Сравнительный результат измерения давления образцовыми и тестируемым датчиками

Графики демонстрируют хорошее согласование результатов измерения давления обоих типов датчиков. На стадии подъема и снижения давления динамические характеристики всех датчиков совпадают с достаточной степенью точности. На участке постоянного максимального давления имеется некоторое расхождение значений, причем полученные датчиком D6F-PH данные в среднем на 30–40 Па ниже, чем аналогичные, полученные с помощью датчиков АИР-10. Относительная погрешность составляет 4–5%, что считается хорошей точностью для данной серии экспериментов, и, возможно, связано с близостью измеряемого давления к предельному значению датчика D6F-PH. Обращает на себя внимание ступенчатый характер давления, измеряемый датчиком АИР-10+ на 25-й секунде эксперимента, обусловленный большой дискретностью времени опроса в регистраторе, из чего следует малая пригодность применения таких датчиков для контроля высокодинамичных процессов. На этом же рисунке линия, соответствующая результату измерения перепада давления датчиком D6F-PH, благодаря малому времени реакции (см. Часть 1, таблица 1) не претерпевает никаких разрывов, что делает их незаменимыми в исследовании подобных процессов.

Таким образом, по результатам экспериментов можно сделать вывод о возможности измерения статического давления с достаточной степенью точности с помощью датчика давления D6F-PH, использующего термоанемометрический принцип. Отдельно необходимо отметить возможность измерения разнополярного давления (как выше атмосферного, так и ниже), что позволяет существенно снизить стоимость лабораторного оборудования по сравнению со схемой, базирующейся на применении однополярных датчиков давления. При этом следует учитывать, что необходимость течения воздуха через датчик D6F-PH исключает его использование для контроля давления с фиксированным объемом воздуха.

 

Исследование воздушного потока пневмометрическим методом

Другой важной областью применения датчиков дифференциального давления является измерение скорости потока по разности полного и статического давления в соответствии с законом Эйлера. Для замера полей скоростей и давлений в воздушных каналах использовалась стандартная методика, изложенная в [6]. С целью исследования возможности применения датчика D6F-PH для измерения скорости потока была собрана установка, представленная на рис. 11. В качестве приемника полного давления использовалась тонкая металлическая трубка со специально спрофилированным концом, ориентированным навстречу потоку. Для точного позиционирования приемника применялся шаговый двигатель, с помощью которого приемник поворачивался на заданный угол в пределах от –90 до +90° относительно центральной оси потока. Набегающий поток с заданными параметрами формировался с помощью электровентилятора в трубе, на выходе из которой помещался приемник полного давления.

Рис. 11. Схема лабораторной установки для исследования воздушного потока пневмометрическим методом с помощью датчика D6F–PH

Результаты эксперимента представлены на рис. 12. С помощью датчика D6F-PH фиксировалось давление потока в зависимости от угла осевой ориентации приемника по отношению к потоку. Отчетливо заметно, что при больших углах давление становится ниже атмосферного, как это определяется условиями обтекания приемника полного давления потоком воздуха. Постепенно поворачивая приемник и фиксируя максимальное значение давления, можно определить не только величину скорости потока, но и его направление. Хорошо видно, что в диапазоне углов –13…+33° полное давление достигает максимума 340±30 Па, обусловленного параметрами контролируемого потока.

Рис. 12. Зависимость полного давления в воздушном потоке от ориентации приемника в датчике

Полученный результат измерения полного давления позволяет с помощью несложных вычислений найти скорость потока с в различных точках его продольного сечения по траектории перемещения приемника, как показано на рисунке. Для этого используют известное уравнение Эйлера [7]:

с = (2p/r)1/2,            (1)

где р — давление, измеряемое датчиком, rплотность воздуха.

Чтобы определить плотность воздуха, необходимо воспользоваться уравнением состояния Менделеева–Клайперона:

r = р/(RT), (2)

где R — газовая постоянная воздуха, равная 287 Дж/(кг·К), Т — термодинамическая температура воздуха, Т = t + 273 К. В свою очередь, здесь t — температура воздуха в °С.

После подстановки известных данных из (2) в (1) получаем, что максимальная скорость воздуха на оси потока составила с = 23±0,3 м/с, относительная погрешность определения скорости при этом не превышала ±1,5%. Максимальное давление от скоростного напора по конструктивным особенностям примененного датчика не может превышать 500 Па, что соответствует скорости потока воздуха в стандартных атмосферных условиях примерно 28 м/с.

Полученные и представленные на рисунке данные позволяют сделать вывод о возможности использования датчика D6F-PH для определения скорости и направления воздушного потока пневмометрическим методом. При этом необходимость пропускать воздух через датчик отлично вписывается в схему измерений. Можно предположить, что предельно высокая чувствительность аналогичного датчика D6F-PH0505AD3 в области слабых перепадов давлений как выше, так и ниже атмосферного и хорошие динамические характеристики делают его уникальным и удобным инструментом при определении сложных полей скоростей конвекционных потоков воздуха в научно-исследовательских и производственных помещениях с принудительной и естественной вентиляцией, например там, где особую важность приобретает чистота воздуха: медицина, производство интегральных микросхем, элементов микроэлектромеханических систем и др.

Facebook

Twitter

Вконтакте

Google+

Литература
  1. http://microsite.omroncomponents.com/assets/D6F-PH_Datasheet.pdf
  2. www.mouser.com/pdfdocs/ApplicationNotes_Diff_Pressure_Sensor_App_note_D6FPH_Rev_1.pdf
  3. Григорьев А. МЭМС-датчики дифференциального давления // Электронные компоненты. 2013. № 7.
  4. www.ftdichip.com/Drivers/VCP.htm
  5. Каталог продукции. Научно-производственное предприятие ЭЛЕМЕР. 2011.
  6. ГОСТ 12.3.018–79 «Методы аэродинамических испытаний».
  7. Петунин А. Н. Методы и техника измерений параметров газового потока. М.: Машиностроение. 1972.

Канальный датчик скорости воздушного потока AVT Thermokon


Пришла посылка — канальный датчик температуры и скорости воздушного потока AVT Thermokon 🙂

Датчики температуры совсем не редкость, а вот замерить скорость движения воздуха внутри воздуховода не так просто, поэтому специализированные решения сложные и недешевые. Этот датчик — не исключение)))

Видел точно такой же датчик под торговой маркой HK Instruments и даже не знаю, кто оригинальный производитель, а кто просто заказывает название на корпус.

Файл с техническими данными утащил с официального сайта.

Длина нержавеющей трубки-зонда — 21 см, диаметр — 1 см.

1.


Обычные решения применимы при скоростях воздуха в воздуховоде от 2 м/с, этот же может работать и при меньших скоростях!На коробке видно три диапазона измерения скорости воздушного потока: от 0 до 2 м/с, от 0 до 10 м/с, от 0 до 20 м/с.

2.


Так выглядят отверстия в трубке датчика AVT Thermokon. С их помощью и происходит фиксация параметров воздушного потока.

3.


Под крышкой датчика находятся клеммы для подключения питания и передачи сигнала. Для настройки вида и типа передачи сигнала используются перемычки.

В моей конфигурации выбран диапазон скоростей от 0 до 10 м/с, передача сигнала осуществляется по так называемой аналоговой токовой петле 4-20 мА (хотя можно выбрать и передачу напряжением — от 0 до 10 В).

Максимальное сечение подключаемых проводов — 1,5 мм2. Устройство клеммы позволяет не оконечивать многопроволочную жилу. Тем не менее, провода в НШВ влезли без проблем. 

4.

Питание прибора осуществляется напряжением 24 В +- 10%, причем все-равно — переменным или постоянным. Потребляет до 40 мА.

Поскольку источником питания еще не обзавелся, то в ход пошел ЛАТР Rucelf LTC-500. Задавать на нем напряжение — одно удовольствие, так как за напряжением в сети следит стабилизатор напряжения переменного тока Эталон, и оно не меняется.

Выставил 24 вольта.

5.


А выходной ток датчика — постоянный.

Датчик скорости воздушного потока подключен. В состоянии покоя, без движения воздуха, выдает 4 мА.

6.


Установил датчик в пластиковый воздуховод диаметром 150 мм, надетый на патрубок вентилятора Soler & Palau TD 500/150-160 Silent. И включил вентилятор на первой скорости (примерно 430 м3/ч в сети с нулевым сопротивлением, что соответствует скорости в канале 6.76 м/с).

Расстояние от выхлопа вентилятора до датчика скорости воздушного потока около 30 см (2 диаметра).

7.


Положение трубки при этом такое — отверстия расположены навстречу потоку (воздух может идти и в другую сторону, это тоже будет правильным положением датчика), конец датчика достигает центра воздуховода, надпись на приборе не вверх ногами.

8.


Если показания датчика скорости воздуха в воздуховоде составляют 12,8 мА, то скорость равна (12,8 — 4) / (20 — 4) * 10 = 5,5 м/с.

Для точного замера скорости поток должен быть выравнен. Это 5-6 диаметров от вентилятора и 2 диаметра до изменения направления.

Наблюдательные читатели заметили на столе реле перепада давления. Возможно, он будет уже в следущей заметке 🙂

Обновление.

С покупкой ПЛК Сименс Лого 8 подключил и выход температуры (выбрал 0 — 10 В), и выход скорости (по-прежнему 4 — 20 мА) Беларускабелем МКЭШ 4х1. Пришлось резиновую втулку из гермоввода убрать — кабель толстоватым оказался.

9.

Температура и скорость отлично отображаются 🙂

10.

VENTMATIKA Нагрев & Управление | HVAC

Универсальное устройство для измерения скорости воздушного потока. Датчик скорости воздушного потока AVT служит для измерения скорости воздушного потока и расхода воздуха в системах вентиляции.

Преимущества:

Все диапазоны измерений на одном устройстве (0 — 2 м/с, 0 — 10 м/с, 0 — 20 м/с). Отдельные выходы для скорости воздушного потока и температуры. Наличие варианта с релейным выходом. Удобство установки на вентиляционных каналах круглого и прямоугольного сечения.  

Тип

Диапазон измерения воздушного потока

Точность измерения воздушного потока

Диапазон Точность температуры

Напряжение V

IP

AVT

0…2, 0…10, 0…20

m/s

<0,1m/s +5% from reading

0…50ºC

<0,5ºC (v > 0,5m/s)

24VDC/24VAC ± 10%

IP54

AVT-D

0. ..2, 0…10, 0…20

m/s

<0,5m/s +5% from reading

0…50ºC

<0,5ºC (v > 0,5m/s)

24VDC/24VAC ± 10%

IP54

AVT-D-R

0…2, 0…10, 0…20

m/s

<1,0m/s +5% from reading

0…50ºC

<0,5ºC (v > 0,5m/s)

24VDC/24VAC ± 10%

IP54

AVT-R

0…2, 0. ..10, 0…20

m/s

<1,0m/s +5% from reading

0…50ºC

<0,5ºC (v > 0,5m/s)

24VDC/24VAC ± 10%

IP54

Датчик скорости потока воздуха EE75 заказать в Москве

Серия преобразователей скорости воздуха ЕЕ75 была
разработана для достижения точных результатов измерений на
широком диапазоне скоростей и температур.
Высококлассный сенсорный элемент, принцип работы которого
основывается на инновационной технологии горячего пленочного
анемометра, обеспечивает максимальную чувствительность
даже при небольших скоростях потока.
Встроенная температурная компенсация минимизирует
чувствительность преобразователей ЕЕ75 к перепадам температур
и в сочетании с прочным корпусом позволяет использовать
приборы при температурах от -40 до 120 °C.
Помимо измерения скорости потока и температуры прибор
может калькулировать объемный расход в м3/мин. Для этого
необходимо знать поперечное сечение канала. Величина
объемного расхода будет отображаться на дисплее и
направляться на один из аналоговых выходов.
Конфигурационное программное обеспечение (далее ПО),
включённое в комплект поставки, позволяет выбрать необходимый
параметр на выходе, а также легко настраивать диапазон
значений, выдаваемых на дисплей и масштаб сигнала двух
аналоговых выходов.
Вы можете заказать дисплей с подсветкой и двумя регулирующими
кнопками на корпусе, что позволит Вам вносить настройки в
конфигурацию, не прибегая к помощи компьютера.
Преобразователь серии ЕЕ75 заключен в прочный металлический
корпус, который защищает прибор от возможных повреждений
при эксплуатации в суровых промышленных условиях. Возможны
5 различных исполнений прибора:
— Model A для настенного монтажа
— Model B для монтажа в канал
— Model C с дистанционным зондом
— Model E с дистанционным зондом, давление до 10 бар
— Model P для монтажа в канал, давление до 10 бар
Преобразователь серии ЕЕ75 можно также использовать для
измерения скорости других газов. Для этого на заводе сделают
необходимые поправки при производстве.

как это работает, симптомы, проблемы, тестирование

Обновлено: 18 февраля 2020 г.

Датчик массового расхода воздуха (MAF) — один из ключевых компонентов электронной системы впрыска топлива в вашем автомобиле. Устанавливается между воздушным фильтром и впускным коллектором двигателя. См. Схему. Датчик массового расхода воздуха измеряет количество воздуха, поступающего в двигатель, или расход воздуха .

Датчик массового расхода воздуха (MAF).

В современных автомобилях датчик температуры воздуха на впуске или IAT встроен в датчик массового расхода воздуха. Типов датчиков расхода воздуха немного, однако в современных автомобилях используется термоэлектрический тип. Посмотрим, как это работает.

Как работает термоэлектрический датчик расхода воздуха

Датчик массового расхода воздуха с термоэлементом имеет небольшой электрический провод (горячий провод). Датчик температуры, установленный рядом с горячей проволокой, измеряет температуру воздуха рядом с горячей проволокой.

Когда двигатель работает на холостом ходу, небольшое количество воздуха обтекает горячую проволоку, поэтому для поддержания ее в горячем состоянии требуется очень низкий электрический ток. Когда вы нажимаете на газ, дроссельная заслонка открывается, позволяя большему количеству воздуха проходить через горячую проволоку. Проходящий воздух охлаждает провод.

Датчик массового расхода воздуха Toyota (MAF).

Датчик массового расхода воздуха Volkswagen.

Чем больше воздуха проходит через провод, тем больше электрического тока требуется для его поддержания в горячем состоянии.Электрический ток пропорционален количеству воздушного потока. Небольшая электронная микросхема, установленная внутри датчика расхода воздуха, преобразует электрический ток в цифровой сигнал и отправляет его в компьютер двигателя (PCM). PCM использует сигнал воздушного потока для расчета количества впрыскиваемого топлива. Цель состоит в том, чтобы поддерживать соотношение воздух / топливо на оптимальном уровне.

Кроме того, PCM использует показания воздушного потока для определения точек переключения автоматической коробки передач.Если датчик расхода воздуха не работает должным образом, автоматическая коробка передач тоже может переключаться по-другому.

Неисправности датчика массового расхода воздуха

Проблемы с датчиками массового расхода воздуха характерны для многих автомобилей, включая BMW, GM, Volkswagen, Mazda, Toyota, Nissan и другие марки. Чувствительный элемент может быть загрязнен или поврежден.
Например, в некоторых двигателях Mazda Skyactiv неисправный датчик массового расхода воздуха может привести к проворачиванию двигателя, но не к запуску.
Неправильно установленный или сломанный воздушный фильтр может привести к более раннему выходу из строя датчика расхода воздуха. Избыточное замачивание моющегося воздушного фильтра также может вызвать проблемы с датчиком воздушного потока.

Реклама — Продолжить чтение ниже

Признаки неисправности датчика массового расхода воздуха

Загрязненный или неисправный датчик массового расхода воздуха не может правильно измерить расход воздуха. Это приводит к тому, что компьютер двигателя неправильно рассчитывает количество впрыскиваемого топлива.В результате неисправный датчик массового расхода воздуха вызывает различные проблемы с управляемостью, в том числе отсутствие запуска, остановку, отсутствие мощности и плохое ускорение. Кроме того, из-за неисправности датчика массового расхода воздуха может загореться индикатор Check Engine или Service Engine Soon.

Датчик массового расхода воздуха (MAF).

Проблема с датчиком воздушного потока также может изменить характер переключения автоматической коробки передач.

Когда сигнал датчика расхода воздуха отличается от ожидаемого диапазона, PCM регистрирует неисправность и сохраняет соответствующий код неисправности, загорая лампочку Check Engine на приборной панели. Этот код неисправности можно получить с помощью диагностического прибора. Следующие коды неисправностей обычно связаны с датчиком массового расхода воздуха:
P0100 — Неисправность контура массового расхода воздуха
P0101 — Диапазон / рабочие характеристики контура массового расхода воздуха
P0102 — Низкий показатель контура массового расхода воздуха
P0103 — «Высокий уровень сигнала массового расхода воздуха»
P0104 — «Прерывистый контур массового расхода воздуха»
Коды неисправностей P0171 Слишком бедная система (банк 1) и P0174 слишком бедная система (банк 2) также часто вызваны неисправным или загрязненным датчиком массового расхода воздуха.

Как проверяется датчик массового расхода воздуха

В современных автомобилях единственный способ проверить датчик массового расхода воздуха — это диагностический прибор. Механики измеряют расход воздуха (показания датчика массового расхода воздуха) при разных оборотах. Они сравнивают показания со спецификациями или показаниями заведомо исправного датчика массового расхода воздуха.

Показания датчика массового расхода воздуха (MAF) 4-цилиндрового двигателя 2,4 л при различных оборотах.

Часто показания датчика массового расхода воздуха измеряются на холостом ходу, при 1000 об / мин, 2000 об / мин и 3000 об / мин. Загрязненный или неисправный датчик расхода воздуха в большинстве случаев будет показывать более низкие показания расхода воздуха, чем заведомо исправный. В некоторых редких случаях неисправный датчик может показывать более высокие показания. Конечно, у разных двигателей будут разные показания. Расход воздуха зависит от объема двигателя, поэтому двигатель V6 или V8 будет иметь более высокие показания.

Низкие значения массового расхода воздуха не означают, что датчик неисправен. Засоренный воздушный фильтр или засоренный каталитический нейтрализатор также могут привести к снижению показаний датчика расхода воздуха. Утечки вакуума также влияют на показания датчика расхода воздуха. Вот почему механики используют заведомо исправный датчик для сравнения показаний. Подробнее: Утечки вакуума: общие источники, симптомы, ремонт.

Можно ли дома проверить показания датчика массового расхода воздуха? Конечно, например, здесь мы использовали бесплатное приложение Torque для измерения показаний датчика массового расхода воздуха при разных оборотах (на фото). Этот датчик массового расхода воздуха хорош.

Для использования любого телефонного приложения, которое подключается к автомобилю, вам понадобится адаптер Bluetooth, который подключается к разъему OBD.

Мы также разместили несколько ссылок внизу этой статьи, где вы можете получить доступ к заводскому руководству по обслуживанию на основе абонентской платы.

Иногда плохое электрическое соединение в разъем датчика воздушного потока также может привести к тому, что показания воздушного потока будут вне допустимого диапазона. По этой причине необходимо внимательно осмотреть клеммы разъема датчика расхода воздуха, а также проводку.

Часто, если воздушный фильтр установлен неправильно или коробка воздушного фильтра не закрыта, в датчик массового расхода воздуха (см. Это фото) может попасть мусор (см. Это фото) и вызвать проблемы. Иногда во время замены воздушного фильтра может попасть мусор. В этом случае ремонт несложный. Необходимо очистить датчик массового расхода воздуха и правильно установить или заменить воздушный фильтр.

Замена датчика массового расхода воздуха

Если датчик расхода воздуха неисправен, его необходимо заменить.Это довольно простая работа. Запчасть стоит от 89 до 380 долларов. Если датчик загрязнен, ваш механик может предложить его очистить (очистка датчика воздушного потока — деликатная процедура) в качестве временного решения; иногда это могло помочь. При замене датчика массового расхода воздуха убедитесь, что воздушный фильтр установлен правильно.



Неисправность цепи массового расхода воздуха

Датчик массового расхода воздуха или датчик массового расхода воздуха размещается во впускном воздуховоде между воздушным фильтром и впускным коллектором двигателя.Датчик массового расхода воздуха измеряет количество всасываемого воздуха.

Датчик массового расхода воздуха, Mercedes-Benz

Датчик массового расхода воздуха преобразует измерение расхода воздуха в сигнал напряжения или частоты, при этом напряжение или частота изменяются пропорционально количеству воздушного потока. Подробнее о датчике массового расхода воздуха.

Сигнал датчика расхода воздуха контролируется компьютером двигателя (ECM). Компьютер двигателя (ЕСМ) использует сигнал массового расхода воздуха, чтобы узнать нагрузку на двигатель и рассчитать надлежащее количество впрыскиваемого топлива.Если сигнал датчика массового расхода воздуха выходит за пределы ожидаемого диапазона, ECM обнаруживает неисправность и устанавливает код P0100.

Симптомы:

Автомобиль с кодом P0100 может иметь некоторые проблемы с управляемостью, такие как остановка, отсутствие мощности, помпаж, колебания и т. Д. В некоторых автомобилях код P0100 может вызвать отказоустойчивый режим, при котором частота вращения двигателя будет ограничена до 2500 — 3000 об / мин.

Причины:

— неисправный или загрязненный датчик массового расхода воздуха
— обрыв или короткое замыкание в электрической цепи датчика массового расхода воздуха
— другая электрическая проблема с проводкой датчика массового расхода воздуха (корродированные провода, погнутые клеммы, плохое соединение с массой, сгоревший предохранитель и т. Д.
— утечки вакуума
— ограниченный поток воздуха (забит воздушный экран, забитый воздухозаборник, забит каталитический нейтрализатор и т. Д.)
— установлен неправильный датчик расхода воздуха
— проблема с ECM

Как диагностируется код P0101:

Если присутствуют другие коды неисправностей, возможно, сначала потребуется их проверить. Проверка стоп-кадра может помочь, поскольку он может содержать важную информацию. Стоп-кадр — это снимок параметров двигателя на момент обнаружения неисправности.Стоп-кадр может показать, ехало ли транспортное средство или остановилось, было ли соотношение воздух-топливо бедным или богатым, был ли двигатель холодным или прогретым. на момент неисправности. Подробнее о стоп-кадре.

Реклама — Продолжить чтение ниже

Во-первых, необходимо проверить разъем датчика массового расхода воздуха и проводку между датчиком массового расхода воздуха и контроллером ЭСУД на предмет обрыва или короткого замыкания, ослабленных контактов, коррозии или повреждений. Воздушного потока опорного напряжения массы и заземления должны быть проверены на разъеме датчика.

Воздуховод между датчиком массового расхода воздуха и впуском двигателя необходимо проверить на наличие трещин, разрывов, ослабленных зажимов или неправильного соединения. Элемент воздушного фильтра необходимо проверить и заменить, если он сильно загрязнен. Двигатель необходимо проверить на герметичность. Подробнее: Утечки вакуума: общие источники, симптомы, ремонт

Сигнал датчика массового расхода воздуха необходимо проверять с помощью вольтметра или лучше с помощью диагностического прибора при разных оборотах и ​​сравнивать со справочной таблицей или значениями заведомо хорошего массового расхода воздуха датчик.

Во многих случаях, если не обнаружено других проблем, может потребоваться замена датчика массового расхода воздуха. В некоторых автомобилях (например, Nissan) при установке нового датчика расхода воздуха необходимо сбросить полученное значение коррекции топлива.

Новый датчик массового расхода воздуха может стоить от 70 до 350 долларов. Замена датчика массового расхода воздуха (массового расхода воздуха) — простая задача и не обойдется дорого в автомастерской. Мы рекомендуем использовать оригинальные (OEM) детали, так как неправильный датчик массового расхода воздуха также может вызвать проблемы. Если проблема будет устранена, код P0100 исчезнет после вождения.

Примеры

Мы нашли несколько отчетов, в которых плохое соединение датчика массового расхода воздуха на массу вызывало код P0100 вместе с некоторыми другими кодами. Это происходит в разных автомобилях, включая Toyota, Opel и другие марки.

В некоторых автомобилях Volkswagen код P0100 может быть вызван обрывом провода в жгуте датчика массового расхода воздуха. В этом сообщении приводится пример.

В некоторых старых грузовиках Toyota, Subaru и Nissan (например, Nissan Maxima, Frontier, Sentra, Pathfinder, а также Infinity Q30, QX4) код P0100 может быть вызван неисправным датчиком массового расхода воздуха или нарушенной пайкой в ​​массовом потоке воздуха. клеммы датчика потока.Иногда эта проблема может также вызывать периодические проблемы, такие как остановка или спотыкание.

Бюллетень технического обслуживания Nissan (TSB) за 2000-2001 годы Maxima описывает еще одну проблему, при которой датчик массового расхода воздуха может быть поврежден пылью / грязью, вызывая код P0100. В качестве решения Nissan рекомендует очистить корпус воздушного фильтра, заменить блок датчика массового расхода воздуха и установить оригинальный воздушный фильтр Nissan, а также проверить и, при необходимости, перепрограммировать ECM.

В некоторых автомобилях Volkswagen, BMW и Mercedes-Benz код P0100 также может быть вызван неисправным датчиком массового расхода воздуха.Датчик массового расхода воздуха необходимо проверить и при необходимости заменить. См., Например, этот пост.


как это работает, проблемы, тестирование

15 мая 2017

Системы впрыска топлива в транспортных средствах с 80-х годов основывались на обычных датчиках кислорода. В начале 00-х кислородные датчики начали уступать место более точным датчикам соотношения воздух-топливо.

Датчик соотношения воздух-топливо (A / F)

Датчик соотношения воздух-топливо (A / F) измеряет содержание кислорода в выхлопных газах в более широком диапазоне. Подобно обычному датчику кислорода, датчик A / F имеет больше проводов. Он также известен как «широкополосный лямбда-зонд» или «лямбда-зонд».

Датчик соотношения воздух-топливо устанавливается в выпускном коллекторе или в передней выпускной трубе перед каталитическим нейтрализатором. Работа датчика соотношения воздух-топливо заключается в измерении содержания кислорода в выхлопных газах и обеспечении обратной связи с компьютером двигателя (PCM). На основе сигнала датчика соотношения воздух-топливо компьютер регулирует соотношение воздух-топливо, чтобы поддерживать его на оптимальном уровне, который составляет около 14.7: 1.

Неисправности датчика состава топливовоздушной смеси

Проблемы с датчиками состава топливовоздушной смеси — обычное дело. Часто датчик загрязняется или просто выходит из строя. В некоторых автомобилях нагревательный элемент внутри датчика выходит из строя, что приводит к неисправности. Например, во многих автомобилях Toyota и Honda код P0135 может быть вызван неисправностью нагревательного элемента внутри датчика. Посмотрите, как проверяется ТЭН датчика A / F, в этой статье: код P0135.

Реклама — Продолжить чтение ниже

В некоторых автомобилях проводка датчика может закоротиться после трения о металлические детали.Например, в старой Mazda 3 провод датчика может тереться о кронштейн и закорачиваться, вызывая код P0131. Когда компьютер двигателя определяет, что сигнал датчика соотношения воздух-топливо выходит за пределы ожидаемого диапазона, он включает контрольную лампу двигателя.

Наиболее распространенные коды неисправностей OBDII, связанные с датчиком соотношения воздух-топливо, — это P0131, P0134, P0135, P0133, P0031 и P1135. Есть ли какие-либо симптомы рядом с индикатором Check Engine? В некоторых автомобилях можно заметить снижение расхода топлива или незначительные проблемы с управляемостью.

Диагностика датчика состава топливовоздушной смеси

Проверка датчика состава топливовоздушной смеси с помощью диагностического прибора.

Датчик соотношения воздух-топливо диагностируется в соответствии с процедурой поиска и устранения неисправностей для установленного кода неисправности. Первый шаг — проверить наличие соответствующих бюллетеней технического обслуживания. Необходимо проверить проводку и разъем цепи нагревателя датчика. Затем, в зависимости от кода неисправности, сигнал датчика необходимо проверить с помощью диагностического прибора.

См. Эту диаграмму сигнала датчика воздушно-топливного отношения на диагностическом приборе: когда двигатель набирает обороты, сигнал перескакивает на «богатый», затем, когда частота вращения падает и подача топлива прекращается, датчик показывает «бедную» . После этого сигнал вернется в норму. Этот топливный датчик воздуха работает правильно.

Часто датчик может работать правильно во время проверки. В этом случае ваш механик может порекомендовать заменить датчик состава топливовоздушной смеси, чтобы исключить возможность периодической неисправности.

Банк 1 или Банк 2

В автомобиле датчик соотношения воздух-топливо обозначается как Датчик 1 (перед каталитическим нейтрализатором), Банк 1 или Банк 2.Задний датчик (датчик после каталитического нейтрализатора) всегда является датчиком 2. Термин , ряд , относится к ряду цилиндров. В большинстве рядных 4-цилиндровых двигателей имеется только один ряд цилиндров, банк 1.

В некоторых рядных 4-цилиндровых двигателях с двумя каталитическими преобразователями, V6, рядный 6-цилиндровый двигатель, V8 или оппозитные двигатели, имеется два ряда цилиндров; и каждый Банк имеет собственный датчик соотношения воздух-топливо (Датчик 1) и задний кислородный датчик (Датчик 2). Банк 1 обычно содержит цилиндр номер 1.

Например, Toyota в TSB T-SB-0398-09 указывает, что в двигателях 2GR-FE, 1MZ-FE, 3MZ-FE V6, установленных поперечно, Банк 1 находится ближе к брандмауэру, а Банк 2 — это тот, который обращен к передней части автомобиля. Разные производители по-разному обозначают банки. Чтобы узнать наверняка, обратитесь к руководству по обслуживанию конкретной модели.

Замена датчика состава топливовоздушной смеси

При замене топливного датчика воздуха часто бывает выбор: установить запчасти OEM или неоригинальные.Датчики послепродажного обслуживания большую часть времени работают нормально. Однако мы столкнулись с несколькими случаями, когда датчик вторичного рынка вызывал проблему, которая была устранена после установки датчика OEM. Если цена разумная, первым выбором всегда будет использование датчика OEM. Еще одна причина использовать OEM-датчик заключается в том, что производители часто обновляют конструкцию детали, чтобы устранить проблемы, обнаруженные после производства.

Для автомобилей, сертифицированных для Калифорнии, номер детали датчика соотношения воздух-топливо может быть другим.Лучше всего заказывать нужную деталь, используя свой VIN-номер.

Замена датчика состава топливовоздушной смеси стоит 65–320 долларов за деталь плюс 50–150 долларов за оплату труда. Для замены датчика состава топливовоздушной смеси своими руками может потребоваться специальная розетка для датчика кислорода. Часто датчик может сначала отсоединиться, а затем застрять в нити. В этом случае его нужно медленно перемещать вперед и назад, используя проникающий спрей.



Код

P0101 — Диапазон / рабочие характеристики цепи датчика массового расхода воздуха

Датчик массового расхода воздуха (MAF) измеряет количество воздуха, поступающего в двигатель.Код OBD-II P0101 устанавливается, когда сигнал от датчика массового расхода воздуха выходит за пределы ожидаемого диапазона, или, другими словами, датчик массового расхода воздуха не работает должным образом. В большинстве случаев этот код не очень сложно диагностировать.

• Симптомы
• Причины
• Как диагностируется код P0101
• Примеры
• Общие проблемы в разных автомобилях
• Как устанавливается код P0101

Симптомы:

Компьютер двигателя использует сигнал датчика массового расхода воздуха для определения количества впрыскиваемого топлива. Если датчик не измеряет поток воздуха правильно, система впрыска топлива не будет работать должным образом. Общие симптомы включают:
— глохнет
— затрудненный запуск
— двигатель запускается и глохнет
— недостаток мощности
— нестабильный холостой ход
Поскольку показания датчика массового расхода воздуха используются для расчета нагрузки двигателя, система контроля тяги может перестать работать и на приборной панели также может загореться контрольная лампа системы контроля тяги. По той же причине может измениться схема переключения передач в автоматической коробке передач.

Причины:

Наиболее частые причины кода P0101:
— Грязный, засоренный или неисправный датчик массового расхода воздуха (MAF)
— Треснувший, разорванный или отсоединенный пыльник (трубка) на впуске и т. д.)
— Забит или неправильно установлен воздушный фильтр
— Элемент датчика массового расхода воздуха загрязнен избыточным маслом из пропитанного маслом воздушного фильтра
— Засорение каталитического нейтрализатора или засорение выхлопных газов
К другим возможным причинам относятся:
— Грязный корпус дроссельной заслонки
— Плохой или грязный датчик абсолютного давления в коллекторе (MAP)
— Электрические проблемы с разъемом или проводкой датчика массового расхода воздуха
— Заклинило в открытом клапане системы рециркуляции ОГ
— Неправильная установка фаз газораспределения
— неисправный компьютер двигателя (PCM)

Реклама — Продолжить чтение ниже

Как диагностируется код P0101:

Сначала необходимо проверить датчик массового расхода воздуха и очистить его в случае загрязнения. Иногда инородный объект, такой как лист или пыль, может засорить измерительный элемент датчика воздушного потока (горячий провод), вызывая этот код. Смотрите фото забитого датчика массового расхода воздуха ниже.

Если проблема возникла вскоре после замены воздушного фильтра, необходимо проверить установку воздушного фильтра, а также датчик расхода воздуха.

В некоторых автомобилях (например, Volkswagen) воздухозаборник из металлической сетки устанавливается перед засорением воздушного фильтра. Его необходимо проверить и почистить.

Всасывающий пыльник необходимо проверить на наличие трещин и разрывов.Эта проблема характерна для многих европейских автомобилей, например. БМВ, Вольво. Необходимо проверить другие возможные источники утечек вакуума.

Массовый расход воздуха можно проверить с помощью диагностического прибора, который отображает данные в реальном времени. Показания датчика воздушного потока при различных оборотах в минуту (например, 1000, 2000, 3000) необходимо сравнить со спецификациями или с показаниями заведомо исправного датчика. Неисправный датчик воздушного потока очень часто встречается во многих автомобилях (например, BMW, VW, Mercedes-Benz, GM)

В некоторых автомобилях (например, Chevy Tahoe, Silverado) код P0101 может быть вызван засорением каталитического нейтрализатора.Чтобы диагностировать эту проблему, необходимо проверить противодавление выхлопных газов или вакуум в двигателе. Подробнее о симптомах засорения каталитического нейтрализатора читайте ниже.

Примеры того, что может вызвать код P0101

Часто код P0101 вызван утечкой вакуума. Утечка вакуума позволяет «неизмеренному воздуху» попадать в двигатель, минуя датчик воздушного потока.

На первом фото видно треснувший воздухозаборник. Количество воздуха, попадающего в багажник через эту трещину, не измеряется датчиком, поэтому датчик воздушного потока считывает гораздо меньшее количество воздуха, чем есть на самом деле.Одним из симптомов утечки вакуума является шипение из-под капота при работе двигателя на холостом ходу. Подробнее: Утечки вакуума: общие источники, симптомы, ремонт. На втором фото вы можете увидеть кусок листа, который блокирует провод датчика. Из-за этого датчик не может правильно считывать воздушный поток и устанавливает код P0101.

Общие проблемы, вызывающие код P0101 в разных автомобилях:

В некоторых легковых и грузовых автомобилях GM и Chevy код P0101 может быть вызван засорением каталитического нейтрализатора.Засорение каталитического нейтрализатора можно проверить путем измерения разрежения на впуске и противодавления на выхлопе. К сопутствующим симптомам могут относиться коды перебоев зажигания с P0300 по P0308, отсутствие мощности при большой нагрузке или при ускорении, перегрев каталитического нейтрализатора и плохой расход топлива. Каталитический нейтрализатор должен быть покрыт гарантией на выбросы (обычно 8 лет или 80 000 миль)

Другой проблемой некоторых грузовиков GM является утечка через впускные прокладки. Одним из симптомов протекающей впускной прокладки является резкая работа двигателя при холодном пуске.

В автомобилях с пропитанным маслом вторичным воздушным фильтром масло из воздушного фильтра может загрязнить элемент датчика массового расхода воздуха, вызывая код P0101 или другие коды массового расхода воздуха.

В некоторых автомобилях Volvo код P0101 может быть вызван загрязнением корпуса дроссельной заслонки или утечкой вакуума в системе PCV (например, в вакуумной линии к маслоотделителю). Загрязненный корпус дроссельной заслонки необходимо очистить, а воздухозаборник необходимо проверить на герметичность.

Бюллетень технического обслуживания для некоторых моделей Nissan Altima, Maxima и Sentra 2011-2012 годов рекомендует перепрограммировать ECM (компьютер двигателя), если сохранен код P0101 и нет проблем с управляемостью.

Как устанавливается код P0101

Код P0101 означает, что сигнал датчика массового расхода воздуха (MAF) вне ожидаемого диапазона. Датчик массового расхода воздуха установлен на впуске двигателя, сразу после воздушного фильтра. он измеряет количество воздуха, поступающего в двигатель через дроссельную заслонку. Компьютер двигателя (PCM) использует сигнал датчика массового расхода воздуха для управления системой впрыска топлива. Когда автомобиль ускоряется, дроссельная заслонка открывается и пропускает больше воздуха в двигатель.Датчик массового расхода воздуха определяет поток воздуха и отправляет сигнал в компьютер двигателя, который, в свою очередь, дает команду системе впрыска топлива добавить больше топлива. Точно так же, когда обнаруживается низкий расход воздуха, PCM уменьшает подачу топлива.

Chevrolet Cruze Датчик массового расхода воздуха

PCM проверяет рациональность сигнала датчика массового расхода воздуха, сравнивая его с сигналами датчика температуры воздуха на впуске (IAT), датчика абсолютного давления в коллекторе (MAP), датчика положения дроссельной заслонки (TPS) и некоторых других.Если сигнал от датчика массового расхода воздуха ниже или выше ожидаемого, ЕСМ обнаруживает неисправность и сохраняет код P0101 в своей памяти. Во многих автомобилях сигнал массового расхода воздуха используется для определения режима переключения автоматической коробки передач. Часто, если есть проблема с датчиком массового расхода воздуха, АКПП может переключаться по-другому. Если датчик массового расхода воздуха неисправен, замена его на деталь OEM гарантирует, что дальнейшие проблемы не будут вызваны неправильной деталью.

Q: 2004 Chevy Astro van чувствует себя вялым при более чем половине дроссельной заслонки; прогнал диагностику, всплыли коды P0101 и P0300.Что могло вызвать это?

A: Проверьте короткую и длинную обрезки топлива и показания датчика массового расхода воздуха с помощью диагностического прибора при разных оборотах. Проверьте корпус дроссельной заслонки и очистите его, если он загрязнен. Проверьте и при необходимости очистите датчик массового расхода воздуха. Проверьте жгут проводов датчика массового расхода воздуха и разъем на предмет плохого контакта или повреждений. Проверьте противодавление выхлопных газов при засорении каталитического нейтрализатора; Это распространенная проблема.

Q: 2001 Volvo с кодом P0101. Не удалось найти утечки вакуума; датчик массового расхода воздуха выглядит чистым, что еще может вызвать этот код?

A: Проверить корпус дроссельной заслонки, если он загрязнен, очистить.Проверьте разъемы и проводку датчика массового расхода воздуха. Если у вас есть диагностический прибор, посмотрите на короткие номера топливной корректировки на высоких и низких оборотах. Если короткая регулировка подачи топлива (STFT) становится обедненной на низких оборотах, это признак утечки вакуума. Негерметичный продувочный клапан, а также вакуумный усилитель тормозов могут также вызывают эту проблему. Проверить датчик MAP; он используется для проверки работоспособности датчика массового расхода воздуха. Если датчик MAP неисправен, это также может вызвать код P0101.



Код P0171 — слишком бедная система: симптомы, причины, общие проблемы, диагностика

Код неисправности OBDII P0171 — Система слишком бедная (банк 1) означает, что воздушно-топливная смесь двигателя слишком бедная или слишком много воздуха и слишком мало топлива. Вождение автомобиля с кодом P0171 со временем может привести к большему повреждению двигателя, так как, когда двигатель работает на обедненной смеси, температура сгорания выше.

Симптомы:

Когда двигатель работает на обедненной смеси, ему не хватает мощности, и он может заглохнуть при остановке автомобиля перед знаком «Стоп». Ускорение также может казаться медленным. Двигатель может работать с перебоями на холостом ходу. Если этот код вызван утечкой вакуума, двигатель может издавать шипение. Подробнее об утечках вакуума.Двигатель также может быть сложно запустить. Еще одним признаком обедненной работы двигателя является детонация или детонация (свист) в двигателе под нагрузкой или при ускорении в гору.

Причины:

Общие причины включают:
— Утечки вакуума
— Засоренный или неисправный датчик массового расхода воздуха (MAF)
— Неисправный клапан PCV или другие части системы PCV
— Заклинило открытый продувочный клапан / соленоид
— Неисправный датчик кислорода
— Неправильная установка послепродажного обслуживания впуск
— Низкое давление топлива
— Каталитический нейтрализатор забит

Как диагностируется код P0171:

С помощью хорошего диагностического прибора, который показывает данные в реальном времени, диагностировать код P0171 довольно просто. Без сканирующего прибора единственный способ найти проблему — это проверить основы и изучить общие проблемы с вашей конкретной маркой, годом и моделью автомобиля. Мы провели небольшое исследование и опубликовали общие проблемы для некоторых автомобилей, читайте дальше. Лучшее место для диагностики вашего автомобиля — это местный дилер. Его специалисты прошли заводское обучение и знают общие проблемы с автомобилями, которые они обслуживают.
Основные проверки под капотом включают: правильно ли закрыт корпус воздушного фильтра? Есть ли трещины на воздухозаборнике? Отсоединены ли какие-либо вакуумные линии или шланги?

Реклама — Продолжить чтение ниже

Если у вас есть диагностический прибор, проверьте показания краткосрочной корректировки топливоподачи (STFT) и долгосрочной корректировки топливоподачи (LTFT) на холостом ходу и при более высоких оборотах (подробнее о корректировках топливоподачи см. Ниже).Обычно и LTFT, и STFT должны быть близки к нулю. Если STFT на холостом ходу поднимается выше плюс 15-20%, но падает на более высоких оборотах, скорее всего, у вас есть утечка вакуума. Если STFT близок к нулю на холостом ходу, но повышается до 15-20% при более высоких оборотах, проблема может быть вызвана неисправным датчиком массового расхода воздуха, засорением каталитического нейтрализатора или низким давлением топлива (неисправный топливный насос). Подробнее об использовании диагностического прибора здесь.

Что такое всасывающая или вакуумная утечка?

Утечка воздуха в любом месте между впуском двигателя и датчиком массового расхода воздуха часто называется «утечкой вакуума» или «утечкой на впуске».Распространенные примеры утечек вакуума включают разрыв или трещину на впускном башмаке, протекающие прокладки впускного коллектора, застрявший или неисправный клапан PCV или разорванный шланг PCV, треснувший или отсоединенный вакуумный трубопровод. Подробнее: Утечки вакуума: общие источники, симптомы, ремонт. Вот несколько примеров утечек всасывания или вакуума:

Общие проблемы, вызывающие код P0171 в разных автомобилях:

Один из способов найти общую проблему с вашей маркой и моделью — это поиск бюллетеней технического обслуживания (TSB).Например, бюллетень технического обслуживания Toyota (TSB) EG045-07 для Toyota Corolla и Matrix 2003-08 с двигателем 1ZZ-FE упоминает протекающие прокладки впускного коллектора при температуре ниже точки замерзания как возможную причину появления кода P0171 наряду с некоторыми другими коды. Если протекающая прокладка коллектора подтверждается после этапов диагностики, ее необходимо заменить.
Многие автомобили Ford, включая Explorer и F150, имели общую проблему с протекающими прокладками между верхним и нижним впускными коллекторами, вызывая коды P0171 и P0174.Ford выпустил бюллетень технического обслуживания по этому поводу. Еще одна известная проблема в автомобилях Ford — это утечка вакуума из-за прорезавшегося резинового колена на одной из вакуумных линий в задней части впускного коллектора. Некоторые автомобили Mazda V6 (Tribute, MPV) также имеют эту проблему, когда резиновое колено в задней части впускного коллектора разрывается, вызывая утечку вакуума и код P0171.
Треснувший или разорванный воздухозаборник. является частой причиной появления кода P0171 во многих автомобилях BMW.
В TSB Nissan для Nissan Maxima от марта 2004 г. упоминается замена датчика воздуха / топлива в качестве решения для кода P0171.Другой TSB Ford для ряда автомобилей Ford конца 90-х годов описывает проблему с загрязнением датчика массового расхода воздуха, когда оба кода, P0171 и P0174, должны появиться вместе.
Проблемы с датчиком массового расхода воздуха (MAF), вызывающие код P0171, довольно часто встречаются во многих транспортных средствах. Иногда датчик массового расхода воздуха просто загрязняется и дает ложные показания расхода воздуха, что приводит к работе двигателя на обедненной смеси. Очистка датчика воздушного потока может временно помочь; правильный ремонт предполагает замену неисправного датчика массового расхода воздуха. Датчик массового расхода воздуха можно проверить с помощью диагностического прибора; подробнее здесь: датчик массового расхода воздуха.

Базовые автомобильные знания: как регулируется соотношение воздух / топливо

Схема управления балансировкой топлива

В современных автомобилях с системой OBD-II, передний кислородный датчик измеряет количество кислорода в выхлопных газах и выдает сигнал обратной связи в компьютер двигателя (PCM), является ли топливовоздушная смесь, поступающая в двигатель, бедной (слишком много воздуха и слишком мало топлива) или богатый (слишком много топлива и слишком мало воздуха).
PCM регулирует подачу топлива, чтобы поддерживать соотношение воздух / топливо на оптимальном уровне, который составляет 14,7 / 1 (14,7 частей воздуха на 1 часть топлива).
Этот процесс является непрерывным: когда датчик кислорода обнаруживает слишком много кислорода, PCM предполагает, что смесь воздух / топливо бедная и добавляет больше топлива. Когда в выхлопе слишком мало кислорода (топливно-воздушная смесь на обогащена ), PCM уменьшает количество топлива. На техническом языке эта регулировка называется корректировка топлива .

Что такое регулировка уровня топлива?

Как только передний кислородный датчик нагревается после холодного пуска, компьютер двигателя (PCM) начинает циклически изменять соотношение воздух / топливо между небольшой бедной и немного богатой. Этот цикл происходит примерно один или два раза в секунду. Эта регулировка соотношения воздух / топливо называется краткосрочной корректировкой топлива (STFT) . Вы можете увидеть это циклическое изменение на графике здесь: датчик кислорода. Типичный диагностический прибор отображает STFT в процентах со знаком «-» или «+» в режиме Live Data.Например, если в вашем автомобиле была небольшая утечка вакуума, вы бы увидели, что STFT возрастает до + 10-15% на холостом ходу и падает до + 3-5% при более высоких оборотах.

Существует также долгосрочная корректировка топливоподачи (LTFT) , которая представляет собой долгосрочную компенсацию базового соотношения воздух / топливо. Например, если со временем в двигателе постепенно возникает небольшая утечка вакуума, это приводит к обеднению двигателя (больше воздуха и меньше топлива). В долгосрочной перспективе компьютер двигателя (PCM) компенсирует это состояние, регулируя долгосрочную корректировку топлива (LTFT), чтобы добавить больше топлива.Долгосрочная корректировка топливоподачи также отображается на диагностическом приборе в процентах со знаком «-» или «+». Например, долгосрочная коррекция подачи топлива (LTFT) на + 5% означает, что PCM добавил немного топлива, хотя 5% считается нормальным диапазоном.

Как устанавливается код P0171

Если топливно-воздушная смесь становится слишком бедной и компьютер двигателя больше не может компенсировать это состояние путем добавления топлива, компьютер двигателя (PCM) включает световой индикатор «Check Engine» (MIL) и устанавливает код неисправности P0171 — System Too Lean for Bank 1 и (или) P0174 — System Too Lean Bank 2, в зависимости от того, какой из рядов цилиндров затронут. PCM также сохраняет стоп-кадр параметров (температура двигателя, скорость автомобиля, показания корректировки топливоподачи и т. Д.) В то время, когда был установлен код. Обычно код P0171 устанавливается, когда корректировка краткосрочной корректировки топливоподачи (STFT) или долгосрочной корректировки топливоподачи (LTFT) превышает определенное значение (обычно + 25%). Подробнее о стоп-кадре.

Что означает термин «Банк 1»?

Термины «Ряд 1» и «Ряд 2» относятся к отдельной группе цилиндров двигателя.Большинство рядных 4-цилиндровых двигателей имеют только один блок: ряд 1. В двигателях V6 и V8, а также в некоторых 4-цилиндровых двигателях двигатель «разделен» на две группы цилиндров; Банк 1 — это тот, который включает цилиндр номер один. Чтобы узнать, какой банк 1 и банк 2 в вашем автомобиле, вы можете найти его в руководстве по ремонту или погуглить, указав год, марку, модель и объем двигателя вашего автомобиля.

Вопрос: Что могло вызвать код P0171 на Toyota Corolla 2002 года выпуска?

A: В Corolla 2002 года код P0171 часто вызван неисправным или грязным датчиком массового расхода воздуха или утечками вакуума.Ваш механик может проверить отсутствие утечек вакуума и проверить датчик массового расхода воздуха с помощью диагностического прибора. Если датчик массового расхода воздуха вызывает обедненную смесь, его очистка может помочь, но обычно его необходимо заменить. Могут быть и другие причины, но наиболее распространенными являются датчик расхода воздуха и утечки вакуума.


Разбираемся с вашими датчиками: Датчик массового расхода воздуха

Полное название Датчик массового расхода воздуха, более известный как датчик массового расхода воздуха, счетчик воздуха или иногда просто массовый расход воздуха.Хотя у него может быть много названий, он отвечает только за одну, но все же очень важную работу: измерение количества воздуха, поступающего в двигатель. Затем ECU или PCM использует эту информацию для расчета правильного количества топлива, необходимого для оптимального соотношения воздух-топливо. Конечно, без этой информации ЭБУ не сможет точно управлять впрыском топлива, в результате чего двигатель будет либо грубо работать на холостом ходу, либо, что еще хуже, совсем не работать. Поскольку ряд других деталей, например, неисправные свечи зажигания, провода, форсунки и т. Д., Могут отражать эти симптомы, неисправность датчика массового расхода воздуха может быть трудно диагностировать.Однако, получив некоторые советы экспертов от производителя оригинального оборудования Delphi Technologies, вы узнаете, что его вызывает, на что обращать внимание и, что особенно важно, как его заменить в случае выхода из строя.

Как работает датчик массового расхода воздуха?

Устанавливается во впускную трубу между корпусом воздушного фильтра и впускным коллектором, большинство датчиков массового расхода воздуха работают по принципу горячего провода. Проще говоря, у MAF есть два измерительных провода. Один нагревается электрическим током, другой — нет. Когда воздух проходит через нагретую проволоку, он охлаждается.Когда разница температур между двумя чувствительными проводами изменяется, датчик массового расхода воздуха автоматически увеличивает или уменьшает ток, подаваемый на нагретый провод, для компенсации. Затем ток изменяется на частоту или напряжение, которое отправляется в ЭБУ и интерпретируется как воздушный поток. Соответственно регулируется количество воздуха, поступающего в двигатель.

Почему выходят из строя датчики массового расхода воздуха?

Поскольку датчик массового расхода воздуха отвечает за измерение потока воздуха в двигатель, через них проходит много воздуха.Фактически, через двигатель может пройти более 9000 литров воздуха на каждый литр использованного топлива. Это много воздуха! А вместе с этим возникает вероятность сильного заражения. Пыль, грязь и другой мусор могут попасть в датчик и являются одной из основных причин отказа массового расхода воздуха.

Такое загрязнение может произойти уже через 18 000–25 000 миль, в зависимости от модели автомобиля. Например, на небольших или компактных автомобилях датчик массового расхода воздуха может засоряться быстрее, так как он расположен в меньшем моторном отсеке, подверженном большему риску в критических зонах (потоки масляных паров и продукты сгорания).В этом случае замена становится эквивалентом длительного обслуживания с заменой масла… это почти становится сервисным ремонтом.

К другим типичным неисправностям относятся:

  • Ошибка контакта в электрических соединениях
  • Измерительные элементы повреждены
  • Механическое повреждение в результате вибрации или аварии
  • Отклонение измерительного элемента (за пределы измерительной рамки)

На что обращать внимание при неисправном датчике массового расхода воздуха?

Когда датчик массового расхода воздуха выходит из строя, двигатель не знает, какое количество топлива нужно добавить, что вызывает несколько общих признаков:

  • Контрольная лампа двигателя : как и в случае с большинством компонентов системы управления двигателем, проблема с датчиком массового расхода воздуха часто приводит к включению контрольной лампы двигателя.
  • Двигатель работает на холостом ходу на разогретой или обедненной смеси под нагрузкой : обычно это указывает на загрязненный горячий провод.
  • Двигатель работает на богатой или обедненной смеси: вызвано тем, что MA F постоянно неверно сообщает о потоке воздуха в двигатель — для подтверждения этого потребуется процедура диагностики.
  • Неровный холостой ход или глохнет : вышедший из строя датчик массового расхода воздуха не отправляет информацию о воздушном потоке в ЭБУ, что мешает ему точно контролировать топливо.
  • Чрезмерная вибрация в неподвижном состоянии.
  • Обороты заметно меняются без участия водителя.

Поиск и устранение неисправностей датчика массового расхода воздуха

Чтобы определить источник неисправности датчика массового расхода воздуха, выполните следующие действия:

  • Проведите электронную проверку датчика массового расхода воздуха и прочитайте коды неисправностей с помощью диагностического прибора.
  • Проверьте разъем на правильность посадки и хороший контакт.
  • Проверить датчик массового расхода воздуха и измерительные элементы на предмет повреждений.
  • Проверить подачу напряжения при включенном зажигании (необходима схема подключения контактов).Ref. значение: 7,5-14 В.
  • Проверьте выходное напряжение или частоту при работающем двигателе (необходима принципиальная схема для назначения контактов). Ref. значение: 0,5 В соотв. 0 — 12.000 Гц.
  • Проверьте соединительные кабели между снятым разъемом блока управления и разъемом датчика передачи (необходима принципиальная схема для болевого назначения). Ref. значение: прибл. 0 ом.

Коды общих неисправностей

Общие коды неисправностей и причины включают:

  • P0100 : Неисправность цепи массового расхода воздуха
  • P0101 : Диапазон / рабочие характеристики цепи массового расхода воздуха
  • P0102 : Низкий входной сигнал цепи массового расхода воздуха
  • P0103 : Высокий входной сигнал цепи массового расхода воздуха
  • P0104 : Прерывистый сигнал цепи массового расхода воздуха
  • P0171 Слишком бедная система (банк 1) и P0174 слишком бедная система (банк 2) также часто возникают из-за неисправного или загрязненного датчика массового расхода воздуха.

Как заменить неисправный датчик массового расхода воздуха?

После того, как вы определили, что датчик массового расхода воздуха может быть неисправен, рекомендуется выполнить следующие простые шаги:

  • Для начала подключите диагностический прибор к вашему автомобилю. Выберите правильную марку, модель, год и код двигателя автомобиля, над которым вы работаете. Запишите коды неисправностей и проверьте параметры данных в реальном времени для датчика массового расхода воздуха. Затем выйдите из диагностической программы и выключите зажигание.
  • Вам также необходимо проверить питание, заземление и проводку.Подключите осциллограф. В идеале следует использовать разрывной провод, чтобы предотвратить повреждение изоляции проводки и появление проблем с проводкой в ​​будущем. Чтобы получить показания, откройте дроссельную заслонку и проследите за закономерностью.
  • Как только будет определено, что датчик массового расхода воздуха неисправен, его необходимо заменить. Снимите соединитель, а затем крепежные винты. Затем выньте датчик из корпуса.
  • Осмотрите расходомерную трубку, чтобы убедиться в отсутствии трещин в пластиковом корпусе. Если да, вам нужно будет заменить весь блок, а не только датчик.Если в расходомерной трубке нет трещин, вы можете заменить только датчик.
  • Помните, что важно обращаться только с разъемом датчика. Никогда не прикасайтесь к электронике, так как это может повредить датчик.
  • Осторожно вставьте новый сенсорный зонд в расходомерную трубку, затем затяните крепеж и замените соединитель.
  • Подсоедините диагностический комплект и удалите все коды неисправностей. Запустите двигатель и еще раз проверьте наличие новых кодов неисправностей. Закройте диагностическое ПО и выключите зажигание.Наконец, убедитесь, что индикатор проверки двигателя погас, затем проведите дорожное испытание.

3 признака неисправности датчика массового расхода воздуха — State Street Auto Repair

Датчик массового расхода воздуха (MAF), часть электронной системы впрыска топлива вашего автомобиля, отвечает за расчет общего количества воздуха, поступающего в двигатель. Загрязненный или неисправный датчик массового расхода воздуха не может правильно измерить расход воздуха. Это приводит к тому, что компьютер двигателя неправильно рассчитывает количество впрыскиваемого топлива, что приводит к дополнительному повреждению вашего двигателя.Есть 3 ключевых признака, которые могут указывать на то, что пора проверить датчик массового расхода воздуха.

Остановка, рывки или колебания во время ускорения

Неисправный датчик массового расхода воздуха может привести к тому, что в камере сгорания останется слишком много топлива, что приведет к несвоевременным детонациям. Вы испытаете плохую управляемость, например колебания или резкие рывки, особенно во время ускорения. Это могло произойти при ускорении на съезде с шоссе или при движении по городской улице. Эти проблемы могут создавать опасные ситуации, приводящие к несчастным случаям и травмам.Если вы испытываете какие-либо из этих симптомов, вам следует как можно скорее осмотреть свой автомобиль.

Слишком богатое соотношение воздух-топливо

«Работа на богатой смеси» означает, что в каждом цилиндре сгорания слишком много топлива и недостаточно воздуха. Признаки того, что ваш автомобиль работает на богатой смеси, включают:

Эти проблемы могут возникнуть, когда датчик массового расхода воздуха поврежден или его провода покрыты грязью. Он не может точно измерить воздушный поток, поэтому отправляет неверную информацию в PCM. Когда он переоценивает воздушный поток, PCM выпускает слишком много топлива.В большинстве случаев проблему можно решить, очистив провода датчика массового расхода воздуха.

соотношение воздух-топливо слишком бедное

«обедненная смесь» — противоположность богатой — означает, что в вашем автомобиле слишком мало топлива и слишком много воздуха в каждой камере сгорания. Как и при работе на богатой смеси, датчик массового расхода воздуха отправляет в PCM неточную информацию. На этот раз заниженная оценка воздушного потока вместо его переоценки.