Гальванопара металлов: Допустимые и недопустимые контакты металлов. Популярные метрические и дюймовые резьбы / Хабр

Допустимые и недопустимые контакты металлов. Популярные метрические и дюймовые резьбы / Хабр

Электронику часто называют наукой о контактах. Многие знают, что нельзя скручивать между собой медный и алюминиевый провода. Медная шина заземления или латунная стойка для платы плохо сочетаются с оцинкованными винтиками, купленными в ближайшем строительном супермаркете. Почему? Коррозия может уничтожить электрический контакт, и прибор перестанет работать. Если это защитное заземление корпуса, то прибор продолжит работу, но будет небезопасен. Голая алюминиевая деталь вообще может постепенно превратиться в прах, если к ней приложить даже низковольтное напряжение.

Доступные нам металлы не ограничиваются только медью и алюминием, существуют различные стали, олово, цинк, никель, хром, а также их сплавы. И далеко не все они сочетаются между собой даже в комнатных условиях, не говоря уже о жёстких атмосферных или морской воде.

В советских ГОСТах было написано почти всё о допустимых контактах металлов, но если изучение чёрно-белых таблиц из 1000 ячеек мелким шрифтом утомляет, то правильный ответ на «медный» вопрос — нержавейка, либо никелированная сталь, из которой, кстати, и сделан почти весь «компьютерный» крепёж. В эпоху чёрно-белого телевидения были другие понятия об удобстве интерфейса, поэтому для уважаемых читателей (и для себя заодно) автор приготовил цветную шпаргалку.

И, раз уж зашла речь о металлообработке, заодно автор привёл таблицу с популярными в электронике резьбами и соответствующими свёрлами, отобрав из объёмных источников наиболее релевантное по тематике портала. Не все же здесь слесари и металлурги, экономьте своё время.

Преамбула

Да, в век 3D-печати популярность напильника с лобзиком несколько потускнела. Но клетка Фарадея для РЭА по-прежнему является преимуществом, не забываем и про защитное заземление. Да, для печати корпусов РЭА уже доступен электропроводный (conductive) ABS-пластик, но судя по источнику, его удельное сопротивление примерно в миллион раз больше меди. Дескать, пыль уже не липнет, но для заземления всё равно многовато. Напечатать же стальные детали корпуса ПК в домашних условиях пока никак невозможно, да мы и алюминий-то с оловом никак не освоим…

Что же делать? Нашему брату приходится действовать методом Микеланджело, используя для творчества вместо каменной глыбы купленные в DIY-магазине заготовки, либо вообще старые корпуса ПК. Работая как-то с корпусом от старого сервера IBM из шикарной миллиметровой стали, автор впал в ступор, потому что имеющаяся резьба была крупнее М3, но мельче #6-32 (позже выяснилось, что это М3,5). Зачем вообще понадобилось в 2003-м году использовать метизы М3,5, останется загадкой, но о существовании дробной метрической резьбы автор даже не подозревал.

UPD
Для моддеров, кстати, рынок предлагает новые, удобные инструменты арсенала домашней мастерской, и про один из них (осциллорез) я рассказываю в отдельной публикации. Арсенал принадлежностей прекрасно дополнит более привычные циркулярные мини-пилы (aka «дремели»), а отсутствие эффекта «запрессовки зубьев» упростит обработку вязких металлов типа меди и алюминия. Инструмент лёгкий, не такой неуклюжий и опасный, как «болгарка». Можно пилить металл практически на уровне носа и без риска получить рубящий удар от заклинившего или осколок от «взорвавшегося» диска. А так бывает в красочно описанных уважаемыми читателями случаях с УШМ: 300-граммовый блин «болгарки» делает 200 оборотов в секунду, потребляя до 2кВт электричества, и требует чуть ли не костюм сапёра.

Работающий же осциллорез травматологи упирают себе пильной стороной прямо в ладонь, чтобы успокоить пришедшего на снятие гипсовой повязки пациента… Впрочем, вернёмся к нашим металлам.

Допустимые и недопустимые контакты металлов по ГОСТ 9.005-72

DISCLAIMER: Предоставляется «как есть». Если уважаемый читатель занимается моделизмом, автомобилизмом или робототехникой, в ГОСТе также приведены: Таблица №2 для жестких и очень жестких атмосферных условий, Таблица №3 для контактов, находящихся в морской воде. Ниже я предлагаю выдержку из Таблицы №1 для средних атмосферных (т.е. комнатных) условий. Буква «А» означает «ограниченно допустимый в атмосферных условиях», подробности в самом ГОСТе.

Кликабельно (спасибо, НЛО):

UPD:
Ещё цветные шпаргалки (благодарю greatvovan):
для средних атмосферных условий
для жестких и очень жестких атмосферных условий

Пара слов о металлах

Металлурги, поправляйте, если что не так. Коррозия очень объёмная и сложная тема, и я не претендую на полноту её освещения. Я лишь даю выборочные зарисовки, чтобы сформировать у читателя нужные ассоциативные ряды.

Оцинковка

Оцинкованная сталь — основная рабочая лошадка народного хозяйства. В виде различных метизов «оцинковка» встречается в магазинах стройматериалов гораздо больше, чем, например, «премиумная» нержавейка. Фабричные корпуса ПК, технологические ящички и шкафчики для оборудования чаще всего выполнены из оцинкованной холоднокатанной стали толщиной порядка 1мм (чем дешевле корпус, тем тоньше лист). «Оцинковка» достаточно прочна и хорошо проводит ток, в промышленности требуется заземление. Если разрезать корпус, то под слоем краски какого-нибудь унылого RAL7035 будет тончайшее цинковое покрытие, а под ним, скорее всего, та самая углеродистая холоднокатанная сталь. Лично у меня нет причин не доверять ГОСТ 9.005-72, поэтому после колхозинга фабричных изделий вообще не рекомендую делать электрический контакт на месте среза стали, лучше постарайтесь сберечь цинковое покрытие.

А порезы и шрамы можно закрасить из балончика того же унылого RAL7035 (только заплати €10 и попробуй его найти ещё). Я пользовался автомобильной эмалью нейтрального белого или чёрного цвета (флакончик с кисточной, €2 в любом автомагазине).


Алюминий

Алюминий и его сплавы бывают анодированные (с защитным слоем) и обычные (неанодированные). Алюминий легко обрабатывать в домашних условиях, но помните о коррозии. Не используйте голый алюминий в качестве проводника даже с низковольтным напряжением, иначе ток медленно обратит деталь в прах. Обработанным в мастерской алюминиевым и дюралюминиевым деталям показана полная

эквипотенциальность (наведённые полями токи вроде бы по фиг, заземлять тоже можно). Алюминий совместим с цинковым покрытием, но для контакта с медью, «голой» или никелированной сталью требуется оловянная «прокладка». Ограниченно допустим контакт алюминия с нержавейкой в атмосферных условиях. Для простоты можно принять, что при контакте с другими металлами и покрытиями алюминий будет корродировать сам по себе, без помощи внешнего электричества.

Витая пара из

омедненного алюминия (Copper Clad/Coated Aluminium, CCA) — это отдельная история, в домашних условиях кабель всё равно не производится.


Медь

Медь мягкая и довольно неаппетитно окисляется на воздухе, поэтому изделия из меди заключают в герметичную оболочку или лакируют. Латунные бляхи солдатских ремней и стойки для электронных печатных плат лучше сопротивляются окислению и выглядят аппетитнее позеленевшей меди, особенно если их периодически полировать (я про бляхи, конечно). При этом ни медь, ни её сплав с цинком (латунь) «не дружат» с чистым цинком и его покрытиями. Зато медь совмещается с хромом, никелем и нержавейкой. А если вы держите в руках какую-нибудь клемму, то она наверняка из лужёной (покрытой оловом) меди.


Олово

Олово мягкое, но зато стойкое к коррозии (в комнатных условиях) и электрически совместимое почти со всеми, кроме чугуна, низколегированных и углеродистых сталей, магния.

Не стоит паять оловом и бериллий, будьте внимательны при сборке домашнего ядерного реактора. Олово используют, чтобы из недопустимого электрического контакта получить допустимый, т.е. в качестве «прокладки». Клеммы из лужёной меди — отличный пример.
UPD:
На холод изделие выносить нельзя, а при минусовых температурах лучше не эксплуатировать вообще.


Никель

Никелем покрыты блестящие «компьютерные» винтики. Такое покрытие совместимо с медью и бронзой, латунью, оловом, хромом и нержавеющей сталью. Никель несовместим с цинком и алюминием (для алюминия лучше контакт с нержавеющей сталью, см. ниже).


Нержавейка

Нержавеющая сталь — королева металлов сталей: прочная, пластичная, стойкая к коррозии, электропроводная, круто выглядит. Слишком тугая, чтобы резать и гнуть её дома в промышленных масштабах. Хромистые и хромисто-никелевые нержавейки электрически плохо совместимы с цинком и «голой» сталью, зато дают надёжный контакт с медью без помощи олова.

Алюминий, а также азотированная, оксидированная и фосфатированная низколегированная сталь ограниченно совместимы при стандартных атмосферных условиях. Нержавейка марки А2 не «магнитится», но существуют и нержавеющие стали с магнитными свойствами. Магнитные свойства не влияют на коррозионную стойкость нержавеющей стали.

Пара слов про case modding

Если вы занимались сборкой ПК, то наверняка знаете, что болтики для монтажа приводов CD/DVD, «ноутбучных» дисков 2.5″ и флоппи-дисководов (ха-ха) используют метрическую резьбу M3. В корпусах ПК и жёстких дисках 3.5″ используется более грубая дюймовая резьба #6-32 UNC. Почему? Мягкий металл любит более грубую резьбу, к тому же адепты дюймовой системы пока лидируют на рынке технологий. Стойка 19″ использует (вы не поверите) дюймы в качестве основной меры, однако для монтажа оборудования я встречал только оцинкованные клетевые шайбы и винты с метрической резьбой М6. Дюймово-метрический дуализм в технологиях…

Обустройство своей инженерной кухни я начал с того, что купил защитные очки, набор качественных свёрл по металлу, небольшой вороток и метчики на резьбы M3 и #6-32 UNC, а заодно M4 и M6. Плашки не понадобились.

Популярые виды резьбы, используемой в компьютерной технике
ГОСТ 19257-73 рекомендует использовать следующие диаметры свёрл для металлов. Наверное, стоит учитывать и количество метчиков в наборе: чем твёрже материал, тем больше необходимость в «предварительных» метчиках. У меня их по три штуки, два «грубых» и один «финишный». А как правильно, кстати?

UPD
А как правильно — читайте комментарии, на публикацию-таки зашли мастера слесарного дела, только я не успел отсортировать всю информацию. Пользователь golf2109 любезно принёс сюда прямо из мастерской два правых столбца таблицы для обозначения того, как мягкость (вязкость) металла влияет на диаметр отверстия под резьбу, благодарю за поддержку.

Диаметр резьбы Стандартный шаг, мм Диаметр сверла, мм
ГОСТ Fe Al
M2 0. 4 1,6 1.5* (-0.1)
M2,5 0.45 2.0 1.8* (-0.2)
M3 0.5 2.5 2.3 (-0.2)
M3.5 0.6 2.9 2.7* (-0.2)
M4 0.7 3.3 3.2 3.0 (-0.3)
M5 0.8 4.2 3.9 (-0.3)
M6 1.0 5.0 4.9 4.6 (-0.4)
M8 1.25 6.8 6.7 6.3 (-0.5)
M10 1.5 8.5 8.0 (-0.5)
#6-32 UNC 0.794 2.85 2.7* 2.5* (-0.35)

* Я рискнул прикинуть калибры двух дополнительных свёрл для стали и алюминия там, где по ним у меня нет данных в источниках. Обратите внимание, резьба #6-32 UNC по наружному диаметру находится между M3 и M4, а по шагу резьбы вообще ближе к M5.

UPD
Если сверлите что-то толще миллиметрового листа, читайте спойлер про СОЖ.

про СОЖ

Довольно большое значение и при сверлении, и при нарезании резьб имеет смазка и охлаждение обрабатываемых деталей и инструмента. Настоятельно рекомендую при подаче сверла не спешить и пользоваться техническими жидкостями. Режущая кромка сверла легко перегревается от сухой детали, и получается металлический отпуск. Поверьте, такой отпуск не нужен: он вызывает необратимые изменения в структуре металла и деградацию его прочностных свойств (сверло тупится гораздо быстрее, чем должно). Что делать? Вот несколько советов, которые автор встречал в разных местах.
Не сверлите большим сверлом сразу, разбейте операции примерно по 3мм: т.е. отверстие 10мм сперва проходим 3мм, потом 6мм.
Хорошенько отметьте отверстие керном. Одолжите у ребёнка пластилин, сделайте бортик вокруг планируемого отверстия так, чтобы получился мини-бассейн размером с монету. Если под рукой нет *вообще ничего*, хорошенько смешайте ложку подсолнечного масла с ложкой жидкого мыла и налейте в этот мини-бассейн, хуже не будет. Но если нужно просверлить насквозь, скажем, гирю 16кг, погуглите книгу народных рецептов «сож своими руками». Желаю всем начинающим удачной пенетрации: как говорится, берегите ваши свёрла-метчики смолоду, ведь их ждут новые идеи и интересные изобретения!

На известной китайской площадке можно приобрести «пальцевые» винтики (thumb screw), причём и на #6-32, и на M3. Материал и цвет разный.

Источники

» ГОСТ 9.005-72. Единая система защиты от коррозии и старения. Машины, приборы и другие технические изделия. Допустимые и недопустимые контакты металлов. Общие требования.
» ГОСТ 19257-73. Отверстия под нарезание метрической резьбы. Диаметры.
» Unified Coarse Thread ANSI B1.1 (резьбы UNC ANSI B1.1).

Таблица совместимости металлов

Металлы, в отноше-
нии которых представ-
лены данные в таблице по подвержен-
ности их коррозии

Соот-ноше-ние пло-щади метал-ла к дру-гим метал-лам табли-цы

Маг-ний

Цинк Алю-ми-ний Кад-
мий
Угле-ро-дис-тая сталь Низ-ко-
леги-ро-ван-ная сталь
Ли-тей-
ная сталь
Хро-ми-
ро-ван-
ная сталь
Сви-нец Оло-во Медь  Нер-жа-
вею-щая сталь
Магний Низкое   С С С С С С С С С С С
Высокое   У У У С С С С   С С С
Цинк Низкое У   У У С С С С С С С С
Высокое Н   Н Н Н Н Н Н Н Н Н Н
Алюминий Низкое У Н   Н У   С   С   С С
Высокое Н У   Н Н Н У У С С С У
Кадмий Низкое Н Н Н   С С С С С С С С
Высокое У Н Н   Н Н Н Н Н Н Н Н
Углеродистая
сталь
Низкое Н Н Н Н   У С С С С С С
Высокое Н Н Н Н   Н Н Н Н Н Н Н
Низколеги-
рованная
сталь
Низкое Н Н Н Н Н   Н С С С С С
Высокое Н Н Н Н Н   Н Н Н Н Н Н
Литейная
сталь
Низкое Н Н Н Н Н У   С С С С С
Высокое Н Н Н Н Н Н   Н Н Н    
Хромирован
ная
сталь
Низкое Н Н Н Н Н Н Н   У У С С
Высокое Н Н Н Н Н Н Н   Н Н   Н
Свинец Низкое Н Н Н Н Н Н Н Н   Н Н  
Высокое Н Н Н Н Н Н У Н   Н   Н
Олово Низкое Н Н Н Н Н Н   Н Н      
Высокое Н Н Н Н Н Н Н У Н      
Медь Низкое Н Н Н Н Н Н   У У С    
Высокое Н Н Н Н Н Н Н   Н У   Н
Нержавеющая
сталь
Низкое Н Н Н Н   Н Н   Н Н    
Высокое Н Н Н Н Н Н Н У У У Н  

 

В 1 столбце таблицы представлены металлы, которые подвергаются или не подвергаются коррозии с металлами указанными в остальных столбцах таблицы и пропорция соотношения площадей металла, указанного в 1 столбце, к металлам в остальных столбцах таблицы.

Краткое обозначение С, У, Н в таблице означает:

  1. С – сильная и быстрая коррозия металла;
  2. У – умеренная коррозия металла;
  3. Н – Несущественная или ничтожная коррозия металла

Гальваническая коррозия — AMPP

Гальваническая коррозия (также называемая «коррозия разнородных металлов» или ошибочно «электролиз») относится к коррозионным повреждениям, вызванным соединением двух разнородных материалов в коррозионно-активном электролите. Это происходит, когда два (или более) разнородных металла приводят в электрический контакт под водой. Когда образуется гальваническая пара, один из металлов в паре становится анодом и подвергается коррозии быстрее, чем сам по себе, а другой становится катодом и подвергается коррозии медленнее, чем по отдельности.

Любой (или оба) металл в паре может или не может подвергаться коррозии сам по себе (сами). Однако при контакте с разнородным металлом скорость собственной коррозии изменится:
Коррозия анода ускорится Коррозия катода замедлится или даже прекратится. Гальваническая связь лежит в основе многих методов мониторинга коррозии

Движущей силой коррозии является разность потенциалов между различными материалами. Биметаллическая движущая сила была открыта в конце восемнадцатого века Луиджи Гальвани в серии экспериментов с обнаженными мышцами и нервами лягушки, которые сокращались при подключении к биметаллическому проводнику. Позднее этот принцип был применен на практике Алессандро Вольта, который построил в 1800 году первую электрическую ячейку или батарею: ряд металлических дисков двух видов, разделенных картонными дисками, пропитанными растворами кислот или солей. Это основа всех современных аккумуляторов с жидкостными элементами, и это было чрезвычайно важным научным открытием, потому что это был первый найденный метод генерации постоянного электрического тока.

Этот принцип был также использован для защиты металлических конструкций сэром Хамфри Дэви и Майклом Фарадеем в начале девятнадцатого века. Жертвенная коррозия одного металла, такого как цинк, магний или алюминий, является широко распространенным методом катодной защиты металлических конструкций.

В биметаллической паре менее благородный материал становится анодом этого коррозионного элемента и имеет тенденцию к коррозии с большей скоростью, чем в несвязанном состоянии. Более благородный материал будет действовать как катод в коррозионной ячейке. Гальваническая коррозия может быть одной из наиболее распространенных форм коррозии, а также одной из самых разрушительных.

Следующие примеры иллюстрируют этот тип атаки.
Гальваническая коррозия: винт из нержавеющей стали v шайба из кадмированной стали Гальваническая коррозия внутри горизонтального стабилизатора Гальваническая коррозия Статуи Свободы Контргайка с кадмиевым покрытием.
Относительное благородство материала можно предсказать, измерив его коррозионный потенциал. Хорошо известная гальваническая серия перечисляет относительное благородство некоторых материалов в морской воде. Небольшое отношение площадей анод/катод крайне нежелательно. В этом случае гальванический ток концентрируется на небольшой анодной площади. В этих условиях имеет место быстрая потеря толщины растворяющегося анода. Проблемы гальванической коррозии должны быть решены путем проектирования, чтобы избежать этих проблем в первую очередь. Ячейки гальванической коррозии могут быть созданы на макроскопическом или микроскопическом уровне. На микроструктурном уровне различные фазы или другие особенности микроструктуры могут подвергаться гальваническим токам

Гальваническая коррозия – SSINA

Когда два различных металла связаны вместе в атмосфере или воде , вероятность развития гальванической коррозии можно предсказать с помощью «гальванического ряда».

Фото предоставлено: Boba Jovanovic на Unsplash

Определение

Когда два разных металла или сплава погружаются в коррозионный раствор или постоянно контактируют с влагой, каждый из них приобретает коррозионный потенциал. При наличии условий для гальванической коррозии более благородный металл станет катодом, а более активный металл станет анодом. Измеряемый ток может протекать между анодом и катодом. Если это произойдет, скорость коррозии анода в рабочей среде увеличится, а скорость коррозии катода уменьшится. Повышенная коррозия анода называется «гальванической коррозией».

Гальваническая коррозия иногда используется для продления срока службы материалов (например, цинковые покрытия на углеродистой стали и цинковые аноды в водонагревателях), но, если ее не учитывать и существуют правильные условия, она может привести к неожиданным отказам.

Требования к гальванической коррозии:
Для возникновения гальванической коррозии необходимы три элемента.

  1. Два металла с разным коррозионным потенциалом
  2. Прямой электрический контакт металл-металл
  3. Проводящий раствор электролита (например, вода) должен регулярно соединять два металла. Раствор электролита создает «проводящую дорожку». Это может произойти при регулярном погружении в воду, конденсации, дожде, воздействии тумана или других источников влаги, которые увлажняют и соединяют два металла.

При отсутствии любого из этих элементов гальваническая коррозия невозможна. Если, например, не допустить прямого контакта между двумя металлами (пластмассовая шайба, пленка краски и т. д.) или если на токопроводящем пути имеется какое-либо другое прерывание, гальваническая коррозия невозможна, и каждый металл будет коррозировать со своей нормальной скоростью в эта сервисная среда. На рис. 1 показаны примеры условий, не отвечающих всем требованиям гальванической коррозии.

Рисунок 1

Рисунок 1: Примеры биметаллических комбинаций, когда гальваническая коррозия невозможна

Примеры биметаллических комбинаций, когда гальваническая коррозия невозможна

Коррозию можно предсказать с помощью «гальванического ряда». В специализированных приложениях, например, когда разнородные металлы заделаны в бетон, следует использовать данные о коррозии для этой конкретной среды.