Как определить фазы в трехфазной сети: Чередование фаз в трехфазной сети – что это и как проверить

Содержание

Чередование фаз в трехфазной сети – что это и как проверить

Часто на объектах электроснабжения приходится решать задачу проверки чередования фаз, а также производить фазировку. Обычно эти задачи входят в комплекс работ по согласованию параллельной работы трансформаторов. Хочется поделиться небольшой историей, в которой будут затронуты темы чередования фаз в трехфазной сети и правильной фазировки, а также приборы и методы, использующиеся при этом.

Небольшое вступление

Попалась на глаза история о монтаже электрооборудования, а именно двух масляных трансформаторов. Работы были завершены успешно. В итоге имелась следующая схема электроснабжения. Собственно сами трансформаторы, вводные выключатели, секционные разъединители, две секции шин. Успешно, как считали монтажники, прошли пусконаладочные работы. Стали включать оба трансформатора на параллельную работу и получили короткое замыкание. Естественно, монтажники утверждали, что произвели проверку чередования фаз с обоих источников и все совпадало. Но, о фазировке не было сказано ни слова. А зря! Теперь давайте разберемся подробно, что же пошло не так.

Что собой представляет чередование фаз?

Как известно, в трехфазной сети присутствует три разноименные фазы. Условно они обозначаются как А, В и С. Вспоминая теорию, можно говорить что синусоиды фаз смещены относительно друг друга на 120 градусов. Так вот всего может быть шесть разных порядков чередования, и все они делятся на два вида – прямое и обратное. Прямым чередованием считается следующий порядок – АВС, ВСА и САВ. Обратный порядок будет соответственно СВА, ВАС и АСВ.

Чтобы проверить порядок чередования фаз можно воспользоваться таким прибором, как фазоуказатель. О том, как пользоваться фазоуказателем, мы уже рассказывали. Конкретно рассмотрим последовательность проверки прибором ФУ 2.

Как выполнить проверку?

Сам прибор (предоставлен на фото ниже) представляет собой три обмотки и диск, который вращается при проверке. На нем нанесены черные метки, которые чередуются с белыми. Это сделано для удобства считывания результата. Работает прибор по принципу асинхронного двигателя.

Итак, подключаем на выводы прибора три провода от источника трехфазного напряжения. Нажимаем кнопку на приборе, которая расположена на боковой стенке. Увидим, что диск начал вращаться. Если он крутится по направлению нарисованной на приборе стрелки, значит, чередование фаз прямое и соответствует одному из вариантов порядка АВС, ВСА или САВ. Когда диск будет вращаться в противоположную стрелке сторону, можно говорить об обратном чередовании. В таком случае возможен один из таких трех вариантов – СВА, ВАС или АСВ.

Если возвращаться к истории с монтажниками, то все что они сделали – это лишь определение чередования фаз. Да, в обоих случаях порядок совпал. Однако нужно было еще проверить фазировку. А ее невозможно выполнить с помощью фазоуказателя. При включении были соединены разноименные фазы. Чтобы узнать где условно А, В и С, нужно было применить мультиметр или осциллограф.

Мультиметром измеряется напряжение между фазами разных источников питания и если оно равно нулю, то фазы одноименные. Если же напряжение будет соответствовать линейному напряжению, то они разноименные. Это самый простой и действенный способ. Более подробно о том, как пользоваться мультиметром, вы можете узнать в нашей статье. Можно, конечно, воспользоваться осциллографом и смотреть по осциллограмме какая фаза от какой отстает на 120 градусов, но это нецелесообразно. Во-первых, так на порядок усложняется методика, и во-вторых такой прибор стоит немалых денег.

На видео ниже наглядно показывается, как проверить чередование фаз:

Когда нужно учитывать порядок?

Проверить чередование фаз нужно при эксплуатации трехфазных электродвигателей переменного тока. От порядка фаз будет меняться направление вращения двигателя, что иногда бывает очень важно, особенно если на участке находится много механизмов, использующих двигатели.

Также важно учитывать порядок следования фаз при подключении электросчетчика индукционного типа СА4. Если порядок будет обратный возможно такое явление как самопроизвольное движение диска на счетчике. Новые электронные счетчики, конечно, нечувствительны к чередованию фаз, но на их индикаторе появится соответствующее изображение.

Если имеется электрический силовой кабель, с помощью которого необходимо выполнить подключение трехфазной сети питания, и нужен контроль фазировки, выполнить его можно и без специальных приборов. Зачастую жилы внутри кабеля отличаются по цвету изоляции, что сильно упрощает процесс «прозвонки». Так, чтобы узнать где условно находится фаза А, В или С понадобится лишь снять наружную изоляцию кабеля. На двух концах мы увидим жилы одинакового цвета. Их мы и примем за одинаковые. Подробнее о цветовой маркировке проводов вы можете узнать из нашей статьи.

Но все же слепо доверяться такой маркировке нельзя. Так, на практике бывают случаи, что производители кабеля не могут гарантировать что в начале и в конце кабеля цвет жил будет один и тот же. Поэтому нужно все равно прозвонить жилы прозвонкой.

Теперь вы знаете, что такое чередование фаз в трехфазной сети и как его проверить с помощью приборов. Надеемся, информация была для вас полезной и интересной!

Советуем также прочитать:

Как проверить фазировку мультиметром

Прямое и обратное чередование фаз

Трехфазный переменный ток графически представляет собой три фазы в виде чередующихся синусоид на оси Х, сдвинутых по отношению друг к другу на 120°. Первую синусоиду можно представить как фазу А, следующую синусоиду как фазу B, сдвинутую на 120° относительно фазы А, и третью фазу C, также сдвинутую на 120° по отношению к фазе В.

Графическое отображение сдвига фаз на 120° трехфазной сети

Если фазы имеют порядок АВС, то такое следование фаз называется прямым чередованием. Следовательно, порядок фаз СВА будет означать обратное чередование. Всего возможно три прямых чередования фаз ABС, BCА, CАВ. Для обратного чередования фаз порядок будет выглядеть как CВА, BAC, ACB.

Проверить чередование фаз трехфазной сети можно фазоуказателем ФУ — 2. Он представляет собой небольшой корпус, на котором имеются три зажима для подключения трех фаз сети, алюминиевого диска с черной точкой на белом фоне и три обмотки. Принцип действия у него аналогичен работе асинхронного электродвигателя.

Если подключить фазоуказатель к трем фазам и нажать кнопку на корпусе, то диск начнёт вращаться в одну из сторон. Когда вращение диска совпадает со стрелкой на корпусе, тогда фазоуказатель показывает прямое чередование фаз, вращение диска в обратном направлении указывает на обратное чередование фаз.

Электрическая схема фазоуказателя ФУ-2

В каких случаях необходимо знать порядок чередования фаз. Во-первых, если дом подключен к трехфазной сети и установлен индукционный электросчётчик, тогда нужно соблюдать на нем прямое чередование фаз. При неправильном подключении такого электросчетчика возможен его самоход, что даст неправильные показания в сторону увеличения расхода электроэнергии.

Также, если в доме используются асинхронные электродвигатели, то направление вращения ротора будет зависеть от порядка чередования фаз. Меняя чередование фаз на асинхронном электродвигателе можно изменить направление вращения ротора в нужную сторону.

Что такое фазировка трехфазной сети

Фазировку трех фаз проводят в трансформаторных подстанциях при параллельном подключении трансформаторов. Подключение двух трансформаторов к одной трехфазной сети осуществляется межсекционными автоматическими выключателями. Проверить одноименные фазы фазоуказателем не представляется возможным.

Однако можно определить одноименные фазы мультиметром или любым вольтметром с пределом измерения 500 В. При проведении фазировки, нужно соблюдать все меры безопасности и заранее проверить на работоспособность мультиметр. Перед нахождением одноименных фаз важно определить наличие фазного напряжения относительно «земли» на всех шинах (на случай обрыва).

Проверка на обрыв и нахождение одноименных фаз в трехфазной сети

Далее, работая в резиновых перчатках, замеряют линейные напряжения на шинах разных трансформаторов. Если найдены шины, напряжение между которыми около нуля, то такие шины имеют одноименные фазы и их отмечают. Следом находят остальные две пары одноимённых шин и также отмечают.

Если напряжения между всеми шинами разных трансформаторов ниже линейного 380 В, но значительно отличаются от нуля, то фазировать такие трансформаторы нельзя, т. к. они имеют разные схемы соединения. Найденные одноимённые шины соединяют на разъединителях для параллельной работы.

Отличие фазного и линейного напряжения в трехфазной сети

Когда трансформатор имеет различные напряжения, при одинаковых схемах соединений, их подгоняют переключателем отводов обмоток трансформаторов до номинального значения. Фазировку высоковольтных линий проводят специальными высоковольтными индикаторами УВНФ.

Источник: electricavdome.ru

Проверка чередования фаз силовых кабелей

Простые способы фазировки кабеля

Простейшим способом отыскания в конце кабеля токоведущих жил, соответствующих определенным фазам его начала, является способ проверки «прозвонки» жил кабелей при помощи телефонных трубок, например при проверке силовых кабелей, прокладываемых между различными помещениями станций и подстанций. Схема присоединения телефонных трубок показана на рисунке 1.

В качестве одного из проводов для установления связи используют заземленные конструкции (заземленную металлическую оболочку кабеля), к которым подсоединяют телефонные трубки. Далее, с одной из сторон кабеля провод от батарейки соединяют с токоведущей жилой (допустим, фазой С).

Схема присоединения телефонных трубок при фазировке кабеля

С другой стороны кабеля вторым проводом от телефонной трубки поочередно касаются токоведущих жил, каждый раз подавая голосом сигнал в трубку. Найдя жилу, по которой будет получен отзыв проверяющего, ее помечают как фазу С и в том же порядке продолжают поиск других жил. Вместо обычных телефонных трубок целесообразно применение телефонных гарнитуров, пользование которыми освобождает руки проверяющих для работы.

Для проверки чередования фаз достаточно широко используют мегаомметр, схема включения которого показана на рисунке 2. Для этого поочередно заземляют жилы в начале кабеля, а в конце производят измерение сопротивления изоляции жил относительно земли.

Схема присоединения мегаомметра при фазировке кабеля

Заземленную жилу обнаруживают по показаниям мегаомметра, так как сопротивление ее изоляции на землю будет равно нулю, а двух других жил — десяткам и даже сотням мегаом.

При этом способе проверки трижды устанавливают и снимают заземления. Кроме того, персонал, находящийся у концов кабеля, должен иметь между собой связь, чтобы координировать свои действия. Все это относится к недостаткам такого способа проверки.

Более совершенным способом фазировки кабеля является способ измерений по схеме, приведенной на рисунке 3.

Одну из трех жил кабеля (назовем ее фазой А) жестко соединяют с заземленной оболочкой, другую жилу (фазу С) заземляют через сопротивление 8—10 МОм В качестве сопротивления обычно используют трубку с резисторами указателя УВНФ. Третью жилу (фазу В) не заземляют, она остается свободной. С другого конца кабеля мегаомметром измеряют сопротивление жил относительно земли.

Очевидно, что фазе А будет соответствовать жила, сопротивление которой на землю равно нулю, фазе С — жила, имеющая сопротивление на землю 8 — 10 МОм, и фазе В — жила с бесконечно большим сопротивлением.

Схема присоединения мегаомметра и дополнительного резистора при фазировке кабеля

Техника безопасности при производстве фазировки кабелей

По условиям безопасности при производстве фазировки кабелей фазировка производится только на отключенной со всех сторон кабельной линии. При этом должны быть приняты меры против подачи на кабель рабочего напряжения. Перед началом фазировки при помощи мегаомметра весь персонал, находящийся вблизи кабеля, предупреждается о недопустимости прикосновения к токоведущим жилам.

Соединительные провода от мегаомметра должны иметь усиленную изоляцию (например, провод типа ПВЛ). Присоединение их к токоведущим жилам производится после того, как кабель будет разряжен от емкостного тока. Для снятия остаточного заряда кабель заземляют на 2—3 мин.

Проверка чередования фаз силовых кабелей по расцветке изоляции жил

Токоведущие жилы силовых кабелей с изоляцией из пропитанной бумаги расцвечивают навитыми на их изоляцию лентами цветной бумаги. Одну из жил, как правило, опоясывают красной лентой, другую — синей, а изоляцию третьей специально не расцвечивают — она сохраняет цвет кабельной бумаги.

При изготовлении кабелей жилы скручивают между собой так, что на протяжении одного шага скрутки каждая жила меняет свое положение в площади сечения, делая один оборот вокруг оси кабеля. Рассматривая площади сечений с обоих концов кабеля, можно обнаружить, что по отношению к наблюдателю фазы в сечениях чередуются в разных направлениях. Эти особенности конструкции кабелей учитывают при фазировке и соединении жил.

Чередования фаз в сечениях кабеля. Стрелками показаны направления обхода фаз.

Допустим, что необходимо произвести фазировку и соединение жил двух концов трехфазного кабеля. Фазировка в данном случае элементарно проста. Она заключается в том, что из шести жил выбирают пары, имеющие одинаковую расцветку. Эти жилы замечают и готовят к соединению. Для соединения необходимо, чтобы оси жил одинаковой расцветки совпадали, а направление чередования фаз в площади сечения одного конца кабеля было зеркальным отражением другого.

Некоторые варианты чередования расцвеченных жил в сечениях двух кабелей: а — соединение жил одинакового цвета возможно; б — то же после поворота сечения на 180°; в — соединение трех жил по их цветам невозможно.

При укладке кабелей в траншею вероятность совпадения осей жил невелика. Чаще всего фазы одного цвет а оказываются повернутыми относительно друг друга на некоторый угол, значение которого может доходить до 180°.

Кабели с несовпадающими осями одинаково расцвеченных жил при монтаже (или ремонте) подкручивают вокруг оси, пока не будет зафиксировано точное совпадение осей жил. Однако сильное подкручивание не безопасно. Оно вызывает механические напряжения в защитных и изоляционных покровах кабелей и влечет за собой снижение надежности в работе.

Для того чтобы по цвету совпали все соединяемые между собой жилы, направления чередований фаз в сечениях кабелей должны быть противоположными. Это проверяется заранее, до укладки кабеля в траншею, если на его концах отсутствуют метки с указанием направления чередования фаз. Заметим, что у кабелей с чередованием фаз, направленным в одну сторону, по цвету совпадает только одна жила, а две другие не могут совпадать.

Преимущество способа соединения кабелей одинаково расцвеченными жилами состоит в том, что фазировка здесь не является самостоятельной операцией, она выполняется в ходе самих работ, а процесс прокладки, ремонта и эксплуатации кабелей приобретает более стройную систему и требует меньших трудозатрат.

Проверка чередования фаз силовых кабелей прибором ФК-80

Для фазировки на две жилы кабеля на питающем его конце накладываются два излучателя: на фазу А — излучатель непрерывного сигнала И1, на фазу В — излучатель прерывистого сигнала И2, фаза С остается свободной. Заземление с кабельной линии не снимается — оно не мешает проведению фазировки. На время фазировки или задолго до этого прибор ФК-80 включается в сеть 220 В. Излучатели наводят в жилах кабеля соответствующие ЭДС. На другом конце линии телефонные трубки подсоединяют одним проводом к заземлению (заземленной оболочке кабеля), а другим проводом поочередно касаются токоведущих жил кабеля.

Применение прибора ФК-80 при фазировке кабеля

Принадлежность жилы кабеля той или иной фазе определяется по характеру звука в телефонных трубках. Если будет услышан непрерывный сигнал — трубки подключены к фазе А, прерывистый — к фазе В и отсутствие звука укажет, что трубки подключены к фазе С. Наводимая в жилах кабеля ЭДС звуковой частоты (ее значение не превышает 5 В) не является помехой для выполнения ремонтных работ на кабельной линии.

Источник: electricalschool.info

Что такое чередование фаз и как его проверить?

Небольшое вступление

Попалась на глаза история о монтаже электрооборудования, а именно двух масляных трансформаторов. Работы были завершены успешно. В итоге имелась следующая схема электроснабжения. Собственно сами трансформаторы, вводные выключатели, секционные разъединители, две секции шин. Успешно, как считали монтажники, прошли пусконаладочные работы. Стали включать оба трансформатора на параллельную работу и получили короткое замыкание. Естественно, монтажники утверждали, что произвели проверку чередования фаз с обоих источников и все совпадало. Но, о фазировке не было сказано ни слова. А зря! Теперь давайте разберемся подробно, что же пошло не так.

Что собой представляет чередование фаз?

Как известно, в трехфазной сети присутствует три разноименные фазы. Условно они обозначаются как А, В и С. Вспоминая теорию, можно говорить что синусоиды фаз смещены относительно друг друга на 120 градусов. Так вот всего может быть шесть разных порядков чередования, и все они делятся на два вида – прямое и обратное. Прямым чередованием считается следующий порядок – АВС, ВСА и САВ. Обратный порядок будет соответственно СВА, ВАС и АСВ.

Чтобы проверить порядок чередования фаз можно воспользоваться таким прибором, как фазоуказатель. О том, как пользоваться фазоуказателем, мы уже рассказывали. Конкретно рассмотрим последовательность проверки прибором ФУ 2.

Как выполнить проверку?

Сам прибор (предоставлен на фото ниже) представляет собой три обмотки и диск, который вращается при проверке. На нем нанесены черные метки, которые чередуются с белыми. Это сделано для удобства считывания результата. Работает прибор по принципу асинхронного двигателя.

Итак, подключаем на выводы прибора три провода от источника трехфазного напряжения. Нажимаем кнопку на приборе, которая расположена на боковой стенке. Увидим, что диск начал вращаться. Если он крутится по направлению нарисованной на приборе стрелки, значит, чередование фаз прямое и соответствует одному из вариантов порядка АВС, ВСА или САВ. Когда диск будет вращаться в противоположную стрелке сторону, можно говорить об обратном чередовании. В таком случае возможен один из таких трех вариантов – СВА, ВАС или АСВ.

Если возвращаться к истории с монтажниками, то все что они сделали – это лишь определение чередования фаз. Да, в обоих случаях порядок совпал. Однако нужно было еще проверить фазировку. А ее невозможно выполнить с помощью фазоуказателя. При включении были соединены разноименные фазы. Чтобы узнать где условно А, В и С, нужно было применить мультиметр или осциллограф.

Мультиметром измеряется напряжение между фазами разных источников питания и если оно равно нулю, то фазы одноименные. Если же напряжение будет соответствовать линейному напряжению, то они разноименные. Это самый простой и действенный способ. Более подробно о том, как пользоваться мультиметром, вы можете узнать в нашей статье. Можно, конечно, воспользоваться осциллографом и смотреть по осциллограмме какая фаза от какой отстает на 120 градусов, но это нецелесообразно. Во-первых, так на порядок усложняется методика, и во-вторых такой прибор стоит немалых денег.

На видео ниже наглядно показывается, как проверить чередование фаз:

Когда нужно учитывать порядок?

Проверить чередование фаз нужно при эксплуатации трехфазных электродвигателей переменного тока. От порядка фаз будет меняться направление вращения двигателя, что иногда бывает очень важно, особенно если на участке находится много механизмов, использующих двигатели.

Также важно учитывать порядок следования фаз при подключении электросчетчика индукционного типа СА4. Если порядок будет обратный возможно такое явление как самопроизвольное движение диска на счетчике. Новые электронные счетчики, конечно, нечувствительны к чередованию фаз, но на их индикаторе появится соответствующее изображение.

Если имеется электрический силовой кабель, с помощью которого необходимо выполнить подключение трехфазной сети питания, и нужен контроль фазировки, выполнить его можно и без специальных приборов. Зачастую жилы внутри кабеля отличаются по цвету изоляции, что сильно упрощает процесс «прозвонки». Так, чтобы узнать где условно находится фаза А, В или С понадобится лишь снять наружную изоляцию кабеля. На двух концах мы увидим жилы одинакового цвета. Их мы и примем за одинаковые. Подробнее о цветовой маркировке проводов вы можете узнать из нашей статьи.

Но все же слепо доверяться такой маркировке нельзя. Так, на практике бывают случаи, что производители кабеля не могут гарантировать что в начале и в конце кабеля цвет жил будет один и тот же. Поэтому нужно все равно прозвонить жилы прозвонкой.

Теперь вы знаете, что такое чередование фаз в трехфазной сети и как его проверить с помощью приборов. Надеемся, информация была для вас полезной и интересной!

Советуем также прочитать:

Источник: samelectrik.ru

Проверка фазировки электрического оборудования

Электрооборудование трёхфазного тока (трансформаторы, генераторы, кабельные линии электропередач) подлежит обязательной фазировке, перед тем как оно впервые будет включено в сеть или же по окончании очередного ремонта, в результате которого могло произойти нарушение порядка чередования, следования фаз.

Фазировка заключается в проверке совпадения по фазе напряжений каждой из 3-х фаз включаемой электроустановки с соответствующими напряжениями сети. Подобного рода проверка, безусловно, необходима, ведь в процессе сборки, монтирования и ремонта электрооборудования фазы могли быть переставлены местами.

У электромашин, например, не исключается и ошибочное обозначение силовых выводов статорных обмоток; у кабелей в соединительных муфтах могут быть между собой соединены жилы разноимённых фаз.

Во всех этих случаях единственным выходом считается выполнение фазировки. Как правило, эта технологическая операция состоит из 3-х основных перечисленных ниже этапов.

Проверка и сравнение порядка чередования фаз у электрической установки и сети. Данная операция выполняется перед непосредственным включением на параллельную работу нескольких сетей, работающих независимо, нового генератора и генератора, прошедшего капитальный ремонт, при котором могла измениться схема присоединения обмоток статора к сети.

Лишь при получении положительных результатов, полученных при фазировке, генераторы или, скажем трансформаторы синхронизируются и включаются на параллельную работу.

Проверка одноимённости или расцветки фазных проводников, которые впоследствии надо будет соединить. Эта операция ставит перед собой цель проверить правильность соединения всех элементов установки между собой. Проще говоря, выверяется правильность подвода токоведущих жил к включающему аппарату.

Проверка совпадения по фазе одноимённых напряжений, то есть отсутствия между ними угла сдвига фаз. В электрических сетях во время фазировки линий электропередач и силовых трансформаторов, которые принадлежат одной электрической системе, достаточно выполнить 2 последние операции, поскольку у всех генераторов, работающих синхронно с сетью, порядок следования фаз одинаков.

Приборы для фазировки. Сегодня существует множество методик, которые зависят от прямого назначения электрооборудования, схем соединения обмоток и от используемых приспособлений и приборов. К основным приборам и приспособлениям можно отнести:

Вольтметры переменного тока, используемые при фазировки электроустановок до 1 кВ и подключаемые непосредственно к выводам электрооборудования.

Фазоуказатели, принцип действие которых похож на принцип действия АД (асинхронного двигателя), когда при подключении катушки приборов к 3-х фазной сети токов происходит образование вращающегося магнитного поля, которое заставляет вращаться рабочий диск. При этом по направлению вращения диска можно судить о правильности порядка следования фаз токов, проходящих по катушкам.

Универсальные приборы (портативные вольтамперфазоиндикаторы, универсальные фазоуказатели).

Мегаомметры, представляющие собой переносные приборы, необходимые для измерения сопротивлений изоляции в широких диапазонах, что очень хорошо себя зарекомендовало при производстве фазировки.

Указатели напряжения для фазировки. Данные устройства хорошо подходят для фазировки электроустановок выше 1 кВ. При выполнении операции на отключённый аппарат (разъединитель, выключатель) на каждую сторону подаются фазируемые напряжения.

При этом, щупы прибора подносятся к токоведущим частям фазируемого аппарата, и дальше осуществляется наблюдение за свечением сигнальной лампы на устройстве.

Стоит учесть, что горение лампы говорит о несовпадении фаз, а отсутствие свечения лампочки – о согласованном включении и возможности включения коммутационного аппарата.

Методы фазировки. Эта операция может быть предварительной; выполняемой при монтаже и ремонте электрооборудования, и фазировкой непосредственно перед вводом в работу, осуществляемой перед первым включением оборудования, когда фазы могли быть переставлены местами.

Источник: forum220.ru

Что такое чередование фаз и как его проверить?

Большинство трехфазных электродвигателей и других устройств учитывают такой параметр, как чередование фаз. На практике, несоответствие данного параметра изначальным настройкам может привести к различным аварийным ситуациям, некорректной работе электрических приборов и к травмированию персонала.

Что такое чередование фаз?

Под чередованием фаз следует понимать последовательность, в которой напряжение нарастает в каждой из них. Во всех трехфазных цепях напряжение представляет собой синусоидальную кривую. В каждой линии напряжение отличается на 120º от остальных.

Рис. 1. Напряжение в трехфазной сети

Как видите, на рисунке 1, там где а) — показаны кривые напряжения во всех фазных проводах, смещенные на 120º. На соседнем рисунке б) изображена векторная диаграмма этих напряжений, На обоих рисунках показана разница между фазным и линейным напряжением.

Если взять за основу, что из нулевой точки на рисунке а) выходит U­A, то эта фаза является первой, на диаграмме б) наглядно стрелками показано, что очередность нарастания напряжения переходит от U­A к U­B, а за ним к U­C. Это означает, что фазы чередуются в порядке A, B, C. Такой порядок чередования считается прямым.

Прямое и обратное чередование фаз

В трехфазной сети порядок чередования фаз может отличаться в зависимости от способов подключения к силовым трансформаторам на подстанциях, от последовательности включения обмоток генератора, из-за несоответствия выводов кабеля и по прочим причинам.

Рисунок 2: Прямая и обратная последовательность

Обратите внимание, цветовая маркировка определяет последовательность в соответствии их очередностью в алфавите по первым буквам цвета:

  • Желтый – первый;
  • Зеленый – второй;
  • Красный – третий.

На рисунке 2 изображен классический вариант прямой последовательности A – B – C (где A имеет желтый цвет и является первой, B – зеленый и является второй, а C – красный и является третей) и классический вариант обратной последовательности C – B – A. Но, помимо них на практике могут встречаться и другие варианты, прямого: B – C – A, C – A – B, и обратного чередования: A – C – B, B – A – C. Соответственно, в каждом из приведенных примеров чередование фаз будет начинаться с первой.

Зачем нужно учитывать порядок фаз?

Последовательность чередования играет значительную роль в таких ситуациях:

  • При параллельном включении в работу – ряд устройств (трансформаторы, генераторы и прочие электрические машины), могут соединяться в параллельную работу для повышения надежности системы или для обеспечения большего резерва мощности. Но, в случае неправильного подключения из-за соединения разноименных фаз произойдет короткое замыкание.
  • При подключении трехфазного счетчика – так как его работа основана на совпадении фаз с соответствующими выводами прибора, то при нарушении правильности подключения может произойти сбой и самопроизвольное движение в отсутствии какой-либо нагрузки. Из-за чего такое подключение электросчетчика приведет к необходимости оплаты потребителем киловатт, которые он не расходовал.
  • При включении двигателя – следование фаз в сети определяет для электрической машины и направление вращения двигателя. В случае отсутствия правильной фазировки изменится и направление движения элементов, механически соединенных с ротором. Из-за чего может произойти нарушение технологического процесса или возникнуть угроза жизни персонала.

С целью предотвращения негативных последствий от перекоса фаз и других несовпадений, на практике выполняют проверку чередования и устанавливают защиту.

Как выполнить проверку?

Проверка может производиться несколькими способами. Целесообразность выбора того или другого варианта осуществляется в зависимости от параметров электрической сети и задач, которые необходимо решить. Так чередование можно узнать при помощи фазоуказателя, мегаомметра, мультиметра или по расцветке изоляции кабеля. Рассмотрите каждый из вариантов более подробно.

С помощью фазоуказателя

По принципу действия, фазоуказатель можно сравнить с обычным асинхронным двигателем. Рассмотрим в качестве примера наиболее распространенную модель фазоуказателя — ФУ-2 .

Рисунок 3: Принципиальная схема работы ФУ-2

Как видите на рисунке 3, у указателя последовательности фаз присутствуют три обмотки, которые подсоединяются к одноименным фазам в сети или устройстве. Между обмотками находится вращающийся ротор Р, который приводит в движение диск фазоуказателя Д.

На практике, после подсоединения к зажимам фазоуказателя соответствующих проводов, работник нажимает кнопку К, которая замыкает цепь обмоток. В зависимости от порядка чередования фаз, диск Д начнет вращаться по часовой или против часовой стрелки.

На самом приборе имеется стрелка, показывающая прямое чередование. Если при нажатии кнопки диск вращается в том же направлении, что и показано стрелкой, то эта трехфазная нагрузка имеет прямое чередование. Если диск начнет крутиться в противоположную от стрелки сторону, то чередование фаз обратное. Следует отметить, что этот прибор не способен определить, какая фаза на каком проводе находится, он может определить лишь порядок их чередования.

С помощью мегаомметра

Как один из способов прозвонки жил широко используется прибор для измерения сопротивления – мегаомметр.

Рис. 4: Прозвонка кабеля мегаомметром

Посмотрите на рисунок 4, для реализации такой схемы, вам понадобится отключить кабель от сети и от потребителя. При этом, с одного конца кабеля фазы поочередно соединяются с землей З, как и металлическая оболочка у бронированных кабелей. С другой стороны присоединяется мегаомметр М, один из зажимов которого заземляется, а второй поочередно подводится к каждой из фаз. На той, где мегаомметр покажет нулевое сопротивление, и будет одним проводом.

На концах одноименного провода устанавливается соответствующая маркировка. Недостатком такого способа прозвонки является большой объем трудозатрат. Так как каждая жила заземляется поочередно, после чего выполняется проверка. При этом на обоих концах кабеля должны устанавливаться ответственные сотрудники. Между ними должна обеспечиваться связь, для согласования действий и предупреждения подачи напряжения на работников.

По расцветке изоляции жил

Если в каком-либо устройстве имеется подключение разноцветными жилами, то фазировку оборудования можно выполнять по цветам. Для определения нахождения одноименных напряжений тех или иных фаз необходимо добраться до каждой жилы кабеля. Если на каждом проводе присутствует изоляция разных цветов, то сравнив их с местом присоединения к трансформатору или распедустройству, можно определить, где какая фаза находится.

Недостатком такого метода следует отметить ложную цветовую маркировку, так как производитель кабеля не всегда обеспечивает один и тот же цвет для каждой жилы на всей протяженности провода. Поэтому предварительно его все равно рекомендуется прозванивать и маркировать.

При помощи мультиметра

Для этого метода используется обычный мультиметр. Он наиболее актуален в тех ситуациях, когда необходимо включить в параллельную работу два смежных устройства и их шины расположены поблизости.

Рис. 5: фазировка мультиметром

Необходимо выполнить сравнение фазных напряжений в соседних линиях, на рисунке 5 приведен пример для фаз А и А1. Коммутационная аппаратура при этом должна быть разомкнута. Перед тем как пользоваться мультиметром, на нем выставляется класс напряжения, для линии, на которой будет производиться замер. Щупы подводятся к выводам фаз, при этом их изоляция должна обеспечивать защиту от напряжения, а на руки надеваются диэлектрические перчатки.

Если при подключении щупов к выводам A — A1 стрелка останется на нулевой отметке, то это значит, что фазы одинаковые. Если стрелка отклонится на величину линейного напряжения, вы меряете разноименные фазы.

Защита от нарушения порядка чередования

Для защиты электрического оборудования от неправильного чередования на практике применяется реле контроля фаз. Это реле настроено на работу двигателя или другого устройства в его прямом включении. Если из-за каких-то неполадок или неправильного подключения чередование нарушается, то трехфазное реле сразу отключит устройство. Его работа основана на анализе трехфазных токов и напряжений и последующем контроле этих параметров.

Подключение может выполняться через трансформаторы тока или напрямую, в зависимости от модели и класса напряжения в сети. Такая защита нашла широкое применение при подключении счетчиков индукционного типа, электрических машин и другого высокоточного оборудования.

Источник: www.asutpp.ru

Порядок чередования фаз в трехфазной сети

Прямое и обратное чередование фаз

Трехфазный переменный ток графически представляет собой три фазы в виде чередующихся синусоид на оси Х, сдвинутых по отношению друг к другу на 120°. Первую синусоиду можно представить как фазу А, следующую синусоиду как фазу B, сдвинутую на 120° относительно фазы А, и третью фазу C, также сдвинутую на 120° по отношению к фазе В.

Графическое отображение сдвига фаз на 120° трехфазной сети

 

Если фазы имеют порядок АВС, то такое следование фаз называется прямым чередованием. Следовательно, порядок фаз СВА будет означать обратное чередование. Всего возможно три прямых чередования фаз ABС, BCА, CАВ. Для обратного чередования фаз порядок будет выглядеть как CВА, BAC, ACB.

Проверить чередование фаз трехфазной сети можно фазоуказателем ФУ — 2. Он представляет собой небольшой корпус, на котором имеются три зажима для подключения трех фаз сети, алюминиевого диска с черной точкой на белом фоне и три обмотки. Принцип действия у него аналогичен работе асинхронного электродвигателя.

Если подключить фазоуказатель к трем фазам и нажать кнопку на корпусе, то диск начнёт вращаться в одну из сторон. Когда вращение диска совпадает со стрелкой на корпусе, тогда фазоуказатель показывает прямое чередование фаз, вращение диска в обратном направлении указывает на обратное чередование фаз.

Электрическая схема фазоуказателя ФУ-2

В каких случаях необходимо знать порядок чередования фаз. Во-первых, если дом подключен к трехфазной сети и установлен индукционный электросчётчик, тогда нужно соблюдать на нем прямое чередование фаз. При неправильном подключении такого электросчетчика возможен его самоход, что даст неправильные показания в сторону увеличения расхода электроэнергии.

Также, если в доме используются асинхронные электродвигатели, то направление вращения ротора будет зависеть от порядка чередования фаз. Меняя чередование фаз на асинхронном электродвигателе можно изменить направление вращения ротора в нужную сторону.

Что такое фазировка трехфазной сети

Фазировку трех фаз проводят в трансформаторных подстанциях при параллельном подключении трансформаторов. Подключение двух трансформаторов к одной трехфазной сети осуществляется межсекционными автоматическими выключателями. Проверить одноименные фазы фазоуказателем не представляется возможным.

Однако можно определить одноименные фазы мультиметром или любым вольтметром с пределом измерения 500 В. При проведении фазировки, нужно соблюдать все меры безопасности и заранее проверить на работоспособность мультиметр. Перед нахождением одноименных фаз важно определить наличие фазного напряжения относительно «земли» на всех шинах (на случай обрыва).

Проверка на обрыв и нахождение одноименных фаз в трехфазной сети

Далее, работая в резиновых перчатках, замеряют линейные напряжения на шинах разных трансформаторов. Если найдены шины, напряжение между которыми около нуля, то такие шины имеют одноименные фазы и их отмечают. Следом находят остальные две пары одноимённых шин и также отмечают.

Если напряжения между всеми шинами разных трансформаторов ниже линейного 380 В, но значительно отличаются от нуля, то фазировать такие трансформаторы нельзя, т. к. они имеют разные схемы соединения. Найденные одноимённые шины соединяют на разъединителях для параллельной работы.

Отличие фазного и линейного напряжения в трехфазной сети

Когда трансформатор имеет различные напряжения, при одинаковых схемах соединений, их подгоняют переключателем отводов обмоток трансформаторов до номинального значения. Фазировку высоковольтных линий проводят специальными высоковольтными индикаторами УВНФ.

Помогла вам статья?

Как и чем определить порядок чередования фаз в трехфазной сети?

 

При подключении различного оборудования к электросети часто возникает проблема в том, что провода и обозначения фаз могут быть ошибочными, а маркировка фаз утерянной или стертой. 

Если подключить оборудование неправильно — возникнет риск серьезных аварий и поломок, поскольку неверный порядок последовательности фаз приводит к тому, что двигатели вращаются в обратную сторону. Чем это чревато на транспорте, на стройках или в крупном промышленном производстве объяснять не стоит.

Для определения последовательности фаз можно применять осциллограф, но это не совсем удобно и не всегда применимо к производственным условиям.

Существуют специальные приборы: индикаторы последовательности чередования фаз, которые бывают электромеханические, электронные и бесконтактные.

Данные приборы имеют множество названий: индикаторы фазовращения, указатели последовательности фаз, индикаторы очередности фаз, индикаторы порядка следования фаз и т.д.., однако суть от этого не изменяется. 

Электромеханические индикаторы

Это самые распространенные и простые приборы, которые уже давно применяются и отличаются простотой и наглядностью. Они представляют из себя небольшой трехфазный двигатель с вращающимся диском, по направлению вращения которого можно определить порядок чередования фаз. Самые известные приборы : ЭИ5001 или И517М.

 

 

Прибор следует подключить к 3-м фазам и кратковременно нажать на кнопку. Вращение диска покажет правильно ли определен порядок чередования фаз.

Есть одна тонкость — нажатие на кнопку должно быть кратковременным, достаточно 1-2 секунды, чтобы диск начал вращение. Если держать кнопку нажатой слишком долго, то
прибор может выйти из строя за счет перегрева.

Более современный электромеханический прибор — 8PK-ST850. 

 


Устроен по принципу предыдущего, однако снабжен штатным проводами, мягким чехлом и неоновыми индикаторами фаз. Если контакта с какой-либо фазой нет — то это будет сразу понятно по отсутствию свечения индикатора данной фазы.

К недостаткам таких приборов следует отнести относительно большие габариты и массу, а также наличие подвижных частей.
К достоинствам — высокая помехоустойчивость и практически нулевая вероятность ошибки измерений.

Электронные контактные индикаторы

UT261A — удобный малогабаритный прибор на ЖК индикаторах, позволяющий отслеживать наличие каждой фазы и порядок их чередования.

 

 

Прибор не требует внутреннего источника питания, т к питается исследуемым напряжением.

UT261B — электронный прибор , который показывает так же как и предыдущий наличие фаз неоновыми индикаторами и порядок чередования фаз светодиодами. Питание прибора — 9 вольт от батареи Крона.

 

 

Особенность прибора — не только определение порядка чередования фаз напряжения, но и порядка чередования обмоток двигателя. Это работает так: прибор подключается к отключенному от сети двигателю. Вал двигателя вращают вручную и при этом светодиоды покажут порядок чередования фаз обмоток — L (левый)  или R (правый).

К достоинствам приборов следует отнести простоту использования, малые габариты и массу, отсутствие подвижных частей и вследствие этого большую надежность.  

К недостаткам — более высокую чувствительность к помехам и искажениям в сети по сравнению с электромеханическими приборами. В случае очень сильных помех прибор может давать неопределенные показания, однако уровень помех или искажений должен быть очень большим.

Бесконтактные электронные индикаторы

Довольно новые приборы UT262A и UT262C, которые позволяют определить порядок чередования фаз без разрыва цепи и гальванического контакта с сетью.

 

 

Для измерений клипсы с датчиками тока крепятся на проводах и светодиодные индикаторы показывают направление вращения фаз.  Естественно, при этом, по проводам должен течь ток.

К достоинствам прибора относится простота и безопасность использования.

К недостаткам — слишком высокая чувствительность к электромагнитным помехам и нелинейным искажениям. В производственных условиях избежать такого рода помех сложно, т к в наше время к сети подключены частотные приводы, инверторы и т.д., использующие технологии ШИМ и синтеза частоты.

Однако, для первичных вводов приборы вполне подходят, то есть там, где уровень помех и несинусоидальности относительно невелик.

В кратком обзоре мы рассмотрели 3 основных типа индикаторов последовательности чередования фаз, которые поставляются ТОО Test instruments, являющегося официальным дистрибьютором заводов производителей.

Заказы на приборы принимаются на интернет портале Pribor.kz 
 

Перекос фаз в трехфазной сети — чем опасен и когда возникает

Классическая электрическая сеть до 1 кВ с глухозаземлённой нейтралью в идеальном состоянии может быть изображена в виде равностороннего треугольника. Каждая вершина фигуры – фаза А, В или С, а расстояние между ними – векторы линейного напряжения 380 В. В центре треугольника располагается нейтраль N, и расстояния от неё до каждой из фаз также одинаковы. Когда модули данных векторов отличаются, возникает негативное для электротехники явление – перекос фаз. То есть, если значение фазного напряжения по векторам AN, BN и СN составляет не 220 В, а, например, 200, 180 и 240 В, это говорит о нестабильной работе контура. Подобное состояние сети опасно не только для электрического оборудования, но и для человека, который его эксплуатирует.

Что такое перекос фаз

Перекос фаз – это такое состояние электрической сети, состоящей из нескольких фаз, при котором модули напряжений фазных токов, а также углы между их векторами имеют разные значения. Такое явление вызывает асимметрию токов и нестабильную работу всей сети, когда линейные напряжения остаются константами, а фазовые имеют переменные значения.

В чём опасность перекоса фаз

Перекос напряжения по фазам, причины которого заключаются в неправильном подключении оборудования, является неблагоприятным явлением. Это вызывает резкое снижение качества электроэнергии и эффективность работы включённых в сеть потребителей. Асимметрия фаз может вызвать следующие негативные последствия:

  • Если наблюдается скачок напряжения, электроприбор может его не выдержать и сгореть. Такого сценария можно избежать, при условии срабатывания автомата в щитке.
  • Когда напряжение в сети падает, мощность работы электрооборудования не позволяет добиться эффективности его работы. При включении приборов в сеть, возрастает пусковой ток, что значительно увеличивает нагрузку.
  • Асимметрия фаз может вызвать повышенный расход электроэнергии.
  • Чтобы понять, чем опасен перекос фаз в трехфазной сети, следует изучить диапазоны напряжений, при котором приборы, включённые в сеть, будут работать бесперебойно. Как правило, при перекосе фаз, снижается их ресурс, заявленный производителем.

Помимо перечисленных последствий, большая разница в напряжениях между фазами и нейтралью может привести к возникновению короткого замыкания. Последствия данного явления непредсказуемы – от штатного срабатывания УЗО до выгорания проводки и электрических частей оборудования, вплоть до возникновения пожара.

Допустимые нормы напряжения в трёхфазной сети

Идеальная симметрия распределения напряжения между фазами и нейтралью при работе сети невозможно. В связи с этим, согласно ГОСТ 13109-97, допускаются следующие отклонения:

  • При стандартной работе оборудования предельный показатель асимметрии распределения нагрузок не может превышать 15%. То есть, каждое значение модуля напряжения AN, BN или CN находится в пределах от 187В до 253В.
  • При монтаже электрической схемы с использованием распределительного щита, включающим несколько контуров, показатели перекоса фаз могут быть увеличены в 2 раза – до 30%.

Большинство современных электроприборов имеют внутреннюю защиту, либо стабилизаторы, позволяющие исключить поломку при асимметрии в пределах нормативных значений.

Признаки нестабильной работы электрических приборов, вызванные перекосом фаз

Определить признаки перекоса фаз в сети можно невооружённым глазом. Как правило, электрооборудование сразу даёт знать об асимметрии распределения напряжений между фазами:

  • Любая световая индикация приборов начинает мерцать, либо горит слишком тускло.
  • Если эксплуатация оборудования подразумевает работу нагревающейся спирали, тепловая энергия не позволяет набрать заявленную производителем мощность.
  • Слабый набор оборотов крыльчатки электромоторов, что снижает частоту работы движущихся частей оборудования, например, барабана стиральной машины, лопастей вентилятора или воздушного насоса пылесоса.

Что касается работы сложных электронных приборов – телевизоров или компьютерной техники, при перекосе фаз они и вовсе могут не подавать признаков жизни, не реагировать на включение питания.

Негативные последствия перекоса

Перекос фаз в трехфазной цепи, влекущий неравномерное распределение напряжений, является негативным фактором для работы всей сети. При возникновении подобного явления, наблюдается ряд неблагоприятных последствий:

  • Повреждение оборудования.
  • Выгорание проводки и обмотки электромоторов.
  • Снижение эксплуатационного периода бесперебойной работы техники.
  • Постоянная нагрузка на системы аварийного отключения сети.
  • Механические повреждения источников электрической энергии.
  • Увеличение затрат на оплату электроэнергии в связи с её неконтролируемым расходом.
  • Частая поломка приборов, потеря гарантии, расходы на ремонт.
  • Риск возгорания, короткого замыкания, получения травмы.

Перекос фаз является аварийной ситуацией, и, при возникновении данного явления необходимо предпринять срочные меры по его устранению.

Неравномерное подключение нагрузки

Перекос фаз вызывается неравномерным подключением нагрузки при сборке цепи. Как правило, это свидетельствует о низкой квалификации монтажника и совершении грубых ошибок:

  • При большом количестве потребителей электроэнергии, они должны быть включены в сеть по группам, а распределение мощности, при этом, должно происходить равномерно. Если потребители сгруппированы неравномерно, это может вызвать асимметрию в распределении нагрузок.
  • При случайном или ошибочном отсоединении нейтрали от общей цепи.
  • При ошибочном подключении заземления через фазный провод.

Все перечисленные ошибки неизбежно влекут за собой перекос фаз с негативными последствиями для оборудования. Если на одной из кабельных жил трёхфазной сети наблюдается снижение напряжения, то остальные провода находятся под действием повышенной нагрузки, что и приводит к асимметрии.

Импульсные блоки питания

Многие производители, выпускающие высокотехнологичное оборудование со сложной электроникой, пытаются избежать риска перекоса фаз путём включения в цепь импульсных блоков питания. Данные устройства позволяют добиться определённых эффектов, положительно влияющих на работу оборудования:

  • ИБП изменяют форму гармонических электрических колебаний, выравнивая их траекторию до состояния идеальной синусоиды. Устройство работает по принципу нелинейного распределения нагрузки между фазами.
  • Устройства успевают потреблять электрический ток до создания предельной разности потенциалов в цепи. Если же разность потенциалов невелика, то ИБП вообще перестаёт потреблять ток. Это приводит к выравниванию перекоса и стабилизации работы электрооборудования.

Каждый компьютер, телевизор или бытовой электроприбор, оснащённый электронной микросхемой, снабжается импульсным блоком питания, что позволяет существенно продлить их ресурс и исключить сбои в работе.

Методы защиты

На практике существует несколько способов защиты оборудования от перекоса фаз в электрической сети:

  • При выборе кабельной жилы, выдерживающей повышенную нагрузку, вызываемую перекосом фаз.
  • Корректное включение потребителей электроэнергии в сеть с равномерным распределением нагрузки между фазами.
  • Включение в сеть дополнительного стабилизирующего оборудования, выравнивающего асимметрию при эксплуатации бытовых приборов.
  • Перед организацией бытовой сети следует предварительно разработать проект, создать схему подключения и учесть равномерное распределение нагрузки на каждый элемент цепи.
  • Устройство в распределительном щитке реле, позволяющего вести контроль фаз.

При устройстве протяжённой сети с приборами, работающими одновременно, лучшим решением избавиться перекоса фаз будет устройство трансформатора, способного одновременно стабилизировать работу сети и выдавать нужные параметры тока.

Обрыв нейтрального проводника

Обрыв нейтрального проводника является самой явной и частой причиной возникновения перекоса фаз. Данное явление относится к аварийному состоянию и характеризуется следующими особенностями:

  • Любое однофазное оборудование почти сразу даёт сбой в работе и сгорает.
  • Формирующееся в бытовой сети напряжение в 220В мгновенно преобразуется в 380В.
  • Классическая схема равностороннего треугольника с лучевыми векторами, соединённым с нейтралью в центре нарушается, вызывая асимметрию при распределении фазных напряжений.

При обрыве нейтрального проводника в щитке должен немедленно сработать автомат аварийного отключения питания. Для возобновления нормальной работы схемы требуется срочно устранение неполадки.

Последствия обрыва нулевого проводника

При обрыве нулевого проводника, как правило, возникают следующие неблагоприятные последствия:

  • Функция нейтрали перенимается фазной жилой, которая подвержена максимальной нагрузке.
  • Напряжение на данной жиле возрастает до предельных 380В, в то время, как в самом слабо нагруженном кабеле она, наоборот, падает, вплоть до 127В.
  • При работе всех потребителей в точке подключения приборов будет наблюдаться напряжение 380В на обеих фазах без нуля. Это приведёт к непроектной нагрузке на каждый электроприбор, и их поломке. При эксплуатации сети с оборванным нулевым проводником длительное время, импульсные блоки питания также выходят из строя, что влечёт за собой выгорание сложных электронных приборов.
  • Приборы, включённые в конец электрической цепи, подвергаются риску возгорания, так как при перекосе фаз на них часто наблюдается некорректная работа УЗО.

Самые тяжёлые последствия обрыва нулевого провода при отсутствии заземляющего кабеля наблюдаются, когда возникает КЗ, и проводниковые части оборудования находятся под напряжением. В таких ситуация возрастает риск поражения электрическим током, что влечёт за собой угрозу здоровью.

Методы защиты

Чтобы избежать обрыва нулевого проводника или обеспечить должную защиту, следует провести следующие мероприятия:

  • Все кабели в схеме должны быть подключены корректно, с соблюдением последовательности. Работа должна выполняться профессиональным монтажником, имеющим доступ к работе с электроустановками не ниже 3 разряда.
  • Необходимо периодически контролировать надёжность соединения клемм в щитке. Неплотный контакт влечёт за собой искру, окисление металлических частиц и, как следствие, их оплавление.
  • Если кабель прокладывается воздушным способом, его необходимо защитить от негативных воздействий окружающей среды – ветровых и гололёдных нагрузок.
  • УЗО, включённые в цепь для аварийного отключения должны быть точно рассчитаны на критическую нагрузку и срабатывать в кратчайшее время.
  • Избежать обрыва нулевого проводника удаётся, если на линии устанавливается стабилизирующее устройство, позволяющее выравнивать перекос фаз.

Таким образом, чтобы избежать аварии, требуется уделить повышенное внимание качественному монтажу, установке дополнительных защитных устройств, а также периодически проводить контрольные и профилактические работы электрической цепи.

Причины перекоса фаз в однофазной сети

Перекосу фаз способствуют несколько причин, которые классифицируются на внутренние, связанные с работой сети и внешние:

  1. Внутренние причины:
  • Неравномерная нагрузка по фазам при включении потребителей в цепь.
  • Пренебрежение коэффициентом единовременной работы электроприёмных устройств.
  • Ошибки учёта неравномерности нагрузок, в зависимости от её типа – индуктивной или ёмкостной.
  1. Внешние причины:
  • Поломка на линии высокого напряжения, подходящей к трансформатору.
  • При наличии дефектов на электроизоляторах внешней кабельной линии.
  • Если в общую высоковольтную линию включаются потребители с несравнимо большей мощностью.

Чаще всего, причиной перекоса фаз и необходимостью установки защитных устройств являются комбинации внешних и внутренних факторов. Это требует комплексного обследования всей кабельной линии при возникновении неисправности.

Защита от перекоса фаз в однофазной сети

Для обеспечения защиты перекоса фаз в однофазной сети необходимо обеспечить включение в цепь следующих устройств:

  • Скачки напряжения улавливаются автоматами защитного отключения, которые вовремя размыкают цепь, предотвращая выход оборудования из строя.
  • Для постоянного контроля асимметричного перераспределения нагрузок, в сеть устанавливается стабилизатор напряжения. При установке прибора достигается защита от перекоса фаз.
  • Для стабильности работы однофазной сети, профессионалы также рекомендуют устанавливать специальные трансформаторы, обеспечивающие симметричное распределение нагрузок.

В отдельных случаях допускается применение конденсаторов с переменной ёмкостью и малой проводимостью тока.

Устранение перекоса фаз

Перекос фаз может быть устранён несколькими методами. Исправление данного негативного явления путём включения в сеть дополнительного оборудования менее эффективно, изначально выбранное корректное подключение:

  • Учитывая, что перекос фаз является аварийной ситуацией, его легко можно устранить путём перераспределения нагрузок. Для этого все потребители включаются в цепь таким образом, чтобы на каждый автомат приходилось равномерное распределение нагрузки.
  • При обрыве кабеля необходимо устранить неисправность.
  • Во время подключения оборудования следует учитывать коэффициент одновременного использования каждого прибора, чтобы исключить образование пиковых нагрузок на одной фазе.

При выполнении всех приведённых выше условий, перекоса фаз можно избежать, если проблема не будет касаться внешних факторов и проблем с функционированием высоковольтной сети.

Причины перекоса фаз в трехфазной сети

Определить причину перекоса фаз в трехфазной сети очень просто для этого необходимо проверить оборудование на наличие одной из трёх возможных неисправностей, связанных с возникновением асимметрии и скачками напряжения:

  • Неправильное распределение между однофазными потребителями электроэнергии в сети с одновременным включением, что влечёт за собой перегрузку одной фазы и недогрузку другой.
  • В случае дефекта нулевого кабеля, что вызывает резкий скачок напряжения, когда одна из фазных жил начинает выполнять роль нейтрали.
  • При заземлении фазного провода, что влечёт за собой КЗ и срабатывание автоматического защитного устройства.

При выявлении любой из перечисленных выше причин, необходимо устранить проблему для нормальной работы всех электрических приборов, включённых в сеть.

Защита от перекоса фаз в трехфазной сети

Для обеспечения защиты от перекоса фаз до возникновения негативных необратимых последствий, следует провести ряд профилактических мероприятий:

  • Интеграция в сеть реле контроля фазного тока. Устройство обеспечивает непрерывное считывание показателей скачков напряжения. На приборе заранее выставлены граничные условия, при достижении которых он автоматически обеспечивает расцепление цепи.
  • Перед включением в сеть оборудования необходимо провести проверку фазных жил и нейтрали на предмет обрыва и надёжности контактов.
  • Включение в общую сеть 3-фазных стабилизирующих приборов. Перед приобретением следует ознакомиться с техническими характеристиками, так как выравнивание напряжения неизбежно влечёт за собой потерю мощности.

Для обеспечения бесперебойной работы сети на весь период эксплуатации, следует установить трансформатор, обеспечивающий симметрию распределения нагрузок, вне зависимости от количества и мощности потребителей.

Устранение перекоса фаз в трехфазной сети

Чтобы устранить перекос фаз в трёхфазной сети, необходимо последовательно выполнить определённые шаги:

  • Изменить схему подключения электроприборов в сеть с перераспределением нагрузок, исходя из их единовременной эксплуатации.
  • Изначальная сборка цепи по заранее разработанному проекту, исключающему явление асимметрии.
  • Включение в сеть трёхфазного стабилизатора, рассчитанного на предельно допустимую на данном контуре нагрузку.

Для устранения последствий перекоса, требуется установка автоматов с корректно подобранными параметрами.

Расчет перекоса фаз

Расчёт перекоса фаз можно выполнить в одно действие по формуле:

Umin / Umax * 100%,

Umin – минимальное напряжение на одной из фаз,

Umax – максимальное напряжение на противоположной фазе.

Является безразмерной величиной, который определяется в % от номинального значения напряжения в сети.

Допустимый перекос по фазам ПУЭ

Согласно ПУЭ, которые являются нормативной документацией, допустимый перекос фаз в трехфазной сети составляет следующие величины:

  • Если перекос определяется в распределительных щитках (РЩ), предельное отношение напряжений не может достигать более 30%.
  • В случае, когда дисбаланс наблюдается на ВРУ – вводно-распределительных устройствах – 15%.
  • При выявлении асимметрии на обратной последовательности – 2%.
  • Перекос фаз на прямой последовательности должен быть не более 4%.

При выявленных отклонениях в пределах указанных диапазонов, эксплуатация электроустановок не влечёт за собой поломку оборудования и исключает КЗ, что снижает риск поражения током. Допустимый перекос фаз по току ПУЭ сравнивается с фактическим показателем на основании проведённых замеров, что позволяет дать заключение о работоспособности сети.

Заключение

Перекос фаз в трехфазной сети – это негативное явление, возникающее при некорректном распределении нагрузок между глухозаземлённой нейтралью и фазным кабелем. Как правило, причиной таких неполадок может быть неправильная сборка цепи и пренебрежение коэффициентом совместного использования оборудования, включенного в неё. Все работы по подключению необходимо вести в строгом соответствии с проектом, а в сеть интегрировать стабилизирующие устройства. Для устранения перекоса фаз следует изменить схему подключения сети, либо установить на вводе специальный трансформатор.

методы и инструкции, правила, советы и предостережения

Проще работать, когда электрический контур снабжения дома заземлен правильно, покажем, что выход найдется всегда. Поясним, как понять, где фаза, и как узнать, где ноль. Хватайте любимый М890С! Посмотрим, как определить фазу и ноль мультиметром.

Простейшие методики нахождения фазы, нуля мультиметром

Организованный правильно контур заземления дома устраняет проблемы. Во-первых, изоляция PEN желто-зеленого цвета. Спутать с коричневой (красной) фазой, синей нейтралью невозможно. Случается, проводка проложена, нарушая требования, цвета перепутаны, отсутствуют вовсе (алюминиевый кабель). Поиск фазы мультиметром осуществляем простым алгоритмом:

  1. Допустим, квартира располагает тремя проводами: фаза, нуль, земля.
  2. Ставим мультиметр на диапазон переменного напряжения 750 вольт, начинаем попарно тестировать проводку.
  3. Между фазой и любым другим проводом будет 230 вольт (действующее значение), перемычка земля-нейтраль дает приближено 0.

Мультиметр

Подъездный щиток располагает минимум пятью проводами, фаз три. Дальнейший процесс определяется фантазией местных электриков. Хорошие мастера вешают стикеры А, В, С, указывающие местоположение фаз. Заземление желто-зеленое, нейтраль чаще синяя.

Меж соседними фазами напряжение 380 (400) вольт. Квартиры высоток иногда снабжают двумя фазами. Электрические плиты мощностью выше 10 кВт стараются разделить потребление. Уменьшаются требования к проводке. Советуем немедленно взять маркер, пометить изоляцию нужными цветами. Дом, лишенный заземления, обычно получает два провода: фазу, нейтраль. Трансформатор подстанции гонит три фазы. Сколько окажется в квартире, следует выяснить.

Проблемы начнутся, когда отсутствует маркировка проводов, фаза приходит одна. Между опасными проводами напряжение составит… нуль!

  • Два провода несут фазу, нейтраль одна, заземление забыли проложить. Между питающими жилами круглый нуль, при оценке нулевого провода получаем 230 вольт. Ситуация выглядит, будто фазные жилы стали нейтралью и нулем. Напутали при прокладке – что поделаешь? Требуется искать дополнительный источник опоры. Подойдет отвертка-индикатор.
  • Два провода одной фазы, вторая пара – заземление, нейтраль. Попарно покажут нуль, перекрестно – 230 В. Воспользуйтесь опорным ориентиром.

Отсутствует щуп-отвертка, заручившись помощью тестера как ни звони проводку, проблема останется. Требуется опорный источник, гарантированно заземленный. Подходят:

  1. Контур заземления громоотвода часто ведут по наружной стене здания, полоса стали задевает торец балкона. Идет вертикально вниз. Заземлена, годится избранной цели с двумя оговорками: слой ржавчины сточите напильником, работы выполняйте, когда небо безоблачное (опасайтесь молнии).
  2. Простейшим выходом станет водопроводный кран ванной. Трубы сейчас пластиковые. Но внутри находится отличный электролит – вода с растворенными солями жесткости. Коснитесь черным щупом тестера рукава крана, выполняйте измерения относительно точки опоры. Применяйте боковины фитингов медных, латунных, алюминиевых. Была бы вода.

    Индикаторная отвертка

  3. На площадке стальной корпус щитка если не заземлен, посажен (закорочен) на нулевой (нейтральный) провод. Выполняйте измерения относительно выбранного ориентира.
  4. Газовая труба – табу желающим заводить заземление, находится под нулевым потенциалом, соприкасается с землей. Найдете сколы краски, аксессуар используйте в целях (спиливать краску самостоятельно запрещено) идентификации фаз, нейтрали, заземления.
  5. По вышеописанным причинам батареи из чугуна, алюминия, стали признаны неплохим ориентиром. Главное, обеспечить тесный контакт. Как проверить? Вызвонить две точки корпуса. Сопротивление составляет единицы ома – норма. При условии, что отопление включено. Согласно нормативам, корпус насоса заземляется, вероятность ошибки низкая.
  6. Трубы канализации опорным источником заземления применять не рекомендуется. Условия проводимости определены количеством… стоков.

Ввиду разнообразия методик, ненадежности рекомендуется до начала серьезных работ провести тесты. Измерить потенциал между указанными ориентирами, фазой розетки. Расстояние между ориентиром, точкой назначения велико? Берем удлинитель. Особенно хорош фильтр питания персонального компьютера, снабженный характерной подсвечивающейся кнопкой. Фаза слева, левый штырь штекера (смотря какой стороной повернуть) помечаем маркером.

Затем вызваниваем с розеткой (без питания, понятное дело), делаем отметку с нужной стороны. Поясняем, можно обойтись без этого, с электрикой лучше отставить шутки. Осталось найти фазу, пользуясь помощью М890С. Ставим диапазон выше 380 вольт (между двумя фазами), начинаем измерять разность потенциалов между клеммами и щитком. Полагаем, дальнейший алгоритм понятен.

Правильно измерить потребление фазы

Измерим нагрузку фаз. Чтобы поставить правильные автоматы, соблюсти равномерное потребление. По правилам трехфазной сети каждую ветвь загружают одинаково, избегая перекосов на стороне поставщика. Оценим, какие фазы входят в квартиру. Проще заглянуть в подъездный щиток. Неопытный человек обязан прекратить попытки лезть туда. Легко получить удар током.

Дом старый – на виду увидите большую стальную пластину, которая явно соединяется с корпусом. Означенное – нейтраль. Дом питается трехфазным напряжением 380 вольт. Каждую квартиру снабжают чаще одной фазой. Тройку зажимов наблюдаем помимо заземлительной клеммы. Посмотрите, куда идут провода: автоматы, рубильники (сообразно счету квартир). Типичное количество соседей по площадке количеством три упрощает задачу анализа.

Теперь знаем метод отыскания фазы мультиметром, можем смело (с осторожностью, соблюдая меры безопасности) потыкать щупами. Потрудитесь выставить правильный диапазон, не сжечь прибор. Измерениями подтвердите или опровергните предположения. Фаз две – каждую нагрузите поровну. Изучите распаячные коробки, в большинстве старых домов находящиеся под потолком (большие круглые отверстия стены). Отключив снабжение квартиры, вооружившись тестером, поймите, куда и что идет. Используйте радикальный метод – отрубите одну пробку, посмотрите, где пропало питание.

Нагрузка двух фаз неравномерная – поправьте. Лучше сделать для автоматов и пробок, что положительно скажется на уменьшении стоимости оборудования распределительного щитка. В довершение по этой теме скажем, что правила работы предусматривают выполнение подобных мероприятий числом не менее двух лиц. Один обязательно страхует и готов отрубить подачу энергии, обрезать токоведущую жилу или ногой оттолкнуть страдающего от удара электричеством с опасной территории.

Схема питания квартиры двумя фазами

Как измерить трехфазное напряжение мультиметром

В этом разделе речь скорее пойдет о специфике трехфазных сетей. Большинство мультиметров позволяет измерять напряжение до 750 вольт переменного тока, чего вполне достаточно для работы с серьезными промышленными сетями. Каждый дом снабжается от трех фаз. А то, что в промышленности называют нейтралью, мы именуем нулевым проводом.

Сети предприятий прокладывают двух типов:

  1. Механизмы с изолированной нейтралью нулевым проводом не пользуются. Внутри нагрузки фаз уравнены, токи утекают через эти же провода, которых в сумме три. Устанете искать нейтраль – линия отсутствует. Три провода фазные, относительно земли покажут напряжение 230 вольт, между собой – 380.
  2. Заземленная нейтраль представляет нулевой провод. Помечается буквой N на коробках. Полезно смотреть принципиальные схемы промышленных приборов, приведенные на корпусе. Поможет понять раскладку.

Освоив методики работы с трехфазным напряжением, каждый сможет лучше понять электрическую разводку многоэтажного дома. Где из-под щитка поднимаются четыре жилы: три фазы и нейтраль.

Фазы автомобиля

Электрические сети помогают многим объектам. Автомобиль считается относительно простым устройством. Основу снабжения составляют аккумулятор 12 вольт (реально – 14,5 В), генератор, уровень выходного напряжения которого регулируется сообразно вариациям оборотов. Напряжение после выпрямления пригодно подпитывать аккумулятор бортовой сети. Активация вала генератора ведется аккумулятором через специальное регулирующее устройство.

Трехфазная схема Ларионова

Выпрямляемые диодным мостом схемы Ларионова фазы питают авто. Популярная сегодня методика. Диодов присутствует шесть штук. Фазы сливаются механическим объединением после выпрямления единой магистралью. Обеспечивает максимальную мощность. Чувствительные компоненты авто (бортовой компьютер), дополнительно выпрямляют нестабильный ток. Чтобы продлить срок службы устройства.

Далее напряжение идет потребителям. Дворники, система индикации, освещение, зажигание. Бортовой компьютер может выдать закодированное сообщение: пора проверить датчик фаз. Элемент, работа которого использует эффект Холла, определяет положение распределительного вала двигателя. Подобными оснащают стиральные машины, оценивая скорость вращения. Авто определяет угловое положение вала. Датчик выдает импульсы, оценивая параметры которых компьютер получит нужную информацию.

Сенсорами авто напичкан. На две клеммы подается питание, третья формирует сигнал. Для проверки посмотрим схему: местонахождение узлов. Затем вплотную займемся прозвонкой. Имитируя условия формирования импульсов, пользуйтесь постоянным магнитом.

Вопрос, как определить фазу и ноль мультиметром на авто, отпадает. Опорой служит корпус автомобиля – масса. Понятное дело, генератор работает только при запущенном двигателе. Внутри квартиры ищем фазу и нуль, здесь масса задана априори. Можно вызванивать пробитую изоляцию (например, диодов выпрямительного моста). На авто проще простого измерить три фазы мультиметром. Действующее значение косвенно сказали. Порядка 20 вольт (учитывая потери неидеального моста).

Ошибки пользователей мультиметра

Китайские мультиметры настроены работать, даже если неправильно поставлены щупы. Сломать прибор случайно остерегайтесь. Избегайте способа: воткнуть черный провод в разъем измерения высоких токов, красный – на свое место. Попытаетесь измерить переменное напряжение высоковольтной линии – ремонт обеспечен. Нельзя применять неправильные диапазоны. Зарекитесь пытаться измерить переменное напряжение, применив шкалу постоянного. Проверка фаз станет последней в жизни мультиметра.

Прибор выводится из строя большим напряжением переменной полярности. Прочее (к примеру, неправильная полярность щупов) не так страшно.

Чем отличается напряжение 220 от 380 Вольт

Напряжение 380B называется линейным, потому как действует между любыми из трех фаз в трёхфазной сети. Напряжение 220B называется фазным, действует между одной из трех фаз и нулём.

От генерирующих электростанций к потребителям электрическая энергия подается при помощи высоковольтных линий, частота которых составляет 50 Гц. Понижение высокого синусоидального напряжения происходит на трансформаторных подстанциях, после чего выполняется его распределение потребителям – на уровне 220B и 380B. Различается однофазная и трехфазная сеть. Однако каковы отличия между ними? Давайте разбираться.

Если при подключении дома или квартиры используются два провода (фазы и нуля), система является однофазной. Коэффициент ее рабочего напряжения составляет 220B. Если же заходят 4 провода (трех фаз и нуля) – это трехфазная система. Ее рабочее напряжение (линейное) составляет 380B.

Специфика подачи напряжения

По типу электрического тока напряжение бывает переменным и постоянным. При разной форме переменного тока изменяется его величина и значение. В то время, как у постоянного тока сохраняется одна и та же полярность знака, а вот величина может изменяться.

Напряжение, присутствующее в современных розетках, имеет переменную синусоидальную форму. Его значение бывает следующих видов:

  • Амплитудным – указывает на размер размаха синусоиды по отношению к нулю в вольтах;
  • Действующим – это значение, которое в √2 или 1,41 раз меньше предыдущего;
  • Мгновенным – значение указывает на интенсивность напряжения в вольтах в определенные моменты времени.

Трехфазные цепи. Как подается напряжение в них

В трехфазной цепи напряжение может быть фазным или линейным. Векторная диаграмма выглядит следующим образом:

На графике присутствуют три вектора напряжений (фаз) – Uа, Ub и Uс. Величина угла между ними равна 120°. Это соблюдается между обмотками в простейшем электрооборудовании. Для того, чтобы знак вектора Ub изменился на противоположный, его нужно отразить таким образом, чтобы векторное начало и конец поменялись местами, при этом первоначальный угол наклона был сохранен. После установки векторного начала Ub в конец Uа полученное расстояние и будет рассматриваться, как вектор линейного напряжения (Uл).

Чем отличаются между собой

Однофазные сети

В таких сетях ток может проходить и по замкнутым цепям. При подключении рекомендуется в первую очередь подвести напряжение к эффективной нагрузке и только после этого вернуть его обратно. Провод, который подводит ток в условиях переменного тока, является фазой. Второй провод является нулевым. Между этими двумя проводами, передающими однофазный ток, величина напряжения составляет 220B.

Двухфазные сети

Этот тип электросетей предусматривает осуществление передачи двух переменных токов, по которым их напряжение сдвигается по фазе на 90°. Для передачи токов используются два фазных и два нулевых провода. Из-за дороговизны такой способ передачи напряжения сейчас не используется.

Трехфазные сети

В таких электросетях одновременно передаются три переменных тока со сдвигом напряжения по фазе на 120°. Источники соединяются по схеме «звезды», что позволяет использовать только три провода – 3-х фазных и одного нулевого. Преимуществом таких сетей признана экономичность и возможность передачи тока на большие расстояния. В любой паре проводов фаз присутствует напряжение в 380B, а в парах одного фазного и нулевого провода – 220B.

Исходя из вышеперечисленного, для электропитания городских квартир и частных домов оборудуются однофазные или трехфазные сети.

Где используется напряжение в 220B, а где в 380B

В большинстве жилых объектов (квартирах, домах, коттеджах и на дачах) установлены и используются однофазные электросети, в которых напряжение составляет стандартные 220B. Это обоснуется тем, что уровень потребления в обычном доме или квартире не превышает, как правило, 10 кВт.

Трехфазная электросеть проводится на объекты, где планируемый уровень потребления мощностей превышает значение в 10 кВт, а также установлены и используются электрические установки, которые требуют именно трехфазную подачу напряжения для обеспечения корректного функционирования. К примеру, если для запуска трехфазного двигателя использовать лишь одну фазу с применением конденсатора, это существенно понизит КПД электроустановки и в то же время увеличит расход электрической энергии.

С другой стороны, если уровень максимально потребляемой мощности в частном домохозяйстве не превышает 9-ти кВт, допускается использование на вводе двужильного медного кабеля с сечением 6мм и установку автомата на 40A.

В случае, когда максимальная нагрузка предположительно равняется 15кВт, для провода одной фазы величина проходящего тока составит 70A. Следовательно, обязательной будет прокладка медного провода с 10-милиметровым сечением и силового автоматического выключателя. Однако стоимость такой сети намного дороже. А потому выходом из ситуации может стать монтаж обычной трехфазной сети и распределение эффективной нагрузки поровну между фазами, то есть – по 5 кВт. На сегодняшний день подобные решения по обеспечению электропитанием используются большинством магазинов, предприятий и офисов.

По каким схемам потребители подключаются к трехфазным электросетям

Для подключения электродвигателей, нагревателей и других трехфазных мощностей используется схема «звезда» или «треугольник». Большинство установок оснащены перемычками, которые в зависимости от положения обмоток формируют вышеуказанные схемы.

Соединение звездой

Схема предусматривает соединение концов обмоток генерирующего устройства в одну точку и подключение к началу этих же обмоток нагрузки. В электродвигателях получается, что линейное напряжение в 380B, при условии соединения обмоток по схеме звезды, прикладывается к двум обмоткам для каждой фазной пары.

Соединение треугольником

В этой схеме предусмотрено прикладывание линейного напряжения к каждой обмотке. Эти элементы, как правило, рассчитаны именно на такие подключения.

Указанные способы подключения имеют и плюсы, и недостатки.

Плюсы подключения однофазной сети 220B

  • Простота монтажа,
  • Экономичность в финансовых вложениях,
  • Безопасность в использовании напряжения.

Минусы использования однофазной сети 220B

  • Ограничения на использование мощностей для конечных потребителей,
  • Исключение возможности функционирования асинхронных двигателей, не оснащенных конденсаторами и ПЧ.

Плюсы подключения трехфазной сети 380B

  • Экономия финансовых средств в условиях трехфазного потребления энергии,
  • Возможность подключения и питания промышленного оборудования,
  • Ограничение мощности только по сечению используемого кабеля,
  • Переключение однофазных нагрузок на другую фазу в случаях ухудшения качества либо отключения электропитания.

Недостатки трехфазной сети 380B

  • Дорогое оборудования,
  • Напряжение, несущее опасность для жизни человека,
  • Наличие ограничений на максимальную мощность при однофазных нагрузках.

Что бы электрическая сеть работала бесперебойно и безопасно, необходимо проводить периодические испытания сертифицированной электролабораторией. Выезд специалиста на Ваш объект — бесплатно!

Объяснение трехфазного питания

| Объяснение трехфазного питания

В этом видео подробно рассматривается трехфазное питание и объясняется, как оно работает. Трехфазную электроэнергию можно определить как общий метод производства, передачи и распределения электроэнергии переменного тока. Это тип многофазной системы, который является наиболее распространенным методом, используемым электрическими сетями во всем мире для передачи энергии.

 

 Дополнительные ресурсы Raritan


Расшифровка:
Добро пожаловать в этот анимационный видеоролик, в котором кратко рассказывается о трехфазном питании.Я также объясню тайну, почему 3 линии электропередач находятся на расстоянии 120 градусов друг от друга, потому что это важная часть для понимания 3-фазного питания.

Электроэнергия, поступающая в центр обработки данных, обычно представляет собой трехфазную электроэнергию переменного тока, что означает трехфазную электроэнергию переменного тока.

Давайте рассмотрим упрощенный пример того, как генерируется трехфазное питание.

Этот пример отличается от того, что я использовал для описания того, как трехфазный двигатель использует мощность. В видео с переменным током мы показали, как вращение магнита вокруг одного провода заставляет ток течь туда и обратно.Теперь мы пропустим магнит через 3 провода и посмотрим, как это повлияет на ток в каждом проводе.

В этом трехфазном примере северный положительный конец магнита направлен прямо вверх на первую линию.

Чтобы упростить объяснение концепции, давайте воспользуемся циферблатом и скажем, что первая линия находится в положении «двенадцать часов». Электроны в линии 1 будут течь к северному полюсу магнита. Что произойдет, если магнит повернется на 90 градусов?

Как мы видели на видео с переменным током, поскольку магнит перпендикулярен линии 1, электроны в линии 1 перестанут двигаться.Затем, когда магнит повернется более чем на 90 градусов, южный полюс магнита приблизится к первой линии, и электроны изменятся на противоположные, что означает, что направление тока изменится на противоположное. Об этом было подробно рассказано в видео о переменном токе. Если вы нажали на это видео, не имея полного представления о переменном токе, сначала просмотрите это видео.

Глядя на таблицу, вы можете понять, почему я выбрал аналоговый циферблат. Круг равен 360 градусам, и часы делят круг на 12 частей, так что каждый час покрывает 30 градусов круга.Переход от 12 к 3 составляет 90 градусов, а переход от 12 к 4 — 120 градусов.

При выработке трехфазного питания медные линии располагаются под углом 120 градусов друг к другу. Итак, когда вы находитесь в положении «четыре часа» в нашем примере, это 120 градусов от первой линии. А положение «8 часов» находится на 120 градусов от положений «4 часа» и «12 часов». 3 линии равномерно распределены по кругу.

Если северный полюс находится ближе к одному из 3-х проводов, то электроны движутся в этом направлении.Чем ближе южный полюс подходит к каждому проводу, тем больше электроны удаляются от южного полюса. В каждой из этих трех линий электроны движутся вперед и назад, но они не всегда движутся в том же направлении или с той же скоростью, что и две другие линии.

Давайте снова посмотрим на пример. Когда магнит вращается, когда северный полюс находится в положении 1 час, он становится перпендикулярным линии 2, поэтому, конечно, электроны перестают двигаться по линии 2. Но они все еще движутся по линии 1, притягиваясь к более близкому северному полюсу, и они двигаются по линии 3, отталкиваясь от южного полюса.Когда северный полюс магнита повернут на 2 часа, на линию 1 и [линию] 2 влияет северный полюс, но южный полюс находится прямо напротив линии 3, поэтому теперь он имеет пиковый ток. В 3 часа магнит перпендикулярен линии 1, поэтому электроны перестают двигаться, но на линию 2 влияет северный полюс, а на линию 3 — южный полюс, поэтому ток течет по линиям 2 и 3.

Будем надеяться , этот пример показывает вам, как в любое время ток всегда течет как минимум по 2 линиям. Он также показывает взаимосвязь между тремя линиями, когда магнит вращается по кругу.Когда магнит движется вокруг циферблата, на каждую из трех линий будет влиять либо северный, либо южный полюс, за исключением случаев, когда магнит перпендикулярен линии.

Давайте сосредоточимся на линии 1. Она достигает своего пикового значения, когда северный полюс указывает на 12-часовую и 6-часовую позиции. Это при нулевом токе, когда северный полюс указывает на 3 и 9 часов. Только 1 из 3 линий всегда находится на пике, но поскольку линий 3, для каждого цикла есть 3 положительных пика и 3 отрицательных пика.В 6 различных положениях на циферблате одна из линий находится на пике. Позиции 12 и 6 — чередующиеся пики линии 1, позиции 2 и 8 — чередующиеся пики линии 3, а позиции 4 и 10 — чередующиеся пики линии 2.

Теперь давайте объясним эти запутанные формы сигналов, которые часто используются для изображения трех фаз. Если вы посмотрите на пример сигнала, вы увидите, что первая линия выделена синим цветом, и она начинается с нуля. Это означает, что магнит перпендикулярен этой линии. Когда магнит движется, вы можете видеть, что ток достигает своего пика.Затем, когда положительный полюс проходит мимо этого провода, ток начинает ослабевать, пока магнит снова не станет перпендикулярным, что приводит к нулевому току. Когда отрицательный полюс начинает приближаться, ток меняет направление и движется в другом направлении к другому пику, прежде чем вернуться к нулевому току. Это завершает 1 полный цикл для этой строки.

Чтобы двумерная диаграмма показывала взаимосвязь между линиями, теперь на ней показан промежуток, обозначающий время, за которое магнит повернется на 120 градусов.Это когда красная линия находится на нулевом токе. По мере того, как магнит продолжает вращаться, красная линия будет двигаться к своему пиковому положительному току, а затем вернется к нулю, после чего ток изменит направление. График также показывает, что третья линия начинается при нулевом токе через 120 градусов после второй линии. Итак, если вы посмотрите на эти 3 линии, вы увидите, что, когда одна линия находится на пике, другие 2 линии все еще генерируют ток, но не в полную силу, то есть они не на пике. Так как электроны текут от положительного пика к отрицательному, ток отображается как текущий от положительных значений к отрицательным.Помните, что положительные и отрицательные стороны не исключают друг друга. Положительная и отрицательная коннотация используется только для описания того, как чередуется ток.

В трехфазной цепи вы обычно берете одну из трех токоведущих линий и соединяете ее с другой из трех токоведущих линий. Одно исключение из этого описано в видео «Дельта против звезды».

В качестве примера возьмем 3-фазную линию 208 вольт. Каждая из трех линий будет иметь напряжение 120 вольт. Если вы посмотрите на график, вы легко увидите выходную мощность любых двух линий.Если одна линия находится на пике, другая линия не находится на пике. Вот почему в трехфазной цепи неправильно умножать 120 вольт на 2, чтобы получить 240 вольт.

Итак, если вам интересно, почему у вас дома есть 110/120 вольт для ваших обычных розеток, но у вас также есть приборы на 220/240 вольт, что дает? Ну, это не трехфазное питание. На самом деле это 2 однофазные линии.

Итак, как рассчитать мощность объединения двух линий в трехфазной цепи? Формула представляет собой вольт, умноженный на квадратный корень из 3, который округляется до 1.732. Для 2 линий по 120 вольт, расчет для этого равен 120 вольт, умноженный на 1,732, и результат округлен до 208 вольт.

Вот почему мы называем это трехфазной цепью на 208 В или трехфазной линией на 208 В. Трехфазная цепь на 400 вольт означает, что каждая из 3 линий несет 230 вольт.

Последняя тема, о которой я расскажу в этом видео: почему компании и центры обработки данных используют 3 фазы?

Прямо сейчас позвольте мне дать вам простой обзор. Для трехфазной сети вы соединяете линию 1 с линией 2 и получаете 208 вольт.В то же время вы [можете] подключить линию 2 к линии 3 и получить 208 вольт. И вы [можете] соединить линию 3 с линией 1 и получить 208 вольт. Если провод способен подавать 30 ампер, то передаваемая мощность составляет 208 вольт, умноженных на 30 ампер, умноженных на 1,732, что дает общую доступную мощность 10,8 кВА.

Для сравнения, для однофазной цепи на 30 ампер с напряжением 208 вольт вы получите только 6,2 кВА. По сути, 3 фазы обеспечивают большую мощность.

Существуют и другие факторы, по которым гораздо лучше подавать трехфазное питание к стойке центра обработки данных, а не использовать однофазное питание, и эти факторы обсуждаются в видео о вольтах и ​​амперах, а также в видео 208 и 400 вольт.

Новый взгляд на расчеты трехфазного переменного тока — Dataforth

Преамбула

Эти указания по применению являются продолжением рекомендаций Dataforth. Примечание по применению AN109, которое содержит систему переменного тока определения и основные правила расчетов с примерами. Читателю предлагается просмотреть AN109, ссылки 3, 4 и 5 в качестве фона для настоящих указаний по применению.

Трехфазная система напряжения

Системы трехфазного напряжения состоят из трех синусоидальные напряжения одинаковой величины, одинаковой частоты и разделены на 120 градусов.

Рис. 1 иллюстрирует функцию косинуса в реальном времени и связанная векторная нотация для 3-фазной линейной линии система напряжения с линейным напряжением V12 в качестве опорного.

Обзор свойств трехфазной системы напряжения

Трехфазные напряжения питания и системы нагрузки имеют два базовые конфигурации; 4-проводная «звезда» и 3-проводная «дельта». На рисунке 2 показана базовая 3-фазная 4-проводная схема «звезда». настроенная система напряжения с V1N в качестве эталона и На рис. 3 показана трехпроводная система напряжения, сконфигурированная по схеме «треугольник». с V12 в качестве эталона соответственно.

 

Важные определения, соглашения и правила расчета как для 3-фазного 4-проводного соединения «звезда», так и для 3-проводного соединения «треугольник» сконфигурированные системы напряжения перечислены ниже список с опущенной «грязной» векторной математикой.

Фазорная ориентация:
По определению, все синусоидальные векторы вращаются в против часовой стрелки с {1-2-3} или {3-2-1} последовательность и углы измеряются как положительные в направление против часовой стрелки.4-проводная 3-фазная система звезда показан на рисунке 2, где V1N выбран в качестве эталона. То междуфазные напряжения составляют V12, V23 и V32 с линейным напряжения нейтрали показаны как V1N, V2N и V3N. Фигура 3 показаны надлежащие междуфазные фазовые напряжения для 3-фазного фаза 3-проводная конфигурация треугольник с выбранным вектором V12 в качестве ссылки. Примечание. В качестве ссылка, выбор совершенно произволен.

Последовательность фаз:
Последовательность фаз определяет последовательную синхронизацию, с которой каждый вектор линейного напряжения отстает от линейного напряжения другого вектор против часовой стрелки. Рисунки 1, 2 и 3 показана последовательность фаз {1-2-3}. Последовательность {1-2-3} означает, что V12 опережает V23 на 120 градусов, а V23 опережает V31 на 120 градусов. Кроме того, V1N опережает V2N на 120 градусов, а V2N опережает V3N на 120 градусов.это необходимо установить последовательность фаз перед выполнением любые расчеты для того, чтобы вычисленный векторный вектор углы могут быть правильно расположены относительно друг друга.

Имеется только две действительные последовательности фаз; {1-2-3} последовательность и последовательность {3-2-1}. Обе эти фазы последовательности определяются тем, как 3-фазный трансформатор линии питания (L1, L2, L3) подключены и промаркированы.Рисунок 4 иллюстрирует последовательность {3-2-1} относительно {1-2-3} последовательность. Примечание. Последовательность фаз может быть изменить, просто поменяв местами соединения любых двух из трех (L1, L2, L3) линий подачи; однако это должно осуществляться только в соответствии со всеми надлежащими кодексы, правила и утверждение проектирования завода штат сотрудников.

Индексы:
Поддержание правильного порядка индексов для всех векторов количество является одним из наиболее важных ключей к успешному 3-этапные расчеты.На рис. 4 показан правильный индекс порядок для каждой из двух различных последовательностей фаз. За последовательность {1-2-3}, правильный порядок индексов [12], [23] и [31]; тогда как правильный порядок индекса для последовательность {3-2-1} — это [32], [21] и [13].

Обозначение нижнего индекса:
После определения последовательности фаз и правильного индексы идентифицируются, расчеты с использованием этих нижние индексы вместе с соглашениями, принятыми для Версия закона Ома на переменном токе предотвратит угловые ошибки.

По соглашению, V12 представляет собой падение напряжения вектора плюс (1) до минус (2) в направлении тока, протекающего из точки (1) к точке (2) и равен этому току, умноженному на импедансом переменного тока между точками (1) и (2). За пример в векторной записи;

Фактор сложения/вычитания:
Правильное обозначение нижнего индекса устанавливает правильный метод для векторного сложения/вычитания векторов.На рисунке 2 фазовращатели междуфазного напряжения в этой 3-фазной {1-2-3} последовательность 4-х проводной системы «звезда» состоит из линейно-нейтральных векторные напряжения следующим образом;

Если среднеквадратичное значение напряжения фаза-нейтраль равно сбалансированная система), то приведенные выше уравнения показывают, что все линейное напряжение питания фазора линейное к нейтрали напряжения умножьте на 3 и соедините линию с нейтралью вектора напряжения на 30 градусов .Например, стандарт 4-проводная 3-фазная система «звезда» с фазным напряжением 120 вольт и V1N, выбранный в качестве эталонного вектора при ноль градусов имеет междуфазные напряжения;

V12 = 208∠ 30°; V23 = 208∠ -90°; V31 = 208∠ 150°.

Важная концепция: 3-фазная 3-проводная схема «треугольник» система симметричных напряжений фактически не имеет линейного нейтральные напряжения, такие как система звезда.Тем не менее дельта междуфазных напряжений, как показано на рисунке 3, все еще может быть построен из теоретического набора сбалансированных 3-фазных фазное напряжение, как показано выше. То отношения с этими теоретическими напряжениями чрезвычайно полезно для определения углов дельта-фазора.

Процедуры расчета, рекомендации и формулы

Следующий список процедур, руководств и формул проиллюстрировать схему того, как рассчитать трехфазный фазовращатель количества, используя типичные данные паспортной таблички, взятые из отдельные единицы нагрузки.

Вычисления выполняются следующим образом;


  1. Идентификация последовательности фаз; {1-2-3} или {3-2-1}
  2. Идентифицировать индексы; [12], [23], [31] или [32], [21], [13]
  3. Предположим, что линейные токи L1, L2, L3 текут к нагрузкам и нейтральный (обратный) ток течет к источнику питания.
  4. Протекание тока нагрузки и падение напряжения должны соответствовать нотации нижнего индекса, как определено ранее.
  5. Используйте «Закон Ома для переменного тока» для расчета величин и углы каждой отдельной однофазной нагрузки Текущий. Обзор Dataforth AN109, ссылка 1.
  6. Важные понятия: Линейные токи по схеме «звезда» и «звезда». Трехфазные нагрузки, сбалансированные треугольником, рассчитываются с использованием следующие отношения;
    1. Входная мощность переменного тока = 3 x (Vline) x (Iline) x PF
    2. PF — косинус угла, на который прямая токи опережают или отстают от фазного напряжения.Трехфазные линейные напряжения на самом деле существуют в звездообразной конфигурации; тогда как они теоретический в дельта-конфигурациях. Например, допустим любой баланс 3-х фазной нагрузки на 10 ампер линейного тока и PF 0,866 (30°) отставания. Если системная последовательность {1-2-3} и V12 является эталоном, тогда I1=10∠ -60°; I2=10∠ 180°; I3=10∠ 60° .
  7. Определить величины треугольника мощности; Вт «П» и VAR «Q» для каждой нагрузки. Обзорный номер 1.
  8. Суммировать ранее рассчитанную индивидуальную нагрузку токи с использованием надлежащего обозначения индекса для определения ток каждой отдельной линии
  9. Наконец, просуммируйте все треугольники мощности отдельных нагрузок. количества (Ватт «P» и ВАР «Q»), чтобы установить величины треугольника мощности системы; P, Q и PF.Это этот последний шаг, который устанавливает, как загрузка системы ведет себя население.

Примеры расчета

В следующих примерах предполагается типичное напряжение 208–120 вольт. трехфазная конфигурация «4 звезды» с чередованием фаз из {1 2 3}, и V12 выбран в качестве эталона. это вай система; однако нагрузки, подключенные между каждым из три отдельные линии подачи (L1, L2, L3) составляют 208-вольтовая 3-проводная схема треугольник.Три категории однофазные нагрузки предполагаются для следующих расчеты. Эти категории идентичны тем, определено в примечаниях по применению AN109 (ссылка 1) и перечисленных ниже с необходимыми данными паспортной таблички.

  • Мощность киловатт; кВт, КПД (опционально), PF= 1
  • Выходная мощность, л.с.; HP, Эффективность, P
  • Вход кВА; КВА, ПФ, КПД 100%.

В таблице 1 показаны рассчитанные значения для предполагаемого популяция этих нагрузок. Читатели должны убедиться в этом расчеты. Dataforth предлагает интерактивный Excel рабочая тетрадь, аналогичная Таблице 1, которая автоматически рассчитывает все параметры трехфазной системы. Видеть Ссылка 2 для загрузки этого файла Excel.

Пример расчета для линейных нагрузок
Трехфазные системы «звезда» с нейтралью могут иметь равные или неравные отдельные однофазные нагрузки, подключенные между любая из линий питания (L1, L2, L3) и нейтраль.Системы сбалансированы, если все нагрузки между фазой и нейтралью одинаковы.

На рис. 5 показаны три группы однофазных линейно-нейтральных нагрузки, подключенные по трехфазной схеме «звезда». Такая конфигурация однофазных нагрузок может быть рассматривается как составная неуравновешенная нагрузка звездой

На рис. 6 показаны три группы однофазных линейных нагрузки, подключенные по трехфазной схеме «звезда».Этот конфигурация однофазных нагрузок может рассматриваться как составная несбалансированная дельта-нагрузка

На рис. 7 показана группа сбалансированных нагрузок по схеме «звезда» и группа сбалансированных дельта-нагрузок, обе из которых являются (могут быть) подключены по трехфазной схеме «звезда».

Таблица 1 представляет собой составной набор результатов расчетов для конфигурации, показанные на рисунках 5, 6 и 7.Эти расчеты предполагают произвольную популяцию вида загружает ранее определенные и использует все правила, процедуры и определения, как показано выше. То система результаты расчетов таблицы 1 показаны ниже в таблицах 2 и 3.

Сетевое напряжение V12 (208 при нуле градусов) является эталонным для указанные выше текущие углы.

Читателям рекомендуется проверить эти расчеты.

Как упоминалось выше, Dataforth предоставляет интерактивный Файл Excel, предназначенный для помощи энтузиастам-исследователям. при расчете системных токов и связанной с ними мощности уровни. Этот файл позволяет следователю ввести табличку с именем данные по всем нагрузкам системы; после чего все линейные токи фазоры и величины мощности рассчитываются автоматически. Интерактивная рабочая тетрадь Excel для трех- Расчет фаз переменного тока» можно загрузить с веб-сайт Dataforth, см. ссылку 2 .

На рис. 8 показана изолированная истина Dataforth. Входной модуль RMS, SCM5B33. Эта функция также доступен в упаковке на DIN-рейку; ДСКА33. Датафорт имеет набор модулей формирования сигнала, разработанных специально для измерения среднеквадратичного значения переменного тока высокого напряжения параметры с использованием встроенного затухания. Читатель рекомендуется посетить ссылки 1, 6, 7 и 8.Ссылки на Dataforth Читателю предлагается посетить веб-сайт Dataforth и изучить их полную линейку изолированных преобразователей сигнала модули и соответствующие указания по применению, см. ссылки показано ниже.

  1. Dataforth Corp., http://www.dataforth.com
  2. Dataforth Corp., AN110 Excel Интерактивная работа Книга для расчета трехфазного переменного тока
  3. Датафорт Корп., Примечание по применению AN109, Измерения однофазного переменного тока
  4. Dataforth Corp., AN109 Excel Интерактивная работа Книга для расчетов однофазного переменного тока
  5. Национальный электротехнический кодекс, контролируемый Национальным пожарным управлением Агентство защиты, NFPA
  6. Датафорт Корп., Система аттенюатора напряжения SCMVAS,
  7. Dataforth Corp., Серия SCM5B33 модульных формирователей сигналов истинного среднеквадратичного значения
  8. Dataforth Corp., Серия DSCA33 формирователей сигналов истинного среднеквадратичного значения с креплением на DIN

Мониторинг только одной или двух из трех фаз

Вопросы

«Из-за нехватки места мы можем установить только два трансформатора тока (ТТ) для контроля трехфазной цепи.Есть ли поправочный коэффициент, который мы можем использовать, чтобы компенсировать мониторинг только двух из трех фаз?»

«Что, если мы будем контролировать только одну из трех фаз?»

Ответить

Для симметричных трехфазных четырехпроводных цепей (звезда) каждый ТТ будет измерять ровно одну треть полного тока. Таким образом, если вы измеряете две из трех фаз, вы должны умножить свои результаты на 1,5, чтобы масштабировать показание до правильного значения. Если вы измеряете только одну фазу, вы должны умножить на 3, чтобы масштабировать показание до правильного значения.

Ограничения

Существует несколько различных способов разбалансировки трехфазной цепи, которые могут привести к снижению точности при таком подходе:

  • Возможно, нагрузка не сбалансирована. Трехфазные двигатели, как правило, хорошо сбалансированы, но другие нагрузки могут быть не сбалансированы. Если ваша нагрузка на самом деле представляет собой несколько нагрузок (например, мониторинг трехфазной сети на этаже здания), то существует высокая вероятность дисбаланса.
  • Напряжения от нейтрали (или земли) к каждой фазе могут быть несимметричными.Всегда есть небольшой дисбаланс, но дисбаланс может быть больше в зависимости от сервиса и других нагрузок. Например, если напряжение одной фазы на 1,0 % выше, чем напряжение других фаз, и вы не отслеживаете одну фазу с высоким уровнем, ваши показания мощности будут на 0,5 % ниже.
  • В редких случаях однофазное напряжение может быть заземлено (так называемый «заземленный треугольник» или «заземленная ветвь»). В этом случае измеритель WattNode будет измерять нулевую мощность на заземленной фазе, поэтому простым решением является контроль двух других фаз и устранение поправочного коэффициента, равного 1.5. В этом случае для получения точных результатов необходимо контролировать обе активные фазы и (незаземленные).

Рекомендации

Если возможно, вы должны использовать портативный анализатор мощности или мультиметр (DMM), чтобы убедиться, что нагрузка достаточно хорошо сбалансирована. С помощью анализатора мощности вы можете измерить мощность на каждой фазе и сравнить. С помощью цифрового мультиметра вы можете проверить напряжения между фазой и нейтралью или между фазой и землей, чтобы убедиться, что они очень похожи. Если у вас есть измеритель с токоизмерительными клещами, вы также можете проверить ток в каждой фазе, чтобы убедиться, что они хорошо сбалансированы.

Разве теорема Блонделя не позволяет использовать два ТТ для контроля трехфазной трехпроводной (треугольник) цепи?

Да, это означает, что можно спроектировать счетчик только с двумя элементами (и только с двумя трансформаторами тока) для контроля трехпроводной схемы треугольник. Но это не значит, что все счетчики могут воспользоваться этим преимуществом. Чтобы использовать теорему Блонделя, одну из трех фаз необходимо использовать в качестве точки отсчета, чтобы две другие фазы измерялись относительно этой точки отсчета.

Архитектура счетчиков WattNode серии WNB и WNC допускает использование только земли или нейтрали в качестве контрольных точек, а не одной из фаз напряжения. Следовательно, теорема Блонделя не может быть применена к этой серии счетчиков WattNode, чтобы разрешить использование двух трансформаторов тока для трехпроводных незаземленных цепей треугольника. Как отмечалось выше, если ваша нагрузка сбалансирована, вы можете использовать только один ТТ и умножить показания на 3. Или использовать два ТТ и умножить показания на 1,5.

Однако в приложениях, использующих трансформаторы напряжения (PT), вторичная обмотка PT может быть проводной, чтобы обеспечить контрольную точку.Следовательно, в этом приложении счетчики серий WNB и WNC могут использоваться только с двумя ТТ. См. Рисунок 3: Мониторинг схемы треугольника на странице «Использование трансформаторов напряжения».

Счетчики серии WND могут измерять 3-фазные сети с 3-проводным треугольником, 4-проводным треугольником и заземленным треугольником, используя только два трансформатора тока.

См. также

Трехфазная электроэнергия — Подвал цепи

Создайте свой собственный исходный код

Трехфазное питание распространено повсеместно, и это важная концепция электротехники, которую необходимо понять.Здесь Роберт объясняет трехфазное распределение электроэнергии, почему оно так распространено и как его использовать. Он также помогает нам самостоятельно собрать небольшой экспериментальный трехфазный источник питания.

Добро пожаловать на «Темную сторону». С тех пор, как в конце 1880-х годов были разработаны первые электрические сети, трехфазная электроэнергия была наиболее распространенным методом доставки электроэнергии во всем мире. Я предполагаю, что большинство читателей Circuit Cellar  более привыкли к напряжению постоянного тока 5 В или 3,3 В, но трехфазное — это норма для электрических сетей, даже если ваш дом питается от одной фазы.

Недавно перед моей компанией впервые за многие годы была поставлена ​​задача разработать продукт, напрямую подключаемый к трехфазному источнику. По служебным причинам я не могу объяснить, что это был за дизайн, но он дал мне идею для этой статьи. В этом месяце я объясню, что такое трехфазное распределение, почему оно так распространено и как его использовать. Кроме того, я также покажу вам, как построить небольшой экспериментальный трехфазный источник питания примерно за 300 долларов. Как обычно, я не буду использовать сложную математику.Итак, присаживайтесь и сохраняйте спокойствие!

ОДНОФАЗНЫЙ

На заре появления электрических сетей использование постоянного (непрерывного) тока (DC) или переменного тока (AC) в течение многих лет было техническим, коммерческим, общественным и патентным конфликтом, известным как «Война токов». ” В частности, Томас Эдисон был сторонником DC, тогда как Джордж Вестингауз возглавлял лагерь AC. Короче говоря, ребята из AC выиграли, но я рекомендую вам прочитать статью в Википедии об этом интересном фрагменте истории [1].

Как известно, по паре проводов передается переменный ток. Напряжение между двумя проводами попеременно положительное и отрицательное, и более точно следует синусоидальной функции времени. Передача энергии дифференциальная, поэтому важна только разница напряжений между этими двумя линиями. Тем не менее, обычно одна из двух линий, называемая «нейтральной», имеет напряжение, близкое к напряжению земли, в то время как другая линия, «фаза», колеблется вокруг этого опорного напряжения. Чтобы сделать нашу жизнь более интересной, частота и амплитуда этого напряжения зависят от страны, как известно каждому путешественнику.Например, если, как и я, вы живете во Франции, то переменное напряжение как функция времени будет:

Фаза(t) = 325 × sin(2π × 50 × t)

Поэтому мгновенное напряжение в наших вилках колеблется от -325В до +325В с частотой 50Гц. Эквивалентное среднеквадратичное значение напряжения составляет 325 В, деленное на квадратный корень из 2 (√2), что дает 230 В RMS . Это означает, что наши источники переменного тока в среднем обеспечивают ту же мощность, что и источник постоянного тока 230 В.

ТРИ ФАЗЫ?

Я сейчас объясню, почему, но однофазные источники электроэнергии почти всегда берутся из трехфазной электрической распределительной сети.Что такое трехфазная система электроснабжения? Как следует из названия, здесь уже не один, а три фазных проводника, по каждому из которых течет переменный ток той же частоты и напряжения, что и при измерении от заданной нулевой точки. Однако между каждым из них существует разность фаз в 120 градусов, что составляет ровно одну треть цикла (360 градусов/3=120 градусов или 2π/3, если выразить в радианах). Как и в случае однофазного распределения, нейтраль обычно где-то соединена с землей.

На рис. 1 (вверху) показаны линейные напряжения трехфазной распределительной системы на примере Франции. Каждая фаза имеет размах напряжения ±325 В и частоту 50 Гц, как и одна фаза, но имеет фазовый сдвиг на 120 градусов по отношению к двум другим. Итак, в двух словах:

Phase1(t) = 325 × sin(2π × 50 × t + 0)

Phase2(t) = 325 × sin(2π × 50 × t + 2π/3)

Phase3(t) = 325 × sin(2π × 50 × t + 2π/3 ) Рис. 1. Вверху: трехфазный источник представляет собой три синусоидальных напряжения со сдвигом фаз на 120 градусов.Внизу Напряжение, измеренное между любыми парами фаз, в 1,73 раза выше, чем между фазой и нейтралью.

В этом примере напряжение между каждой фазой и нейтралью по-прежнему составляет ±325 В пик-пик (полный размах) или 230 В среднеквадратичное значение . Но какое напряжение измеряется между любыми двумя из трех фаз? Это по-прежнему синус с той же частотой, здесь 50 Гц, но с напряжением, умноженным на √3, что равно 1,73. Следовательно, мгновенное напряжение между двумя фазами во Франции составляет ± 562 В 90 294 PP 90 295 или 400 В 90 294 RMS 90 295 .Почему этот коэффициент √3? Есть три способа понять это. Первый — просто посмотреть на график Рисунок 1 . Измерьте разницу между двумя фазами на верхнем графике для одного и того же временного шага или посмотрите на график на рис. 1 (внизу) , на котором показано напряжение между любыми двумя парами фаз. Вы увидите, что пиковое напряжение в 1,73 раза выше, чем при измерении между одной фазой и нейтралью.

Второй способ — нарисовать так называемую «векторную диаграмму», как показано на рис. 2 .Длина каждого вектора соответствует амплитуде синусоиды, тогда как их угловое положение соответствует их фазам. Амплитуды могут быть либо пиковыми, либо среднеквадратичными значениями. Здесь три вектора зеленого цвета показывают соответствующее напряжение и фазу для каждой из трех фаз. Разность напряжений между двумя фазами представлена ​​оранжевыми векторами, и они, несомненно, длиннее. Проведите тригонометрию или измерьте на диаграмме, и вы обнаружите, что отношение равно √3 .

Рисунок 2
Эта векторная диаграмма позволяет нам понять, откуда взялся коэффициент 1,73. Справа перечислены наиболее распространенные трехфазные напряжения.

Последний способ — использовать уравнения для Фазы 1 и Фазы 2, приведенные выше. Вычтите их и запомните небольшую формулу разности двух синусоидальных функций. (не обижу вас напоминанием). Вы обнаружите, что разница составляет:

2 × sin(π/3), что равно √3
ЗВЕЗДА И ТРЕУГОЛЬНИК

Как объяснялось, каждая фаза трехфазного распределения обеспечивает источник питания переменного тока с нейтралью в качестве обратной линии.Эта нейтральная линия обычно проходит через четвертую линию и позволяет использовать три фазы как три независимые однофазные сети: просто используйте одну из фаз и нейтраль в качестве обратного пути, и вы получите однофазный эквивалент. . Вот, собственно, как однофазное распределение подается в наши дома.

Такая конфигурация, в которой нагрузки подключаются между одной из фаз и нейтралью, называется «конфигурацией звезда» (Y) или конфигурацией звезды. Здесь нулевой провод обязателен и обычно заземляется на станции доставки.Эту нейтраль, конечно, не следует путать с соединением защитного заземления, которое всегда является независимым и используется исключительно для защиты от замыканий. При нормальном использовании он не пропускает ток.

При использовании конфигурации «звезда» нагрузки, подключенные к каждой фазе, располагаются таким образом, чтобы, насколько это возможно, от каждой фазы потреблялась одинаковая мощность. В такой идеально сбалансированной конфигурации и при чисто резистивных нагрузках математика показывает, что сумма токов трех фаз равна нулю.Это означает, что ток, проходящий через нейтральный провод, также равен нулю! Фактически, обратный ток нагрузок, подключенных, например, к фазе 1, точно уравновешивает обратный ток нагрузок, подключенных к двум другим фазам, которые, соответственно, сдвинуты по фазе на 120 и 240 градусов. Я не буду приводить здесь демонстрацию, но если вам интересно, есть хорошая статья на эту тему в Википедии [2].

Таким образом, для конфигурации «звезда» нейтральная линия теоретически может быть опущена, если нагрузки были точно сбалансированы.В реальной жизни их нет, и нейтральная линия абсолютно обязательна. Если вы перережете нейтральную линию в несбалансированной конфигурации «звезда», то напряжение в центральном соединении больше не будет фиксированным, и напряжения, приложенные к нагрузкам на трех фазах, больше не будут одинаковыми: некоторые получают напряжение значительно ниже номинального, тогда как другие получают перенапряжение.

СВОБОДНЫЙ ВИНТ

У нас была такая ситуация несколько лет назад в здании, где находится моя компания. Причиной стал ослабленный винт на одной из главных распределительных шин здания.Последствия, к счастью, ограничились большим количеством дыма от нескольких приборов, возгоранием лазерного принтера и ущербом примерно в 10 000 долларов.

Теперь давайте рассмотрим другой способ использования трехфазной сети, который называется «конфигурация треугольником» (Δ). Как вы уже догадались, здесь нагрузки подключаются между каждой парой фаз и получают более высокое напряжение, как объяснено. Таким образом, в конфигурации треугольника для передачи требуется только три провода, поскольку нейтраль не задействована. Опять же, сюда не входит защитное заземление, которое всегда независимо, но не пропускает ток, за исключением случаев возникновения неисправности.Конфигурация «треугольник» менее распространена, чем «звезда», для бытовых установок, но в основном используется на промышленных объектах, например, для питания двигателей или мощных трансформаторов. Конфигурация треугольника также используется для передачи электроэнергии на большие расстояния, просто потому, что она исключает необходимость в четвертом проводнике.

Наконец, вы должны знать, что существует множество способов преобразовать соединение по схеме «звезда» в соединение по схеме «треугольник» или наоборот, или изолировать две сети по схеме «звезда» или две сети по схеме «треугольник». Вам просто нужно использовать правильный тип трансформатора.Например, трансформатор с четырехпроводной вторичной обмоткой «звезда» и трехпроводной первичной обмоткой «треугольник» используется для подключения несимметричных нагрузок при сохранении полностью сбалансированного тока в распределительных линиях.

ЗА И ПРОТИВ?

Остановимся на преимуществах трехфазного распределения по сравнению с однофазным. Почему все поставщики электроэнергии используют трехфазную сеть, для которой требуется больше проводов? Просто потому, что трехфазная схема более экономична. Он использует меньше проводящего материала для передачи того же количества энергии.Точнее, при той же общей массе проводников трехфазная система позволяет передавать не менее чем в два раза больше энергии! Ты мне не веришь? Давайте проделаем очень простую математику. Представьте, что у вас есть однофазная сеть 230 В RMS  с током, ограниченным 100 А из-за максимального номинального тока двух проводов. Это дает доступную мощность 230 × 100 = 23 кВт.

Теперь перейдем к трехфазной сети. Если вы используете дельта-конфигурацию для длинных линий, вам потребуется три провода, а не два, поэтому ваш бюджет на провода будет умножен на 1.5 для того же номинала 100А. Однако теперь вы получите до 23 кВт с каждой фазы, или всего 69 кВт. Это в 3 раза больше мощности и в 1,5 раза больше стоимости провода, поэтому чистый выигрыш представляет собой соотношение 3/1,5 = 2, а не маленький выигрыш.

С другой стороны, есть некоторые недостатки трехфазной электроустановки по сравнению с однофазной: они включают более высокую сложность, более дорогие трансформаторы и несколько больший риск для безопасности, поскольку напряжения между парами фаз выше. Однако для конструктора электроники или экспериментатора есть еще один недостаток: безопасно играть с трехфазными сетями не так просто.В частности, нет ничего похожего на недорогой трехфазный настраиваемый лабораторный генератор.

Столкнувшись с этой трудностью для нашего конкретного проекта, моя компания решила собрать небольшой самодельный трехфазный генератор. Цель состояла не в том, чтобы получить от него какую-то значительную мощность, а просто в том, чтобы получить три источника переменного тока с фазовыми сдвигами на 120 градусов, и простой способ изменения напряжения от 0 до 250 В RMS , и частоты от 50 Гц до 60 Гц. . Просто продолжайте читать, если хотите знать, как это сделать.

ДДС ВОКРУГ?

Первым строительным блоком для такого генератора должен быть генератор синусоидального сигнала с тремя выходами, способный как можно точнее определить фазовый сдвиг между выходами. Постоянные читатели могут помнить давнюю колонку о технологии прямого цифрового синтеза (DDS) («Direct Digital Synthesis 101», Circuit Cellar 217, август 2008 г.) [3]. Короче говоря, DDS — это полностью цифровое решение для генерации синусоидального сигнала с точным контролем всех параметров генерируемого сигнала (, рис. 3, ).

Рисунок 3
Схема прямого цифрового синтеза (DDS) представляет собой полностью цифровой способ генерации синусоидальных сигналов.

Схема основана на фазовом регистре, который увеличивается на заданную величину в каждом такте. Полученная фаза затем используется в качестве адреса для справочной таблицы синусоиды, а затем направляется в цифро-аналоговый преобразователь и фильтруется. Приятно то, что тогда можно точно управлять фазой, просто добавляя постоянное значение в регистр фазы.

Для реализации настоящей DDS вы можете разработать собственную аппаратную или встроенную программу, но самым простым решением будет купить микросхему DDS у лидера рынка Analog Devices.В частности, этот производитель предлагает микросхему, которая, кажется, точно предназначена для того, что нам нужно, AD9959 [4]. Посмотрите на его архитектуру ( рис. 4 ). Этот кусок кремния объединяет четыре независимых генератора DDS с независимыми регуляторами частоты, фазы и амплитуды. Использование трех из них с одинаковой частотой, но смещением фаз на 120 градусов — хорошая отправная точка для трехфазного генератора. Эти микросхемы DDS могут генерировать частоты до 200 МГц, но ничто не мешает нам настроить их на 50 Гц.

Рис. 4.
. Внутренняя структура AD9959 от Analog Devices, четырехканального генератора DDS, идеально подходящего для этого проекта.
ЭКСПЕРИМЕНТАЛЬНЫЙ ГЕНЕРАТОР

Так как мы, как обычно, торопились, то пошли по пути наименьшего сопротивления, поискали на eBay готовую плату на основе этого чипа AD9959 и нашли установку, предложенную несколькими китайскими дилерами ( Рисунок 5 ). Чуть больше чем за 100 долларов мы получили плату генератора на базе AD9959, плату контроллера микроконтроллера STMicroelectronics STM32 с готовой прошивкой и даже тактильный TFT-дисплей для его настройки.

Затем нам нужно было усилить выходные сигналы AD9959 с сотен милливольт до более чем 325 В от пика к пику. Как? И снова мы выбрали ленивый маршрут (, рис. 6, ). Поскольку частота 50 Гц или 60 Гц относится к нижним звуковым частотам, мы купили и подключили четырехканальный аудиоусилитель — автомобильный усилитель GPX1000.4 от немецкого поставщика Crunch, рассчитанный на 4 × 70 Вт RMS [5]. Этот усилитель обеспечивает огромный прирост мощности, но выходное напряжение все равно довольно низкое, поскольку он рассчитан на динамики 4 Ом или 8 Ом.

Мы подключили три небольших трансформатора с 230 В на 12 В назад, чтобы увеличить напряжение примерно в 20 раз, и это обеспечило требуемый диапазон выходного напряжения. Наконец, мы добавили готовый блок питания 230 В в 12 В переменного/постоянного тока для питания аудиоусилителя от основной линии и небольшой изолированный преобразователь 12 В в ±5 В постоянного/постоянного тока для AD9959 и платы контроллера. . И это все! Общая стоимость всех деталей составила около 300 долларов, не считая корпуса.

Для безопасности и удобства один из моих коллег интегрировал полное устройство в стойку 3U (спасибо, Антуан!) и добавил вольтметры на выходе.Мы даже собрали четвертый канал, который можно было использовать как отдельный однофазный источник. Вы можете увидеть окончательную внутреннюю часть сборки на Рисунок 7 , имея в виду, что это был просто быстро собранный инструмент для стендовых испытаний, а не готовый продукт.

ЗАВЕРШЕНИЕ И ПРЕДОСТЕРЕЖЕНИЕ

Вот и мы. Я знаю, что тема трехфазного питания может показаться немного неудобной для разработчиков электроники, но вам, возможно, как и нам, когда-нибудь придется углубиться в эту тему.Более того, я надеюсь, что то, как мы построили наш небольшой тестовый генератор, даст вам некоторые идеи для ваших собственных проектов.

На данный момент, и даже если я уверен, что Circuit Cellar читатели уже знают об этом, я должен подчеркнуть, что работа над такими проектами может быть смертельно опасной — даже если высокое напряжение генерируется 12-вольтовым аудиоусилителем, который кажется безобидным. Не пытайтесь воспроизвести эти эксперименты, если вы не квалифицированы и не обучены работе с высокими напряжениями. И в любом случае всегда соблюдайте три основных правила безопасности:

1) Никогда не работайте в одиночку, когда может присутствовать напряжение выше 24 В, поэтому, как минимум, кто-то может позвать на помощь, если что-то пойдет не так.
2) Всегда полностью отсоединяйте сетевой шнур и ждите разрядки конденсатора, прежде чем открывать устройство, даже и особенно, если вы спешите.
3) Если вам необходимо выполнить какое-либо измерение, используйте изолированные щупы класса безопасности, всегда держите одну руку в кармане и дважды подумайте.

В качестве примера На рис. 8 показан наш тестовый генератор, подключенный к осциллографу. Три небольших блока между осциллографом и генератором представляют собой изолированные дифференциальные пробники класса безопасности на 2 кВ, что является одним из немногих способов подключения неизолированного контрольно-измерительного прибора, такого как осциллограф, к источнику высокого напряжения.

Экспериментировать весело, но не рискуйте и не играйте, если не знаете правил.

Рис. 8.
Самодельный генератор в рабочем состоянии, подключенный к осциллографу DSO-X 3024A Keysight для тестирования через три дифференциальных пробника с безопасной изоляцией. Примечание. Здесь осциллограф не показывает трехфазное питание. Датчик синего сигнала был случайно перевернут.

РЕСУРСЫ

Ссылки:
[1] https://en.wikipedia.org/wiki/War_of_the_currents
[2] https://en.wikipedia.org/wiki/Mathematics_of_three-phase_electric_power
[3] «Direct Digital Synthesis 101», Circuit Cellar 217, август 2008 г.
[4] AD9959
https://www.analog.com/en/products/ad9959. html#product-overview
[5] Усилитель мощности GPX1000.4
https://www.crunchaudio.de/english/gpx1000.4-amplifier.html

https://en.wikipedia.org/wiki/Трехфазная_электрическая_сила

https://www.ecmag.com/section/your-business/wye-does-it-matter

https://www.electronicshub.org/comparison-star-delta-connections

http://www.chauvin-arnoux.com/sites/default/files/documents/d00vai84_representations_of_a_three-phase_signal_gb.pdf

Аналоговые устройства | www.analog.com
Хруст | www.crunchaudio.de
Keysight Technologies | www.keysight.com
STMicroelectronics | www.st.com

ПУБЛИКУЕТСЯ В ЖУРНАЛЕ CIRCUIT CELLAR MAGAZINE • АВГУСТ 2021 № 373 — получить PDF-файл номера

Спонсор этой статьи

Роберт Лакост, Франция (основатель Alciom; обозреватель Circuit Cellar)

Анализ цепи трехфазной системы — сбалансированное состояние

Электрическая система бывает двух типов i.д., однофазная система и трехфазная система. Однофазная система имеет только один фазный провод и один обратный провод, поэтому она используется для передачи малой мощности.

Трехфазная система имеет три провода под напряжением и один обратный путь. Трехфазная система используется для передачи большого количества энергии. Трехфазная система в основном делится на два типа. Одна представляет собой сбалансированную трехфазную систему, а другая — несимметричную трехфазную систему.

Комплектация:

Балансная система — это система, в которой нагрузка равномерно распределяется по всем трем фазам системы.Величина напряжения остается одинаковой во всех трех фазах и разделена углом 120º.

В несимметричной системе величина напряжения во всех трех фазах становится разной.

Анализ сбалансированной трехфазной цепи

Всегда лучше решать сбалансированные трехфазные цепи на основе каждой фазы. Если трехфазное напряжение питания указано без привязки к линейному или фазному значению, то учитывается именно линейное напряжение.

Следующие шаги приведены ниже для решения симметричных трехфазных цепей.

Шаг 1 – Прежде всего нарисуйте принципиальную схему.

Шаг 2 – Определить X LP = X L /фаза = 2πf L .

Шаг 3 – Определить X CP = X C /фаза = 1/2πf C .

Шаг 4 – Определить X P = X/ фаза = X L – X C

Шаг 5 – Определение Z P = Z/фаза = √R 2 P + X 2 P

Шаг 6 – Определить cosϕ = R P /Z P ; коэффициент мощности отстает, когда X LP > X CP , и опережает, когда X CP > X LP .

Шаг 7 – Определите фазу V.

Для соединения звездой V P = V L /√3 и для соединения треугольником V P = V L

Шаг 8 – Определить I P = V P /Z P .

Шаг 9 – Теперь определите линейный ток I L .

Для соединения звездой I L = I P и для соединения треугольником I L = √3 I P

Шаг 10 – Определите активную, реактивную и полную мощность.

Анализ несимметричной трехфазной цепи

Анализ трехфазной несбалансированной системы немного сложен, а нагрузка подключена либо по схеме «звезда», либо по схеме «треугольник». Эта тема подробно обсуждается в статье под названием «Преобразование звезды в дельту и дельты в звезду».

Соединение трехфазной системы

В трехфазном генераторе переменного тока три обмотки. Каждая обмотка имеет два вывода (начало и конец). Если к каждой фазной обмотке подключена отдельная нагрузка, как показано на рисунке ниже, то каждая фаза питается как независимая нагрузка через пару проводов.Таким образом, для подключения нагрузки к генератору потребуется шесть проводов. Это сделает всю систему сложной и дорогостоящей.

Поэтому для уменьшения количества линейных проводников трехфазные обмотки генератора переменного тока соединяют между собой. Соединение обмоток трехфазной системы может быть выполнено следующими двумя способами:

Соединение звездой или звездой (Y) См. также: Соединение звездой в 3-фазной системе

Соединение Mesh или Delta (Δ). См. также : Соединение треугольником в 3-фазной системе

Подключение 3-фазных нагрузок в 3-фазной системе

Поскольку трехфазное питание подключается по схеме «звезда» и «треугольник». Точно так же трехфазные нагрузки также подключаются либо по схеме «звезда», либо по схеме «треугольник». Трехфазная нагрузка, соединенная в звезду, показана на рисунке ниже:

Соединение треугольником трехфазных нагрузок показано на рисунке ниже:

Трехфазные нагрузки могут быть сбалансированными или несбалансированными, как описано выше.Если три нагрузки Z 1 , Z 2 и Z 3 имеют одинаковую величину и фазовый угол, то трехфазная нагрузка называется сбалансированной. При таких соединениях все фазные или линейные токи и все фазные или линейные напряжения равны по величине.

Трехфазная балансировка нагрузки | Sunbird DCIM

Балансировка трехфазной нагрузки происходит, когда нагрузки источников питания, таких как трехфазный блок распределения питания в стойке, распределяются равномерно по всем трем фазам (L1/L2, L2/L3 и L3/L1).

Этого можно достичь, подключив одинаковое количество устройств к розеткам PDU для каждой фазы и установив одинаковую мощность нагрузки на каждую фазу. Некоторые производители предоставляют трехфазные PDU с переменным фазным питанием для каждой розетки, а не для каждой ветви.

Трехфазная балансировка нагрузки желательна, поскольку несбалансированная система может привести к снижению эффективности, срабатыванию автоматических выключателей и сокращению срока службы оборудования.

Преимущества сбалансированного трехфазного питания

  • Увеличение использования мощности вышестоящей электрической инфраструктуры, что приводит к повышению общей эффективности центра обработки данных и может отсрочить капитальные затраты.
  • Способность поддерживать значительно более высокую удельную мощность по сравнению с однофазной цепью с аналогичной силой тока.
  • Поддерживайте коэффициент мощности входящей мощности и избегайте штрафов, наложенных коммунальным предприятием.
  • Масштабируемость для будущих требований нагрузки.
  • Требуется меньше штырей и кабелей, что приводит к уменьшению препятствий для воздушного потока, созданию более чистой рабочей среды, а также упрощению установки и обслуживания.
  • Продлить срок службы оборудования.

Мониторинг трехфазной мощности с помощью программного обеспечения DCIM

Расчеты мощности для трехфазных систем питания могут значительно усложниться, если нагрузка не сбалансирована.Это происходит, когда ток нагрузки между любыми двумя линиями значительно отличается от тока нагрузки между оставшейся линией. При наличии несбалансированной нагрузки эффективность системы и количество подаваемой мощности будут снижены. Поставщики интеллектуальных стоечных PDU с трехфазным питанием предоставляют локальные измерители токовой нагрузки для каждой фазы PDU, что значительно упрощает мониторинг и балансировку мощности по сравнению с выполнением расчетов вручную.

Рекомендуется использовать программное обеспечение для управления инфраструктурой центра обработки данных (DCIM) для мониторинга энергопотребления и емкости.Современное программное обеспечение DCIM имеет оповещения о трехфазном дисбалансе для всего оборудования предприятия, включая стоечные PDU, напольные PDU, ИБП, RPP, счетчики и шинопроводы. Ранее чрезвычайно трудная задача для руководителей центров обработки данных теперь имеет простое решение для мониторинга, которое автоматически рассчитывает процент дисбаланса и предупреждает их о любом дисбалансе в цепи питания на основе настраиваемых пороговых значений. Пользователи могут сообщать о текущих показаниях трехфазного тока и процентном дисбалансе.

Хотите увидеть, как ведущее в мире программное обеспечение Sunbird DCIM значительно упрощает трехфазную балансировку нагрузки? Получите бесплатный тест-драйв прямо сейчас!

ECE 449 — Лабораторная работа 3: Измерение чередования фаз

Цели

Чтобы понять последовательность фаз трехфазного источника питания и изучить методы измерения последовательности фаз данного источника питания.

Prelab

Прочитайте эксперимент до конца. Проанализируйте схему на рисунке 6 для емкости 50 мкФ и нескольких значений R (R = |X c |, R = |X c |/2 и R = 2|X c |) для определите, что дает вам наибольшую разницу в величине Vbn на рисунке для двух различных последовательностей фаз, abc и acb. На рис.6 метода 3.

Оборудование

  1. Блок определения последовательности фаз (в лаборатории)
  2. 3-фазный Variac (в лаборатории)
  3. Блок конденсаторов
  4. Тележка с резистивной нагрузкой или переменный резистор/реостат
  5. Коаксиальный кабель (BNC-BNC — выдача со склада (SR))
  6. Лабораторный блок Power с кабелями и измерителем Fluke (SR)

Фон:

Дан трехфазный источник напряжения на трех проводах a , b и c .Если форма волны напряжения провода a имеет номер 1, как показано на рис. 1, какая форма волны представляет напряжение провода b ? Если этот сигнал имеет номер 2 на рис. 1, то последовательность напряжений будет следующей: abc . Это вращение по часовой стрелке или прямая последовательность с сигналом 1 – нашим «эталонным» источником напряжения для фазового угла (0°), тогда сигнал 2 будет иметь фазовый угол -120 ° (120 ° с отставанием или 240 ° с опережением), а сигнал         3 с углом фазы -120 °. 240° (или 120° с опережением).Если, с другой стороны, у нас есть представление рис. 2, то последовательность будет acb с вращением против часовой стрелки или отрицательной последовательностью. Теперь осциллограмма 2 будет опережать на 120° впереди 1, а не отставать, а 3 будет опережать 2 еще на 120°. Вы изучите несколько способов определения последовательности фаз.


Рис.1 Трехфазные сигналы с последовательностью 123, источник (1).

Рис.2 Трехфазные сигналы с последовательностью 321, источник (2).

Направление вращения многофазных асинхронных и синхронных двигателей зависит от последовательности фаз приложенных напряжений. Кроме того, два ваттметра в двухваттметровом методе измерения трехфазной мощности меняют свои показания при изменении порядка чередования фаз, даже если система сбалансирована. Величина различных токов и составляющих напряжений в симметричных системах не зависит от изменения порядка чередования фаз.

Если последовательность фаз приложенных напряжений меняется на противоположную в несбалансированной системе, токи некоторых ветвей изменяются по величине, а также по временной фазе, хотя общее количество генерируемых ватт и вар остается прежним.

На практике желательно, а иногда и необходимо знать последовательность фаз трехфазной энергосистемы. Например, при параллельном подключении двух трехфазных трансформаторов, если предполагается неправильная последовательность, результат может быть катастрофическим.Последовательность фаз также определяет направление вращения асинхронных двигателей.

Существует много возможных способов определения последовательности. Для определения последовательности фаз можно использовать ваттметр. Можно подключить 3-фазную индуктивную нагрузку и использовать ваттметр так, что I и пропускают через токовую катушку ваттметра, тогда показание ваттметра будет пропорционально либо cos(30 + phi), либо cos( 30 – фи) в зависимости от того, подается ли на катушку напряжения V12 или V13.Другие методы, обсуждаемые ниже, зависят от явления несбалансированной многофазной цепи.

Метод 1

Один из методов определения последовательности фаз основан на направлении вращения асинхронных двигателей. Это называется Вращающийся тип . Трехфазное питание подключено к такому же количеству катушек, создающих вращающееся магнитное поле, и это вращающееся магнитное поле создает вихревую ЭДС во вращающемся алюминиевом диске.

Эта вихревая ЭДС создает вихревые токи на алюминиевом диске, из-за взаимодействия вихревых токов с вращающимся магнитным полем создается крутящий момент, который заставляет алюминиевый диск вращаться. Вращение диска по часовой стрелке указывает на последовательность a b c , и a c b ).

В другом методе используется осциллограф, как в схеме на рис. 3.

Блок определения последовательности фаз
Рис. 3. Использование осциллографа для определения последовательности фаз n-фазного источника.

Метод 2

Как правило, любой несбалансированный набор импедансов нагрузки может использоваться в качестве средства проверки последовательности фаз напряжения. Эффекты, вызываемые изменением последовательности фаз, могут быть определены теоретически, и когда отмечается эффект, свойственный одной последовательности, этот эффект можно использовать для обозначения последовательности фаз системы.

Распространенным типом схемы для проверки чередования фаз в трехфазных системах является несбалансированная схема, показанная ниже


Рис. 4. Схема определения чередования фаз с использованием 2-х ламп и дросселя.

Если лампа a ярче лампы b, последовательность фаз линейного напряжения следующая: ab, bc, ca. Если лампа b ярче лампы а, последовательность фаз следующая: ab, ca, bc.

Схема на рис.5 (взято из сети, но источника уже нет) вместо катушки индуктивности на рис. 4 используется конденсатор.

Рис. 5. Цепь и векторная диаграмма для определения чередования фаз проводов источника с маркировкой 123.

Если лампа S ярче лампы T , то чередование фаз фазных напряжений равно RST . Если лампа T ярче, чем лампа S , последовательность фаз будет RTS .

Метод 3

Другой прибор для проверки последовательности напряжения может быть выполнен с использованием схем, показанных на рис. 5. Ток, измеряемый вольтметром, должен быть пренебрежимо мал по сравнению с током, проходящим через X и R.


Цепь RL


Цепь RC


Рис. 6. Цепи RL и RC для определения фаза
последовательность.

Процедура

Вы должны провести измерения по каждому из трех описанных выше методов, чтобы определить последовательность фаз и проверить результат расчетами. Как правило, вам нужно знать все напряжения и токи в каждой из ветвей схемы для методов 2 и 3.

Метод 1

Проверьте чередование фаз на своем стенде, используя схему на рис. 3.

  1. Подсоедините три фазы и нейтраль от Variac к детектору чередования фаз.
  2. Подключите выход детектора чередования фаз (BNC) к осциллографу.
  3. Настройте прицел на запуск по линии переменного тока.
  4. Настройте Variac на 20 В LN .
  5. Вы должны увидеть форму сигнала, подобную рис. 3, на осциллографе, установив потенциометры на разные уровни.
  6. Сохраните форму сигнала для этой последовательности фаз и для других возможностей, поменяв местами любые два провода одновременно.Убедитесь, что вы отключили питание каждый раз, когда меняете местами провода.

Метод 2

  1. Подготовьте схему, как показано на рис. 5, чтобы определить импеданс каждой части цепи. (Обратите внимание, что сопротивление лампы, измеренное омметром, значительно отличается от сопротивления во время работы. Это связано с изменением удельного сопротивления в зависимости от температуры.) Помните, что вам придется измерять и записывать напряжения и токи. через три элемента нагрузки (лампы и реактивный элемент) в следующих шагах для использования в ваших расчетах.
  2. Подайте 208 В LL от 3-фазного вариака к вашей цепи без конденсатора. Какая лампа ярче?
  3. Применить 5 различных значений емкости к цепи. Запишите и измерьте напряжения и токи на элементах на каждом этапе. Отключите питание цепи.
  4. Поменяйте местами любые два провода питания вашей цепи. Включите питание и повторите шаг (3).

Метод 3

  1. Подготовьте схемы, показанные на рис. 6, с конденсатором.
  2. Подключить цепь, используя R = |Xc|.
  3. Подайте 208 VLL от 3-фазного Variac к вашей цепи.
  4. Запишите и измерьте V и , V bn , V cn , I ac и мощности (S, Q и P), поступающие в вашу цепь между клеммами A-n и C-n .
  5. Отключите питание и поменяйте местами фазы A и C . Измерьте V и , V bn , V cn , I ac и мощности (S, Q и P) для этой последовательности фаз на клеммах A-n и C-n .
  6. Повторите шаги с 3 по 5 с новыми значениями R = |Xc| /2 и R = 2|Xc| в схеме рис. 6.

Анализ

  1. Предположим, что сопротивление обеих ламп равно среднему значению их рабочего сопротивления в цепи. Выполните следующие действия для схемы на рис. 4 или на рис. 5. Назовите ток, поступающий на клеммы ABC (по направлению к C (или L) и лампам), IA, IB, IC. Напишите KVL, чтобы получить три уравнения для напряжений: VAB, VBC и VCA в терминах трех токов.Поскольку эти напряжения известны и предполагаются уравновешенными, у вас есть три уравнения с тремя неизвестными. Используя KCL в узле с меткой n, можно легко уменьшить количество неизвестных до двух и использовать только два уравнения KVL. Кому-то этот подход может показаться более легким. Третий подход заключается в использовании принципа суперпозиции для нахождения напряжения в центральном узле и, исходя из него, напряжений на каждом элементе и отдельных токов. Очевидно, что третий подход заключается в моделировании схемы в мультисимуляции.2;1];

    Z = [-j/Xc -Rs 0; j/Xc  0  Rt; 0 Rs –Rt];

    Функция [Ir, Is, It] = последовательность (a, Xc, Rs, Rt)

  2. Схемы на рис. 6 решить значительно проще.Как только вы определите последовательность фаз, вы можете записать VA, VB и VC. Затем рассчитайте VAC и IAC. Исходя из этого, вы можете рассчитать напряжение в узле с меткой n и, следовательно, Vbn для каждой из двух возможных последовательностей фаз.

Отчет

Ваш отчет должен включать:

  1. Объяснение того, как работает метод 1.
  2. Показать и указать последовательность фаз сохраненных осциллограмм
  3. Объясните, как работает схема на рис. 3 и как она позволяет определить последовательность фаз.
  4. Векторные диаграммы для двух использованных вами цепей (метод 2 и 3) по крайней мере для одной последовательности.
  5. Почему нельзя определить последовательность фаз методом 2 без конденсатора?
  6. Вычисленные вами значения мощности, рассеиваемой в каждой лампочке в цепи, используемой для метода 2 для одной из последовательностей фаз.
  7. Ожидаемое В bn для вашей схемы на рис. 6 для каждой последовательности фаз, а также потребляемая мощность и реактивная мощность.
  8. Как сравнивались поток мощности и ВАРС для двух последовательностей фаз для схемы на рис. 6? Объясните свое наблюдение относительно потока мощности и VARS.
  9. В дополнение к этому анализу вы должны включить обычные элементы, реферат, процедуру, данные, анализ и выводы.

Библиография

1-  http://www.ibiblio.org/kuphaldt/electricCircuits/AC/AC_10.html в соответствии с лицензией Design Science.

.