Как установить регулятор на батарею: Как установить терморегулятор на батарею

Содержание

Не работает регулятор температуры на батарее отопления

Главной задачей отопительной системы является поддержание комфортной температуры воздуха в здании. Эта температура может быть различной, в зависимости от назначения помещения, но обязательным условием является ее неизменность на протяжении всего дня.

В помещение тепловая энергия поступает от системы отопления через радиаторы. Объем тепловой энергии, отдаваемый нагревательными приборами, регулируется количеством теплоносителя.

Устройством, осуществляющим регулирование поток жидкости, поступающей в радиатор, является клапан или вентиль, который может быть автоматическим или ручным.

В помещении всегда происходит теплообмен с окружающим пространством. Это приводит к оттоку или притоку из помещения тепла, и, следовательно, к понижению или повышению в нем температуры воздуха.

Для восстановления в помещении теплового баланса необходимо увеличить или уменьшить количество тепла, поступающего от нагревательных приборов. С этой задачей прекрасно справится терморегулятор на батарею, установленный на подводящих трубопроводах.

Механический терморегулятор

Данное устройство состоит из клапана и чувствительного элемента (термической головки). Они функционируют слаженно без посторонней внешней энергии. Термическая головка комплектуется приводом, регулятором и жидкостным элементом, который может заменяться упругим или газовым.

Выбирать терморегулятор на батарею необходимо с учетом всех факторов, которые в дальнейшем смогут оказать влияние на его работу. Важно произвести специальный расчет — только в этом случае данный прибор будет функционировать максимально эффективно.

Составные элементы

Механический терморегулятор на батарею состоит из следующих элементов:

  • Компенсационный механизм.
  • Шток.
  • Разъемное соединение.
  • Золотник.
  • Чувствительный элемент.
  • Термостатический элемент.
  • Клапан термостатический.
  • Шкала настройки.
  • Накидная гайка.
  • Кольцо, которое фиксирует заданный температурный режим.

Факторы воздействия

На температуру в помещении, а значит, и на работу механического терморегулятора способны воздействовать следующие факторы:

  • Наружная температура.
  • Проветривание или сквозняк.
  • Солнечный свет.
  • Дополнительные источники холода или тепла (холодильник, трубопровод с горячей водой, электрические нагревательные приборы и т. д.).

Как работает терморегулятор на батарее

При изменении в обогреваемом помещении температуры воздуха происходит изменение количества теплоносителя. Одновременно с этим изменяется объем сильфона, что приводит в действие регулирующий золотник. Перемещение золотника напрямую связано с изменением в комнате температуры воздуха. При изменении температуры чувствительный элемент реагирует и приводит в действие шток клапана регулятора. В результате изменение хода осуществляет регулирование подачи теплоносителя в нагревательный прибор.

Монтаж

Терморегулятор на батарею механического типа необходимо устанавливать на подающем трубопроводе. При этом головка терморегулятора должна располагаться горизонтально, не должна подвергаться влиянию прямых солнечных лучей и тепла. Если клапан закрыт занавеской или заставлен мебелью, то образуется нечувствительная зона, другими словами, термостат не контактирует с температурой окружающей среды, и по этой причине он не выполняет свои функции эффективно.

Если же иное размещение данного устройства не представляется возможным, применяются специальные датчики с накладным чувствительным элементом, предназначенные для дистанционного регулирования.

Электронные терморегуляторы

Электронный регулятор температуры отопления представляет собой автоматическое устройство регулирования, обеспечивающее поддержание заданного температурного режима в различном тепловом оборудовании.

В отопительной системе он осуществляет автоматическое управление котлом и остальными исполнительными механизмами (клапанами, насосами, смесителями и т. д.). Основная цель электронного терморегулятора – создание в помещении температурного режима, который был заранее определен пользователем.

Принцип работы

Регулятор температуры отопления электронного типа укомплектован термодатчиком, который устанавливается в месте, свободном от прямого воздействия нагревательных электроприборов, он обеспечивает прибор информацией о термическом состоянии помещения. На основании полученных данных электронный прибор управляет элементами отопительной системы.

Различают цифровые и аналоговые термореле с регулировкой температуры. Первые получили наибольшее распространение благодаря своей функциональности. Терморегуляторы электронного типа бывают:

  • С закрытой логикой.
  • С открытой логикой.

Закрытая логика – это постоянный алгоритм работы во времени и жесткая внутренняя структура, не зависящая от изменения факторов окружающей среды. Можно изменять лишь определенные программируемые параметры.

Терморегулятор с открытой логикой – это свободно программируемое устройство, характеризующееся большим диапазоном функций и настроек, его можно настроить на любую работу и условия окружающей среды.

В отличие от приборов с закрытой логикой, данные устройства не получили столь широкого распространения. Обосновано это тем, что их управление требует определенной квалификационной степени. Поэтому далеко не каждому рядовому гражданину под силу разобраться в режимах и настройках электронных терморегуляторов. Широкое применение получила открытая логика в индустриальном сегменте, однако со временем она может стать неотъемлемым элементом быта любого человека.

Установка терморегулятора на батарею

В процессе монтажа очень важно придерживаться инструкции и не размещать устройства данного типа в нишах, за декоративными решетками и шторами. Если же по какой-либо причине это не представляется возможным, устанавливается дистанционный датчик.

Неэффективно устанавливать терморегулятор для чугунных батарей, так как они очень долго нагреваются и остывают.

Прежде чем перейти к монтажу терморегуляторов необходимо отключить стояк и слить теплоноситель из отопительной системы.

Только после этого можно перейти к работам по установке данного прибора, их рекомендуется выполнять в следующей последовательности:

  • Горизонтальные подводки трубопроводов отрезаются на определенном расстоянии от нагревательного прибора.
  • Отсоединяется отрезанный трубопровод и запорное устройство.
  • Отсоединяются гайки и хвостовики совместно с гайками клапана или крана.
  • В пробки радиатора заворачиваются хвостовики.
  • На выбранное место устанавливается трубная обвязка.
  • Обвязка соединяется с горизонтальными трубопроводами.

Настройка

Настройка термореле с регулировкой температуры производится следующим образом:

  • В помещении плотно закрываются все окна и двери, чтобы утечку тепла свести к минимуму.
  • В помещении, где требуется поддержание определенного значения температуры, необходимо установить комнатный термометр.
  • Клапан полностью открывается, для чего головка терморегулятора поворачивается до упора влево, в таком случае радиатор будет функционировать с максимальной теплоотдачей, в помещении начнет повышаться температура.
  • Как только температура станет выше первоначальной на 5-6 °C, нужно закрыть клапан, для этого его головка поворачивается до упора вправо, после чего в помещении начнет постепенно остывать воздух.
  • После того как температура достигнет желаемой величины, клапан медленно открывается посредством вращения головки регулятора в левую сторону. При этом необходимо внимательно прислушаться, как только услышите шум воды и ощутите резкое нагревание корпуса терморегулятора, прекратите вращение головки и запомните ее положение.
  • Настройка полностью завершена. Температура в помещении будет держаться с точностью до 1 °C.

Терморегуляторы на электрических радиаторах

В условиях современной работы коммунальных предприятий, когда в холодный период года в квартирах далеко не всегда температура имеет необходимую для комфортного ощущения величину, многие переходят на электрические нагревательные приборы. Они могут выполнять как функцию дополнительного, так и основного источника тепла.

Как правило, сегодня многие производители выпускают электрические батареи с терморегулятором, что позволяет устанавливать индивидуальную температуру в каждой комнате. Электрические радиаторы – это удобная альтернатива и отличное дополнение центральному отоплению.

Иногда возникает необходимость подстроить температуру в каждом конкретном помещении. Сделать это можно установив терморегулятор для радиатора отопления. Это небольшое устройство, которое регулирует теплоотдачу батареи отопления. Использоваться может со всеми типами радиаторов, кроме чугунных. Один важный момент — прибор может понизить исходную температуру, но если не хватает мощности отопления, повысить он ее не может. 

Конструкция терморегуляторов для радиаторов отопления

Терморегулятор для радиатора отопления состоит из двух частей — клапана (термоклапана) и термостатической головки (термостатического элемента, регулятора температуры). Выпускаются эти изделия под разные размеры труб и разные виды систем отопления. Термостатическая головка съемная, на один и тот же клапан можно ставить регуляторы разных типов и даже разных производителей — посадочное место стандартизовано.

Терморегулятор для радиатора отопления состоит из двух частей — специального вентиля (клапана) и термостатической головки (регулятора)

И клапана и регуляторы есть разные, так что перед тем как установить терморегулятор для радиатора отопления придется хоть немного ознакомиться с его строением, функциями и видами.

Термоклапан — строение, назначение, виды

Клапан в терморегуляторе по строению очень похож на обычный вентиль. Имеется седло и запорный конус, который открывает/закрывает просвет для протекания теплоносителя. Температура радиатора отопления регулируется именно таким образом: количеством проходящего через радиатор теплоносителя.

Термостатический клапан в разрезе

На однотрубную и двухтрубную разводку клапана ставят разные. Гидравлическое сопротивление вентиля на однотрубную систему намного ниже (как минимум, в два раза) — только так можно ее сбалансировать. Перепутать вентили нельзя — греть не будет.  Для систем с естественной циркуляцией подходят вентили для однотрубных систем. При их установке гидравлическое сопротивление, кончено, возрастает, но работать система сможет.

На каждом клапане есть стрелка, указывающая движение теплоносителя. При монтаже его устанавливают так, чтобы направление потока совпадало со стрелкой.

Из каких материалов

Изготавливают корпус вентиля из стойких к коррозии металлов, часто дополнительно покрывают защитным слоем (никелируют или хромируют). Есть клапана из:

Понятное дело, что нержавейка — лучший вариант. Она химически нейтральна, не корродирует, не вступает в реакции с другими металлами. Но стоимость таких клапанов велика, найти их сложно. Бронзовые и латунные вентили примерно одинаковы по сроку службы. Что в этом случае важно — это качество сплава, а за ним тщательно следят известные производители. Доверять или нет неизвестным — вопрос спорный, но есть один момент, который лучше отследить. На корпусе обязательно должна присутствовать стрелка, указывающая направление потока. Если ее нет — перед вами совсем дешевое изделие, которое лучше не покупать.

По способу исполнения

Так как радиаторы устанавливаются разными способами, клапана делают прямыми (проходными) и угловыми. Выбираете тот тип, который в вашу систему станет лучше.

Прямой (проходной) клапан и угловой

Данфос, угловой RA-G с возможностью настройкойоднотрубной15 мм, 20 ммНикелированная латунь10 Бар25-32 $
Данфос, прямой RA-G с возможностью настройкойоднотрубной20 мм, 25 ммНикелированная латунь10 Бар32 — 45 $
Данфос, угловой RA-N с возможностью настройкойдвухтрубной15 мм, 20 мм. 25 ммНикелированная латунь10 Бар30 — 40 $
Данфос, прямой RA-N с возможностью настройкойдвухтрубной15 мм, 20 мм. 25 ммНикелированная латунь10 Бар20 — 50 $
BROEN , прямой с фиксированной настройкойдвухтрубной15 мм, 20 ммНикелированная латунь10 Бар8-15 $
BROEN , прямой с фиксированной настройкойдвухтрубной15 мм, 20 ммНикелированная латунь10 Бар8-15 $
BROEN ,угловой с возможностью настройкойдвухтрубной15 мм, 20 ммНикелированная латунь10 Бар10-17 $
BROEN ,угловой с возможностью настройкойдвухтрубной15 мм, 20 ммНикелированная латунь10 Бар10-17 $
BROEN , прямой с фиксированной настройкойоднотрубной15 мм, 20 ммНикелированная латунь10 Бар19-23 $
BROEN , угловой с фиксированной настройкойоднотрубной15 мм, 20 ммНикелированная латунь10 Бар19-22 $
OVENTROP , осевой1/2″Никелированная латунь, покрытая эмалью10 Бар140 $

Термостатические головки

Термостатические элементы на терморегуляторы отопления есть трех типов — ручные, механические и электронные. Все они выполняют одни и те же функции, но по-разному, предоставляют разный уровень комфорта, имеют разные возможности.

Ручные

Ручные термостатические головки работают как обычный кран — поворачиваете регулятор в ту или другую сторону, пропуская большее или меньшее количество теплоносителя. Самые дешевые и самые надежные, но не самые удобные устройства. Чтобы изменить теплоотдачу надо вручную крутить вентиль.

Ручная термоголовка — самый простой и надежный вариант

Данные устройства совсем недороги, их можно поставить на входе и на выходе радиатора отопления вместо шаровых кранов. Регулировать можно будет любым из них.

Механические

Более сложное устройство, которое поддерживает заданную температуру в автоматическом режиме. Основа термостатической головки этого типа — сильфон. Это небольшой эластичный цилиндр, который заполнен температурным агентом. Температурный агент — это газ или жидкость, которые имеют большой коэффициент расширения — при нагревании они сильно увеличиваются в объеме.

Устройство терморегулятора на радиатор отопления с механической термостатической головкой

Сильфон подпирает шток, перекрывающий проходное сечение клапана. Пока вещество в сильфоне не нагрелось, шток поднят. По мере повышения температуры, цилиндр начинает увеличиваться в размерах (расширяется газ или жидкость), он давит на шток, который все больше перекрывая проходное сечение. Через радиатор проходит все меньше теплоносителя, он понемногу остывает. Остывает и вещество в сильфоне, из-за чего цилиндр уменьшается в размерах, шток поднимается, теплоносителя через радиатор проходит больше, он начинает немного разогреваться. Далее цикл повторяется.

Газовый или жидкостный

При наличии такого устройства температура в помещении довольно поддерживается точно +- 1°C, но вообще дельта зависит от того, насколько инертным является вещество в сильфоне. Он заполняться может каким-то газом или жидкостью. Газы быстрее реагируют на изменения температуры, но технологически их производить сложнее.

Жидкостный или газовый сильфон — особой разницы нет

Жидкости чуть медленнее изменяют объемы, но их производить проще. В целом, разница в точности поддержания температуры — порядка полу градуса, что заметить практически невозможно. В результате большая часть представленных терморегуляторов для радиаторов отопления оснащена термоголовками с жидкостными сильфонами.

С выносным датчиком

Устанавливаться механическая термостатическая головка должна так, чтобы она была направлена в комнату. Так измеряется температура точнее. Так как имеют они довольно приличные размеры, такой способ установки возможен не всегда. Для этих случаев можно поставить терморегулятор для радиатора отопления с выносным датчиком. Температурный датчик соединяется с головкой при помощи капиллярной трубки. Расположить его можно в любой точке, в который вы предпочитаете измерять температуру воздуха.

С выносным датчиком

Все изменения теплоотдачи радиатора будут происходить в зависимости от температуры воздуха в комнате. Единственный минус такого решения — высокая стоимость таких моделей. Но температура поддерживается точнее.

Danfoss living ecoот 6°C до 28°Cот 0°C до 40°CЭлектронныйПрограммируемый RA И M30X1,570$
Danfoss RA 2994 с газовым сильфономот 6°C до 26°Cот 0°C до 40°CМеханическийДля любых радиаторовклипсовое20$
Danfoss RAW-K с жидкостным сльфономот 8°C до 28°Cот 0°C до 40°CМеханическийДля стальных панельных радиаторовM30x1,520$
Danfoss RAX с жидкостным сльфономот 8°C до 28°Cот 0°C до 40°CМеханическийДля дизайн-радиаторов белый, черный, хромирванныйM30x1,525$
HERZ H 1 7260 98 с жидкостным сльфономот 6°C до 28°CМеханическийМ 30 х 1,511$
Oventrop «Uni XH» с жидкостным сльфономот 7°C до 28°CМеханическийс нулевой отметкойМ 30 х 1,518$
Oventrop «Uni CH» с жидкостным сльфономот 7°C до 28°CМеханическийбез нулевой отметкойМ 30 х 1,520$

Электронные

По размерам электронный терморегулятор для радиатора отопления еще больше. Термостатический элемент еще больше. В нем кроме электронной начинки устанавливаются еще и две батарейки.

Электронные терморегуляторы на батареи отличаются большими размерами

Движением штока в клапане в этом случае управляет микропроцессор. Данные модели имеют довольно большой набор дополнительных функций. Например, возможность по часам выставлять температуру в помещении. Как это модно использовать? Врачи давно доказали, что спать лучше в прохладном помещении. Потому на ночь можно запрограммировать температуру пониже, а к утру, когда придет время просыпаться, ее можно выставить выше. Удобно.

Недостаток этих моделей — большой размер, необходимость следить за разрядом батарей (хватает на несколько лет эксплуатации) и высокая цена.

Как правильно установить

Ставят терморегулятор для радиатора отопления на входе или на выходе отопительного прибора — разницы нет, работают с одинаковым успехом в обоих положениях. Как выбрать место, где установить?

По рекомендуемой высоте установки. Такой пункт есть в технических характеристиках. Каждое устройство проходит на заводе настройку — их калибруют под контроль температуры на определенной высоте и обычно это — верхний коллектор радиатора. В таком случае теплорегулятор установлен на высоте 60-80 см, его удобно при необходимости регулировать вручную.

Схемы установки теплорегуляторов для радиаторов

Если у вас нижнее седельное подключение (трубы подходят только снизу), есть три варианта — искать устройство с возможностью установки внизу, поставить модель с выносным датчиком или перенастроить термоголовку. Процедура несложная, описание должно быть в паспорте. Всего-то и нужно, что иметь термометр и покрутить в определенные моменты головку в одну, потом в другую сторону.

Установка стандартная — на фум-ленту или льняную подмотку с упаковочной пастой

Сам процесс установки стандартный. На клапане имеется резьба. Под нее подбираются соответствующие фитинги или на металлической трубе нарезается ответная резьба.

Один важный момент, о котором должны помнить те, кто хочет поставить терморегулятор для радиатора отопления в многоквартирных домах. Если у вас однотрубная разводка, их можно установить только при наличии байпаса — участка трубы, который стоит перед батареей и соединяет две трубы между собой.

Если у вас похожая разводка (трубы справа может не быть) наличие байпаса обязательно. Терморегулятор ставить ставят сразу за радиатором

В противном случае вы регулировать будете весь стояк, что точно не понравится вашим соседям. За такое нарушение могут выписать очень даже солидный штраф. Потому, лучше поставить байпас (если нет).

Как отрегулировать (перенастроить)

Все терморегуляторы проходят на заводе настройку. Но установки у них стандартные и могут не совпадать с вашими желаемыми параметрами. Если вас что-то не устраивает в работе  — хотите, чтобы было теплее/холоднее, можно терморегулятор для радиатора отопления перенастроить. Делать это надо при работающем отоплении. Понадобиться термометр. Его вешаете в той точке, где будете контролировать состояние атмосферы.

  • Закрываете двери, ставите головку термостата в крайнее левое положение — полностью открыто. Температура в помещении начнет повышаться. Когда она станет на 5-6 градусов выше желаемой вами, поворачиваете регулятор до упора вправо.
  • Радиатор начинает остывать. Когда температура упадет до того значения, которое вы считаете комфортным, начинаете медленно поворачивать регулятор вправо и прислушиваться. Когда услышите, что теплоноситель зашумел, а радиатор начал прогреваться, останавливайтесь. Запомните какая цифра выставлена на рукоятке. Ее и надо будет выставлять для достижения требуемой температуры.

Отрегулировать терморегулятор для батареи отопления совсем несложно. И повторять это действие можно несколько раз, меняя настройки.

Главной задачей отопительной системы является поддержание комфортной температуры воздуха в здании. Эта температура может быть различной, в зависимости от назначения помещения, но обязательным условием является ее неизменность на протяжении всего дня.

В помещение тепловая энергия поступает от системы отопления через радиаторы. Объем тепловой энергии, отдаваемый нагревательными приборами, регулируется количеством теплоносителя.

Устройством, осуществляющим регулирование поток жидкости, поступающей в радиатор, является клапан или вентиль, который может быть автоматическим или ручным.

В помещении всегда происходит теплообмен с окружающим пространством. Это приводит к оттоку или притоку из помещения тепла, и, следовательно, к понижению или повышению в нем температуры воздуха.

Для восстановления в помещении теплового баланса необходимо увеличить или уменьшить количество тепла, поступающего от нагревательных приборов. С этой задачей прекрасно справится терморегулятор на батарею, установленный на подводящих трубопроводах.

Механический терморегулятор

Данное устройство состоит из клапана и чувствительного элемента (термической головки). Они функционируют слаженно без посторонней внешней энергии. Термическая головка комплектуется приводом, регулятором и жидкостным элементом, который может заменяться упругим или газовым.

Выбирать терморегулятор на батарею необходимо с учетом всех факторов, которые в дальнейшем смогут оказать влияние на его работу. Важно произвести специальный расчет — только в этом случае данный прибор будет функционировать максимально эффективно.

Составные элементы

Механический терморегулятор на батарею состоит из следующих элементов:

  • Компенсационный механизм.
  • Шток.
  • Разъемное соединение.
  • Золотник.
  • Чувствительный элемент.
  • Термостатический элемент.
  • Клапан термостатический.
  • Шкала настройки.
  • Накидная гайка.
  • Кольцо, которое фиксирует заданный температурный режим.

Факторы воздействия

На температуру в помещении, а значит, и на работу механического терморегулятора способны воздействовать следующие факторы:

  • Наружная температура.
  • Проветривание или сквозняк.
  • Солнечный свет.
  • Дополнительные источники холода или тепла (холодильник, трубопровод с горячей водой, электрические нагревательные приборы и т. д.).

Как работает терморегулятор на батарее

При изменении в обогреваемом помещении температуры воздуха происходит изменение количества теплоносителя. Одновременно с этим изменяется объем сильфона, что приводит в действие регулирующий золотник. Перемещение золотника напрямую связано с изменением в комнате температуры воздуха. При изменении температуры чувствительный элемент реагирует и приводит в действие шток клапана регулятора. В результате изменение хода осуществляет регулирование подачи теплоносителя в нагревательный прибор.

Монтаж

Терморегулятор на батарею механического типа необходимо устанавливать на подающем трубопроводе. При этом головка терморегулятора должна располагаться горизонтально, не должна подвергаться влиянию прямых солнечных лучей и тепла. Если клапан закрыт занавеской или заставлен мебелью, то образуется нечувствительная зона, другими словами, термостат не контактирует с температурой окружающей среды, и по этой причине он не выполняет свои функции эффективно.

Если же иное размещение данного устройства не представляется возможным, применяются специальные датчики с накладным чувствительным элементом, предназначенные для дистанционного регулирования.

Электронные терморегуляторы

Электронный регулятор температуры отопления представляет собой автоматическое устройство регулирования, обеспечивающее поддержание заданного температурного режима в различном тепловом оборудовании.

В отопительной системе он осуществляет автоматическое управление котлом и остальными исполнительными механизмами (клапанами, насосами, смесителями и т. д.). Основная цель электронного терморегулятора – создание в помещении температурного режима, который был заранее определен пользователем.

Принцип работы

Регулятор температуры отопления электронного типа укомплектован термодатчиком, который устанавливается в месте, свободном от прямого воздействия нагревательных электроприборов, он обеспечивает прибор информацией о термическом состоянии помещения. На основании полученных данных электронный прибор управляет элементами отопительной системы.

Различают цифровые и аналоговые термореле с регулировкой температуры. Первые получили наибольшее распространение благодаря своей функциональности. Терморегуляторы электронного типа бывают:

  • С закрытой логикой.
  • С открытой логикой.

Закрытая логика – это постоянный алгоритм работы во времени и жесткая внутренняя структура, не зависящая от изменения факторов окружающей среды. Можно изменять лишь определенные программируемые параметры.

Терморегулятор с открытой логикой – это свободно программируемое устройство, характеризующееся большим диапазоном функций и настроек, его можно настроить на любую работу и условия окружающей среды.

В отличие от приборов с закрытой логикой, данные устройства не получили столь широкого распространения. Обосновано это тем, что их управление требует определенной квалификационной степени. Поэтому далеко не каждому рядовому гражданину под силу разобраться в режимах и настройках электронных терморегуляторов. Широкое применение получила открытая логика в индустриальном сегменте, однако со временем она может стать неотъемлемым элементом быта любого человека.

Установка терморегулятора на батарею

В процессе монтажа очень важно придерживаться инструкции и не размещать устройства данного типа в нишах, за декоративными решетками и шторами. Если же по какой-либо причине это не представляется возможным, устанавливается дистанционный датчик.

Неэффективно устанавливать терморегулятор для чугунных батарей, так как они очень долго нагреваются и остывают.

Прежде чем перейти к монтажу терморегуляторов необходимо отключить стояк и слить теплоноситель из отопительной системы.

Только после этого можно перейти к работам по установке данного прибора, их рекомендуется выполнять в следующей последовательности:

  • Горизонтальные подводки трубопроводов отрезаются на определенном расстоянии от нагревательного прибора.
  • Отсоединяется отрезанный трубопровод и запорное устройство.
  • Отсоединяются гайки и хвостовики совместно с гайками клапана или крана.
  • В пробки радиатора заворачиваются хвостовики.
  • На выбранное место устанавливается трубная обвязка.
  • Обвязка соединяется с горизонтальными трубопроводами.

Настройка

Настройка термореле с регулировкой температуры производится следующим образом:

  • В помещении плотно закрываются все окна и двери, чтобы утечку тепла свести к минимуму.
  • В помещении, где требуется поддержание определенного значения температуры, необходимо установить комнатный термометр.
  • Клапан полностью открывается, для чего головка терморегулятора поворачивается до упора влево, в таком случае радиатор будет функционировать с максимальной теплоотдачей, в помещении начнет повышаться температура.
  • Как только температура станет выше первоначальной на 5-6 °C, нужно закрыть клапан, для этого его головка поворачивается до упора вправо, после чего в помещении начнет постепенно остывать воздух.
  • После того как температура достигнет

выбор и настройка регулятора в квартире или частном доме

Регулировка батарей отопления в квартире позволяет одновременно решить несколько задач, в числе которых главная заключается в уменьшении расходов на оплату некоторых коммунальных услуг.

Реализуется такая возможность разными способами: механическим путем и в автоматическом режиме. Однако при изменении параметров системы отопления не повышается среднее значение температуры в помещении. Можно лишь уменьшить его до нужного уровня, отрегулировав положение арматуры. Целесообразно устанавливать такие устройства на батареи в домах, где прохладно зимой.

Не забудь поделиться с друзьями!

Содержание статьи

Для чего нужно производить регулировку

Главные факторы, объясняющие необходимость изменения уровня нагрева батарей с помощью запорных механизмов, электроники:

  1. Свободное передвижение горячей воды по трубам и внутри радиаторов. В системе отопления могут образовываться воздушные пробки. По этой причине теплоноситель перестает греть батареи, т. к. постепенно происходит его охлаждение. В результате микроклимат в помещении становится менее комфортным, а со временем комната остывает. Чтобы поддерживать в трубах тепло, используются запорные механизмы, установленные на радиаторах.
  2. Регулировка температуры батарей дает возможность уменьшить расходы на оплату отопления жилья. Если в помещениях слишком жарко, методом изменения положения вентилей на радиаторах можно уменьшить затраты на 25%. Причем снижение температуры нагрева батарей на 1°С обеспечивает экономию 6%.
  3. В случае, когда радиаторы сильно нагревают воздух в квартире, приходится часто открывать окна. Зимой это делать нецелесообразно, т. к. можно простудиться. Чтобы не пришлось постоянно открывать окна с целью нормализации микроклимата в помещении, следует установить на батареи регуляторы.
  4. Появляется возможность изменять по своему усмотрению температуру нагрева радиаторов, причем в каждом помещении задаются индивидуальные параметры.

Как регулировать батареи отопления

Чтобы повлиять на микроклимат в квартире, нужно уменьшить объем проходящего через отопительный прибор теплоносителя. При этом есть возможность только снизить значение температуры. Регулировка системы отопления производится путем поворота вентиля/крана или изменения параметров узла автоматики. Количество проходящей по трубам и секциям горячей воды уменьшается, вместе с тем батарея нагревается менее интенсивно.

Чтобы понять, как взаимосвязаны эти явления, нужно больше узнать о принципе работы системы отопления, в частности, радиаторов: горячая вода, попадающая внутрь отопительного прибора, нагревает металл, который, в свою очередь, отдает тепло в воздушную среду. Однако интенсивность прогрева помещения зависит не только от объема горячей воды в батарее. Играет важную роль и тип металла, из которого изготовлен отопительный прибор.

Чугун отличается существенной массой и медленно отдает тепло. По этой причине на такие радиаторы нецелесообразно устанавливать регуляторы, т. к. прибор будет долго охлаждаться. Алюминий, сталь, медь — все эти металлы моментально прогреваются и остывают сравнительно быстро. Работы по установке регуляторов следует производить перед началом отопительного сезона, когда в системе отсутствует теплоноситель.

В многоквартирном доме нет возможности менять среднее значение температуры воды в трубах системы отопления. По этой причине лучше установить регуляторы, позволяющие влиять на микроклимат в помещении другим способом. Однако это невозможно реализовать, если теплоноситель подается по направлению сверху вниз. В частном доме есть доступ и возможность менять индивидуальные параметры оборудования и температуру теплоносителя. Значит, в данном случае часто нецелесообразно монтировать регуляторы на батареи.

Вентили и краны

Такая арматура представляет собой теплообменник запорного устройства. Это значит, что регулировка радиатора осуществляется путем поворота крана/вентиля в нужном направлении. Если повернуть арматуру до упора на 90°, поток воды в батарею поступать больше не будет. Чтобы изменить уровень нагрева отопительного прибора, запорный механизм устанавливают в половинчатое положение. Однако такая возможность есть не у любой арматуры. Некоторые краны могут дать течь после непродолжительной эксплуатации в таком положении.

Установка запорной арматуры позволяет регулировать систему отопления вручную. Клапан стоит недорого. В этом заключается главное преимущество такой арматуры. Кроме того, она проста в управлении, а для изменения микроклимата не нужны специальные знания. Однако есть и недостатки у запорных механизмов, например, они характеризуются низким уровнем эффективности. Скорость охлаждения батареи небольшая.

Запорные краны

Применяется шаровая конструкция. Прежде всего их принято устанавливать на радиатор отопления с целью защиты жилья от утечки теплоносителя. У арматуры данного вида только два положения: открытое и закрытое. Ее главная задача — отключение батареи в случае появления такой необходимости, например, если есть риск затопления квартиры. По этой причине запорные краны врезают в трубу перед радиатором.

Если арматура находится в открытом положении, теплоноситель свободно циркулирует по системе отопления и внутри батареи. Такие краны используются, если в помещении жарко. Периодически батареи можно отключать, что позволит снизить значение температуры воздуха в комнате.

Однако шаровые запорные механизмы нельзя устанавливать в половинчатом положении. При длительной эксплуатации возрастает риск появления протечки на участке, где располагается шаровой кран. Это обусловлено постепенным повреждением запорного элемента в виде шара, который находится внутри механизма.

Ручные вентили

В эту группу входят две разновидности арматуры:

  1. Игольчатый вентиль. Его преимуществом является возможность половинчатой установки. Такая арматура может располагаться в любом удобном положении: полностью открывает/закрывает доступ теплоносителя к радиатору, существенно или незначительно уменьшает объем воды в отопительных приборах. Однако есть и недостаток у игольчатых вентилей. Так, они характеризуются уменьшенной пропускной способностью. Это значит, что после установки такой арматуры даже в полностью открытом положении количество теплоносителя в трубе на входе батареи существенно сократится.
  2. Регулирующие вентили. Они разработаны специально для изменения температуры нагрева батарей. К плюсам относят возможность смены положения по усмотрению пользователя. Кроме того, такая арматура отличается надежностью. Не придется часто производить ремонт вентиля, если элементы конструкции выполнены из прочного металла. Внутри арматуры находится запорный конус. При повороте ручки в разные стороны он поднимается либо опускается, чем способствует увеличению/уменьшению площади проходного сечения.

Автоматическая регулировка

Преимуществом такого метода является отсутствие необходимости постоянно менять положение вентиля/крана. Нужная температура будет поддерживаться в автоматическом режиме. Регулировка отопления таким способом обеспечивает возможность однократно задать нужные параметры. В дальнейшем уровень нагрева батареи будет поддерживаться узлом автоматики или другим устройством, установленным на входе отопительного прибора.

Если необходимо, индивидуальные параметры могут задаваться многократно, на что влияют личные предпочтения жильцов. К недостаткам такого метода относят существенную стоимость комплектующих. Чем более функциональными являются приборы для управления количеством теплоносителя в радиаторах отопления, тем выше их цена.

Электронные терморегуляторы

Эти устройства внешне напоминают регулирующий вентиль, однако есть существенное различие — в конструкцию заложен дисплей. На нем отображается температура воздуха в помещении, которую необходимо получить. Такие устройства работают в паре с выносным датчиком температуры. Он передает информацию электронному терморегулятору. Чтобы нормализовать микроклимат в комнате, достаточно лишь задать нужное значение температуры на устройстве, а регулировка будет выполнена в автоматическом режиме. Располагают электронные терморегуляторы на входе батареи.

Регулировка радиаторов термостатами

Устройства данного вида состоят из двух узлов: нижнего (термовентиль) и верхнего (термоголовка). Первый из элементов напоминает ручной вентиль. Он выполнен из прочного металла. Преимуществом такого элемента является возможность установки не только автоматического, но и механического вентиля, все зависит от потребностей пользователя. Чтобы изменить значение температуры нагрева батареи, конструкцией термостата предусмотрен сильфон, который оказывает давление на подпружиненный механизм, а последний, в свою очередь, изменяет площадь проходного сечения.

Использование трехходовых клапанов

Такие устройства выполнены в виде тройника и предназначены для установки в точке соединения байпаса, входной трубы в радиатор, общего стояка отопительной системы. Для повышения эффективности работы трехходовой клапан оснащается терморегулирующей головкой, такой же, что и у ранее рассмотренного термостата. Если температура на входе в клапан выше нужного значения, теплоноситель не попадает в батарею. Горячая вода направляется через байпас и проходит дальше по отопительному стояку.

Когда клапан остывает, пропускное отверстие вновь открывается и теплоноситель поступает внутрь батареи. Целесообразно устанавливать такое устройство в случае, если система отопления однотрубная, а разводка труб вертикальная.

Рекомендации по монтажу устройств

Чтобы иметь возможность регулировать температуру батареи в квартире, рассматривают любой вид клапанов: они могут быть прямого или углового типа. Принцип установки такого прибора несложный, главное, правильно определить его положение. Так, на корпусе клапана указано направление потока теплоносителя. Оно должно соответствовать направлению движения воды внутри батареи.

Располагают вентили/термостаты на входе отопительного прибора, если необходимо, врезают кран еще и на выходе. Это делается для того, чтобы в будущем появилась возможность самостоятельно производить слив теплоносителя. Регулирующие устройства устанавливаются на батареи отопления при условии, что пользователь точно знает, какая труба подающая, т. к. в нее выполняется врезка. При этом учитывают направление движения горячей воды в стояке: сверху вниз или же снизу вверх.

Повышенной надежностью отличаются обжимные фитинги, поэтому они используются чаще. Соединение с трубами — резьбовое. Термостаты могут быть оснащены накидной гайкой. Для уплотнения резьбового соединения применяют ФУМ-ленту, лен.

Терморегулятор на батарею: принцип работы, настройка, установка

Главной задачей отопительной системы является поддержание комфортной температуры воздуха в здании. Эта температура может быть различной, в зависимости от назначения помещения, но обязательным условием является ее неизменность на протяжении всего дня.

В помещение тепловая энергия поступает от системы отопления через радиаторы. Объем тепловой энергии, отдаваемый нагревательными приборами, регулируется количеством теплоносителя.

Устройством, осуществляющим регулирование поток жидкости, поступающей в радиатор, является клапан или вентиль, который может быть автоматическим или ручным.

В помещении всегда происходит теплообмен с окружающим пространством. Это приводит к оттоку или притоку из помещения тепла, и, следовательно, к понижению или повышению в нем температуры воздуха.

Для восстановления в помещении теплового баланса необходимо увеличить или уменьшить количество тепла, поступающего от нагревательных приборов. С этой задачей прекрасно справится терморегулятор на батарею, установленный на подводящих трубопроводах.

Механический терморегулятор

Данное устройство состоит из клапана и чувствительного элемента (термической головки). Они функционируют слаженно без посторонней внешней энергии. Термическая головка комплектуется приводом, регулятором и жидкостным элементом, который может заменяться упругим или газовым.

Выбирать терморегулятор на батарею необходимо с учетом всех факторов, которые в дальнейшем смогут оказать влияние на его работу. Важно произвести специальный расчет — только в этом случае данный прибор будет функционировать максимально эффективно.

Составные элементы

Механический терморегулятор на батарею состоит из следующих элементов:

  • Компенсационный механизм.
  • Шток.
  • Разъемное соединение.
  • Золотник.
  • Чувствительный элемент.
  • Термостатический элемент.
  • Клапан термостатический.
  • Шкала настройки.
  • Накидная гайка.
  • Кольцо, которое фиксирует заданный температурный режим.

Факторы воздействия

На температуру в помещении, а значит, и на работу механического терморегулятора способны воздействовать следующие факторы:

  • Наружная температура.
  • Проветривание или сквозняк.
  • Солнечный свет.
  • Дополнительные источники холода или тепла (холодильник, трубопровод с горячей водой, электрические нагревательные приборы и т. д.).

При изменении в обогреваемом помещении температуры воздуха происходит изменение количества теплоносителя. Одновременно с этим изменяется объем сильфона, что приводит в действие регулирующий золотник. Перемещение золотника напрямую связано с изменением в комнате температуры воздуха. При изменении температуры чувствительный элемент реагирует и приводит в действие шток клапана регулятора. В результате изменение хода осуществляет регулирование подачи теплоносителя в нагревательный прибор.

Монтаж

Терморегулятор на батарею механического типа необходимо устанавливать на подающем трубопроводе. При этом головка терморегулятора должна располагаться горизонтально, не должна подвергаться влиянию прямых солнечных лучей и тепла. Если клапан закрыт занавеской или заставлен мебелью, то образуется нечувствительная зона, другими словами, термостат не контактирует с температурой окружающей среды, и по этой причине он не выполняет свои функции эффективно.

Если же иное размещение данного устройства не представляется возможным, применяются специальные датчики с накладным чувствительным элементом, предназначенные для дистанционного регулирования.

Электронные терморегуляторы

Электронный регулятор температуры отопления представляет собой автоматическое устройство регулирования, обеспечивающее поддержание заданного температурного режима в различном тепловом оборудовании.

В отопительной системе он осуществляет автоматическое управление котлом и остальными исполнительными механизмами (клапанами, насосами, смесителями и т. д.). Основная цель электронного терморегулятора – создание в помещении температурного режима, который был заранее определен пользователем.

Принцип работы

Регулятор температуры отопления электронного типа укомплектован термодатчиком, который устанавливается в месте, свободном от прямого воздействия нагревательных электроприборов, он обеспечивает прибор информацией о термическом состоянии помещения. На основании полученных данных электронный прибор управляет элементами отопительной системы.

Различают цифровые и аналоговые термореле с регулировкой температуры. Первые получили наибольшее распространение благодаря своей функциональности. Терморегуляторы электронного типа бывают:

  • С закрытой логикой.
  • С открытой логикой.

Закрытая логика – это постоянный алгоритм работы во времени и жесткая внутренняя структура, не зависящая от изменения факторов окружающей среды. Можно изменять лишь определенные программируемые параметры.

Терморегулятор с открытой логикой – это свободно программируемое устройство, характеризующееся большим диапазоном функций и настроек, его можно настроить на любую работу и условия окружающей среды.

В отличие от приборов с закрытой логикой, данные устройства не получили столь широкого распространения. Обосновано это тем, что их управление требует определенной квалификационной степени. Поэтому далеко не каждому рядовому гражданину под силу разобраться в режимах и настройках электронных терморегуляторов. Широкое применение получила открытая логика в индустриальном сегменте, однако со временем она может стать неотъемлемым элементом быта любого человека.

Установка терморегулятора на батарею

В процессе монтажа очень важно придерживаться инструкции и не размещать устройства данного типа в нишах, за декоративными решетками и шторами. Если же по какой-либо причине это не представляется возможным, устанавливается дистанционный датчик.

Неэффективно устанавливать терморегулятор для чугунных батарей, так как они очень долго нагреваются и остывают.

Прежде чем перейти к монтажу терморегуляторов необходимо отключить стояк и слить теплоноситель из отопительной системы.

Только после этого можно перейти к работам по установке данного прибора, их рекомендуется выполнять в следующей последовательности:

  • Горизонтальные подводки трубопроводов отрезаются на определенном расстоянии от нагревательного прибора.
  • Отсоединяется отрезанный трубопровод и запорное устройство.
  • Отсоединяются гайки и хвостовики совместно с гайками клапана или крана.
  • В пробки радиатора заворачиваются хвостовики.
  • На выбранное место устанавливается трубная обвязка.
  • Обвязка соединяется с горизонтальными трубопроводами.

Настройка

Настройка термореле с регулировкой температуры производится следующим образом:

  • В помещении плотно закрываются все окна и двери, чтобы утечку тепла свести к минимуму.
  • В помещении, где требуется поддержание определенного значения температуры, необходимо установить комнатный термометр.
  • Клапан полностью открывается, для чего головка терморегулятора поворачивается до упора влево, в таком случае радиатор будет функционировать с максимальной теплоотдачей, в помещении начнет повышаться температура.
  • Как только температура станет выше первоначальной на 5-6 °C, нужно закрыть клапан, для этого его головка поворачивается до упора вправо, после чего в помещении начнет постепенно остывать воздух.
  • После того как температура достигнет желаемой величины, клапан медленно открывается посредством вращения головки регулятора в левую сторону. При этом необходимо внимательно прислушаться, как только услышите шум воды и ощутите резкое нагревание корпуса терморегулятора, прекратите вращение головки и запомните ее положение.
  • Настройка полностью завершена. Температура в помещении будет держаться с точностью до 1 °C.

Терморегуляторы на электрических радиаторах

В условиях современной работы коммунальных предприятий, когда в холодный период года в квартирах далеко не всегда температура имеет необходимую для комфортного ощущения величину, многие переходят на электрические нагревательные приборы. Они могут выполнять как функцию дополнительного, так и основного источника тепла.

Как правило, сегодня многие производители выпускают электрические батареи с терморегулятором, что позволяет устанавливать индивидуальную температуру в каждой комнате. Электрические радиаторы – это удобная альтернатива и отличное дополнение центральному отоплению.

Как заменить регулятор давления топлива

Регулятор давления топлива — это устройство, предназначенное для поддержания постоянного давления топлива для правильного распыления топлива.

Внутри корпуса регулятора находится пружина, прижимающаяся к диафрагме. Давление пружины предварительно установлено производителем на желаемое давление топлива. Это позволяет топливному насосу перекачивать достаточно топлива и давление, необходимое для преодоления давления пружины. Дополнительное топливо, которое не нужно, отправляется обратно в топливный бак по возвратной топливной магистрали.

Когда двигатель автомобиля работает на холостом ходу, давление топлива, поступающего внутрь регулятора, меньше. Это достигается за счет разрежения двигателя, натягивающего диафрагму внутри регулятора давления топлива, сжимая пружину. Когда дроссельная заслонка открыта, разрежение падает и позволяет пружине выталкивать диафрагму, заставляя топливную рампу иметь высокое давление топлива.

Регулятор давления топлива работает с датчиком топливной рампы. Когда насос подает топливо, датчик топливной рампы определяет наличие топлива.Регулятор давления топлива обеспечивает постоянное давление в топливной рампе для подачи топлива к форсункам для надлежащего распыления.

Когда регулятор давления топлива начинает работать со сбоями, возникают некоторые основные симптомы, которые проявляются и предупреждают владельца транспортного средства о том, что что-то не так.

Автомобиль начинает с трудом запускаться, из-за чего стартер включается на более длительное время, чем обычно. Кроме того, двигатель может начать работать хаотично.Могут быть даже случаи, когда проблемы с датчиком давления в топливной рампе могут привести к тому, что двигатель просто отключится во время нормальной работы.

Световые коды двигателя, связанные с регулятором давления топлива на автомобилях с компьютерами:

Часть 1 из 6: Проверьте состояние регулятора давления топлива

Шаг 1: Запустите двигатель . Проверьте приборную панель на наличие лампочек двигателя. Прислушайтесь к работе двигателя, чтобы убедиться в том, что цилиндры не работают правильно.Почувствуйте любые вибрации во время работы двигателя.

  • Примечание : Если регулятор давления топлива полностью вышел из строя, двигатель может не запуститься. Не пытайтесь провернуть стартер более пяти раз, иначе аккумуляторная батарея будет работать хуже.

Шаг 2: Проверьте вакуумные шланги . Заглушите двигатель и откройте капот. Убедитесь, что вакуумные шланги вокруг регулятора давления топлива не сломаны или повреждены.

Поврежденные вакуумные шланги могут привести к неработоспособности регулятора и ухудшению холостого хода двигателя.

Часть 2 из 6: Подготовка к замене регулятора давления топлива

Наличие всех необходимых инструментов и материалов до начала работы позволит вам выполнять работу более эффективно.

Необходимые материалы

Шаг 1. Припаркуйте автомобиль на ровной твердой поверхности . Убедитесь, что передача в парке (для автоматики) или на 1 передаче (для МКПП).

Шаг 2: Закрепите передние колеса . Поместите противооткатные упоры вокруг шин, которые останутся на земле.В этом случае противооткатные упоры будут располагаться вокруг передних колес, поскольку задняя часть автомобиля будет приподнята. Включите стояночный тормоз, чтобы заблокировать движение задних колес.

Шаг 3: Установите 9-вольтовый аккумулятор в прикуриватель . Это сохранит ваш компьютер работает и поддерживает текущие настройки в автомобиле. Если у вас нет девятивольтовый аккумулятор, вы можете пропустить этот шаг.

Шаг 4: Отсоедините аккумулятор . Откройте капот автомобиля, чтобы отключить аккумулятор.Возьми заземляющий кабель от отрицательного вывода аккумуляторной батареи, чтобы отключить питание топливного насоса.

  • Примечание : Важно защищать руки. Обязательно наденьте защитные перчатки перед снятием любых клемм аккумулятора.

  • Совет : Для правильного снятия кабеля аккумуляторной батареи лучше всего следовать руководству по эксплуатации автомобиля.

Часть 3 из 6: Снимите датчик давления топлива

Шаг 1: Снимите крышку двигателя .Снимите крышку с верхней части двигателя. Снимите все кронштейны, которые могут мешать регулятору давления топлива.

  • Примечание : Если ваш двигатель имеет впускной канал на двигателе, который установлен поперечно или перекрывает регулятор давления топлива, перед снятием регулятора давления топлива необходимо снять впускной патрубок.

Шаг 2: Найдите клапан Шредера или тестовое отверстие на топливной рампе . Наденьте защитные очки и защитную одежду. Поместите небольшой поддон под направляющую и накройте порт полотенцем.Используя небольшую плоскую отвертку, откройте клапан, нажав на клапан Шредера. Это сбросит давление в топливной рампе.

  • Примечание : Если у вас есть тестовый порт или клапан Шредера, вам нужно будет снять шланг подачи топлива к топливной рампе. Для этого вам понадобится поддон для сбора капель под шлангом подачи топлива и набор инструментов для быстрого отсоединения топливного шланга. Используйте подходящий инструмент для быстрого отсоединения топливного шланга, чтобы отсоединить топливный шланг от топливной рампы.Это снизит давление в топливной рампе.

Шаг 3: Снимите вакуумную магистраль с регулятора давления топлива . Снимите крепеж с регулятора давления топлива. Снимите регулятор давления топлива с топливной рампы.

Шаг 4. Очистите топливную рампу безворсовой тканью . Проверьте состояние вакуумного шланга от коллектора двигателя к регулятору давления топлива.

  • Примечание : Замените вакуумный шланг от впускного коллектора двигателя к регулятору давления топлива, если он треснул или в нем есть отверстия.

Часть 4 из 6: Установите новый регулятор давления топлива

Шаг 1: Установите новый регулятор давления топлива на топливную рампу . Затяните крепежные детали вручную. Затяните монтажное оборудование до 12 дюймов фунтов, затем на 1/8 оборота. Это закрепит регулятор давления топлива на топливной рампе.

Шаг 2: Надеть вакуумный шланг на регулятор давления топлива . Установите все скобы, которые вам пришлось снять, чтобы снять старый регулятор.Также установите воздухозаборник, если вам пришлось его снимать. Обязательно используйте новые прокладки или уплотнительные кольца для герметизации впускного отверстия двигателя.

  • Примечание : Если вам нужно было снять напорный топливопровод, ведущий к топливной рампе, обязательно подсоедините шланг обратно к топливной рампе.

Шаг 3: Установите крышку двигателя . Установите кожух двигателя, защелкнув его на месте.

Часть 5 из 6: Проверка на герметичность

Шаг 1: Подключите аккумулятор .Откройте капот автомобиля. Снова подсоедините заземляющий кабель к отрицательной клемме аккумулятора.

Выньте девятивольтный аккумулятор из прикуривателя.

Затяните зажим аккумулятора, чтобы убедиться, что соединение хорошее.

  • Примечание : Если вы не использовали устройство энергосбережения на девять вольт, вам придется сбросить все настройки в вашем автомобиле, такие как радио, электрические сиденья и электрические зеркала.

Шаг 2: Снимите противооткатные упоры .Снимите противооткатные упоры с задних колес и отложите их в сторону.

Шаг 3. Поверните ключ зажигания в положение . Прислушайтесь к включению топливного насоса. Выключите зажигание после того, как топливный насос перестанет шуметь.

  • Примечание : Вам нужно будет включить и выключить ключ зажигания 3-4 раза, чтобы убедиться, что вся топливная рампа заполнена топливом и находится под давлением.

Шаг 4. Проверьте герметичность . Используйте детектор горючих газов и проверьте все соединения на предмет утечек.Понюхайте воздух на предмет запаха топлива.

Часть 6 из 6: Тест-драйв автомобиля

Шаг 1: Объехать на автомобиле квартал . Во время теста проверьте, не работает ли цилиндр двигателя неправильно, и почувствуйте любые странные вибрации.

Шаг 2: Проверьте контрольные лампы приборной панели . Следите за приборной панелью, чтобы определить уровень топлива и загореться свет двигателя.

Если лампа двигателя загорается даже после замены регулятора давления топлива, то может потребоваться дальнейшая диагностика топливной системы.Эта проблема может быть связана с возможной электрической проблемой в топливной системе.

Если проблема не исчезнет, ​​обратитесь к сертифицированному специалисту, например, из компании YourMechanic, для осмотра регулятора давления топлива и диагностики проблемы.

Обновите свой подвесной мотор, чтобы зарядить аккумулятор — $ tingy Sailor

Роскошь бортовой электроники и электрических устройств обоюдоострая. Что это дает с точки зрения удобства, так и с точки зрения нагрузки на аккумуляторную батарею, которая требует подзарядки.В сети и в книгах по электрическим системам парусников можно найти массу полезной информации. Мне особенно нравится Sailboat Electrics Simplified от Дона Кейси. Информация краткая и ясно представлена ​​таким образом, чтобы на нее было легко ссылаться, когда я забыл какой-то важный момент. Я не утомлю вас, перефразируя все это, а сразу перейду к тому, что я сделал и почему.

Summer Dance имеет одну батарею глубокого разряда группы 24. С добавлением таких аксессуаров, как музыкальная система, светодиодные ленты и автопилот румпеля, одного заряда батареи стало недостаточно для двухдневных круизных выходных, не говоря уже об этих редких трехдневных выходных.Мне нужно было найти способ вернуть немного ампер-часов в батарею, пока мы были на воде. Пока лодка сидит в слипе, я подключаю маленькое бортовое зарядное устройство.

Сначала я рассмотрел наиболее популярное решение — солнечную батарею. Но после того, как мы увидели стоимость и сложность системы контроля качества и то, как мало мы могли рассчитывать на заряд, особенно в северных широтах, где мы плаваем, результаты, которых мы могли ожидать, выглядели неутешительными, и я сосредоточился на нашем подвесном моторе. Летом на озерах Северного Айдахо обычно дуют слабые ветры, и мы иногда проводим много времени в парусном спорте, на самом деле, больше, чем мне хотелось бы.

Большинство подвесных лодочных моторов (даже без электрического стартера) могут заряжать аккумулятор так же, как мотор вашего автомобиля может заряжать аккумулятор. Как правило, это делают лодочные моторы с большим рабочим объемом.

Основные необходимые компоненты:

  • Катушки генератора, которые создают электрический ток (нерегулируемый переменный ток) от вращения двигателя
  • Регулятор / выпрямитель для преобразования выхода катушки в регулируемый постоянный ток, пригодный для зарядки аккумулятора

Хорошей новостью было то, что на нашем подвесном моторе, 4-тактном Yamaha мощностью 8 л.с. (модель F8MLHC), на заводе уже были установлены катушки генератора (поверх маховика).В руководстве указано, что выходная мощность составляет максимум 80 Вт или 10 ампер при 12 вольт постоянного тока. Все, что для этого требовалось, — это регулятор / выпрямитель.

Если в вашем подвесном моторе еще не установлены катушки генератора, и вы предпочитаете использовать солнечные панели, посмотрите «Солнечные панели для лодок: простое руководство по установке».

Я начал делать покупки на eBay (где еще?) И купил подержанный регулятор / выпрямитель (номер детали Yamaha 68T-81960-00-00). Я установил его (в заводские отверстия для этой цели на боковой стороне двигателя) за 5 минут и подключил к двигателю, как показано на этой схеме.Последним шагом было подключить его к бортовой батарее.

Моей целью при создании бортовой проводки было обеспечить возможность простого подключения и отключения двигателя для буксировки с помощью прочного водонепроницаемого разъема. Я хотел, чтобы процесс был таким же простым, как подключение топливопровода. Но я не хотел монтировать кабельный разъем в корпусе, который требовал сверления еще одной дыры.

На двигателе я сделал короткий двухжильный жгут из кабеля 12 AWG. Один конец подключается к выходу выпрямителя / регулятора и заземлению двигателя.Затем он выходит из двигателя через переднюю втулку и оканчивается охватываемой половиной 2-полюсного разъема Delphi Packard Weatherpack.

Спереди мотора показаны соединения проводки и штекерный разъем

. В лодке я проложил дуплексный (2-проводный) кабель 12 AWG от аккумулятора вдоль нижней части левой стороны подошвы кокпита к кормовому вентиляционному отверстию. Я проложил проводку прямо внутри короткого вентиляционного шланга и вытащил из совка достаточно кабеля, чтобы добраться до подвесного мотора, где я обжал внутреннюю половину разъема.Я покрыл все оголенные кабели тканым ткацким станком из огнестойкого материала. При отсоединении кабель лодки аккуратно складывается вместе с газовой линией. Я прикрепил держатель предохранителя на 10 ампер к положительному проводу батареи и подключил его к положительной клемме батареи. Отрицательный провод подключается к отрицательной шине рядом.

Жгут проводов подключен для использования

На крейсерском дросселе мотор выдает 2-3 ампер на батарею, что более чем достаточно, чтобы компенсировать работу автопилота, GPS и музыкальной системы, которые обычно работают одновременно.На полном газу аккумулятор получает заряд 5 ампер.

Я использую эту установку уже пять лет, и у меня даже не было состояния низкого заряда. Я рад, что у нас нет большой неповоротливой солнечной панели, свисающей с кормы. Когда-нибудь он нам может понадобиться для недельных круизов, но даже тогда будет приятно знать, что у нас есть несколько вариантов зарядки.


Хотели бы вы получать уведомление, когда я опубликую больше подобных сообщений? Введите свой адрес электронной почты внизу этой страницы, чтобы подписаться на этот блог и получать уведомления о новых сообщениях по электронной почте.Вы также будете время от времени получать информационные бюллетени с эксклюзивной информацией и предложениями только для подписчиков и паролем для страницы Загрузки . Это бесплатно, и вы можете отказаться от подписки в любое время, но почти никто этого не делает!

Нравится:

Нравится Загрузка …

Связанные

9 простых схем зарядного устройства для солнечных батарей

Простые солнечные зарядные устройства — это небольшие устройства, которые позволяют быстро и дешево заряжать аккумулятор с помощью солнечной энергии.

Простое солнечное зарядное устройство должно иметь встроенные 3 основные функции:

  • Оно должно быть недорогим.
  • Непрофессионал дружелюбен и прост в сборке.
  • Должен быть достаточно эффективным, чтобы удовлетворить основные потребности в зарядке аккумулятора.

В сообщении всесторонне объясняются девять лучших, но простых схем зарядного устройства для солнечных батарей с использованием микросхемы LM338, транзисторов, полевого МОП-транзистора, понижающего преобразователя и т. Д., Которые могут быть созданы и установлены даже неспециалистом для зарядки всех типов батарей и работы с другим сопутствующим оборудованием

Обзор

Солнечные панели для нас не новость, и сегодня они широко используются во всех секторах.Основное свойство этого устройства — преобразование солнечной энергии в электрическую, сделало его очень популярным, и теперь оно серьезно рассматривается как будущее решение всех кризисов или дефицитов электроэнергии.

Солнечная энергия может использоваться непосредственно для питания электрического оборудования или просто храниться в соответствующем накопителе для дальнейшего использования.

Обычно есть только один эффективный способ хранения электроэнергии — использование аккумуляторных батарей.

Перезаряжаемые батареи, вероятно, являются лучшим и наиболее эффективным способом сбора или хранения электроэнергии для дальнейшего использования.

Энергия от солнечного элемента или солнечной панели также может эффективно храниться, чтобы ее можно было использовать по своему усмотрению, обычно после захода солнца или когда стемнело, и когда накопленная мощность становится очень необходимой для работы огни.

Хотя это может показаться довольно простым, зарядка аккумулятора от солнечной панели никогда не бывает легкой по двум причинам:

Напряжение от солнечной панели может сильно варьироваться в зависимости от падающих солнечных лучей и

Ток также варьируется по тем же причинам, указанным выше.

Две вышеуказанные причины могут сделать параметры зарядки типичной аккумуляторной батареи очень непредсказуемыми и опасными.

ОБНОВЛЕНИЕ:

Прежде чем углубляться в следующие концепции, вы, вероятно, можете попробовать это очень простое зарядное устройство для солнечных батарей, которое обеспечит безопасную и гарантированную зарядку небольшой батареи 12 В 7 Ач через небольшую солнечную панель:

Требуемые детали

  • Солнечная панель — 20 В, 1 ампер
  • IC 7812 — 1 шт.
  • 1N4007 Диоды — 3 шт.
  • 2к2 Резистор 1/4 Вт — 1 шт.

Выглядит круто, не правда ли.Фактически, ИС и диоды могут уже лежать в вашем электронном мусорном ящике, поэтому их необходимо покупать. Теперь давайте посмотрим, как их можно настроить для окончательного результата.

Расчетное время, необходимое для зарядки аккумулятора с 11 В до 14 В, составляет около 8 часов.

Как мы знаем, IC 7812 будет вырабатывать фиксированное напряжение 12 В на выходе, которое нельзя использовать для зарядки аккумулятора 12 В. 3 диода, подключенные к его клеммам заземления (GND), введены специально для решения этой проблемы и для увеличения выхода IC примерно до 12 + 0.7 + 0,7 + 0,7 В = 14,1 В, что как раз и требуется для полной зарядки аккумулятора 12 В.

Падение на 0,7 В на каждом диоде увеличивает порог заземления ИС на установленный уровень, заставляя ИС регулировать выход на уровне 14,1 В вместо 12 В. Резистор 2k2 используется для активации или смещения диодов, чтобы он мог провести и обеспечить запланированное полное падение на 2,1 В.

Делаем это еще проще

Если вы ищете еще более простое солнечное зарядное устройство, то, вероятно, нет ничего проще, чем подключить солнечную панель соответствующего номинала напрямую к соответствующей батарее через блокирующий диод, как показано ниже:

Хотя вышеуказанная конструкция не включает в себя регулятор, она все равно будет работать, поскольку токовый выход панели является номинальным, и это значение будет показывать только ухудшение, когда солнце меняет свое положение.

Однако для аккумулятора, который не полностью разряжен, описанная выше простая настройка может нанести некоторый вред аккумулятору, поскольку аккумулятор будет быстро заряжаться и будет продолжать заряжаться до небезопасного уровня и в течение более длительных периодов времени. время.

1) Использование LM338 в качестве солнечного контроллера

Но благодаря современным универсальным микросхемам, таким как LM 338 и LM 317, которые могут очень эффективно справляться с вышеуказанными ситуациями, делая процесс зарядки всех аккумуляторных батарей через солнечную панель очень безопасным и желательно.

Схема простого зарядного устройства для солнечных батарей LM338 показана ниже с использованием IC LM338:

На принципиальной схеме показана простая установка с использованием IC LM 338, настроенного для работы в стандартном режиме регулируемого источника питания.

Использование функции контроля тока

Особенностью конструкции является то, что она также включает функцию контроля тока.

Это означает, что, если ток имеет тенденцию к увеличению на входе, что обычно может иметь место, когда интенсивность солнечных лучей увеличивается пропорционально, напряжение зарядного устройства пропорционально падает, снижая ток обратно до указанного номинального значения.

Как мы видим на схеме, коллектор / эмиттер транзистора BC547 подключен через ADJ и землю, он становится ответственным за инициирование действий управления током.

По мере увеличения входного тока батарея начинает потреблять больше тока, при этом на резисторе R3 возникает напряжение, которое преобразуется в соответствующее базовое возбуждение транзистора.

Транзистор проводит и корректирует напряжение через C LM338, так что скорость тока регулируется в соответствии с безопасными требованиями к батарее.

Формула предела тока:

R3 можно рассчитать по следующей формуле

R3 = 0,7 / Максимальный предел тока

PCB Конструкция для описанной выше простой схемы зарядного устройства солнечной батареи приведена ниже:

Измеритель и входной диод не входят в состав печатной платы.

2) Схема зарядного устройства солнечной батареи за 1 доллар

Вторая конструкция объясняет дешевую, но эффективную, менее чем за 1 доллар дешевую, но эффективную схему солнечного зарядного устройства, которую может построить даже неспециалист для использования эффективной зарядки солнечной батареи.

Вам понадобится только панель солнечных батарей, селекторный переключатель и несколько диодов для создания достаточно эффективного солнечного зарядного устройства.

Что такое слежение за солнечной точкой максимальной мощности?

Для непрофессионала это было бы чем-то слишком сложным и изощренным, чтобы понять, и системой, включающей экстремальную электронику.

В некотором смысле это может быть правдой, и, конечно же, MPPT — это сложные высокопроизводительные устройства, которые предназначены для оптимизации зарядки аккумулятора без изменения кривой V / I солнечной панели.

Проще говоря, MPPT отслеживает мгновенное максимальное доступное напряжение от солнечной панели и регулирует скорость зарядки аккумулятора таким образом, чтобы напряжение на панели оставалось неизменным или вдали от нагрузки.

Проще говоря, солнечная панель будет работать наиболее эффективно, если ее максимальное мгновенное напряжение не снижается близко к напряжению подключенной батареи, которая заряжается.

Например, если напряжение холостого хода вашей солнечной панели составляет 20 В, а заряжаемая батарея рассчитана на 12 В, и если вы подключите их напрямую, напряжение на панели упадет до напряжения батареи, что приведет к слишком неэффективно.

И наоборот, если бы вы могли сохранить напряжение панели неизменным, но извлечь из него наилучший вариант зарядки, система бы работала по принципу MPPT.

Таким образом, все дело в оптимальной зарядке аккумулятора без снижения напряжения на панели.

Существует один простой и нулевой метод реализации вышеуказанных условий.

Выберите солнечную панель, напряжение холостого хода которой соответствует напряжению зарядки аккумулятора. То есть для батареи 12 В вы можете выбрать панель с напряжением 15 В, что обеспечит максимальную оптимизацию обоих параметров.

Однако практически вышеуказанных условий может быть трудно достичь, потому что солнечные панели никогда не производят постоянную мощность и имеют тенденцию генерировать ухудшающиеся уровни мощности в ответ на изменение положения солнечных лучей.

Вот почему всегда рекомендуется использовать солнечную панель с гораздо более высоким номиналом, чтобы даже в худших дневных условиях она продолжала заряжаться.

Сказав, что нет необходимости переходить на дорогие системы MPPT, вы можете получить аналогичные результаты, потратив на это несколько долларов.Следующее обсуждение прояснит процедуры.

Как работает схема

Как обсуждалось выше, для того, чтобы избежать ненужной нагрузки на панель, нам необходимо создать условия, идеально соответствующие напряжению фотоэлектрической батареи и напряжению батареи.

Это можно сделать, используя несколько диодов, дешевый вольтметр или имеющийся у вас мультиметр и поворотный переключатель. Конечно, при цене около 1 доллара вы не можете ожидать, что он будет автоматическим, вам, возможно, придется работать с переключателем довольно много раз в день.

Мы знаем, что прямое падение напряжения на выпрямительном диоде составляет около 0,6 В, поэтому, добавив несколько диодов последовательно, можно изолировать панель от перетаскивания на подключенное напряжение батареи.

Ссылаясь на схему, приведенную ниже, можно организовать маленькое классное зарядное устройство MPPT с использованием показанных дешевых компонентов.

Предположим, что на схеме напряжение холостого хода панели составляет 20 В, а батарея рассчитана на 12 В.

Их прямое подключение приведет к увеличению напряжения панели до уровня заряда батареи, что сделает работу неприемлемой.

Последовательно добавляя 9 диодов, мы эффективно изолируем панель от нагрузки и перетаскивания к напряжению батареи, но при этом извлекаем из нее максимальный зарядный ток.

Общее прямое падение объединенных диодов будет около 5 В, плюс напряжение зарядки аккумулятора 14,4 В дает около 20 В, что означает, что после последовательного соединения всех диодов во время пикового солнечного света напряжение на панели незначительно упадет до примерно 19 В. эффективная зарядка аккумулятора.

Теперь предположим, что солнце начинает опускаться, вызывая падение напряжения на панели ниже номинального. Это можно контролировать с помощью подключенного вольтметра и пропускать несколько диодов до тех пор, пока аккумулятор не будет восстановлен с получением оптимальной мощности.

Символ стрелки, показанный при подключении к плюсу напряжения панели, можно заменить поворотным переключателем для рекомендуемого выбора диодов, включенных последовательно.

Реализовав описанную выше ситуацию, можно эффективно моделировать четкие условия зарядки MPPT без использования дорогостоящих устройств.Вы можете сделать это для всех типов панелей и батарей, просто подключив большее количество диодов.

3) Схема солнечного зарядного устройства и драйвера для белого светодиода SMD высокой мощности 10 Вт / 20 Вт / 30 Вт / 50 Вт

Третья идея учит нас, как построить простой светодиод на солнечной батарее со схемой зарядного устройства для освещения светодиодов высокой мощности (SMD) в порядка 10 ватт на 50 ватт. Светодиоды SMD полностью защищены термически и от перегрузки по току с помощью недорогого каскада ограничения тока LM 338. Идею запросил г-н.Сарфраз Ахмад.

Технические характеристики

В основном я дипломированный инженер-механик из Германии 35 лет назад, много лет работал за границей и уехал много лет назад из-за личных проблем дома.
Извините, что беспокою вас, но я знаю о ваших способностях и опыте в области электроники и искренности, чтобы помочь и направить таких начинающих, как я. Я видел эту схему где-то для 12 В постоянного тока.

Я подключил к SMD, 12 В 10 Вт, конденсатор 1000 мкФ, 16 В и мостовой выпрямитель, вы можете увидеть номер детали на нем.Когда я включаю свет, выпрямитель начинает нагреваться, как и оба SMD-модуля. Боюсь, если оставить эти лампы включенными в течение длительного времени, это может повредить SMD и выпрямитель. Не знаю, в чем проблема. Вы можете мне помочь.

У меня на крыльце есть свет, который включается на диске и выключается на рассвете. К сожалению, из-за отключения нагрузки, когда нет электричества, этот свет не горит, пока электричество не вернется.

Я хочу установить как минимум два SMD (12 вольт) с LDR, чтобы, как только свет погас, загорелся свет SMD.Я хочу добавить еще два аналогичных светильника в другом месте на крыльце автомобиля, чтобы все они были освещены. Я думаю, что если я подключу все эти четыре SMD-светильника к источнику питания 12 В, который будет получать питание от цепи ИБП.

Конечно, это создаст дополнительную нагрузку на батарею ИБП, которая вряд ли полностью заряжена из-за частого отключения нагрузки. Другое лучшее решение — установить 12-вольтовую солнечную панель и прикрепить к ней все четыре лампы SMD. Он зарядит аккумулятор и включит / выключит свет.

Эта солнечная панель должна поддерживать эти огни всю ночь и отключаться на рассвете. Пожалуйста, также помогите мне и расскажите подробнее об этой схеме / проекте.

Вы можете найти время, чтобы выяснить, как это сделать. Я пишу вам, так как, к сожалению, ни один продавец электроники или солнечной энергии на нашем местном рынке не готов мне помочь. Ни один из них, похоже, не имеет технической квалификации и они просто хотят продать свои запчасти.

Sarfraz Ahmad

Равалпинди, Пакистан

Конструкция

На показанной выше солнечной светодиодной схеме SMD мощностью от 10 до 50 Вт с автоматическим зарядным устройством мы видим следующие этапы:

  • Солнечная панель
  • Пара схем регулятора LM338 с регулируемым током
  • Реле переключения
  • Перезаряжаемая батарея
  • и 40-ваттный светодиодный SMD-модуль

Вышеупомянутые ступени объединены следующим образом:

Два Ступени LM 338 сконфигурированы в стандартных режимах регулятора тока с использованием соответствующих сопротивлений измерения тока для обеспечения выхода с регулируемым током для соответствующей подключенной нагрузки.

Нагрузкой для левого LM338 является аккумулятор, который заряжается от этой ступени LM338 и входной источник солнечной панели. Резистор Rx рассчитывается таким образом, чтобы батарея получала установленный ток и не перезаряжалась.

Правая сторона LM 338 загружена светодиодным модулем, и здесь Ry проверяет, что модуль получает правильную заданную величину тока, чтобы защитить устройства от теплового разгона.

Напряжение на солнечной панели может быть от 18 до 24 В.

Реле вводится в схему и соединяется со светодиодным модулем таким образом, что оно включается только ночью или когда темно ниже порогового значения для солнечной панели для выработки необходимой любой мощности.

Пока доступно солнечное напряжение, реле остается под напряжением, изолируя светодиодный модуль от батареи и гарантируя, что светодиодный модуль мощностью 40 Вт остается выключенным в дневное время и во время зарядки аккумулятора.

После сумерек, когда солнечное напряжение становится достаточно низким, реле больше не может удерживать свое положение Н / Н и переключается в положение Н / З, соединяя батарею со светодиодным модулем и освещая массив через доступный полностью заряженный аккумулятор.

Видно, что светодиодный модуль прикреплен к радиатору, который должен быть достаточно большим для достижения оптимального результата работы модуля и обеспечения более длительного срока службы и яркости устройства.

Расчет номиналов резисторов

Указанные ограничивающие резисторы можно рассчитать по приведенным формулам:

Rx = 1,25 / ток зарядки аккумулятора

Ry = 1,25 / номинальный ток светодиода.

Предполагая, что это свинцово-кислотная батарея на 40 Ач, предпочтительный зарядный ток должен составлять 4 ампера.

, следовательно, Rx = 1,25 / 4 = 0,31 Ом

мощность = 1,25 x 4 = 5 Вт

Ток светодиода можно найти, разделив его общую мощность на номинальное напряжение, то есть 40/12 = 3,3 ампера

следовательно Ry = 1,25 / 3 = 0,4 Ом

мощность = 1,25 x 3 = 3,75 Вт или 4 Вт.

Ограничительные резисторы не используются для светодиодов мощностью 10 Вт, поскольку входное напряжение от батареи соответствует установленному пределу 12 В для светодиодного модуля и, следовательно, не может превышать безопасные пределы.

Приведенное выше объяснение показывает, как микросхему LM338 можно просто использовать для создания полезной схемы солнечного светодиодного освещения с автоматическим зарядным устройством.

4) Автоматическая цепь солнечного освещения с использованием реле

В нашей 4-й автоматической цепи солнечного освещения мы включаем одно реле в качестве переключателя для зарядки аккумулятора в дневное время или пока солнечная панель вырабатывает электричество, а также для освещения подключенный светодиод, пока панель не активна.

Обновление до реле переключения

В одной из моих предыдущих статей, в которой объяснялась простая схема солнечного садового освещения, мы использовали один транзистор для операции переключения.

Одним из недостатков более ранней схемы является то, что она не обеспечивает регулируемую зарядку батареи, хотя это не может быть строго обязательным, поскольку батарея никогда не заряжается до полного потенциала, этот аспект может потребовать улучшения.

Еще одним связанным недостатком более ранней схемы является ее низкая мощность, которая не позволяет использовать батареи высокой мощности и светодиоды.

Следующая схема эффективно решает обе вышеупомянутые проблемы с помощью реле и транзисторного каскада эмиттерного повторителя.

Принципиальная схема

Как это работает

Во время оптимального солнечного света реле получает достаточную мощность от панели и остается включенным с активированными замыкающими контактами.

Это позволяет аккумулятору получать зарядное напряжение через стабилизатор напряжения на транзисторном эмиттерном повторителе.

Конструкция эмиттерного повторителя состоит из TIP122, резистора и стабилитрона. Резистор обеспечивает необходимое смещение для проводимости транзистора, в то время как значение стабилитрона ограничивает напряжение эмиттера, которое контролируется на уровне чуть ниже значения напряжения стабилитрона.

Таким образом, стабилитрон выбирается соответствующим образом, чтобы соответствовать зарядному напряжению подключенной батареи.

Для батареи 6 В напряжение стабилитрона может быть выбрано как 7,5 В, для батареи 12 В напряжение стабилитрона может составлять около 15 В и так далее.

Эмиттерный повторитель также следит за тем, чтобы аккумулятор никогда не перезарядился сверх установленного предела зарядки.

В вечернее время, когда обнаруживается значительное падение солнечного света, реле блокируется от требуемого минимального напряжения удержания, заставляя его переключаться с замыкающего контакта на замыкающий.

Вышеупомянутое переключение реле мгновенно переводит аккумулятор из режима зарядки в режим светодиода, освещая светодиод через напряжение аккумулятора.

Список деталей для автоматической цепи солнечного освещения 6 В / 4 Ач с релейным переключателем
  1. Солнечная панель = 9 В, 1 ампер
  2. Реле = 6 В / 200 мА
  3. Rx = 10 Ом / 2 Вт
  4. стабилитрон = 7,5 В, 1/2 Вт

5) Контроллер транзисторного солнечного зарядного устройства

Пятая идея, представленная ниже, описывает простую схему солнечного зарядного устройства с автоматическим отключением только с использованием транзисторов.Идея была предложена г-ном Мубараком Идрисом.

Цели и требования схемы

  1. Пожалуйста, сэр, не могли бы вы сделать мне литий-ионный аккумулятор 12 В, 28,8 Ач, автоматический контроллер заряда, использующий солнечную панель в качестве источника питания, который составляет 17 В при 4,5 А при максимальном солнечном свете.
  2. Контроллер заряда должен иметь возможность иметь защиту от перезарядки и отключение низкого заряда батареи, а схема должна быть простой для новичка без микросхемы или микроконтроллера.
  3. Схема должна использовать реле или BJT транзисторов в качестве выключателя и стабилитронов для опорного напряжения, благодаря сэру надежды услышать от вас скоро!

Конструкция

Конструкция печатной платы (Сторона компонентов)

Ссылаясь на приведенную выше простую схему солнечного зарядного устройства с использованием транзисторов, автоматическое отключение для полного уровня заряда и нижнего уровня осуществляется через пару BJT, сконфигурированных как компараторы .

Вспомните более раннюю схему индикатора низкого заряда батареи, использующую транзисторы, где низкий уровень заряда батареи указывался с помощью всего двух транзисторов и нескольких других пассивных компонентов.

Здесь мы используем идентичную конструкцию для определения уровня заряда батареи и для обеспечения необходимого переключения батареи через солнечную панель и подключенную нагрузку.

Давайте предположим, что изначально у нас есть частично разряженная батарея, из-за которой первый BC547 слева перестает проводить (это устанавливается путем настройки базовой предустановки на этот пороговый предел) и позволяет проводить следующее BC547.

Когда этот BC547 проводит, он позволяет TIP127 включиться, что, в свою очередь, позволяет напряжению солнечной панели достигать батареи и начинать ее зарядку.

Приведенная выше ситуация, наоборот, удерживает TIP122 выключенным, так что нагрузка не может работать.

По мере того, как батарея начинает заряжаться, напряжение на шинах питания также начинает расти до точки, когда левая сторона BC547 просто может проводить ток, в результате чего правая сторона BC547 перестает проводить дальше.

Как только это происходит, TIP127 блокируется от отрицательных базовых сигналов, и он постепенно перестает проводить, так что батарея постепенно отключается от напряжения солнечной панели.

Однако вышеупомянутая ситуация позволяет TIP122 медленно получать триггер смещения базы, и он начинает проводить … что гарантирует, что теперь нагрузка может получить необходимое питание для своих операций.

Вышеупомянутая схема солнечного зарядного устройства с использованием транзисторов и с автоматическим отключением может использоваться для любых небольших приложений солнечного контроллера, таких как безопасная зарядка аккумуляторов сотовых телефонов или других форм литий-ионных аккумуляторов.

Для , получившего регулируемое зарядное устройство

Следующая конструкция показывает, как преобразовать или модернизировать приведенную выше принципиальную схему в регулируемое зарядное устройство, чтобы аккумулятор поставлялся с фиксированным и стабилизированным выходом независимо от повышения напряжения. от солнечной панели.

6) Схема карманного светодиодного освещения на солнечной батарее

Шестая конструкция здесь объясняет простую недорогую схему карманного светодиодного освещения на солнечной батарее, которая может использоваться нуждающимися и малоимущими слоями общества для дешевого освещения своих домов в ночное время.

Идея была предложена г-ном Р.К. Rao

Цели и требования схемы

  1. Я хочу сделать карманный светодиодный светильник SOLAR из прозрачного пластикового бокса 9 см x 5 см x 3 см [доступный на рынке за 3 рупий / -] с использованием светодиода мощностью 1 Вт / 20 мА Светодиоды питаются от герметичной свинцово-кислотной аккумуляторной батареи 4 В, 1 А [SUNCA / VICTARI], а также с возможностью зарядки с помощью зарядного устройства для сотового телефона [при наличии сетевого тока].
  2. Батарея подлежит замене, если она разряжена после использования в течение 2/3 лет / предписанного срока службы пользователем из сельской местности / племени.
  3. Предназначен для использования детьми из племен / сельских районов для освещения книги; На рынке есть лучшие светодиодные фонари по цене около 500 рупий [d.light] за 200 рупий [Thrive].
  4. Эти фонари хороши, за исключением того, что у них есть мини-солнечная панель и яркий светодиод со сроком службы десять лет, если не больше, но с перезаряжаемой батареей без возможности ее замены, если она разрядится после двух или трех лет использования. это пустая трата ресурсов и неэтична.
  5. Я планирую проект, в котором аккумулятор можно будет заменить, приобрести на месте по низкой цене.Цена на свет не должна превышать 100/150 рупий.
  6. Он будет продаваться на некоммерческой основе через НПО в районах проживания племен и, в конечном итоге, будет поставлять комплекты для молодежи из племен / сельских районов, чтобы они могли изготавливать их в деревне.
  7. Я вместе с коллегой сделал несколько светильников с батареями большой мощности 7V EW и 2x20mA pirahna Led и проверил их — их хватило на более 30 часов непрерывного освещения, достаточного для освещения книги с полуметрового расстояния; и еще один с солнечной батареей 4 В и светодиодом мощностью 350 А мощностью 1 Вт, обеспечивающим достаточно света для приготовления пищи в хижине.
  8. Можете ли вы предложить схему с одной перезаряжаемой батареей AA / AAA, мини-солнечной панелью размером 9×5 см для установки на крышку коробки, усилителем постоянного и постоянного тока и светодиодами 20 мА. Если вы хотите, чтобы я пришел к вам для обсуждения, я могу.
  9. Вы можете увидеть огни, которые мы сделали на фотографиях Google по адресу https://goo.gl/photos/QyYU1v5Kaag8T1WWA Спасибо,

Дизайн

По запросу, солнечные карманные светодиодные схемы должны быть компактный, работает с одним 1.Элемент 5AAA, использующий преобразователь постоянного тока в постоянный и оснащенный саморегулирующейся схемой солнечного зарядного устройства.

Схема, показанная ниже, вероятно, удовлетворяет всем вышеперечисленным спецификациям, но все же остается в пределах доступной стоимости.

Принципиальная схема

Конструкция представляет собой базовую схему «похититель джоулей», в которой используется один элемент фонарика, BJT и индуктор для питания любого стандартного светодиода 3,3 В.

На схеме показан светодиод мощностью 1 Вт, хотя можно использовать светодиод меньшей яркости 30 мА.

Схема солнечного светодиода способна выдавить последнюю каплю «джоуля» или заряда из элемента, отсюда и название «вор джоулей», что также подразумевает, что светодиод будет продолжать светиться до тех пор, пока внутри элемента практически ничего не останется. Однако аккумулятор здесь не рекомендуется разряжать ниже 1 В.

Зарядное устройство на 1,5 В в конструкции построено с использованием другого маломощного BJT, сконфигурированного в его конфигурации эмиттерного повторителя, что позволяет ему выдавать выходное напряжение эмиттера, которое точно равно потенциалу в его базе, установленному предустановкой 1K.Это должно быть точно установлено так, чтобы эмиттер выдавал не более 1,8 В при входном постоянном токе более 3 В.

Источником входного постоянного тока является солнечная панель, которая может выдавать напряжение более 3 В при оптимальном солнечном свете и позволяет зарядному устройству заряжать аккумулятор с максимальным выходным напряжением 1,8 В.

При достижении этого уровня эмиттерный повторитель просто запрещает дальнейшую зарядку элемента, таким образом предотвращая любую возможность избыточного заряда.

Индуктор для схемы карманного солнечного светодиода состоит из небольшого трансформатора с ферритовым кольцом, имеющего 20:20 витков, которые можно соответствующим образом изменить и оптимизировать для обеспечения наиболее благоприятного напряжения для подключенного светодиода, которое может работать даже до тех пор, пока напряжение не упадет ниже 1.2В.

7) Простое солнечное зарядное устройство для уличных фонарей

Седьмое солнечное зарядное устройство, обсуждаемое здесь, лучше всего подходит, поскольку солнечная светодиодная система уличного освещения специально разработана для начинающих любителей, которые могут построить их, просто обратившись к представленной здесь графической схеме.

Благодаря простой и относительно дешевой конструкции система может быть подходящим образом использована для уличного освещения в деревнях или в других подобных отдаленных районах, тем не менее, это никоим образом не ограничивает ее использование и в городах.

Основные характеристики этой системы:

1) Зарядка с контролем напряжения

2) Работа светодиодов с контролем тока

3) Реле не используются, все твердотельные конструкции

4) Отключение нагрузки при низком критическом напряжении

5) Индикаторы низкого и критического напряжения

6) Отключение при полной зарядке не включено для простоты и потому, что зарядка ограничена контролируемым уровнем, который никогда не позволит аккумулятору перезарядиться.

7) Использование популярных микросхем, таких как LM338, и транзисторов, таких как BC547, обеспечивает беспроблемную закупку.

8) Ступень срабатывания «день-ночь», обеспечивающий автоматическое отключение в сумерках и включение на рассвете.

Вся принципиальная схема предлагаемой простой светодиодной системы уличного освещения проиллюстрирована ниже:

Принципиальная схема

Цепной каскад, содержащий T1, T2 и P1, сконфигурирован в простой датчик низкого заряда батареи, индикаторную схему

Точно идентичный Этап также можно увидеть чуть ниже, используя T3, T4 и связанные с ними детали, которые образуют еще один каскад детектора низкого напряжения.

Ступень T1, T2 обнаруживает напряжение батареи, когда оно падает до 13 В, путем включения подключенного светодиода на коллекторе T2, в то время как ступень T3, T4 обнаруживает напряжение аккумулятора, когда оно падает ниже 11 В, и указывает ситуацию, загораясь Светодиод связан с коллектором Т4.

P1 используется для регулировки ступени T1 / T2 таким образом, чтобы светодиод T2 загорался только при напряжении 12 В, аналогично P2 настраивается, чтобы светодиод T4 начинал светиться при напряжении ниже 11 В.

IC1 LM338 сконфигурирован как простой источник питания с регулируемым напряжением для точного регулирования напряжения солнечной панели до 14 В, это делается путем соответствующей настройки предустановки P3.

Этот выход IC1 используется для зарядки батареи уличного фонаря в дневное время и при ярком солнечном свете.

IC2 — это еще одна микросхема LM338, подключенная в режиме регулятора тока, ее входной контакт соединен с плюсом батареи, а выход соединен со светодиодным модулем.

IC2 ограничивает уровень тока от батареи и подает правильное количество тока на светодиодный модуль, чтобы он мог безопасно работать в ночном режиме резервного копирования.

T5 — это силовой транзистор, который действует как переключатель и срабатывает на стадии критического разряда батареи, когда напряжение батареи стремится достичь критического уровня.

Каждый раз, когда это происходит, база T5 немедленно заземляется с помощью T4, мгновенно отключая его. Когда Т5 отключен, светодиодный модуль может светиться и, следовательно, также отключен.

Это состояние предотвращает и предохраняет аккумулятор от чрезмерной разрядки и повреждения. В таких ситуациях аккумулятору может потребоваться внешняя зарядка от сети с использованием источника питания 24 В, подключенного к линиям питания солнечной панели, через катод D1 и землю.

Ток от этого источника питания можно указать на уровне около 20% от емкости аккумулятора, и аккумулятор можно заряжать до тех пор, пока оба светодиода не перестанут светиться.

Транзистор T6 вместе с его базовыми резисторами расположен так, чтобы обнаруживать питание от солнечной панели и гарантировать, что светодиодный модуль остается отключенным до тех пор, пока разумный объем питания доступен от панели, или, другими словами, T6 сохраняет светодиод модуль отключается до тех пор, пока не становится достаточно темно для светодиодного модуля, а затем включается.Обратное происходит на рассвете, когда светодиодный модуль автоматически выключается. R12, R13 должны быть тщательно отрегулированы или выбраны для определения желаемых пороговых значений для циклов включения / выключения светодиодного модуля.

Как построить

Для успешного завершения этой простой системы уличного освещения описанные этапы должны быть построены отдельно и проверены отдельно перед интеграцией их вместе.

Сначала соберите каскад T1, T2 вместе с R1, R2, R3, R4, P1 и светодиодом.

Затем, используя переменный источник питания, подайте точные 13 В на этот каскад T1, T2 и отрегулируйте P1 так, чтобы светодиод просто загорелся, немного увеличьте напряжение до 13.5V и светодиод должен погаснуть. Этот тест подтвердит правильную работу этой ступени индикатора низкого напряжения.

Сделайте то же самое, что и ступень T3 / T4, и установите P2 аналогичным образом, чтобы светодиод светился при напряжении 11 В, что становится критической установкой уровня для ступени.

После этого вы можете перейти к этапу IC1 и отрегулировать напряжение на его «корпусе» и земле до 14 В, отрегулировав P3 до нужной степени. Это нужно снова сделать, подав напряжение 20 В или 24 В на его входной контакт и линию заземления.

Ступень IC2 может быть сконструирован, как показано, и не потребует какой-либо процедуры настройки, кроме выбора R11, который может быть выполнен с использованием формулы, выраженной в этой статье об универсальном ограничителе тока

Список деталей

  • R1, R2, R3 R4, R5, R6, R7 R8, R9, R12 = 10k, 1/4 WATT
  • P1, P2, P3 = 10K PRESETS
  • R10 = 240 OHMS 1/4 WATT
  • R13 = 22K
  • D1, D3 = 6A4 ДИОД
  • D2, D4 = 1N4007
  • T1, T2, T3, T4 = BC547
  • T5 = TIP142
  • R11 = СМОТРЕТЬ ТЕКСТ
  • IC1, IC2 = LM338 IC TO3 package
  • Светодиодный модуль = Изготовлен путем подключения 24nos Светодиоды мощностью 1 Вт при последовательном и параллельном подключении
  • Батарея = 12 В SMF, 40 Ач
  • Солнечная панель = 20/24 В, 7 А

Создание светодиодного модуля на 24 Вт

Светодиодный модуль на 24 Вт для вышеупомянутой простой солнечной улицы световую систему можно построить, просто соединив 24 светодиода мощностью 1 Вт, как показано на следующем рисунке:

8) Схема понижающего преобразователя солнечной панели с защитой от перегрузки

В восьмой концепции солнечной батареи, обсуждаемой ниже, говорится о простой схеме понижающего преобразователя солнечной панели, которую можно использовать для получения любого желаемого низкого пониженного напряжения на входах от 40 до 60 В.Схема обеспечивает очень эффективное преобразование напряжения. Идея была предложена господином Дипаком.

Технические характеристики

Я ищу понижающий преобразователь постоянного тока со следующими характеристиками.

1. Входное напряжение = от 40 до 60 В постоянного тока

2. Выходное напряжение = регулируемое 12, 18 и 24 В постоянного тока (несколько выходов из одной и той же цепи не требуются. Отдельная цепь для каждого выходного напряжения также штраф)

3.Максимальный выходной ток = 5-10А

4. Защита на выходе = перегрузка по току, короткое замыкание и т. Д.

5. Небольшой светодиодный индикатор работы устройства будет преимуществом.

Был бы признателен, если бы вы помогли мне разработать схему.

С уважением,
Deepak

Конструкция

Предлагаемая схема понижающего преобразователя 60 В в 12 В, 24 В показана на рисунке ниже, детали можно понять, как описано ниже: конфигурацию можно разделить на этапы, а именно.каскад нестабильного мультивибратора и понижающий преобразователь, управляемый МОП-транзистором.

BJT T1, T2 вместе со связанными с ним частями образуют стандартную схему AMV, подключенную к генерации частоты с частотой примерно от 20 до 50 кГц.

Mosfet Q1 вместе с L1 и D1 формирует стандартную топологию понижающего преобразователя для реализации необходимого понижающего напряжения на C4.

AMV управляется входом 40 В, и генерируемая частота подается на затвор подключенного МОП-транзистора, который мгновенно начинает колебаться при доступном токе от входа, управляющего сетью L1, D1.

Вышеупомянутое действие генерирует необходимое пониженное напряжение на C4,

D2 гарантирует, что это напряжение никогда не превышает номинальную отметку, которая может быть фиксированной 30 В.

Это макс. Предельное пониженное напряжение 30 В далее подается на регулятор напряжения LM396, который может быть настроен на получение конечного желаемого напряжения на выходе с максимальной скоростью 10 ампер.

Выход можно использовать для зарядки предполагаемого аккумулятора.

Принципиальная схема

Перечень деталей для вышеуказанного понижающего преобразователя на 60 В, 12 В, 24 В на выходе для солнечных панелей.
  • R1 — R5 = 10K
  • R6 = 240 Ом
  • R7 = 10K POT
  • C1, C2 = 2nF
  • C3 = 100 мкФ / 100 В
  • C4 = 100 мкФ / 50 В
  • Q1 = ЛЮБЫЕ 100 В, МОП-транзистор с P-каналом 20 А
  • T1, T2 = BC546
  • D1 = ЛЮБОЙ ДИОД БЫСТРОГО ВОССТАНОВЛЕНИЯ 10 А
  • D2 = ЗЕНЕР 30 В 1 Вт
  • D3 = 1N4007
  • L1 = 30 витков 21 суперэмалированного медного провода SWG, намотанного на Ферритовый стержень диаметром 10 мм.

9) Домашняя солнечная установка электричества для жизни вне сети

Девятая уникальная конструкция, описанная здесь, иллюстрирует простую расчетную конфигурацию, которую можно использовать для реализации солнечной панели любого размера, установленной для удаленных домов или для обеспечения автономной системы электроснабжения от солнечных батарей.

Технические характеристики

Я очень уверен, что у вас должна быть наготове такая принципиальная схема. Просматривая ваш блог, я заблудился и не мог выбрать ни одного, наиболее подходящего для моих требований.

Я просто пытаюсь изложить здесь свое требование и убедиться, что я правильно его понял.

(Это пилотный проект для меня, чтобы рискнуть в этой области. Вы можете считать меня большим нулевым в электрических знаниях.)

Моя основная цель — максимально использовать солнечную энергию и снизить до минимума свои счета за электричество. (🙁 Я остаюсь в Thane. Итак, вы можете представить счета за электричество.) Итак, вы можете считать, что я полностью делаю систему освещения на солнечной энергии для своего дома.

1. Когда достаточно солнечного света, мне не нужен искусственный свет. Как только интенсивность солнечного света падает ниже допустимой нормы, я хочу, чтобы мой свет включался автоматически.

Я бы хотел выключить их перед сном.3. Моя текущая система освещения (которую я хочу осветить) состоит из двух обычных ламп яркого света (36 Вт / 880 8000K) и четырех КЛЛ мощностью 8 Вт.

Хотел бы воспроизвести всю установку со светодиодным освещением на солнечной энергии.

Как я уже сказал, я большой ноль в области электричества. Итак, пожалуйста, помогите мне также с ожидаемой стоимостью установки.

Модель Design

36 Вт x 2 плюс 8 Вт дает в сумме около 80 Вт, что является общим требуемым уровнем потребления.

Теперь, поскольку лампы предназначены для работы при уровнях сетевого напряжения, которое в Индии составляет 220 В, становится необходим инвертор для преобразования напряжения солнечной панели в требуемые характеристики для освещения.

Также, поскольку инвертору для работы требуется аккумулятор, который можно предположить как аккумулятор на 12 В, все параметры, необходимые для настройки, могут быть рассчитаны следующим образом:

Общее предполагаемое потребление = 80 Вт.

Указанная выше мощность может потребляться с 6 утра до 6 вечера, что становится максимальным периодом, который можно оценить, и это примерно 12 часов.

Умножение 80 на 12 дает = 960 ватт-час.

Это означает, что солнечная панель должна будет производить столько ватт-часов в течение желаемого периода в 12 часов в течение всего дня.

Однако, поскольку мы не ожидаем получения оптимального солнечного света в течение года, мы можем предположить, что средний период оптимального дневного света составляет около 8 часов.

Разделив 960 на 8, мы получим 120 Вт, что означает, что необходимая солнечная панель должна быть не менее 120 Вт.

Если выбрано напряжение панели около 18 В, текущие характеристики будут 120/18 = 6.66 ампер или просто 7 ампер.

Теперь давайте посчитаем размер батареи, которая может использоваться для инвертора и которая может потребоваться для зарядки от указанной выше солнечной панели.

Опять же, поскольку общее количество ватт-часов за весь день рассчитано примерно на 960 Вт, разделив это на напряжение батареи (которое предполагается равным 12 В), мы получим 960/12 = 80, это около 80 или просто 100 Ач. , поэтому необходимая батарея должна быть рассчитана на 12 В, 100 Ач, чтобы обеспечить оптимальную работу в течение дня (период 12 часов).

Нам также понадобится контроллер заряда от солнечной батареи для зарядки аккумулятора, а поскольку аккумулятор будет заряжаться в течение примерно 8 часов, скорость зарядки должна быть около 8% от номинальной АЧ, что составляет 80 x 8% = 6,4 ампера, поэтому контроллер заряда должен быть определен так, чтобы комфортно обрабатывать минимум 7 ампер для требуемой безопасной зарядки аккумулятора.

На этом завершаются все расчеты солнечных панелей, аккумуляторов и инверторов, которые могут быть успешно реализованы для любого подобного типа установки, предназначенного для проживания вне сети в сельской местности или другом отдаленном районе.

Для других спецификаций V, I цифры могут быть изменены в приведенных выше расчетах для достижения соответствующих результатов.

В случае, если батарея кажется ненужной, и солнечная панель также может быть напрямую использована для управления инвертором.

Простую схему регулятора напряжения солнечной панели можно увидеть на следующей диаграмме. Данный переключатель может использоваться для выбора варианта зарядки аккумулятора или прямого управления инвертором через панель.

В приведенном выше случае регулятор должен вырабатывать от 7 до 10 ампер тока, поэтому в ступени зарядного устройства необходимо использовать LM396 или LM196.

Вышеупомянутый регулятор солнечной панели может быть сконфигурирован со следующей простой схемой инвертора, которая будет вполне достаточной для питания запрошенных ламп через подключенную солнечную панель или аккумулятор.

Список деталей для вышеуказанной схемы инвертора: R1, R2 = 100 Ом, 10 Вт

R3, R4 = 15 Ом 10 Вт

T1, T2 = TIP35 на радиаторах

Последняя строка в запросе предлагает вариант светодиодной подсветки будет разработан для замены и модернизации существующих люминесцентных ламп CFL.То же самое можно реализовать, просто исключив аккумулятор и инвертор и интегрировав светодиоды с выходом солнечного регулятора, как показано ниже:

Минус адаптера должен быть подключен и объединен с минусом солнечной панели

Последние мысли

Итак, друзья, это были 9 основных конструкций зарядных устройств для солнечных батарей, которые были вручную выбраны с этого веб-сайта.

В блоге вы найдете много других таких усовершенствованных солнечных батарей для дальнейшего чтения.И да, если у вас есть какие-либо дополнительные идеи, вы можете обязательно представить их мне, я обязательно представлю их здесь, чтобы наши зрители получили удовольствие от чтения.

Отзыв одного из читателей

Привет, Swagatam,

Я наткнулся на ваш сайт и считаю вашу работу очень вдохновляющей. В настоящее время я работаю по программе естественных наук, технологий, инженерии и математики (STEM) для студентов 4-5 курсов в Австралии. Проект направлен на повышение интереса детей к науке и ее связи с реальными приложениями.

Программа также привносит сочувствие в процесс инженерного проектирования, когда молодые учащиеся знакомятся с реальным проектом (контекстом) и взаимодействуют со своими одноклассниками для решения мирской проблемы. В течение следующих трех лет мы сосредоточены на ознакомлении детей с наукой об электричестве и практическим применением электротехники. Введение в то, как инженеры решают проблемы реального мира на благо общества.

В настоящее время я работаю над онлайн-контентом для программы, которая будет ориентирована на молодых учащихся (4-6 классы), изучающих основы электричества, в частности, возобновляемых источников энергии, т.е.е. солнечный в данном случае. В рамках программы самостоятельного обучения дети узнают и исследуют электричество и энергию по мере того, как они знакомятся с реальным проектом, т.е. с освещением детей, проживающих в лагерях беженцев по всему миру. По завершении пятинедельной программы дети объединяются в группы, чтобы построить солнечные светильники, которые затем отправляют детям из неблагополучных семей по всему миру.

Как некоммерческий образовательный фонд, мы ищем вашу помощь в разработке простой принципиальной схемы, которую можно было бы использовать для создания солнечного светильника мощностью 1 Вт в качестве практического занятия в классе.Мы также закупили у производителя 800 комплектов солнечного света, которые дети собирают, однако нам нужен кто-то, чтобы упростить принципиальную схему этих комплектов освещения, которые будут использоваться для простых уроков по электричеству, схемам и расчету мощности. вольт, ток и преобразование солнечной энергии в электрическую.

Я с нетерпением жду вашего ответа и продолжаю вашу вдохновляющую работу.

Решение запроса

Я ценю ваш интерес и ваши искренние усилия по просвещению нового поколения в области солнечной энергии.
Я приложил самую простую, но эффективную схему драйвера светодиода, которую можно использовать для безопасного освещения 1-ваттного светодиода от солнечной панели с минимальным количеством деталей.
Обязательно прикрепите к светодиоду радиатор, иначе он может быстро сгореть из-за перегрева.
Схема управляется напряжением и током для обеспечения оптимальной безопасности светодиода.
Дайте мне знать, если у вас возникнут дополнительные сомнения.

О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель.Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какие-либо вопросы, связанные со схемами, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!

Программирование внешнего регулятора напряжения Balmar

Диспетчер нагрузки на ленточный транспортер неправильно понимает?

Ниже приводится прямая цитата из руководства Balmar:

«MC-614 обеспечивает возможность управления потенциалом поля регулятора, что позволяет управлять нагрузками в лошадиных силах, передаваемыми генератором переменного тока на приводной ремень (ремни).Диспетчер нагрузки на ремень также можно использовать для защиты генератора от необычной нагрузки, создаваемой аккумуляторной нагрузкой, которая слишком велика для мощности генератора ».

Я выделил слова «потенциал поля » по какой-то причине, и эта причина заключается в том, что диспетчер нагрузки на пояс (BLM), и как он на самом деле работает , очень часто неправильно понимается.

Каждый шаг в BLM приводит к снижению на 5% максимального доступного потенциала поля (щелкните изображение, чтобы увеличить его).Важно понимать, что BLM — это , а не , что означает снижение выходной силы тока на 5% для генератора на 100 А или снижение выходной мощности на 20% для генератора на 150 А, что делает генератор 100 А на 95 А, а генератор на 150 А — на 120 А. Это не так, как это работает, но как многие люди предполагают, что это работает.

Что часто бывает Предполагается или Неправильно понимают

* 100A Номинальный генератор переменного тока

BLM # 1 = 95A Генератор

BLM # 2 = 90A Генератор

BLM # 3 = 85A Генератор

BLM # 4 = 80A Генератор

BLM # 5 = 75A Генератор

 * 100A Генератор используется только в качестве примера 

Реальность такова, что BLM работает не так.У нас есть число оборотов в минуту, сопротивление сердечника ротора, напряжение батареи, холодные обмотки генератора и горячие обмотки генератора переменного тока и т. Д., Которые играют роль в его общей производительности и потребности поля .

В качестве слишком упрощенного примера рассмотрим BLM таким образом;

Если поле вашего генератора переменного тока может выдавать максимум 6 А при заданных оборотах, напряжении возбуждения и температуре статора / ротора, а затем вы установите регулятор на BLM # 1, потенциал поля (напряжение возбуждения), генератор может увидеть, по всем предыдущим критериям снижается на 5%.Это снижение на 5%, в доступном напряжении поля , приведет к тому, что на будет меньше, чем на 6A , приводящий в движение ротор.

Что такое «Полевой потенциал»?

Потенциал поля для регулятора Balmar — это напряжение батареи (измеренное напряжение) минус падение от 0,4 В до 0,5 В на полевых транзисторах регулятора. Таким образом, напряжение батареи 13,5 В во время объемной зарядки по мере роста напряжения приводит к напряжению поля примерно от 13,0 В до 13,1 В. Если мы будем следовать закону Ома, напряжение — это то, что движет нашим током, и то же самое верно и для ротора генератора переменного тока.BLM снижает доступное напряжение возбуждения, измеренное после полевых транзисторов, на 5% для каждого шага. Если мы уменьшаем напряжение поля (потенциал поля ), мы также уменьшаем ток возбуждения и выход генератора * , как правило, падает.

 * Обычно - Иногда один шаг BLM не приводит к снижению выходной мощности, потому что регулятор с самого начала немного перебивает ротор. 

Имейте в виду, что если вы установите регулятор ремня на горячий генератор, он все равно будет производить больше тока в холодном состоянии.Если вы установите его на низкие обороты, они будут отличаться от высоких.

Суть в том, что BLM — это уменьшение доступного потенциала поля (напряжение возбуждения), а не уменьшение выходной мощности генератора переменного тока на основе его «номинальной выходной мощности».

Есть несколько способов запрограммировать это:

  • Уменьшайте BLM поэтапно, в течение нескольких недель, с хорошими промежуточными пробегами, которых будет достаточно для образования ленточной пыли. Уменьшайте BLM до тех пор, пока у вас не исчезнет пыль с ремня или вы не перестанете подпрыгивать и выходить из ограничения температуры генератора.
  • Просите одолжить или украсть инвертор , который может загрузить ваш генератор на максимальную мощность и настроить двигатель на круизные обороты. Теперь используйте токоизмерительные клещи постоянного тока или другой амперметр для измерения выходной силы тока генератора. Пока двигатель работает, уменьшайте BLM, пока не достигнете желаемой максимальной мощности на крейсерских оборотах. Он все равно будет выше, когда альт холодный, но ненадолго. Если вас беспокоит нагрузка при холодном запуске, уменьшите BLM еще на один шаг.

Belt Load Manager — это просто ШИМ с (широтно-импульсная модуляция) выход поля в периоды, которые в противном случае привели бы к 100% выходу поля регулятора.

Как отремонтировать аккумулятор для ноутбука — Battery University

Узнайте о проблемах и ограничениях ремонта «умных» аккумуляторов

Большинство аккумуляторов для ноутбуков умны и состоят из «химической батареи», которой управляет «цифровая батарея». Распространенным протоколом является шина управления системой, более известная как SMBus.

Типичная батарея SMBus имеет пять или более разъемов для батареи, состоящих из положительных и отрицательных клемм, термистора, часов и данных.Соединения часто немаркированы; однако положительный и отрицательный полюсы обычно расположены на внешних краях разъема, а внутренние контакты размещают часы и данные. (Однопроводная система объединяет часы и данные.) По соображениям безопасности отдельный провод термистора выводится наружу. На рисунке 1 изображена батарея с шестью разъемами.

Рисунок 1: Клеммное соединение типичного аккумулятора ноутбука

Положительные и отрицательные клеммы обычно размещаются снаружи; по расположению остальных контактов нормы не существует.

Предоставлено Cadex


Некоторые батареи оснащены твердотельным переключателем, который обычно находится в положении «выключено», и на клеммах батареи нет напряжения. Если подключить клемму переключателя к земле или потянуть ее вверх, аккумулятор часто включается. Если это не сработает, пакету может потребоваться код для активации. Производители аккумуляторов хранят эти проприетарные коды в тщательно охраняемом секрете, к которому не имеет доступа даже обслуживающий персонал.

С помощью вольтметра найдите положительную и отрицательную клеммы аккумулятора и установите полярность. Если напряжение отсутствует, твердотельный переключатель может быть в положении «выключено» и его необходимо активировать. Подключите вольтметр к внешним клеммам, возьмите резистор 100 Ом (другие значения также могут работать), подключите один конец к земле, а другим концом коснитесь каждой клеммы, наблюдая за вольтметром. Повторите, привязав резистор к положительному потенциалу напряжения. Если нет ответа, возможно, батарея разряжена или заблокирована кодом.Резистор на 100 Ом достаточно низкий, чтобы задействовать цифровую цепь, и достаточно высокий, чтобы защитить батарею от возможного короткого замыкания.

Установление соединения с клеммами аккумулятора теперь должно позволить зарядку. Если ток заряда прекращается через 30 секунд, может потребоваться код активации. Некоторые производители батарей добавляют переключатель окончания срока службы батареи, который выключает батарею по достижении определенного возраста или количества циклов. Они утверждают, что удовлетворенность клиентов и безопасность могут быть гарантированы только регулярной заменой батареи.Имейте в виду, что такая политика также меняет инвентарь.

Если возможно, подключите термистор во время зарядки

Питание в кармане: как работает аккумулятор | ОРЕЛ

Трудно представить себе мир без батареек. Попрощайтесь со смартфоном, который таскаете в кармане. Или ноутбук, который вы берете с собой куда угодно. О, а та машина, которую ты водишь? Боюсь, вам нужно научиться заводить его вручную, когда батарейки здесь уже нет. Эти маленькие химические супергерои играют огромную и жизненно важную роль в нашей современной жизни, но многие из нас принимают их как должное.Мы просто предполагаем, что они подключаются и обеспечивают питание для более важных целей, но как именно все это работает? К счастью, вы дизайнер электроники, поэтому вам нужно знать немного больше. Возможно, вы просто размещаете держатель батареи на своей печатной плате, но это помогает узнать, что делает эта батарея и почему.

Что такое аккумулятор?

Это может показаться риторическим вопросом, но что такое батарея? Конечно, мы знаем, что он обеспечивает питание, когда мы подключаем его к цепи, но в этом металлическом контейнере могут быть маленькие инженерные гномы, работающие за кулисами! Вы можете думать о батареях как о небольших капсулах с химическим потенциалом.Если оставить его в покое, химическое вещество внутри батареи ничего не делает, но когда вы включаете его в цепь, эти химические вещества оживают, превращая химическую энергию в электрическую, чтобы питать все ваши самые любимые электронные устройства.

Этот процесс преобразования химической энергии в электрическую может выделяться в течение нескольких дней, месяцев или лет, в зависимости от того, какой тип батареи вы выберете и сколько химикатов в ней. Например, вы можете заменять батарею в часах только раз в пять лет, а батареи AA в контроллере Xbox, возможно, придется менять каждый месяц.Чтобы понять, как устроена батарея изнутри, полезно начать с общей анатомии и строения этих маленьких химических супергероев.

Внешняя структура

Начиная с внешней стороны, любая батарея, независимо от формы и размера, всегда будет иметь две клеммы, одну положительную (+) и одну отрицательную (-). В обычных сухих батареях типа AA или AAA эти две клеммы находятся на каждом конце устройства. Но на чем-то более крупном, например, автомобильном аккумуляторе, положительная и отрицательная клеммы расположены на верхней части устройства.

Обычная батарея на 9 В с положительной и отрицательной клеммами на одной стороне. (Источник изображения)

Независимо от того, где расположены клеммы аккумулятора, результат всегда один и тот же. Вы соединяете две клеммы вместе в цепь для выполнения определенной задачи, называемой нагрузка . Нагрузкой может быть что угодно, от питания смартфона до вращения мотора.

Внутренняя работа

Внутри батареи происходит передача энергии.Здесь вы всегда найдете три основных компонента, независимо от того, на какую батарею вы смотрите:

  • Электроды . Сначала вы найдете пару электродов. Одним из них является анод , положительно заряженный электрод, который подключается к отрицательному выводу батареи. Другой — это катод , отрицательно заряженный электрод, который подключается к положительному выводу.
  • Разделитель . Эти два электрода всегда следует держать отдельно друг от друга, иначе при включении в цепь произойдет короткое замыкание батареи.Здесь пригодится сепаратор ; он не позволяет электронам течь прямо от анода к катоду.
  • Электролит . Наконец, все батареи имеют своего рода химическую пасту или жидкую начинку с ионизированным элементом. У этих ионов много дополнительных электронов. Электролит — это, в конечном счете, то, что позволяет электрическому заряду течь между катодом и анодом. Без электролита в батарее не произошло бы никакого волшебства.

Здесь вы можете увидеть внутреннюю структуру типичной сухой аккумуляторной батареи.(Источник изображения)

Как работает аккумулятор?

Мы уже знаем, что батарея преобразует химическую энергию в электрическую для питания наших электронных устройств. Но как именно работает этот преобразующий процесс? Опять же, независимо от того, с какой батареей вы работаете, первичная электрохимическая реакция всегда одинакова.

Во-первых, вы должны подключить аккумулятор к цепи, имеющей нагрузку, или к той работе, которую должна выполнять батарея. После соединения двух клемм батареи между анодом, катодом и электролитом начинает происходить множество электрохимических реакций.

Первое, что происходит, это то, что анод подвергается процессу, называемому реакцией окисления . Это причудливый способ сказать, что группа избыточных электронов накапливается в аноде из-за смеси ионов в электролитной пасте. Если что-то и нужно знать об электронах, так это то, что они ненавидят находиться рядом друг с другом, когда их слишком много, и поэтому они будут искать новое место, чтобы называть их своим домом. Они могут просто пройти прямо к катоду, но их путь блокирует разделитель, поэтому им придется пройти долгий путь по цепи.

Пока на аноде происходит реакция окисления, на другой стороне батареи на катоде происходит реакция восстановления посредством обмена ионами и свободными электронами. Здесь катод сокращает количество электронов, создавая свободное пространство для электронов на аноде.

В реакциях окисления и восстановления электроны перемещаются от анода к катоду, чтобы найти баланс. (Источник изображения)

Итак, теперь у вас есть две противоположные переменные.У вас слишком много электронов на аноде и недостаточно электронов на катоде. Что просходит? Когда вы подключаете эту батарею к цепи, избыточные электроны на аноде будут проходить по цепи, питая все ваши компоненты, пока они, наконец, не достигнут катода. Этот процесс происходит снова и снова, все благодаря электрохимическому процессу, который приводит в движение электролит. В конце концов, электролитная паста закончится, и когда это произойдет, химическая реакция прекратится, и ваша батарея разрядится.

Чтобы любая батарея преобразовывала химическую энергию в электрическую, анод и катод должны быть сделаны из двух проводящих металлов. Почему это? Один металл в батарее должен быть готов накапливать избыточные электроны, а другой — для их уменьшения. Если бы вы использовали два металла одного и того же типа, они бы оба выполняли одно и то же действие, и электрохимический процесс никогда не сработал бы.

Используя два разных металла, например цинк в аноде и диоксид марганца в катоде, вы можете гарантировать, что существует сила, толкающая и притягивающая электроны от одного вывода к другому.Весь этот процесс называется электроотрицательностью .

Вы можете увидеть, как все это сочетается, на практическом примере, таком как фонарик:

  • Когда вы вставляете батарею в фонарик, вы замыкаете цепь, и химическая энергия внутри батареи начинает преобразовываться в электрическую.
  • Внутри батареи избыточные электроны накапливаются на аноде в результате окисления, а электроны на катоде восстанавливаются.
  • Электронам теперь нужно куда-то идти, поэтому они выбирают путь наименьшего сопротивления через вашу цепь, чтобы питать ваш фонарик, от анода до катода.

Батареи будут вести себя одинаково в любом устройстве. Всегда будет разница в электрическом заряде между положительным и отрицательным полюсами, что заставляет электроны течь и генерировать электричество. Без этой разницы в заряде электроны уже были бы в покое и балансе, так зачем им заставлять цепь работать?

Когда используется более одной батареи

Ваш простой фонарик может работать от одной батареи, но большинству устройств требуется более одного химического супергероя, чтобы получить электрическую энергию.От смартфонов до электромобилей вы обычно найдете батареи, расположенные одним из двух способов: Parallel или Serial . Вот разница между ними:

Параллельный

При параллельном подключении нескольких батарей вы получаете одинаковое общее напряжение, но увеличиваете ток. Этот повышенный уровень тока измеряется в ампер-часах или миллиампер-часах. Например, аккумуляторная батарея, измеренная на 500 миллиампер-часов, может производить 500 миллиампер тока на нагрузку в течение часа.

Батареи, включенные параллельно, увеличивают ток. (Источник изображения)

Серийный

При последовательном подключении нескольких батарей вы получаете тот же общий ток, но теперь ваше напряжение будет выше. Например, автомобильный аккумулятор состоит из шести отдельных аккумуляторных ячеек, каждая из которых на 2 вольта. В сумме этот автомобильный аккумулятор работает от 12 вольт.

Батареи, включенные последовательно, увеличивают свое напряжение. (Источник изображения)

Типы аккумуляторов

В мире аккумуляторов существует множество разновидностей на выбор, в зависимости от ваших конкретных потребностей.Вместо того, чтобы просто заваливать вас огромным списком, имеет смысл разделить батареи на две основные категории: Primary и Secondary .

Первичные батареи

Первичные батареи или первичные элементы — это типичные одноразовые батареи, которые работают один раз, пока не разрядятся, а затем выбрасываются. Эти батареи предлагают мгновенный источник энергии в вашем кармане и включают:

Цинк-углерод

Этот первичный элемент представляет собой одноразовую батарею для повседневного использования, которая, вероятно, лежит у вас дома.Этот недорогой аккумулятор питает повседневные электронные устройства, от фонарика до пульта дистанционного управления. В угольно-цинковой батарее положительный электрод сделан из углерода, окруженного порошкообразным углеродом и оксидом марганца. Отрицательный электрод изготовлен из сплава цинка, а электролит состоит из пасты хлорида аммония.

Типичная угольно-цинковая батарея различных размеров. (Источник изображения)

Щелочной

Трудно отличить щелочную батарею от угольно-цинковой, но щелочные батареи могут накапливать и производить больше энергии и часто могут оставаться заряженными годами.В щелочной батарее вы найдете положительный электрод из оксида марганца, отрицательный электрод из цинка и электролит, состоящий из щелочного раствора гидроксида калия.

Щелочные батарейки выглядят как цинковые, но обладают большей мощностью. (Источник изображения)

Литий

Обычно эти литиевые батарейки размером с кнопку используются в часах и слуховых аппаратах, но они содержат тот же набор химических веществ, что и щелочные батарейки.Верхняя сторона литиевого элемента, отрицательный электрод, сделана из цинка или лития. Нижняя сторона, или положительный электрод, сделана из оксида марганца, оксида серебра или оксида меди.

Эти литиевые батареи могут питать часы годами. (Источник изображения)

Вторичные батареи

В отличие от первичных батарей, которые могут производить электроэнергию только до тех пор, пока не иссякнет ее химическая энергия, перезаряжаемые вторичные батареи могут обратить вспять процесс их старения.Эти батареи направляют всю реакцию электрохимического процесса в обратном направлении, стреляя электронами от катода к аноду, пока элемент батареи не будет полностью восстановлен. Типы вторичных батарей:

Свинцово-кислотный

Это аккумулятор, который вы найдете в вашем автомобиле, и он состоит из шести отдельных аккумуляторных ячеек, каждая из которых вырабатывает 2 вольта, что дает вам 12-вольтовый аккумулятор, подключенный параллельно. Каждая ячейка свинцово-кислотной батареи имеет положительный электрод из диоксида свинца, отрицательный электрод из металлического свинца и электролит из серной кислоты.

Свинцово-кислотные батареи делают всю тяжелую работу по питанию вашего автомобиля. (Источник изображения)

Никель-кадмиевый

Nicad, или Ni-Cd, был традиционной технологией перезаряжаемых батарей, которая использовалась до 1990-х годов и часто использовалась как альтернатива утилизации 1,5-вольтовых батарей. Хотя эти аккумуляторные батареи дешевы и их можно перезаряжать сотни раз, они также имеют небольшую проблему с памятью. Как же так? Если вы не разрядите аккумулятор Nicad полностью перед его повторной зарядкой, со временем у вас будет меньше заряда.

Аккумуляторы Nicad склонны к потере памяти. (Источник изображения)

Никель-металлогидрид
Батареи

NiMH работают так же, как батареи Nicad, но менее подвержены проблемам с памятью. Эта батарея в значительной степени заняла место Nicad после 1990-х годов, главным образом потому, что она менее токсична, чем батарея Nicad, и не требует полной разрядки перед зарядкой.

Вся мощность аккумулятора Nicad без забот о потере памяти. (Источник изображения)

Литий-ионный

Большинство основных электронных устройств в наши дни используют литий-ионные батареи, в том числе ваши смартфоны, ноутбуки, планшеты и т. Д.Литий имеет массу преимуществ перед батареями Nicad и NiMH, в том числе более экологичен, работает при более высоких напряжениях и сохраняет вдвое больше энергии. Кроме того, вы можете заряжать и разряжать литий-ионный аккумулятор без каких-либо проблем с памятью.

Вы когда-нибудь разбирали свой сотовый телефон? Это литиевая батарея, которую вы найдете внутри. (Источник изображения)

Кто изобрел батарею?

Большинство приписывают изобретение Алессандро Вольта в 1791 году, но слышали ли вы когда-нибудь о Багдадской батарее?

Еще в 1938 году археолог Вильгельм Кениг обнаружил несколько странно выглядящих глиняных горшков во время раскопок в Багдаде, Ирак.Горшки датируются примерно 200 г. до н. Э. и содержал железный стержень, окруженный медью. При тестировании внутри были обнаружены следы кислой жидкости, и, если что-то нужно знать об аккумуляторах, у нас есть два разных металла, смешанных с химическим электролитом. Была ли это первая древняя батарея? Были произведены современные копии, и эти багдадские батареи действительно производят электрический заряд.

Была ли Багдадская батарея первой древней батареей? (Источник изображения)

Но что касается 1792 года, багдадских батарей просто не существовало, и поэтому наша история начинается с итальянского врача Луиджи Гальвани, экспериментирующего с ногой мертвой лягушки.Вставив два разных металла в лапу лягушки, он смог произвести то, что он назвал «животным электричеством», когда лапа лягушки подпрыгнула. Однако в то время Гальвани не знал, что лягушка не испускает какое-то первичное электричество. Скорее, ему нужно было благодарить строительные блоки современной батареи.

Чтобы доказать это, итальянский физик Алессандро Вольта поставил эксперимент, в котором он наложил друг на друга слои цинка и серебра, которые были разделены картоном, пропитанным рассолом.Эта гальваническая батарея, которая сейчас считается первой современной батареей, способна производить постоянный ток.

Гальваническая свая по замыслу Алессандро Вольта.

Что здесь общего между экспериментами Гальвани и Вольта? Оба использовали основные принципы батарей, используя два разных металла и электролит. Гальвани использовал два разных металлических скальпеля, а лапа лягушки действовала как своего рода химический электролит. В гальванической батарее Вольта рассол действовал как электролит между двумя разными проводящими металлами, цинком и серебром.

После его новаторского эксперимента Алессандро Вольта приписали изобретение первой батареи, а остальное хорошо… история. Сегодня мы усовершенствовали этот базовый набор принципов для питания всех наших электронных устройств.

Конструкция батарей и печатной платы

Начинающим конструкторам электроники батареи часто кажутся второстепенными. В конце концов, может быть, вам просто нужно 5 В для стабильного питания постоянного тока. Но что произойдет, если вы работаете с источником батареи 9 В, а одна из ваших микросхем может справиться только с 1.8В? Вот когда соображения по поводу батарей и схемы питания немного усложняют задачу.

Хотя мы не будем вдаваться в подробности проектирования источников питания в этом блоге, он поможет понять основы того, на что обращать внимание как в схеме, так и в топологии печатной платы при работе с батареями. На схеме, планируете ли вы использовать стандартные щелочные батареи или литий-ионные, вы увидите следующие символы:

Типичный символ одноклеточной и двухклеточной батареи, который вы найдете на схеме.

На этом условном обозначении более длинная линия представляет положительный вывод, а более короткая линия — отрицательный вывод. Вы также можете увидеть батареи с более чем двумя линиями, что указывает на то, что в батарее более одной ячейки.

Вам также необходимо знать, как физический держатель батареи будет выглядеть на вашей печатной плате. Многие начинающие разработчики электроники совершают ошибку, думая, что они кладут настоящую батарею на свою плату, в то время как вы просто устанавливаете держатель для батареек.Если вы когда-нибудь вскрывали электронное устройство, чтобы проверить его внутреннее устройство, возможно, вы видели одно из них:

Типичные держатели батарей, которые можно найти на печатной плате или корпусе. (Источник изображения)

Существует также держатель литиевой батареи таблеточного типа, как показано на изображении ниже, который имеет уникальный физический размер.

Вот держатель литиевой батареи гораздо меньшего размера с его размерами. (Источник изображения)

Хорошо и легко разместить держатель для одноразовой батареи и забыть о нем, но что произойдет, если вы захотите добавить в свою конструкцию автоматическое зарядное устройство? Здесь все немного сложнее.Взгляните на схему ниже, это принципиальная схема автоматического зарядного устройства, и в ней много чего происходит, в том числе:

Схема автоматизированного зарядного устройства может включать в себя множество соединенных деталей. (Источник изображения)

  • У нас есть основной источник переменного тока 230 В, который попадает в трансформатор, понижающий напряжение до 15 В.
  • Отсюда следует использовать два диода, D1 и D2, для преобразования переменного напряжения в постоянное.
  • Эта мощность постоянного тока затем проходит через регулятор напряжения LM3177, который обеспечивает стабильное и стабильное выходное напряжение постоянного тока независимо от того, как изменяется входное напряжение переменного тока.
  • Когда аккумулятор полностью заряжен, загорится КРАСНЫЙ светодиод, а стабилитрон D6 начнет проводить. Это направит ток через транзистор BD139 на землю, поэтому полностью заряженный аккумулятор не повредится.

Питание в кармане

Кто бы мог подумать, что эти маленькие химические супергерои могут иметь так много применений, разделяя так много принципов! В наши дни действительно невозможно представить мир без батареек.Эти электростанции отвязали нашу жизнь от шнуров, позволяя нам быть мобильными с нашими электронными устройствами, куда бы мы ни пошли. Независимо от того, какую батарею вы используете, основа всегда одна и та же. У вас есть набор электродов в виде анода и катода, а также электролит, обеспечивающий химическую реакцию. Находясь в движении, химическая энергия превращается в электрическую энергию в виде избыточных электронов, которые перемещаются от анода к катоду, питая вашу цепь.Наши батареи могут становиться более совершенными и дольше держать заряд, но в конце концов все они работают одинаково.