Почему мигает диодная лента: 3 причины почему сгорает блок питания Led ленты

Содержание

3 причины почему сгорает блок питания Led ленты

Блок питания для светодиодной ленты это самое слабое звено во всей цепи подсветки. Как ни странно, но по статистике он выходит из строя гораздо чаще самих светодиодов.

Поэтому его не рекомендуется капитально замуровывать за гипсокартонную стену или прятать за натяжной потолок. То есть ставить в те места, где к нему не будет свободного доступа для обслуживания.

Качественная светодиодная лента с хорошим профилем для теплоотвода, может прослужить от 10 лет и более. 

А вот блок питания может сгорать ежегодно. Здесь опять же все зависит от качества сборки и условий эксплуатации.

Однако как показала практика, при одинаковых условиях и нормальных производителях, все равно первыми выходят из строя именно блоки, а не Led ленты.

Поэтому заранее позаботьтесь от том, чтобы к этому источнику напряжения был доступ.

Как без приборов определить сгоревший блок

Как же понять, что блок питания вышел из строя и поломался? Как быстро отличить без измерительных приборов, что поломка именно в нем, а не в самой ленте?

Если плохо работает или совсем не работает (не горит) вся светодиодная подсветка от начала до конца, то это первая причина выхода из строя именно блока.

А вот когда тускло светит или потухла часть Led освещения, ищите проблему в вышедших из строя светодиодах. Скорее всего был перегрев или где-то отпаялись контакты.

Второй признак – изменение звука при работе. Неисправный блок начинает пищать или свистеть, хотя раньше ничего подобного не наблюдалось.

Причем писк может быть не ярко выраженным, который слышно за несколько метров, но вполне различимый вблизи.

Лед лента при этом по прежнему может гореть и светиться как ни в чем ни бывало. Однако знайте, что срок службы вашего источника питания подходит к концу.

Если этот девайс у вас на гарантии, и вы его покупали не в китайском интернет магазине, то самое время отправить его на замену, пока гарантийный срок еще не закончился.

Третий признак поломки сгоревшего блока – ВСЯ лента начинает моргать или мерцать как на дискотеке. Опять же — не отдельными участками, а целиком и по всей длине.

 

Конечно причин с мерцанием существует несколько, и сразу же винить в этом только один блок не стоит.

 

Такое мигание зачастую можно видеть не только на светодиодной ленте, но и на прожекторах. Но там главная болезнь этих мерцаний — светодиодная матрица и выгорание ее компонентов. 

Причины выхода из строя

Теперь давайте разберемся с причинами. Почему же блоки питания выходят из строя и как этого можно избежать.

Качество

Первая причина – это низкое качество самого изделия и его комплектующих. Если вы покупаете дешевые экземпляры, то не удивляйтесь что всего через несколько месяцев, вы повторно прибежите в магазин за еще одним девайсом.

И так из года в год. Для долговечной подсветки потолка, не рекомендуется экономить на таком компоненте. То же самое относится и к самой ленте.

Как отличить качественную светодиодную ленту от дешевой, подробно со всеми примерами, описывается в другой статье.

Нагрев

Вторая причина выхода из строя – перегрев. Блок питания должен быть размещен в местах с достаточным доступом воздуха.

Никакая стенка или посторонние предметы не должны препятствовать его теплообмену.

Лучшие места для установки – какая-нибудь настенная полка, верхняя поверхность шкафа и т.п.

Не рекомендуется его прятать за шторками. Не забывайте, что это все таки небольшой трансформатор.

И при коротком замыкании или перенапряжении, он может вспыхнуть. Поэтому ставьте его подальше от всего горючего и легко воспламеняющегося.

Даже если взять заводскую инструкцию по эксплуатации от фирменных изделий, то там обязательно будут прописаны несколько правил:

  • блок должен быть продуваем воздухом со всех сторон
  • если вы его все-таки запрятали в какой-то короб, в нем должны присутствовать вентиляционные отверстия
  • нельзя ставить один блок на другой, когда схема подсветки предусматривает несколько источников

Между ними должно быть расстояние минимум в 5см.

Очень часто при монтаже подсветки потолка, делают небольшой выступающий карниз шириной в 10см.

Лента в него помещается запросто, однако многие умудряются запихнуть туда еще и узкие герметичные блочки из серии Slim.

В итоге при включении светодиодной ленты, сначала нагревается сам профиль. А затем, вместо того чтобы отдавать все тепло в воздух, он начинает передавать его на поверхность коробки питания.

При этом не забывайте, что она сама по себе также греется. В результате такой ”прожарки” как в искусственной печке, которую вы сами и создали, девайс не проработает и года. 

Поэтому грамотное место установки нужно искать еще на этапе проектирования ремонта.

Перегруз

Третья частая причина поломок – перегрузка.

При начальном расчете и выборе мощности блока питания, всегда должен быть минимальный запас в 30%. Об этом говорят все рекомендации и требования. 

Если этого не предусмотреть, то ваш источник постоянно будет работать со 100% загрузкой, либо с перегрузкой при перепадах напряжения.

Отсюда вытекает перегрев проводов, компонентов и опять проблемы с малым сроком службы. Если вы покупаете дешевые модели или слим серию, то здесь не помешает запас мощности даже в 50%.


Исходя из всего вышесказанного, если вы хотите чтобы ваш блок прослужил долго и исправно, не только грамотно выбирайте его мощность, но и обращайте внимание на другие, казалось бы незначительные факторы - место размещения, условия охлаждения, производитель, гарантия.

Почему моргает светодиодная лента? Ответ эксперта

Оформление интерьера с помощью светодиодной ленты – явление распространённое. Тем более что теоретический срок службы светодиодов исчисляется десятками тысяч часов, а разнообразие цветовой гаммы позволяет подобрать любые оттенки. На самом же деле сбои в работе подсветки наступают гораздо раньше и проявляются, как правило, в виде частого мерцания или мигания отдельных сегментов. Об этом свидетельствуют жалобы потребителей, оставленные на разных интернет-ресурсах. Почему мигает светодиодная лента и как избежать подобных неприятностей в будущем? Попробуем разобраться.

Распространенные причины мигания

Причин, вызывающих неприятное для глаз мигание светодиодной ленты, не так уж и много. Данное утверждение основано на анализе отзывов потребителей, которые спустя несколько лет столкнулись с подобной проблемой.

Чаще всего виновником мигания является блок питания (БП) или RGB-контроллер. Для светодиодной ленты – это источник постоянного напряжения 12В. Гораздо реже используют БП на 24В (для лент с соответствующим питанием), но суть проблемы это не меняет. Мигание светодиодов по всей длине на начальном этапе эксплуатации может быть вызвано нехваткой мощности блока питания. Теоретически запаса мощности в 10-20% должно хватать для стабильной работы всей системы освещения. Но на самом деле заявленные технические характеристики, как светодиодной ленты, так и питающей аппаратуры не всегда подтверждаются фактическими измерениями. В результате светодиодная лента потребляет больше положенного (чтобы светила ярче), а источник питания выдаёт меньше положенного (чтобы сэкономить на деталях).
Такой маркетинговый ход часто практикуется китайскими производителями. В связи с чем не рекомендуем покупать дешёвую светодиодную продукцию.

Недорогие китайские блоки питания и RGB-контроллеры могут вызвать мигание или надоедливое мерцание светодиодов, проработав стабильно всего 1-2 года. Это объясняется установкой в них деталей и радиоэлементов низкого качества, не способных длительно работать даже на номинальных токах и напряжениях. К примеру, превышение нагрузки и перепады сетевого напряжения в разы снижают рабочий ресурс фильтрующих конденсаторов.

Второе место по частоте сбоев в работе декоративной светодиодной подсветки занимает низкое качество сборки и пайки. Это касается коннекторов и соединительных проводов, припаянных к ленте. Толщина медной контактной площадки составляет десятые доли мм, а значит, может быть повреждена при нарушении условий пайки или во время эксплуатации. Причиной моргания светодиодов может стать плохой контакт, образовавшийся на месте пайки из-за:

  • применения кислотосодержащего флюса, который со временем разъедает медную дорожку;
  • перегрева контактной площадки паяльником мощностью более 60 Вт, что приводит к отслаиванию печатных проводников;
  • применения тугоплавкого сплава олова, который не обеспечивает должное сцепление с медной площадкой на химическом уровне;
  • микротрещин, которые могут появиться в ходе монтажа светодиодной ленты на поверхность.

Используя для сборки светодиодного освещения коннекторы, следует особое внимание уделять местам контакта двух проводников. Токопроводящая часть коннектора изготовлена из обычной стали и во влажной среде со временем подвергается коррозии. О том, как правильно соединить несколько светодиодных отрезков между собой, можно узнать здесь.

Надёжный электрический контакт в местах соединения светодиодных лент между собой и с питающими проводами имеет принципиальное значение. Дело в том, что через 5-метровые участки лент со светодиодами SMD 5730, SMD 5050 и SMD 3014 двойной плотности монтажа протекает ток более 10А, который вынужден преодолевать барьер на каждом соединении. Плохой контакт приведёт к перегреву и кратковременным просадкам напряжения, то есть к мерцанию. Проверьте и, при необходимости, пропаяйте, обожмите все имеющиеся контактные соединения и вопрос «Почему моргает светодиодная лента?» решится сам собой.

Следующее распространённое явление – мерцание отдельных участков светодиодной ленты. Данное явление вызвано подгоранием сегментов, состоящих из трёх последовательно включённых светодиодов. Причина такого мерцания с последующим падением яркости – завышенный ток потребления или несоблюдение температурного режима во время эксплуатации.

Постоянный перегрев кристалла проявляется в виде потемнения основания ленты и силиконовой оболочки.

Моргание светодиодов в ленте или линейке с питанием от 220В вызвано их схемотехническими особенностями. В таких моделях группа светодиодов состоит не из трёх, а из 60-ти штук, соединённых последовательно. В результате плохой контакт электрода (анода или катода) в одном из светодиодов приведёт к мерцанию всей группы.

Поиск и устранение неисправностей

Если мигание светодиодной ленты во включенном состоянии проявляется из-за сбоев в работе блока питания, то самым правильным решением будет его замена на более мощный и дорогостоящий вариант.

При этом стоит обратить внимание на место его расположения. Некоторые модели БП не допускается размещать в закрытом пространстве, например, потолочные ниши из гипсокартона.

Те, кто разбирается в электричестве, могут попытаться вычислить неисправность самостоятельно. Начать следует с замера выходного напряжения во время нестабильного свечения светодиодов. Для этого мультиметр переводят в режим измерения постоянного напряжения и аккуратно (чтобы не устроить короткое замыкание) касаются щупами выходных контактов с БП. Для одноцветной ленты напряжение в пределах 11–12,2В считается нормальным. В случае с RGB-лентой замер делают на БП и на RGB-контроллере, отдельно тестируя каждый цвет.

Доказать неисправность RGB-контроллера можно методом его исключения из цепи питания. Для этого на каждый цвет светодиодной ленты поочередно подают +12В и наблюдают за стабильностью свечения.

Если на каком-то участке светодиодной ленты появился мерцающий (погасший) сегмент из трёх кристаллов, то его следует заменить.

Сделать эту операцию можно без демонтажа с профиля. С помощью канцелярского ножа необходимо аккуратно удалить неисправный сегмент, делая разрез между соседними контактными площадками. Оставшиеся по краям медные контакты нужно зачистить и залудить. На освободившееся место приклеить новый сегмент с залуженными контактами и, соблюдая полярность, спаять соответствующие печатные проводники.

Иногда светодиодная лента во включенном состоянии может работать корректно, но после выключения несколько раз мигнуть. Чтобы справиться с подобной неисправностью, нужно понять причину её проявления. В первую очередь следует исключить влияние других электронных устройств, которые могут давать помеху обратно в сеть (например, тиристорный диммер). Кроме этого, причиной мигания может стать неоновая подсветка в выключателе. Чтобы доказать или опровергнуть данные предположения, нужно запитать светодиодную ленту через удлинитель от розетки, расположенной в другой комнате.

Почему светодиодная лампа мерцает

Многие обращают внимание на то, что почему то светодиодная лампа мерцает, моргает или мерцает во включенном и выключенном состоянии. Этот недостаток  проявляется из-за нестабильного питания, которое пропускает пульсаций из сети 220 вольт. Он проявляется у бюджетных  и недорогих китайских, в которых производитель сэкономил на источнике питания. Большинство производителей не указывают этот важный параметр в характеристиках светодиодной лампы.

Это заметно больше всего на близком расстоянии, а лучше силу мигания определить используя телефон с камерой. Наведя камеру телефона на лампочку с расстояния 1 метра, вы увидите полосы на экране. Мигание происходит с частотой 100 Герц, на глаз эту частоту заметит очень сложно, но это воздействует на наше подсознание, на наше состояние.

Содержание

  • 1. ГOCT на пульсации
  • 2. Сравним коэффициент пульсаций
  • 3. Как избавиться от мигания
  • 4. Подведем итоги

ГOCT на пульсации

Пример мигания  в люстре

Существуют государственные стандарты, которые требует разные уровни коэффициента пульсации освещения в зависимости от помещения. Если лампа используется для освещения подсобных помещений, коридоров, подъездов – то она не нанесет вреда. Применение источника света с высокой неравномерностью светового потока в жилых помещениях очень нежелательно, особенно в детских комнатах.

Мигание (мерцание) света вызывает быстрое утомление зрения, деятельности мозга, снижение трудостособности, особенно при работе с компьютером. Особенно не рекомендуется писать или читать под светом с пульсациями выше 20%. Но этому воздействию подвержены не все, чаще всего дети и реже взрослые. К сожалению, я сам подвержен этому и через час воздействия такого освещения начинаются головные боли, и поднимается давление. Проблему могут решить лампы для дома с хорошим питанием.
Существует два вида питания:

  1. через конденсатор, используется в бюджетных моделях, мерцает;
  2. через драйвер со стабилизацией тока, в хороших, подороже.

Просто при покупке  не забудьте спросить консультанта, какое питание установлено и какой коэффициент мерцания у них.

В особых случаях проблема может появляться  из-за диммера для светодиодных ламп, при подключении нагрузки меньшей, чем рекомендованная для диммера.

Сравним коэффициент пульсаций

Проведем измерения спецприбором «ТКА-ПКМ», который покажет силу светового потока и коэффициента мерцания. В тесте будут участвовать 7 разных моделей. Замеры будем проводить в темноте, с расстояния 1 метр. Что же означают проценты коффициента пульсаций, — это процент изменение яркости от включенного до выключенного состояния, или амплитуда колебаний яркости .

Тип и мощность Освещенность на расстоянии
1 метр, Люкс
Коэффициент пульсаций, %
Энергосберегающая 15 Вт 100 9
Светодиодная 4,5 Вт 74 65
Накаливания 40 Вт 54 20
Накаливания 60 Вт 112 15
Накаливания 100 Вт 238 9
Светодиодная 7 Вт 82 0,3
Светодиодка 8 Вт 63 87

По нормам САНПИНа на рабочем месте коэффициент  не должен превышать 20%.

С большим отрывом от всех участников побеждает светодиодка на 7 Ватт, показатель которой в 50 раз лучше, чем её эквивалент накаливания на 60 Ватт.

Победитель Ледкрафт

Лучший антирезультат показала кукуруза на светодиодах SMD 5050, с пульсациями в 87%.

Испытательный стенд, на котором проводил измерения

Самый худший результат

Как избавиться от мигания

Если вы уже владеет светодиодными лампами с высоким коэффициентом пульсаций, то есть несколько способов исправить эту характеристику.

  1. Достаем прежнюю начинку и ставим драйвер.
  2. Впаиваем дополнительный конденсатор для стабилизации, самый простой и недорогой способ.
  3. Достаем начинку , которые подключены к люстре, и используем один большой драйвер для всех лампочек в ней.

Подведем итоги

Так как наше здоровье нам дороже всего, то следует гораздо серьезней относится к покупке такой простой вещи, как лампочка. Так как они долговечны, то будут светить не только вам, но и вашим детям и внукам, может и передаваться по наследству. При покупке вы не тратите, а вкладываете свои денежки в своё светлое будущее.

..

В ближайшее время по просьбе женской половины читателей моего сайта будет составлен обзор про светодиодные УФ лампа для сушки ногтей в домашних условиях. А то китайцы впаривают им товар с завышенной мощностью.

Почему моргает светодиодная лента во включенном состоянии

Повсеместное увлечение светодиодными лентами в быту – явление, обусловленное, в первую очередь, их экономичностью. Утверждается, например, что разница в мощности обычных и светодиодных ламп — чуть ли не десятикратная.

На самом деле реальный эффект намного меньше, поскольку в расчёт вступают как экономические факторы (стоимость), так и конструктивные (включая и фирму-производителя). Однако световой поток, создаваемый лентами светодиодного освещения, всё-таки достаточно мощный, что во многих случаях предопределяет конечный выбор.

Тем не менее, со временем светодиод начинает мигать. Раньше это произойдёт с изделиями и источниками питания китайского производства, но и вроде бы надёжный Armstrong, как оказывается, также далеко не безгрешен. Разобраться почему моргает светодиодная лента во включенном состоянии мы и попробуем с помощью материалов этой статьи.

Почему вредна любая пульсация напряжения в источнике света

Изменение текущего значения светового потока особенно неблагоприятно сказывается при выполнении работ повышенной точности. С этой целью СНиП 52.13330-2011 ограничивает предел перепадов освещённости величиной в 12…20%. Однако эта норма касается только производств, на которых выполняется изготовление или сборка мелких и особо мелких деталей и узлов.

Здесь всё понятно: уставшие глаза сборщицы могут пропустить какой-то особенно важный с точки зрения качества переход, неправильно расположить компонент электронной схемы и т.д. В итоге – брак, финансовые потери и прочие неприятности. А как с пульсацией дело обстоит в быту?

Обычные лампы накаливания работают, как известно, от сети переменного тока с номинальным напряжением 220 В и частотой 60 Гц. Мигают они соответственно, точно такое же количество раз. Период между пульсациями составляет 10 мс, что человеческим глазом не воспринимается. Если напряжение стабильное, так и будет.

Однако на практике скачки напряжения в бытовых электросетях многоэтажных зданий довольно заметны, что можно проверить при помощи обычного пилота со встроенным конденсатором. Фактическое напряжение может колебаться в пределах 215…240 В (на что и рассчитано большинство бытовых электроприборов). Много это или мало?

Мы не слишком ошибёмся, если предположим прямую зависимость между напряжением и освещённостью, создаваемой лампой накаливания, поскольку тепловая мощность разогрева колбы и корпуса так же будет увеличиваться или уменьшаться. Тогда коэффициент пульсации составит:

Обычно напряжение в бытовых генерирующих сетях может снижаться и до 190…200 В, тогда коэффициент пульсации увеличится до 22…22,5%. , Это, в общем, соответствует верхнему пределу колебаний, которые допускаются вышеупомянутыми СНиП 52.13330-2011. Таким образом, относительно ламп накаливания проблем с мерцанием не возникает. Со светодиодами же дело обстоит далеко не так просто.

Почему мерцает светодиодная лента во время работы

Вспомним, что светодиод представляет собой полупроводниковый прибор, работающий от автономного блока питания постоянного тока, причём для стабилизации условий работы в цепь включается ещё и сглаживающий конденсатор. По какой же причине появляются пульсации освещенности?

Причина подобной неприятности следующая. Для того, чтобы лента из LED-светильников давала требуемую освещённость, кроме надёжного источника питания, необходимо наличие двух микросхем:

  • Для преобразования исходного переменного тока в постоянный, которая состоит из ключа управления (драйвера), детекторов тока и напряжения, выпрямителя, балластного резистора, катушки индуктивности и двух конденсаторов. На выходе эта схема даёт 5…6 В (зависит от рабочего напряжения на светодиодной ленте) при 100 мА тока. Отметим (это важно!), что напряжение на выходе не имеет гальванической развязки;
  • Для стабилизации параметров яркости свечения схема включает в себя два мощных транзистора, балластный резистор, дроссель и высокочастотный диод, который и передаёт результирующую мощность от блока питания на светодиоды в ленте.

Таким образом, в схеме управления присутствует сразу два выпрямителя (иногда вместо них используют мостовую схему). По причине последовательности процесса выпрямления тока, интервалы между пульсациями возрастают вдвое, а фактическая частота мерцаний может ставить 30…35 Гц, что болезненно воспринимается человеческим глазом.

Мерцание светодиодной лампы хорошо видно, если снимать ее на видео:

Как выглядит мерцание светодиодной лампы, если снимать на видео

Почему светодиодная лента начинает мерцать со временем

Во-первых, важно, в каких условиях производился монтаж светодиодной ленты. Повышенная влажность в помещении, отсутствие влагопоглощающей подложки и, как следствие, неизбежное окисление контактов вызывает повышенный нагрев светодиодов в ленте при их эксплуатации.

Причина интенсивности нагрева также и в росте длительности включений и мощности светодиодов в ленте. Поскольку окислы значительно хуже проводят ток, то места соединений разогреваются, и контакт ухудшается. Частота мерцания светодиодов в ленте при этом будет соответствовать полупериодной частоте выпрямленного тока, т.е. 30 Гц.

Во-вторых, важно качество изготовления как самой светодиодной ленты, так и блока питания. Например, светодиоды от Phillips частоту мерцаний со временем практически не повышают более 2,.5…3%. Это подтверждено многочисленными исследованиями. В то же время светодиодные светильники Armstrong увеличивают свои пульсации до 40…45%, при этом фактический уровень освещённости может колебаться в диапазоне 3200…6500 Лм.

Характерно и распределение спектра пульсаций у светодиодов от Armstrong. Преобладающая доля таких пульсаций падает на диапазон 10…20 Гц (до 40…45%), в то время как высокочастотные пульсации – от 100 Гц и выше – составляют всего лишь 20…25% случаев, притом, что и интенсивность (амплитуда) таких пульсаций также менее интенсивна.

Способы устранения мерцания светодиодной ленты


Кардинальным способом решения причин с миганием является приобретение светодиодной ленты с блоком питания от проверенного и надёжного производителя, и притом — в магазинах, где имеются сертификаты соответствия на подобные изделия. Не стоит стесняться попросить продавца показать необходимый документ. Правда, цена вопроса окажется значительно более высокой. Именно по этой причине многие владельцы специализированных маркетов, продающих светильники, отказываются брать на реализацию светодиодную продукцию от торговых марок Phillips или Osram: цена велика, а успешная реализация сомнительна.Как выглядит сертификат соответствия

Для лент LED-светильников китайского производства необходимо подбирать соответствующие управляющие схемы (умельцы паяют их самостоятельно, благо, в интернете — на специализированных форумах — имеется достаточное количество схем на все схемы подключения светодиодов). При изготовлении схемы необходимо учитывать, что она должна иметь гальваническую развязку по току. Принцип заключается в том, чтобы гарантированным образом обеспечить передачу мощности между отдельными элементами схемы без их непосредственного контакта.

Вариантов немного: либо емкостная развязка через конденсатор с небольшой ёмкостью, либо индуктивная, при помощи катушки. Конденсаторная развязка более выгодна, поскольку габариты схемы, управляющей работой светодиодов в ленте практически не увеличиваются, а инерционность срабатывания будет весьма малой. Недостаток состоит в том, что емкость конденсатора для каждого варианта включения светодиодной ленты следует подбирать индивидуально.

Более простые способы устранения неисправностей

  1. Отказаться от подсветки в выключателе или в блоке питания. Эффектность работы возрастает, если в выключателе смонтирована подсветка, однако следствие взаимодействия двух групп светодиодов в ленте может привести к обратному эффекту.
  2. Проверить текущее значение напряжения: как уже было показано выше, отдельные производители светодиодов в ленте не в состоянии обеспечивать разумную амплитуду возникающих пульсаций. В таком случае придётся обеспечивать двухполупериодное выпрямление тока, что снизит амплитуду колебаний напряжения примерно вдвое. Недостаток в том, что модернизированная схема может не разместиться в прежнем корпусе.
  3. Самый простой вариант: вышел из строя (либо близок к тому) один из светодиодов. Неисправность одного из светильников LED-ленты (которая включает в себя, как правило, до трёх источников, располагающихся последовательно) приводит к миганию всей ленты. Бракованный элемент имеет чёрные точки или потемнение на своём внешнем корпусе.
  4. Неисправен пульт дистанционного управления: либо функционально (для китайских производителей это не редкость), либо просто села батарейка. Неисправность легко диагностируется тестером, настроенным на диапазон 12 В. Возможно также и обычное механическое загрязнение кнопки на пульте или блоке питания. Пульт проверяется во всём рабочем диапазоне напряжений, при которых функционирует светодиодная лента, но не ниже 6…7. В.

Последовательность восстановления работоспособности светодиодной ленты

Светодиодная лента, как известно, представляет собой гибкую огнепрочную основу из диэлектрика, на одну из поверхностей которой нанесено несколько (до трёх) LED-светильников. При последовательном соединении мигание одного светодиода в ленте приводит к мерцанию и остальных. При более длинных светодиодных лентах мигание может распространяться на длину свыше метра. Во время мигання яркость свечения может не достигать требуемого значения в 12В, что легко проверяется вольтметром.

Неисправный элемент ленты выявляется очень просто. Один из LED-светильников кратковременно переводится в режим короткого замыкания, при этом остальные светодиоды должны ярко вспыхнуть. После замены бракованного светильника электрическое соединение элементов восстанавливается, причём перед этим необходимо проверить, в нужном ли месте расположен сглаживающий колебания конденсатор: он не должен находиться ранее первого, и после последнего светодиода в ленте.

Крепить основу светодиодной ленты необходимо только на сухое основание потолка или стены в помещении. При этом необходимо позаботиться о том, чтобы между основанием и корпусом происходила постоянная вентиляция: при длительной работе схема нагревается, что может нарушить целостность коннекторов. Следует обеспечивать также постоянную механическую защиту от неблагоприятных внешних воздействий.

Понравилась статья? Расскажите о ней! Вы нам очень поможете:)

Не горит светодиодная лента.

Светодиодные ленты бывают самых разных размеров, плотности и качества цвета , но их объединяет то, что в какой-то момент вы можете столкнуться с некоторыми трудностями, заставляя их работать. Не горит светодиодная лента. За многие годы работы со светодиодными лентами мы собрали некоторые из наиболее распространенных причин проблем со светодиодными лентами и возможные способы их устранения.

ВНИМАНИЕ : Низковольтная электроника постоянного тока обычно считается безопасной и представляет относительно низкую опасность поражения электрическим током.  Однако, когда это возможно, мы настоятельно рекомендуем отключить питание или отсоединить источник питания перед тестированием или настройкой любых светодиодных лент или аксессуаров.Обратите внимание, что в некоторых шагах по устранению неполадок, которые мы предлагаем ниже, вам потребуется подключить и включить источник питания для завершения теста. Будьте осторожны и обратитесь за советом к квалифицированному специалисту, если вы не уверены, как безопасно выполнить эти тесты.

Итак. Что делать если не горит светодиодная лента?

Не горит светодиодная лента. Вообще не загорается.

Вы подключили источник питания к светодиодной полосе, включили переключатель и … ничего. Не горит светодиодная лента. Что делать? Почему не горит светодиодная лента, разберем основные причины.

Чтобы устранить неполадки, попробуйте следующие шаги:

1) Убедитесь, что напряжение и ток вашего блока питания совместимы с вашей светодиодной лентой.

Если, например, ваш источник питания 12 В постоянного тока, он не будет работать с 24 В светодиодной лентой. Проверьте заднюю часть блока питания, где будет указано выходное напряжение. Затем проверьте саму светодиодную ленту, на которой ее входное напряжение будет отмечено в точках подключения светодиодной ленты.

2) Убедитесь, что ваш блок питания работает правильно.

Быстрый тест с использованием мультиметра для проверки напряжения на двух выходных проводах или напряжения между внутренним контактом штекера постоянного тока и наружным корпусом должен показать разницу напряжения. Если напряжение ниже номинального, возможно, у вас неисправный источник питания. Обратите внимание, что источник питания должен быть включен для этого теста.

Подробнее о том как выбрать блок питания, читайте в нашей статье.

Блок питания для светодиодной ленты

3) Проверьте и изолируйте другие аксессуары в той же цепи.
Удалите все дополнительные диммеры и контроллеры из цепи и определите, сможете ли вы включить светодиодную ленту без дополнительных аксессуаров. Если светодиодная лента работает, это означает, что у вас есть проблема с диммером или контроллером, или с соединением, ведущим к или от этих аксессуаров. Обратите внимание, что источник питания должен быть включен для этого теста. Это само собой разумеется, но никогда не подключайте светодиодную ленту низкого напряжения постоянного тока (например, 12 В / 24 В) непосредственно к сетевой розетке (например, 220 В / 240 В)!

4) Проверьте наличие видимых ослабленных соединений.

Убедитесь, что все ваши разъемы и провода на месте и не выпали. Попробуйте затянуть винты на адаптерах постоянного тока и снова вставить светодиодные ленты в разъемы без пайки , которые являются общими точками повреждения контактов.

Если у вас есть мультиметр, проверьте каждую точку вдоль цепи на наличие разности напряжений между положительным и отрицательным (заземлением) проводами / клеммами.  Начните с выхода постоянного тока блока питания и проберитесь к светодиодной полосе. Если положительные и отрицательные медные прокладки светодиодной ленты не имеют разности напряжений, питание на светодиодную ленту не подается из-за неисправности до того, как питание может достигнуть секции светодиодной ленты.

5) Проверьте на наличие видимых признаков коротких замыканий

Особенно, если вы паяете свои собственные провода вместо использования принадлежностей для пайки, вы можете непреднамеренно создать короткое замыкание, допуская соприкосновение положительного и отрицательного проводов. Выполните быструю визуальную проверку всех ваших соединений светодиодной ленты и убедитесь, что эти провода достаточно разделены.

Короткие замыкания этого типа особенно вероятны при работе с многоканальными лампами, такими как 5-цветные светодиодные полосы, которые имеют 6 точек подключения.

Подробнее о том как подключить светодиодную ленту, читайте в нашей статье.

Как подключить светодиодную ленту ?

6) Проверьте на наличие невидимых признаков коротких замыканий

Если после визуальной проверки вы не обнаружили видимых коротких замыканий, вы можете затем проверить наличие невидимых коротких замыканий. Самый быстрый способ проверить это – снова использовать мультиметр.

Приложите контакты мультиметра к положительным (+) и отрицательным (-) медным контактам на светодиодной полосе и проверьте значение сопротивления. Если короткого замыкания нет, мультиметр должен показывать бесконечное сопротивление. Если оно указывает на какое-либо значение сопротивления, это указывает на наличие короткого замыкания.

Если есть признаки короткого замыкания, отсоедините все аксессуары и провода и определите, сохраняется ли короткое замыкание на светодиодной полосе. Если это так, это указывает на наличие проблемы со светодиодной полосой.

Одним из распространенных мест короткого замыкания является линия среза светодиодной ленты, где использовались ножницы.  Светодиодные ленты обычно состоят из двух медных слоев, разделенных тонким слоем изоляции. В некоторых случаях, если ножницы не делают чистый разрез, изолирующий слой может выйти из строя в точке разреза, создав короткое замыкание.

Если вы обнаружили короткое замыкание в сегменте светодиодной ленты, но не можете найти видимых признаков места короткого замыкания, попробуйте отрезать последние 1-2 дюйма светодиодной полосы на обоих концах, чтобы удалить потенциально поврежденный отрезок линии. Мы рекомендуем использовать острые ножницы, чтобы обеспечить чистый срез, так как тупые, тупые ножницы с большей вероятностью «раздавят» медный и изоляционный слои, создав короткое замыкание. Не горит светодиодная лента.

Подробнее о монтаже, читайте в нашей статье.

Монтаж светодиодной ленты

Тускло горит светодиодная лента.

Работает ли ваша светодиодная лента нормально, но на одном конце яркость заметно ниже? Почему тускло горит светодиодная лента? Это часто встречающаяся проблема с низкокачественными светодиодными лентами, и ее основной причиной является падение напряжения. Падение напряжения в основном вызвано чрезмерно большим электрическим током для данной конструкции схемы, или чрезмерным сопротивлением в цепи, или комбинацией того и другого.

Проверьте вашу схему.

Большинство светодиодных лент будут иметь максимальную длину пробега, основанную на потребляемой мощности на фут и дизайне внутренней цепи. Поскольку каждая секция светодиодной ленты должна нести ток для всех «нисходящих» сегментов светодиодной ленты, слишком длинное подключение светодиодной ленты будет превышать номинальную мощность для секций светодиодной ленты, ближайших к источнику питания.

Самым непосредственным следствием перегрузки светодиодной ленты слишком большой мощностью является падение напряжения, в результате чего напряжение, подаваемое на каждую секцию светодиодной ленты, постепенно уменьшается по мере удаления от источника питания. Причиной снижения напряжения является внутреннее сопротивление в медных следах печатной платы.

Не забывайте, что провода, соединяющие светодиодные ленты или между ними, также имеют внутреннее сопротивление, а использование проводов с недостаточной толщиной также может привести к чрезмерному падению напряжения. Возможно, вы сможете изменить свою схему так, чтобы она была сконфигурирована «параллельно», а не «последовательно».

Проверьте электрическое сопротивление

Чрезмерное электрическое сопротивление может быть вызвано плохим электрическим контактом и корродированной медью. Проверьте проводку светодиодной ленты и убедитесь, что все контакты чистые и достаточные.

В экстремальных случаях плохие точки контакта могут нагреваться, что приводит к пожару, поэтому определение и устранение этих ситуаций может стать важной проверкой безопасности.

Диагностика падения напряжения

Наиболее точный способ определить, вызывает ли падение напряжения проблемы с вашей светодиодной лентой, – просто измерить напряжение между медными контактными площадками в различных точках вдоль светодиодной ленты. Если напряжение постепенно уменьшается по мере удаления от источника питания, это является признаком падения напряжения.

Почти все светодиодные ленты будут испытывать некоторое падение напряжения, и от того, будет ли это существенной проблемой или нет, зависит, прежде всего, от падения напряжения.  Например, светодиодная полоска 12 В может упасть до 11,5 В на конце, наиболее удаленном от источника питания, но обычно это не достаточно значительное падение напряжения, чтобы оправдать какие-либо опасения. Если, с другой стороны, напряжение падает ниже 10 В, это признак того, что существует значительное падение напряжения, которое, весьма вероятно, приводит к очень заметному падению яркости.

Подробнее о том что делать, читайте в нашей статье.

Светодиодная лента мерцает во время работы

Светодиодная лента со временем тускнеет. Светодиодная лента стала тускло гореть.

Если ваша светодиодная лента со временем тускнеет, разберем основные причины. светодиодные ленты теряют яркость по всей полосе, это может быть вызвано двумя причинами:

1) Входное напряжение в светодиодной ленте упало ниже расчетного напряжения

Чтобы определить, какая из этих двух проблем виновата, сначала определите входное напряжение в точке, где светодиодная лента подключена к источнику питания (то есть первая пара медных контактных площадок). Если входное напряжение здесь ниже ожидаемого напряжения (например, 10 В для светодиодной ленты 12 В), вы, вероятно, видите проблему с источником питания или слабым / корродированным соединением между светодиодной лентой и источником питания. Хорошей новостью является то, что ваша светодиодная лента, вероятно, в хорошем состоянии, и простая исправление проводки или замена блока питания решит вашу проблему.

2) Сами светодиоды теряют яркость

Если в первом тесте вы определили, что на светодиодные ленты подается полное расчетное входное напряжение (например, 12 В для системы 12 В), но вы все еще видите падение яркости, у вас могут возникнуть серьезные проблемы со светодиодной лентой.

Светодиоды, как правило, рассчитаны на срок службы более 36 тыс. Часов , но некоторые продукты более низкого качества могут привести к непредсказуемым последствиям при проектировании и изготовлении. В таких ситуациях ваш единственный выбор – полностью заменить светодиодную ленту, если светодиодная лента стала тускло гореть.

 

Клей светодиодной ленты теряет адгезию.

Если части вашей светодиодной ленты падают с установленной поверхности, возможно, вы использовали светодиодную ленту с недостаточным количеством двусторонней ленты. Вы можете повторно нанести новый слой двухсторонней ленты или использовать несколько монтажных кронштейнов и винтов для более постоянного способа монтажа. Мы рекомендуем «наклеивать» с помощью высококачественных светодиодных лент , которые, скорее всего, будут использовать двустороннюю клейкую ленту с более высокой адгезией, например, 3M VHB.

Не горит часть светодиодной ленты.

Если у вас освещен весь сегмент светодиодной ленты или не горит половина светодиодной ленты, и вы заметили участок из 3 светодиодов (или 6 светодиодов для 24 В), которые остаются темными, у вас может быть «разомкнутая цепь» в одном из участков. Это означает, что из-за производственного брака или какого-либо механического повреждения во время транспортировки или установки один из светодиодов или компонентов для одной секции вышел из строя, что привело к полному электрическому разъединению только для этой секции светодиодов. Поэтому не горит часть светодиодной ленты.

Если вы знакомы с тем, как паять, вы можете попробовать подогреть паяные соединения для каждого из светодиодов и компонентов вдоль этой мертвой части. Если нет, лучше всего попросить вашего поставщика о замене (если они предоставляют гарантию) или просто удалить неисправный участок, разрезая вдоль линий разреза и соединяя два сегмента вместе, используя соединительные зажимы.

Подробнее о пайке светодиодных лент, читайте в нашей статье.

Пайка светодиодной ленты

Все еще не решили вашу проблему?

Покупайте качественные светодиодные ленты с высокими требованиями к качеству и надежности, чтобы избежать распространенных проблем, подобных тем, которые описаны выше. К сожалению, этого нельзя сказать о многих других «бюджетных» светодиодных лентах, которые можно приобрести. Пожалуйста, немедленно свяжитесь с нами, если у вас возникли проблемы со светодиодной лентой, мы будем рады помочь и обсудить варианты замены.

Как выбрать светодиодную ленту

Почему начинают моргать светодиодные лампы. Из-за чего мигает светодиодная лента и как это исправить

Светодиодная лента является очень распространенным элементом современного тюнинга автомобиля. Это безопасный и относительно недорогой способ, посредством которого можно придать вашему транспортному средству оригинальности и эффектности. Такие устройства достаточно экономичны и долговечны, так как рассчитываются на напряжение в 12В, которое выдается автомобильным аккумулятором, а также вполне удобны для самостоятельной сборки на автомобиле.

Помимо всего прочего, светодиодные ленты являются фактически универсальными, ведь им можно придать любую форму, производить плавную регулировку яркости и угла освещения. Местоположение такого рода подсветки будет зависеть только от предпочтения автомобилиста – такая лента может крепиться во всех, даже самых труднодоступных местах транспортного средства.

Очень часто такие элементы дизайна применяют в салоне, в качестве подсветки на сидениях, панели приборов и потолке. Снаружи делают , днища транспортного средства, номерных знаков и багажника. На самом деле, все будет зависеть только от фантазии автомобилиста и его предпочтений.

По своей конструкции светодиодная лента включает в себя провода и диоды. Данные детали располагаются непосредственно на металлической подложке. Подложка в большинстве случаев разделяется на небольшие автономные блоки, которые при необходимости можно свободно подключить к источнику питания, как цепочкой, так и отдельно. Самый простой блок предусматривает наличие трех светодиодов, которые соединяются последовательно. Именно это количество является самым оптимальным, так как от стандартного источника питания, который имеет напряжение в 12В, на каждый световой диод будет поступать необходимое напряжение в 4В.

1. Причины мигания светодиодной ленты

Причин для мигания устройств светодиодной ленты может быть множество. Рассмотрим самые основные и распространенные моменты в современном автомобильном мире. Так, первая причина кроется в блоке питания, в котором попросту не хватает необходимого количества мощности, вследствие чего может подсаживаться напряжение. Зачастую, при проектировании устройства производители склоняются к тому, чтобы делать запас мощности на пятую часть элемента. Тем не менее, даже такого дополнительного заряда не всегда хватает. Проявляется проблема не сразу.

Изначальным фактором является перегрев устройств электроники и микросхем. Именно это является наибольшей проблемой китайских изделий неизвестного производства, мощность которых завышена. Фирменные устройства будут выдерживать все заявленные технические параметры, да еще и с запасом.

Вторая причина мигания может заключаться в неаккуратной и грязной пайке. При непосредственной пайке устройства светодиодной ленты довольно часто используется флюс с кислотой. Вследствие процедуры припаивания на контактной площадке будет оставаться этот химический элемент, который будет медленно разъедать медную основу. Едкий флюс нельзя использовать, так как он очень опасен. Тем не менее, он может быть заменен любым другим подходящим составом.

Проблема может крыться и в видах соединителей. При использовании коннекторов может происходить окисление контактной площадки, что в большей степени вероятно во влажных помещениях. Вследствие окисления проводов будет происходить чрезмерный нагрев такого рода соединения, что повлечет за собой подгорание контактов, а это не самым лучшим образом скажется на работоспособности всей системы. Отдельного внимания заслуживает случай, когда диодные ленты подключаются к высокому напряжению. Сразу же важно отметить, что такого рода прямое подключение может сразу же «спалить» все новые светодиоды.

2. Как избежать мигания светодиодной ленты

Для того чтобы долго не мучиться в схемах и догадках, необходимо попросту разделить светодиодное освещение на несколько функциональных блоков: диммер, источник питания, блок управления, светодиодная лента, соединители, пульт дистанционного управления, усилитель. Для того чтобы произвести диагностику всевозможных проблем и неисправностей, автомобилисту потребуется использовать устройство мультиметра или вольтметра для измерения напряжения. Изначально необходимо произвести проверку входного напряжения на блоке питания, которое должно достигать 220 В.

После этого на выходе источника питания следует также замерить напряжение, которое должно составлять 12В, так как регулируется непосредственно резистором. Далее производится измерение на контактах ленты, которое достигает 12В, так как именно контроллер будет производить управление яркостью каждого цвета. После этого проверяется вольтаж на корректоре. Делается это в том случае, если определенный участок не горит или очень тускло мигает.

Диммер или блок управления довольно часто комплектуют пультом дистанционного управления. Неисправность пульта может быть причиной отсутствия света или снижения яркости свечения до минимума. Кроме того, кнопка может застрять в нажатом состоянии, или же обыкновенное загрязнение вызвало замыкание контактов.

3. Другие неисправности светодиодной ленты

Зачастую светодиоды выходят из строя в прожекторах фар и специальных лампах. В своем подавляющем большинстве происходит это с подачи того, что они подключаются последовательно и по несколько штук. Важно заметить, что если один светодиод перегорел, остальные начинают работать неисправно или просто отключаются. Обнаружить причину неприятности обычно довольно просто, так как можно попросту визуально определить сгоревший светодиод, который будет отличаться характерной черной точкой в середине устройства. Кроме того, можно проверить устройство тестером.

Делается это как со сгоревшим диодом, так и в сравнении сопротивления с соседними. Также можно по очереди коротить соседние диоды, а при замыкании неисправного остальные светодиоды просто вспыхнут. Для того чтобы предупредить моргание и мигание, необходимо сделать один небольшой регулируемый драйвер. Делается это для того, чтобы каждый отдельный диод можно было включить в автономном режиме и по отдельности.

С помощью таких процедур автомобилист сможет не только определить причины неисправностей и сами проблемы со светодиодами, но и обнаружить конкретные диоды, которые пришли в негодность и нуждаются в замене или ремонте.

Подписывайтесь на наши ленты в

Оформление интерьера с помощью светодиодной ленты – явление распространённое. Тем более что теоретический срок службы светодиодов исчисляется десятками тысяч часов, а разнообразие цветовой гаммы позволяет подобрать любые оттенки. На самом же деле сбои в работе подсветки наступают гораздо раньше и проявляются, как правило, в виде частого мерцания или мигания отдельных сегментов. Об этом свидетельствуют жалобы потребителей, оставленные на разных интернет-ресурсах. Почему мигает светодиодная лента и как избежать подобных неприятностей в будущем? Попробуем разобраться.

Распространенные причины мигания

Причин, вызывающих неприятное для глаз мигание светодиодной ленты, не так уж и много. Данное утверждение основано на анализе отзывов потребителей, которые спустя несколько лет столкнулись с подобной проблемой.

Чаще всего виновником мигания является блок питания (БП) или RGB-контроллер. Для светодиодной ленты – это источник постоянного напряжения 12В. Гораздо реже используют БП на 24В (для лент с соответствующим питанием), но суть проблемы это не меняет. Мигание светодиодов по всей длине на начальном этапе эксплуатации может быть вызвано нехваткой мощности блока питания. Теоретически запаса мощности в 10-20% должно хватать для стабильной работы всей системы освещения. Но на самом деле заявленные технические характеристики, как светодиодной ленты, так и питающей аппаратуры не всегда подтверждаются фактическими измерениями. В результате светодиодная лента потребляет больше положенного (чтобы светила ярче), а источник питания выдаёт меньше положенного (чтобы сэкономить на деталях). Такой маркетинговый ход часто практикуется китайскими производителями. В связи с чем не рекомендуем покупать дешёвую светодиодную продукцию.

Недорогие китайские блоки питания и RGB-контроллеры могут вызвать м

Диод Шоттки - Характеристики, параметры и применение

Диод - один из основных компонентов, которые обычно используются в конструкциях электронных схем, его обычно можно встретить в выпрямителях, клипперах, зажимах и многих других широко используемых схемах. Это двухконтактное полупроводниковое устройство, которое позволяет току течь только в одном направлении, а именно от анода к катоду (+ к -), и блокирует прохождение тока в обратном направлении, то есть от катода к аноду. Причина в том, что он имеет ок.Нулевое сопротивление в прямом направлении и бесконечное сопротивление в обратном направлении. Существует много типов диодов, каждый со своими уникальными свойствами и применением. Мы уже узнали о стабилитронах и их работе, в этой статье мы узнаем о другом интересном типе диода, который называется Schottky Diode , и о том, как его можно использовать в наших схемах.

Диод Шоттки (названный в честь немецкого физика Вальтера Х. Шоттки) - это другой тип полупроводникового диода, но вместо PN перехода диод Шоттки имеет переход металл-полупроводник, что снижает емкость и увеличивает скорость переключения диода Шоттки. , и этим он отличается от других диодов.Диод Шоттки также имеет другие названия, такие как диод с поверхностным барьером , диод с барьером Шоттки, диод с горячим носителем или диод с горячими электронами .

Символ диода Шоттки

Символ диода Шоттки основан на общем символе диода, но вместо прямой линии он имеет S-образную структуру на отрицательном конце диода, как показано ниже. Это условное обозначение можно легко использовать, чтобы отличить диод Шоттки от других диодов при чтении принципиальной схемы.На протяжении всей статьи мы будем сравнивать диод Шоттки с обычным диодом для лучшего понимания.

Даже по внешнему виду компонента диод Шоттки похож на обычный диод, и часто бывает трудно определить разницу, не прочитав на нем номер детали. Но в большинстве случаев диод Шоттки будет казаться немного громоздким, чем обычные диоды, но это не всегда так. Изображение выводов диода Шоттки показано ниже.

Что делает диод Шоттки особенным?

Как обсуждалось ранее, диод Шоттки выглядит и работает очень похоже на обычный диод, но уникальными характеристиками диода Шоттки являются очень низкое падение напряжения и высокая скорость переключения . Чтобы лучше понять это, давайте подключим диод Шоттки и обычный диод к идентичной схеме и и проверим, как она работает.

На изображениях выше показаны две схемы: одна для диода Шоттки, а другая - для типичного диода с PN переходом.Эти схемы будут использоваться для различения падений напряжения на обоих диодах. Итак, левая цепь предназначена для диода Шоттки, а правая - для типичного диода с PN переходом. Оба диода запитаны 5В. Когда ток проходит от обоих диодов, диод Шоттки имеет падение напряжения только 0,3 В и оставляет 4,7 В для нагрузки, с другой стороны, типичный диод с PN-переходом имеет падение напряжения 0,7 В и оставляет 4,3 В для нагрузка. Таким образом, диод Шоттки имеет на меньшее падение напряжения, чем обычный диод с PN-переходом .За исключением падения напряжения, диод Шоттки также имеет некоторые другие преимущества по сравнению с типичным диодом с PN-переходом, таким как диод Шоттки, который имеет на более высокую скорость переключения, меньший шум и лучшие характеристики , чем типичный диод с PN-переходом.

Недостатки диода Шоттки

Если диод Шоттки имеет очень низкое падение напряжения и высокую скорость переключения, обеспечивая лучшую производительность, то зачем нам вообще нужны диоды с обычным P-N переходом? Почему бы просто не использовать диод Шоттки во всех схемах?

Хотя это правда, что диоды Шоттки лучше, чем диоды с P-N переходом, постепенно они становятся более предпочтительными, чем диоды с P-N переходом.Два основных недостатка диода Шоттки - это его , низкое обратное напряжение пробоя и , высокий обратный ток утечки по сравнению с обычным диодом. Это делает его непригодным для коммутации высокого напряжения. Также диоды Шоттки на сравнительно дороже на , чем обычные выпрямительные диоды.

Диод Шоттки против выпрямительного диода

Краткое сравнение между PN-диодом и диодом Шоттки приведено в таблице ниже:

PN-переходной диод Диод Шоттки
Диод с PN-переходом - это биполярное устройство . означает, что токопроводимость происходит за счет как неосновных, так и основных носителей заряда. В отличие от диода с PN-переходом, диод Шоттки является униполярным устройством . означает, что проводимость тока происходит только за счет основных носителей заряда.
PN-диод имеет переход полупроводник-полупроводник. В то время как диод Шоттки имеет перехода металл-полупроводник.
PN-переходный диод имеет большое падение напряжения . Диод Шоттки имеет малое падение напряжения .
Высокий По государственным потерям. Low On состояния потерь.
Медленная скорость переключения. Быстрая скорость переключения.
Высокое напряжение включения (0,7 В) Низкое напряжение включения (0,2 В)
Высокое обратное напряжение блокировки Низкое обратное напряжение блокировки
Низкий обратный ток Большой обратный ток

Структура диода Шоттки

Диоды Шоттки

построены с использованием перехода металл-полупроводник , как показано на рисунке ниже.Диоды Шоттки имеют соединение металла с одной стороны перехода и легированный кремний с другой стороны, поэтому диод Шоттки не имеет обедненного слоя . Из-за этого свойства диоды Шоттки известны как униполярные устройства, в отличие от типичных диодов с PN-переходом, которые являются биполярными устройствами.

Базовая структура диода Шоттки показана на изображении выше. Как вы можете видеть на изображении диод Шоттки имеет металлическое соединение на одной стороне, которое может варьироваться от платины до вольфрама, молибдена, золота и т. Д.и полупроводник N-типа с другой стороны. Когда соединение металла и полупроводник N-типа объединяются, они создают переход металл-полупроводник. Этот переход известен как Барьер Шоттки . Ширина барьера Шоттки зависит от типа металлических и полупроводниковых материалов, которые используются при формировании перехода.

Барьер Шоттки работает по-разному в несмещенном, прямом или обратном смещении. В состоянии прямого смещения , когда положительный вывод батареи соединен с металлом, а отрицательный вывод соединен с полупроводником n-типа, диод Шоттки пропускает ток.Но в состоянии обратного смещения , когда положительный вывод батареи соединен с полупроводником n-типа, а отрицательный вывод соединен с металлом, диод Шоттки блокирует ток. Однако, если напряжение с обратным смещением увеличится выше определенного уровня, сломает барьер , и ток начнет течь в обратном направлении, и это может повредить компоненты, подключенные к диоду Шоттки.

V-I характеристики диода Шоттки

Одной из важных характеристик, которую следует учитывать при выборе диода, является график зависимости прямого напряжения (В) от прямого тока (I).График VI наиболее популярных диодов Шоттки 1N5817, 1N5818 и 1N5819 показан ниже

.

Характеристики

V-I диода Шоттки очень похожи на типичный диод с PN-переходом. Низкое падение напряжения, чем у типичного диода с PN-переходом, позволяет диоду Шоттки потреблять меньшее напряжение, чем типичный диод. Из приведенного выше графика видно, что 1N517 имеет наименьшее прямое падение напряжения по сравнению с двумя другими, также можно отметить, что падение напряжения увеличивается по мере увеличения тока через диод.Даже для 1N517 при максимальном токе 30 А падение напряжения на нем может достигать 2 В. Следовательно, эти диоды обычно используются в слаботочных приложениях.

Параметры, которые следует учитывать при выборе диода Шоттки

Каждый инженер-конструктор должен выбрать правильный диод Шоттки в соответствии с потребностями его применения. Для схем выпрямления потребуются диоды высокого напряжения, низкого / среднего тока и низкой частоты.Для схем переключения номинальная частота диода должна быть высокой.

Некоторые общие и важные параметры диода, о которых следует помнить, перечислены ниже:

Падение напряжения в прямом направлении: Падение напряжения при включении диода с прямым смещением является падением напряжения в прямом направлении. Это зависит от разных диодов. Для диода Шоттки обычно предполагается, что напряжение включения составляет около 0,2 В.

Напряжение обратного пробоя: Определенная величина напряжения обратного смещения, после которой диод выходит из строя и начинает проводить в обратном направлении, называется напряжением обратного пробоя.Напряжение обратного пробоя для диода Шоттки составляет около 50 вольт.

Время обратного восстановления: Это время, необходимое для переключения диода из его прямого проводящего состояния или состояния «ВКЛ» в обратное состояние «ВЫКЛ». Наиболее важным отличием типичного диода с PN-переходом от диода Шоттки является время обратного восстановления. В типичном диоде с PN-переходом время обратного восстановления может варьироваться от нескольких микросекунд до 100 наносекунд. У диодов Шоттки нет времени восстановления, потому что диод Шоттки не имеет обедненной области на переходе.

Обратный ток утечки: Ток, проводимый полупроводниковым устройством при обратном смещении, является обратным током утечки. В диоде Шоттки повышение температуры значительно увеличивает обратный ток утечки.

Применение диода Шоттки

Диоды Шоттки

находят множество применений в электронной промышленности благодаря своим уникальным свойствам. Вот некоторые из приложений:

1.Цепи ограничения / ограничения напряжения

Схемы ограничителей и схемы фиксаторов обычно используются в приложениях для формирования волн. Низкое падение напряжения делает диод Шоттки полезным в качестве ограничивающего диода.

2. Защита от обратного тока и разряда

Как мы знаем, диод Шоттки также называется блокирующим диодом , потому что он блокирует ток в обратном направлении; его можно использовать в качестве защиты от разряда.Например, в Emergency Flash Light, диод Шоттки используется между суперконденсатором и двигателем постоянного тока, чтобы предотвратить разряд суперконденсатора через двигатель постоянного тока.

3. Цепи выборки и хранения

Прямо смещенный диод Шоттки не имеет неосновных носителей заряда, и благодаря этому они могут переключаться быстрее, чем обычные диоды с PN-переходом. Таким образом, диоды Шоттки используются, потому что они имеют меньшее время перехода от выборки к шагу удержания, и это приводит к более точной выборке на выходе.

4. Выпрямитель мощности

Диоды Шоттки

имеют высокую плотность тока, а низкое прямое падение напряжения означает, что меньше энергии тратится впустую, чем у типичного диода с PN переходом, и это делает диоды Шоттки более подходящими для силовых выпрямителей.

Далее по ссылке можно найти практическое применение диода во многих схемах.

Твердотельные диоды и характеристики диодов [Analog Devices Wiki]

В электронике диод - это двухконтактный компонент с несимметричным током vs.характеристика напряжения с низким (в идеале нулевым) сопротивлением току в одном направлении и высоким (в идеале бесконечным) сопротивлением в другом. Кремниевый полупроводниковый диод, наиболее распространенный тип, представляет собой монокристаллический кусок полупроводникового материала с PN-переходом, подключенным к двум электрическим клеммам.

5.1 PN-переход

PN-переход формируется путем соединения полупроводников p-типа и n-типа вместе в единую кристаллическую решетку. Термин «переход» относится к границе раздела, где встречаются две области полупроводника.Если бы соединение было построено из двух отдельных частей, это привело бы к разрыву в кристаллической решетке, поэтому PN-переходы создаются в монокристалле полупроводника путем введения определенных примесей, называемых легирующими добавками, например, посредством ионной имплантации, диффузии или эпитаксии (выращивания). слой кристалла, легированного примесями n-типа, поверх слоя кристалла, легированного примесями p-типа, например).

PN-переходы являются элементарными строительными блоками почти всех полупроводниковых электронных устройств, таких как диоды, транзисторы, солнечные элементы, светодиоды и интегральные схемы; они являются активными сайтами, где происходит электронное действие устройства.Например, обычный тип транзистора, транзистор с биполярным соединением, состоит из двух последовательно соединенных PN-переходов в форме NPN или PNP.

5.1.1 Свойства PN-перехода

PN-переход демонстрирует некоторые интересные свойства, которые находят полезное применение в твердотельной электронике. Полупроводник, легированный p-примесью, относительно проводящий. То же самое верно и для полупроводника с примесью n-типа, но переход между областями p- и n-типа является непроводником. Этот непроводящий слой, называемый обедненным слоем, возникает из-за того, что электрически заряженные носители, электроны в кремнии n-типа и дырки p-типа, диффундируют в материал другого типа ( i.е. электронов p-типа и дырок в n-типе) и устраняют друг друга в процессе, называемом рекомбинацией. Эта диффузия заряда вызывает встроенную разность потенциалов в области истощения. Путем манипулирования этим непроводящим слоем PN-переходы обычно используются как диоды: элементы схемы, которые пропускают электрический ток в одном направлении, но не в другом (противоположном) направлении. Это свойство объясняется в терминах прямого смещения и обратного смещения, где термин смещение относится к приложению электрического напряжения к PN-переходу.PN-переход будет проводить ток, когда приложенное внешнее напряжение превышает встроенный потенциал перехода.

5.1.2 Равновесие (нулевое смещение)

В PN-переходе без внешнего приложенного напряжения достигается состояние равновесия, при котором на переходе образуется разность потенциалов. Эта разность потенциалов называется встроенным потенциалом, В BI .

На стыке полупроводников p-типа и n-типа более высокая концентрация электронов в области n-типа вблизи границы раздела PN имеет тенденцию диффундировать в область p-типа.Когда электроны диффундируют, они оставляют положительно заряженные ионы (доноры) в n-области. Точно так же более высокая концентрация дырок на стороне p-типа вблизи интерфейса PN начинает диффундировать в область n-типа, оставляя фиксированные ионы (акцепторы) с отрицательным зарядом. Области, непосредственно примыкающие по обе стороны от интерфейса PN, теряют свою нейтральность и становятся заряженными, образуя область пространственного заряда или слой обеднения (см. Рисунок 5.1).

Рисунок 5.1 PN-переход в состоянии равновесия

Электрическое поле, создаваемое областью пространственного заряда, препятствует процессу диффузии как для электронов, так и для дырок.Есть два одновременных явления: процесс диффузии, который имеет тенденцию генерировать больший объемный заряд, и электрическое поле, создаваемое пространственным зарядом, которое стремится противодействовать диффузии. В состоянии равновесия эти две силы уравновешивают друг друга. Профиль концентрации носителей в равновесии показан на рисунке 5.1 синими и красными линиями. Также показаны два уравновешивающих явления, которые устанавливают равновесие.

Область пространственного заряда - это зона с чистым зарядом, обеспечиваемым фиксированными ионами (донорами или акцепторами), которые остались незакрытыми диффузией основных носителей заряда.Когда равновесие достигнуто, плотность заряда аппроксимируется ступенчатой ​​функцией, отображаемой на графике Q (x) на рисунке 5.2. Фактически, область полностью обеднена основными носителями (оставляя плотность заряда равной чистому уровню легирования), а граница между областью пространственного заряда и нейтральной областью довольно резкая. Область пространственного заряда имеет одинаковый заряд по обе стороны от интерфейса PN, поэтому она простирается дальше на менее легированную сторону (сторона n на рисунках 5.1 и 5.2).

5.1.3 Прямое смещение

При прямом смещении положительное напряжение подается на сторону p-типа по отношению к стороне n-типа перехода. При приложении напряжения таким образом дырки в области p-типа и электроны в области n-типа выталкиваются в сторону перехода. Это уменьшает ширину истощающего слоя. Положительный заряд, приложенный к материалу p-типа, отталкивает дырки, тогда как отрицательный заряд, приложенный к материалу n-типа, отталкивает электроны.Расстояние между электронами и дырками уменьшается по мере того, как они движутся к стыку. Это снижает встроенный потенциальный барьер. С увеличением напряжения прямого смещения обедненный слой в конечном итоге становится достаточно тонким, чтобы встроенное электрическое поле больше не могло противодействовать движению носителей заряда через PN-переход, что, в свою очередь, снижает электрическое сопротивление. Электроны, которые пересекают PN-переход в материал p-типа (или дырки, которые проникают в материал n-типа), будут диффундировать в почти нейтральную область.Следовательно, степень диффузии неосновной части в зонах, близких к нейтральной, определяет величину тока, который может протекать через диод.

Только основные носители (электроны в материале n-типа или дырки в материале p-типа) могут проходить через полупроводник на макроскопическую длину. Имея это в виду, рассмотрим поток электронов через переход. Прямое смещение вызывает силу на электронах, толкающую их со стороны N к стороне P. При прямом смещении область обеднения достаточно узкая, чтобы электроны могли пересекать переход и инжектироваться в материал p-типа.Однако они не продолжают течь через материал p-типа бесконечно, потому что для них энергетически выгодно рекомбинировать с дырками. Средняя длина, которую электрон проходит через материал p-типа до рекомбинации, называется диффузионной длиной, и обычно она составляет порядка микрон.

Хотя электроны проникают в материал p-типа только на короткое расстояние перед рекомбинацией, электрический ток продолжается непрерывно, потому что дырки (основные носители) начинают течь в противоположном направлении, заменяя те, с которыми рекомбинируются электроны неосновных носителей.Полный ток (сумма токов электронов и дырок) постоянен в пространстве, потому что любое изменение вызовет накопление заряда с течением времени (это текущий закон Кирхгофа). Поток дырок из области p-типа в область n-типа в точности аналогичен потоку электронов из N в P (электроны и дырки меняются ролями, и знаки всех токов и напряжений меняются местами).

Таким образом, макроскопическая картина протекания тока через диод включает в себя электроны, текущие через область n-типа к переходу, дырки, протекающие через область p-типа в противоположном направлении к переходу, и два вида носителей, постоянно рекомбинирующие в близость (определяемая диффузионной длиной) перехода.Электроны и дырки движутся в противоположных направлениях, но у них также есть противоположные заряды, поэтому общий ток идет в одном направлении с обеих сторон диода, если требуется.

5.1.4 Обратное смещение

Обратное смещение обычно относится к тому, как диод используется в цепи. Если диод смещен в обратном направлении, напряжение на катоде выше, чем на аноде. Следовательно, ток не будет течь, пока электрическое поле не станет настолько сильным, что диод не сломается.

Поскольку материал p-типа теперь подключен к отрицательной стороне приложенного напряжения, отверстия в материале p-типа отодвигаются от перехода, что приводит к увеличению толщины обедненного слоя.Точно так же, поскольку область n-типа подключена к положительной стороне, электроны также будут отводиться от перехода. Следовательно, обедненный слой расширяется и увеличивается с увеличением напряжения обратного смещения. Это увеличивает барьер напряжения, вызывая высокое сопротивление потоку носителей заряда, таким образом, позволяя только очень небольшому электрическому току протекать через PN-переход.

Напряженность электрического поля обедненного слоя увеличивается с увеличением напряжения обратного смещения.Как только напряженность электрического поля превышает критический уровень, слой истощения PN-перехода разрушается, и начинает течь ток, обычно в результате процессов стабилизации или лавинного пробоя. Оба этих процесса пробоя являются неразрушающими и обратимыми, пока величина протекающего тока не достигает уровней, которые вызывают перегрев полупроводникового материала и вызывают термическое повреждение.

Этот эффект используется в схемах стабилизаторов на стабилитронах.Стабилитроны имеют четко определенное низкое обратное напряжение пробоя по своей конструкции. Типичное значение напряжения пробоя составляет, например, 6,2 В. Это означает, что напряжение на катоде никогда не может быть более чем на 6,2 В выше, чем напряжение на аноде, потому что диод выйдет из строя и, следовательно, станет проводящим, если напряжение станет выше. Это эффективно ограничивает напряжение на диоде.

Другое применение, где используются диоды с обратным смещением, - это варакторные диоды (переменные конденсаторы).Слой обеднения действует как изолятор между двумя проводящими пластинами или выводами диода. Емкость зависит от ширины изоляционного слоя и его площади. Ширина зоны истощения любого диода изменяется в зависимости от приложенного напряжения. Это изменяет емкость диода. Варакторы специально сконструированы так, чтобы одна сторона PN перехода была слегка легированной, поэтому на этой стороне диода будет большая область обеднения. Эта более толстая область также больше зависит от приложенного напряжения смещения, и, таким образом, изменение емкости диода (ΔC / ΔV) будет сильно зависеть от приложенного напряжения смещения.

Краткое содержание раздела

Свойства прямого смещения и обратного смещения PN-перехода предполагают, что он может использоваться в качестве диода. Диод с PN-переходом позволяет электрическим зарядам течь в одном направлении, но не в противоположном; отрицательные заряды (электроны) могут легко проходить через переход от N к P, но не от P к N, и обратное верно для дырок. Когда PN-переход смещен в прямом направлении, электрический заряд течет свободно из-за пониженного сопротивления PN-перехода.Однако, когда PN-переход имеет обратное смещение, барьер перехода (и, следовательно, сопротивление) становится больше, и поток заряда очень мал.

5.2 Фактические диоды

На рисунке 5.3 ниже схематично изображен диод (a) и показан типичный лабораторный диод (b). Диоды - довольно распространенные и полезные устройства. Можно представить себе диод как устройство, позволяющее току течь только в одном направлении. Это чрезмерное упрощение, но хорошее приближение.

Рисунок 5.3: (a) Схематический символ диода (b) малосигнальный диод.

Как обсуждалось ранее, полупроводниковые диоды изготавливаются в виде двухслойной структуры, образующей PN переход. Полупроводники, такие как кремний или германий, могут быть легированы небольшими концентрациями определенных примесей, чтобы получить материал, который проводит электричество через перенос электронов (n-тип) или через дырки (p-тип). Когда слои из этих двух типов легированных полупроводников построены так, чтобы образовать PN-переход, электроны мигрируют от стороны n-типа, а дырки мигрируют от стороны p-типа, как показано на рисунке.5.1. Это перераспределение заряда приводит к возникновению потенциального промежутка V BI через переход, как показано на рисунке. Этот зазор равен VBI ~ 0 . 7 V для кремния и ~ 0 . 3 V для германия.

Рисунок 5.4 PN-переход, образующий промежуток напряжения на переходе

Когда этот диод с PN-переходом теперь подключен к внешнему напряжению, это может эффективно увеличивать или уменьшать встроенный потенциальный зазор.Это приводит к очень разному поведению, в зависимости от полярности этого внешнего напряжения, как показано на типичном графике В - I на рисунке. 5.5. Когда диод смещен в обратном направлении, как показано на рисунке 5.6, зазор увеличивается, и через переход проходит очень небольшой ток (до тех пор, пока в конечном итоге в этом примере не произойдет пробой поля при ~ 6,2 В). И наоборот, конфигурация с прямым смещением уменьшает зазор, приближаясь к нулю для внешнего напряжения, равного напряжению зазора, и ток может течь легко.

Выражение для напряжения на диоде (прямое смещение) В D выглядит следующим образом:

(5.1)

Где:
В D = приложенное напряжение на диоде
k = постоянная Больцмана (1,38E-23 Дж / Кельвин)
T = абсолютная температура в Кельвинах
q = заряд электрона (1,6E-19 Кулонов)
I D = фактический ток через диод
I S = ток диффузии (постоянная, зависящая от устройства)
(Так называемое тепловое напряжение, В T , составляет кТ / q = 26 мВ при комнатной температуре.)

Приведенное выше уравнение можно изменить, чтобы получить I D :

(5.2)

Таким образом, при обратном смещении диод ведет себя как разомкнутый переключатель; и при прямом смещении для токов примерно 10 мА или больше диод дает почти постоянное падение напряжения ~ 0,7 В . Диффузионный ток I S, зависит от уровня легирования примесей n-типа и p-типа, площади диода и (в очень большой степени) от температуры.Разумной отправной точкой для диода интегральной схемы с малой геометрией является I S = 1E -16 .

Рисунок 5.5: Зависимость напряжения В D от тока, поведение диода I D

Противоположные заряды в полупроводниковом переходе ничем не отличаются от зарядов на пластинах конденсатора. Итак, у каждого перехода есть емкость; но поскольку расстояние между электронами и дырками, обедненный слой, изменяется с приложенным напряжением, емкость зависит от приложенного напряжения.Чем ниже напряжение, тем выше емкость, и она будет увеличиваться прямо в область прямого смещения.

Рисунок 5.6 Характеристики напряжения в зависимости от тока стабилитрона на 6,2 В

Еще одна вещь, которую следует отметить в отношении настоящих диодов, - это последовательное сопротивление в полупроводниковом материале, не принимаемое областью обеднения. Для обычной концентрации 5E 15 (количество атомов примеси на кубический сантиметр, что дает практическое напряжение пробоя в ИС около 25 В), объемное удельное сопротивление составляет около 1 Ом · см для кремния, легированного фосфором (n-типа), и 3 Ом-см для бора (р-тип).Для сравнения, такой металл, как алюминий, имеет удельное сопротивление 2,8 мкОм-см, медь - 1,7 мкОм-см. Объемное удельное сопротивление (ρ или rho) измеряется между противоположными поверхностями куба материала с длиной стороны (w, h, l) 1 см (10 мм).

5.3 Температурные характеристики диодов

Из уравнения напряжения диода 5.1 мы можем видеть, что оно содержит член абсолютной температуры T. Кроме того, диффузионный ток I S не является на самом деле постоянным, но сильно зависит от температуры.В нижнем наборе графиков на рисунке 5.7 смоделированное напряжение диода в зависимости от температуры показано для четырех различных токов диода (зеленый = 1 мА , синий = 2 мА , красный = 5 мА и голубой = 10 мА). Из графиков видно, что напряжение на диоде имеет довольно сильную отрицательную температурную зависимость.

На верхнем графике показана разница между кривыми 2 мА и 1 мА, а также разница между кривыми 5 мА и 10 мА. Эти два результата лежат точно друг на друге.Причина этого станет очевидной, если мы рассмотрим уравнение напряжения на диоде более внимательно.

Рисунок 5.7 Зависимость напряжения диода от температуры при 1 мА, 2 мА, 5 мА и 10 мА

(5,3)

Переставляя и принимая I S1 = I S2 , получаем:

(5.4)

Теперь сильный температурный эффект I S выпадает из уравнения, и мы остаемся только с абсолютным температурным членом T, который делает ΔV D пропорциональным абсолютной температуре (PTAT).Оба V D2 - V D1 и V D4 - V D3 имеют одинаковое соотношение 2: 1 для своих токов, и поэтому кривые ΔV D будут точно лежать на друг над другом. При комнатной температуре тепловое напряжение В T составляет около 26 мВ , что при умножении на ln (2) дает примерно 18 мВ, видимые на графике при 25 градусах.

5.4 Линейная модель

Линейная модель диода аппроксимирует экспоненциальную характеристику I - V прямой линией, касательной к реальной кривой в точке смещения постоянного тока.На рисунке 5.8 показана кривая с касательной в точке ( V D , I D ). Кривая пересекает горизонтальную ось при напряжении В D0 . Для небольших изменений в V D и I D относительно точки касания касательная линия дает хорошее приближение к фактической кривой.

Рисунок 5.8 Характеристики I - V с касательной при ( V D , I D )

Наклон касательной определяется по формуле:

(5.5)

I D часто намного больше, чем I S , поэтому уравнение часто упрощается до:

(5,6)

Уравнение касательной:

(5,7)

5.5 Модель слабого сигнала

Поскольку уравнение диода для I D как функции V D является нелинейным, инструменты линейного анализа цепи не могут быть применены к схемам, содержащим диоды, так же, как и к схемам, содержащим только резисторы.Однако, если ток диода известен для конкретного напряжения, можно использовать линейный анализ цепи для прогнозирования изменения тока при заданном изменении напряжения, при условии, что это изменение будет постепенно небольшим. Такой подход называется анализом слабого сигнала. Несколько слов об обозначениях:

Где:
V D и I D - значения смещения постоянного тока, а v d и i d - незначительные изменения значений смещения.

Сопротивление слабого сигнала определяется как отношение v d к i d и определяется как:

(5,8)

Это приводит к тому же r d , что и в модели линейного касательного диода на рисунке 5.8. Таким образом, слабосигнальная модель диода при прямом смещении представляет собой резистор номиналом r d . Значение r d обратно пропорционально протекающему через него току. Каждый раз, когда ток удваивается, сопротивление уменьшается вдвое.Из модели линейного диода следует, что r d можно графически интерпретировать как обратную величину наклона кривой i D относительно v D в точке ( V D , I D ) .

Краткое содержание раздела

  1. Полупроводники содержат два типа мобильных носителей заряда: положительно заряженные дырки и отрицательно заряженные электроны.

  2. Полупроводник может быть легирован донорными примесями (легирование n-типа) так, чтобы он содержал подвижные заряды, являющиеся электронами.

  3. Полупроводник может быть легирован акцепторными примесями (легирование p-типа), так что он содержит подвижные заряды, которые являются дырками.

  4. Есть два важных механизма протекания тока в полупроводнике:

    1. диффузия носителей в результате градиента концентрации; и

    2. дрейф носителей в электрическом поле.

  5. В состоянии равновесия через PN-переход создается встроенный потенциальный или потенциальный барьер В BI Вольт.
  6. При приложении напряжения прямого смещения В DF встроенный потенциал снижается до В BI - В D , и ток течет через диод, когда В DF больше V BI .
  7. При приложении напряжения обратного смещения В DR высота потенциального барьера увеличивается до В BI + В DR и может течь небольшой ток.
  8. Когда В BI + В DR больше некоторого критического напряжения, когда электрическое поле выше диэлектрической прочности полупроводника, происходит обратный пробой перехода и течет ток.
  9. Полный ток диода I D связан с приложенным напряжением В D соотношением

ADALM1000 Лабораторная работа 2. Диод I vs.Кривые напряжения V
Лабораторная работа ADALM1000, Зависимая от напряжения емкость PN перехода

Лабораторное занятие ADALM2000 2. Кривые зависимости диода I от V
Лабораторное занятие ADALM2000, зависимая от напряжения емкость PN-перехода
Лабораторное занятие ADALM2000: датчик дифференциальной температуры

Вернуться к предыдущей главе

Перейти к следующей главе

Вернуться к содержанию

Лучшая цена - диодная лента - Лучшие цены на диодную ленту от мировых продавцов диодной ленты

Отличные новости !!! Вы попали в нужное место для диодной ленты.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, так как эта лучшая диодная лента в кратчайшие сроки станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели диодную ленту на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в диодной ленте и думаете о выборе аналогичного товара, AliExpress - отличное место для сравнения цен и продавцов. Мы поможем вам разобраться, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг, и предыдущие клиенты часто оставляют комментарии, описывающие свой опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово - просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны - и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести are diode tape по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

Вот почему Пентагон говорит, что вам следует удалить TikTok

. Пентагон недавно выпустил руководство для всех военнослужащих, в котором они рекомендуют удалить популярное приложение для социальных сетей «TikTok» со своих смартфонов, а ряд военных подразделений прислушались к призыву, потребовав его удаление на всех выпущенных цифровых устройствах.Некоторые команды идут еще дальше, призывая солдат удалить приложение и со своих личных устройств.

Почему Пентагон беспокоит TikTok?

Сбор данных

(Фото Национальной гвардии США)

Многие опасения Министерства обороны по поводу приложения для социальных сетей связаны с тем, что приложение принадлежит Китаю, и опасениям, что программа может быть использована для сбора разведданных об американском персонале. Эти опасения были впервые рассмотрены сенатором.Марко Рубио, штат Флорида, который обратился в Министерство финансов США с просьбой изучить последствия для национальной безопасности практики хранения данных TikTok в связи с китайскими законами, требующими беспрепятственного доступа ко всем данным, хранящимся на национальных серверах. Фактически, китайское законодательство гласит, что правительство может получить доступ ко всей информации, которая проходит через китайские серверы, без уведомления поставщиков услуг, компаний или конечных пользователей. В случае, если данные TikTok проходят через китайские серверы, это означает, что китайское правительство может получить доступ ко всем данным, собранным со смартфонов своих пользователей, без необходимости получения ордера или уведомления в любой форме.

«Угроза, исходящая от распознавания лиц, данных о местоположении и искусственного интеллекта. основанные на технологиях сканирования изображений могут позволить китайскому правительству получать конфиденциальную информацию », - сказал Рубио в заявлении для Military Times. «Попав в чужие руки, эта информация представляет опасность не только для конкретного человека, но и для национальной безопасности США».

Кампании по цензуре и иностранному влиянию

Протесты в Гонконге (с разрешения Studio Incendo на Flickr)

Опасения по поводу TikTok выходят за рамки шпионажа.Многие также обеспокоены тем, как китайское правительство может управлять повествованием с помощью приложения. Многочисленные отчеты предполагают, что TikTok, как и многие китайские бренды, придерживается строгой цензуры контента, который китайское правительство хочет подавлять, как, например, недавние протесты в Гонконге. Некоторые опасаются, что Китай может использовать платформы социальных сетей, такие как TikTok, для взаимодействия с американской аудиторией и продвижения прокитайских нарративов, используя те же методы, которые используют рекламодатели, пытающиеся привлечь молодых американцев.

Эти опасения были изложены в письме, написанном сенаторами Чаком Шумером и Томом Коттоном, демократом Нью-Йорка и республиканцем Арканзаса, Джозефу Магуайру, директору национальной разведки, в конце прошлого года.

«Сообщается, что TikTok подвергает цензуре материалы, которые считаются политически важными для Коммунистической партии Китая, включая контент, связанный с недавними протестами в Гонконге, а также ссылки на площадь Тяньаньмэнь, независимость Тибета и Тайваня и обращение с уйгурами.Платформа также является потенциальной целью кампаний за иностранное влияние, подобных тем, которые проводились во время выборов 2016 года на платформах социальных сетей в США », - говорится в письме.

Что делать, если у вас уже есть аккаунт в TikTok?

(Pixabay)

Если вы являетесь действующим военнослужащим, вам следует немедленно удалить приложение со всех цифровых устройств, выпущенных государственными органами, хотя вам по-прежнему не запрещено хранить приложение на своем личном мобильном устройстве. Однако то, что вы можете сохранить TikTok на своем смартфоне, не обязательно означает, что вы должны .TikTok - это один из множества способов, которые китайское правительство может использовать для управления публичными нарративами и распространения пропаганды. Короче говоря, лучше всего просто удалить приложение.

Однако удаление TikTok не означает, что вы защищены от иностранных кампаний влияния и попыток украсть вашу личную информацию. Субъекты национального уровня присутствуют на каждой платформе социальных сетей, и ваши личные данные могут быть украдены (или собраны) из приложений социальных сетей, которые не принадлежат китайским компаниям.В России недавно были приняты аналогичные законы, касающиеся доступа к данным, которые проходят через их серверы, и даже такие американские компании, как Facebook, неоднократно подвергались проверке за свои методы сбора и распространения данных.

Что вы можете сделать, чтобы обезопасить себя в социальных сетях?

(WikiMedia Commons)

Вы всегда должны быть осторожны при обмене личной информацией в Интернете, и лучше всего предполагать, что большинство платформ в определенной степени скомпрометированы. Для военнослужащих поддержание OPSEC или оперативной безопасности имеет важное значение для выполнения миссии и безопасности войск.Убедитесь, что вы не передаете свое местоположение каким-либо приложениям, особенно при выполнении служебных обязанностей, и будьте осторожны при размещении в Интернете изображений, которые вы принимаете для публикации.

(Фото ВМС США, специалист по массовым коммуникациям 2-го класса Захари С. Эшлеман)

Еще несколько полезных советов для военнослужащих и их семей:

Не сообщайте, что вы или ваш знакомый сотрудник службы поддержки в настоящее время развернуты.

Пример: «Пожалуйста, отправьте молитвы нашему сыну Даниилу, который сейчас находится в Ираке.”

Не сообщайте конкретную информацию о том, где находится отряд или когда он может двигаться.

Пример: «Мы так рады, что отряд Даниэля возвращается из Ирака через три недели!»

Убедитесь, что вы отключили службы определения местоположения при выполнении служебных обязанностей. Лучше все время не включать его.

Пример: приложения, которые отслеживают ваше местоположение во время выполнения PT, могут делиться информацией о вашем местоположении с злоумышленниками в Интернете.

Старайтесь не упоминать конкретные роли, которые выполняют какие-либо участники службы во время развертывания.

Пример: «Даниэль только что прислал нам это фото со всей командой EOD! Эти ребята лучшие!"

Попытка поддерживать OPSEC, пока вы или ваш любимый человек работаете, может показаться пугающей, но есть одно практическое правило, которое может облегчить понимание того, какой информацией вы должны или не должны делиться в социальных сетях: никогда не публикуйте информацию, которую вы бы не сделали. Я не хочу попасть в руки врага, потому что есть шанс.

Изображение предоставлено Staff Sgt. Шарилин Уэллс, армия США

.