Расчет тока для трехфазной сети: формула, онлайн расчет, выбор автомата

Содержание

формула, онлайн расчет, выбор автомата

Проектируя электропроводку в помещении, начинать надо с расчета силы тока в цепях. Ошибка в этом расчете может потом дорого обойтись. Электрическая розетка может расплавиться под действием слишком сильного для нее тока. Если ток в кабеле больше расчетного для данного материала и сечения жилы, проводка будет перегреваться, что может привести к расплавлению провода, обрыва или короткого замыкания в сети с неприятными последствиями, среди которых необходимость полной замены электропроводки – еще не самое плохое.

Знать силу тока в цепи надо и для подбора автоматических выключателей, которые должны обеспечивать адекватную защиту от перегрузки сети. Если автомат стоит с большим запасом по номиналу, к моменту его срабатывания оборудование может уже выйти из строя. Но если номинальный ток автоматического выключателя меньше тока, возникающего в сети при пиковых нагрузках, автомат будет доводить до бешенства, постоянно обесточивая помещение при включении утюга или чайника.

Формула расчета мощности электрического тока

Согласно закону Ома, сила тока(I) пропорциональна напряжению(U) и обратно пропорциональна сопротивлению(R), а мощность(P) рассчитывается как произведение напряжения и силы тока. Исходя из этого, ток в участке сети рассчитывается: I = P/U.

В реальных условиях в формулу добавляется еще одна составляющая и формула для однофазной сети приобретает вид:

I = P/(U*cos φ),

а для трехфазной сети: I = P/(1,73*U*cos φ),

где U для трехфазной сети принимается 380 В, cos φ – это коэффициент мощности, отражающий соотношение активной и реактивной составляющих сопротивления нагрузки.

Для современных блоков питания реактивная компонента незначительна, величину cos φ можно принимать равной 0,95. Исключение составляют мощные трансформаторы (например, сварочные аппараты) и электродвигатели, они имеют большое индуктивное сопротивление.

В сетях, где планируется подключение подобных устройств, максимальную силу тока следует рассчитывать с использованием коэффициента cos φ, равного 0,8 или рассчитать силу тока по стандартной методике, а потом применить повышающий коэффициент 0,95/0,8 = 1,19.

Подставив действующие значения напряжения 220 В/380 В и коэффициента мощности 0,95, получаем I = P/209 для однофазной сети и I = P/624 для трехфазной сети, то есть в трехфазной сети при одинаковой нагрузке ток втрое меньше. Никакого парадокса тут нет, так как трехфазная проводка предусматривает три фазных провода, и при равномерной нагрузке на каждую из фаз она делится натрое. Поскольку напряжение между каждым фазным и рабочим нулевым проводами равно 220 В, можно и формулу переписать в другом виде, так она нагляднее: I = P/(3*220*cos φ).

Подбираем номинал автоматического выключателя

Применив формулу I = P/209, получим, что при нагрузке с мощностью 1 кВт ток в однофазной сети будет 4,78 А. Напряжение в наших сетях не всегда равно в точности 220 В, поэтому не будет большой ошибкой силу тока считать с небольшим запасом как 5 А на каждый киловатт нагрузки. Сразу же видно, что в удлинитель, промаркированный «5 А», утюг мощностью 1,5 кВт включать не рекомендуется, так как ток будет в полтора раза превышать паспортную величину. А еще сразу можно «проградуировать» стандартные номиналы автоматов и определить, на какую нагрузку они рассчитаны:

  • 6 А – 1,2 кВт;
  • 8 А – 1,6 кВт;
  • 10 А – 2 кВт;
  • 16 А – 3,2 кВт;
  • 20 А – 4 кВт;
  • 25 А – 5 кВт;
  • 32 А – 6,4 кВт;
  • 40 А – 8 кВт;
  • 50 А – 10 кВт;
  • 63 А – 12,6 кВт;
  • 80 А – 16 кВт;
  • 100 А – 20 кВт.

С помощью методики «5 ампер на киловатт» можно оценить силу тока, возникающую в сети при подключении бытовых устройств. Интересуют пиковые нагрузки на сеть, поэтому для расчета следует использовать максимальную потребляемую мощность, а не среднюю. Эта информация содержится в документации на изделия. Вряд ли стоит самому рассчитывать этот показатель, суммируя паспортные мощности компрессоров, электродвигателей и нагревательных элементов, входящих в устройство, так как есть еще такой показатель, как коэффициент полезного действия, который придется оценивать умозрительно с риском сильно ошибиться.

При проектировании электропроводки в квартире или загородном доме не всегда доподлинно известны состав и паспортные данные электрооборудования, которое будет подключаться, но можно воспользоваться ориентировочными данными обычных для нашего быта электроприборов:

  • электросауна (12 кВт) — 60 А;
  • электроплита (10 кВт) — 50 А;
  • варочная панель (8 кВт) — 40 А;
  • электроводонагреватель проточный (6 кВт) — 30 А;
  • посудомоечная машина (2,5 кВт) — 12,5 А;
  • стиральная машина (2,5 кВт) — 12,5 А;
  • джакузи (2,5 кВт) — 12,5 А;
  • кондиционер (2,4 кВт) — 12 А;
  • СВЧ-печь (2,2 кВт) — 11 А;
  • электроводонагреватель накопительный (2 кВт) — 10 А;
  • электрочайник (1,8 кВт) — 9 А;
  • утюг (1,6 кВт) — 8 А;
  • солярий (1,5 кВт) — 7,5 А;
  • пылесос (1,4 кВт) — 7 А;
  • мясорубка (1,1 кВт) — 5,5 А;
  • тостер (1 кВт) — 5 А;
  • кофеварка (1 кВт) — 5 А;
  • фен (1 кВт) — 5 А;
  • настольный компьютер (0,5 кВт) — 2,5 А;
  • холодильник (0,4 кВт) — 2 А.

Потребляемая мощность осветительных приборов и бытовой электроники невелика, в целом суммарную мощность осветительных приборов можно оценить в 1,5 кВт и автомата на 10 А на группу освещения достаточно. Бытовая электроника подключается к тем же розеткам, что и утюги, дополнительные мощности резервировать для нее нецелесообразно.

Если просуммировать все эти токи, цифра получается внушительная. На практике, возможности подключения нагрузки ограничивает величина выделенной электрической мощности, для квартир с электрической плитой в современных домах она составляет 10 -12 кВт и на квартирном вводе стоит автомат номиналом 50 А. И эти 12 кВт надо распределить, учитывая то, что самые мощные потребители сосредоточены на кухне и в ванной комнате. Проводка будет доставлять меньше поводов для беспокойства, если разбить ее на достаточное количество групп, каждая со своим автоматом.

Для электроплиты (варочной панели) делается отдельный ввод с автоматом на 40 А и устанавливается силовая розетка с номинальным током 40 А, ничего больше туда подключать не надо. Для стиральной машины и другого оборудования ванной комнаты делается отдельная группа, с автоматом соответствующего номинала. Эту группу обычно защищают УЗО с номинальным током на 15% большим, чем номинал автоматического выключателя. Отдельные группы выделяют для освещения и для настенных розеток в каждой комнате.

На расчет мощностей и токов придется потратить некоторое время, но можно быть уверенным, что труды не пропадут даром. Грамотно спроектированная и качественно смонтированная электропроводка – залог комфорта и безопасности вашего жилища.

Онлайн расчет мощности тока для однофазной и трехфазной сети

Расчета тока по мощности: формула, онлайн расчет

Чтобы уберечь себя от проблем с электропроводкой в процессе эксплуатации необходимо изначально правильно рассчитать и выбрать сечение кабеля ибо от этого будет зависеть и пожаробезопасность здания. Неправильно выбранное сечение кабеля может привести к короткому замыканию и возгоранию электропроводки, а с ней и всего помещения и здания. Выбор сечения зависит от многих параметров, но, пожалуй, самым главным является сила тока.

Формула расчета мощности электрического тока

Если в уже действующей цепи силу тока можно измерить специальными приборами (амперметром), то как быть при проектировании? Ведь мы не можем измерить силу тока в цепи, которой еще нет. В этом случае пользуются расчетным методом.
При известных параметрах мощности, напряжения в сети и характера нагрузки силу тока можно посчитать используя формулу:

Формула для однофазной сети I=P/(U×cosφ)

Формула для трехфазной сети I=P/(1,73×U×cosφ)

  • P — электрическая мощность нагрузки, Вт;
  • U — фактическое напряжение в сети, В;
  • cosφ — коэффициент мощности.

Мощность определяется, исходя из суммарной мощности всех приборов, планируемых в эксплуатации, подключенных к данной сети, это, как правило, паспортные данные приборов или приблизительные значения для аналогичных приборов. Рассчитывается мощность на этапе планирования электропроводки в квартире.

Коэффициент мощности зависит от характера загрузки, например, для нагревательных приборов, ламп освещения он приближен к 1, но во всякой активной нагрузке есть реактивная составляющая, благодаря чему коэффициент мощности принимают равным 0,95. Это всегда нужно учитывать в разных видах электропроводки.

В мощных приборах и оборудовании (электродвигатели, сварочные аппараты и прочее) доля реактивной нагрузки выше, поэтому для подобных приборов коэффициент мощности принимают 0,8.

Напряжение в сети принимают 220 вольт для однофазного тока и 380 вольт для трехфазного, но для большей точности, если есть такая возможность, рекомендуется использовать для расчета фактические значения напряжения, измеренные приборами.

Форма для расчета мощности тока

Как найти мощность трехфазной сети по току и напряжению, расчет по формулам

Трехфазные и однофазные сети распространены примерно одинаково в частных и многоквартирных домах.

Но стоит заметить, что промышленная сеть является трехфазной по умолчанию и в большинстве случаев к улице, где расположены частные дома или к многоквартирному дому подходит как раз-таки трехфазная сеть. А уже потом ее разветвляют на три однофазные, и заводят к конечному потребителю тока.

Расчет сделан не просто так, а с целью обеспечить максимально эффективную передачу электричества от электростанции к вам, а также преследуется цель наибольшего снижения потерь электричества в транспортировочном процессе, ведь на ток оказывает сопротивление проводник, по которому этот самый ток течет.

Если вам интересно, какая сеть у вас в доме или квартире, то определить это достаточно просто. Если вы откроете электрический щиток и посмотрите, сколько проводов используется для вашей квартиры, то если вы увидите 2 или 3 провода, это однофазная сеть, 1 и 2 провод — это фаза и ноль, 3 провод, если он присутствует — это заземление. В трехфазной же сети проводов будет или 4, или 5. Три фазы А, В,С, ноль и если присутствует — заземляющий проводник.

Так же определяется и количество фаз по так называемому пакетнику, вводному автоматическому выключателю. Для однофазной сети выделяется 2 или 1 сдвоенный кабель, а в трехфазной будет 1 строенный кабель и одинарный. Но не следует забывать о напряжении, с которым нужно быть очень осторожным.

Для того чтобы произвести расчет по току, и расчет по напряжению чтобы узнать мощность несложно, как правило, в трехфазных сетях нуждаются большие энергопотребители. С помощью формулы, приведенной в статье, произвести расчет мощности, используя значения тока и напряжения, вы сможете с легкостью.

Узнаем потребляемую мощность электричества

Итак, перейдем к существу, нам нужно узнать мощность электричества по току и напряжению. Прежде всего нужно знать, сколько потреблять энергии вы будете. Это легко узнать, сопоставив все энергопотребители в вашем доме. Давайте выберем самую распространенную технику, без которой не обойтись современному человеку. Кстати, узнать сколько потребляет тот или иной прибор, можно в паспортных данных вашего электроприбора, или на бирке, которая может быть на корпусе. Начнем с самого высокого потребления напряжения:

  • Стиральная машина — 2700 Ватт
  • Водонагреватель (бойлер) — 2000 Ватт
  • Утюг — 1875 Ватт
  • Кофеварка — 1200 Ватт
  • Пылесос — 1000 Ватт
  • Микроволновая печь — 800 Ватт
  • Компьютер — 500 Ватт
  • Освещение — 500 Ватт
  • Холодильник — 300 Ватт
  • Телевизор — 100 Ватт

По формуле нам нужно все добавить и поделить на 1000, для перевода из ватт в киловатты.

Суммарно у нас получилось 10975 Ватт, переведем в киловатты, поделив на 1000.

Итого у нас потребление 10.9 кВт.

Для обычного обывателя вполне достаточно и одной фазы. Особенно если вы не собираетесь включать все одновременно, что, конечно же, маловероятно.

Но нужно помнить что потребление тока может быть значительно выше, особенно если вы живете в частном доме и/или у вас есть гараж, тогда потребление одного прибора может составлять 4-5 кВт. Тогда вам будет предпочтительнее трехфазная сеть, как более мощная и позволяющая подключать значительно более мощных потребителей тока.

Трехфазная сеть

Давайте более подробно рассмотрим именно трехфазную сеть, как более предпочтительную для нас. Для начала приведем сравнительную характеристику однофазной и трехфазной сети. Выделим некоторые плюсы и минусы.

Когда используется трехфазная сеть есть вероятность что нагрузка распределиться неравномерно на каждую фазу. Если, к примеру, от первой фазы будет запитан электрический котел и мощный нагреватель, а от второй — телевизор и холодильник, то будет иметь место такое явления, как «перекос фаз» — несимметрия напряжений и токов, что может быть следствием выхода из строя некоторых потребителей тока. Для избежания подобной ситуации следует тщательнее планировать распределение нагрузки еще на начальном этапе проектирования сети.

Также трехфазной сети потребуется большее число проводов, кабелей и автоматических выключателей, пропускающих ток, так как мощность будет значительно выше, соответственно монтаж такой сети будет дороже.

Однофазная сеть по возможной потенциальной мощности уступает трехфазной. Так что если вы предполагаете использовать много мощных потребителей тока, то второй вариант будет соответственно лучше. Для примера, если в дом заходит двужильный (трехжильный если он с заземлением), с линии электропередач, кабель сечением 16 мм2, тогда общая мощность всех электропотребителей в доме не должна превышать 14кВт, как в примере, наведенном выше.

Но если же вы будете использовать то же сечение провода для трехфазной сети, но соответственно кабель будет 4-5 жильным, то уже тогда максимальная суммарная мощность будет равняться уже 42 кВт.

Рассчитываем мощность трехфазной сети

Для расчета примем некий производственный цех, в котором установлены тридцать электродвигателей. В цех заходит четырехпроводная линия, помним что это 3 фазы: A, B, C, и нейтраль(ноль). Номинальное напряжение 380/220 вольт. Суммарная мощность всех двигателей составляет Ру1 — 48кВт, еще у нас есть осветительные лампы в мастерской, суммарная мощность которых составляет Ру2- 2кВт.

  • Ру — установленная суммарная мощность группы потребителей, по величине равная сумме их заявленных мощностей, измеряется в кВт.
  • Кс — коэффициент спроса при режиме наивысшей нагрузки. Коэффициент спроса учитывает самое большое возможное число включений приемников группы. Для электродвигателей коэффициент спроса должен брать в расчет величину их загрузки.

Коэффициент спроса для осветительной (освещения) нагрузки, то есть освещения, Кс2-0,9, и для силовой нагрузки, то есть электродвигателей Кс1=0,35. Усредненный коэффициент мощности для всех потребителей cos( φ ) = 0,75. Необходимо найти расчетный ток линии.

Расчет

Подсчитаем расчетную силовую нагрузку P1 = 0,35*48 = 16,8 кВт

и расчетную осветительную нагрузку Р2 = 0,9 *2 = 1.8 кВт.

Полная расчетная нагрузка P = 16,8+1,8=18,6 кВт;

Расчетный ток считаем с помощью формулы:

где

Р — расчетная мощность потребителя (электродвигатели и освещение), кВт;

Uн — напряжение номинальное на клеммах приемника, которое равняется междуфазному (линейному, когда подключается фаза и фаза, тоесть 380 В) то есть напряжению в сети, от которой он запитан, В;

cos ( φ ) — коэффициент мощности приемника.

Таким образом, мы произвели расчет мощности по току, который позволит вам разобраться с трехфазными сетями. Но перейдя непосредственно к монтажу системы не забывайте технику безопасности, ведь ток и напряжение опасное для вашей жизни явление.

Расчет тока и мощности | ИП Субботин


Для расчета цепи трехфазного переменного тока и выбора параметров элементов сети, необходимо знать расчетное значение потребляемой активной мощности. Напомним, что физически активная мощность представляет собой энергию, которая выделяется в единицу времени в виде теплоты на активном сопротивлении участка цепи. Единица активной мощности — Вт.

Иногда, в паспорте (или на шильдике) электрооборудования может быть указано значение полной мощности, которая больше активной мощности на величину коэффициента мощности (косинуса фи).

Ниже приведены онлайн калькуляторы для расчета тока и мощности в однофазной сети 220 В или трехфазной сети 380 В, 6 кВ и 10 кВ.

При определении Расчетной мощности или тока нагрузки должны учитываться единичные номинальные мощности или потребляемые токи всех электроприемников и потери мощности в питающих линиях. Номинальные (ещё их называют установленные) мощности указывают в паспортах электроустановок.

Значения коэффициента реактивной мощности зависят от параметров подключаемых электроприемников. В наших онлайн калькуляторах используются самые распространенные значения, в соответствии с действующими нормами и правилами.

Расчет трехфазного и однофазного тока по мощности

При выборе номинального тока защитного коммутационного аппарата (например, автоматического выключателя), необходимо полученное значение расчетного тока округлить к ближайшему большему току по принятому в нашей стране ряду номинальных токов выключателей.

При выборе номинального первичного тока трансформатора тока, также необходимо округлить полученное значение расчетного тока к ближайшему большему току по ряду номинальных токов трансформаторов.

Расчет трехфазной и однофазной мощности по току

Максимальная мощность присоединяемых энергопринимающих устройств, указываемая в технических условиях на технологичкеское присоединение, это мощность, которую могут потреблять из сети элекроприемники при их максимальной единовременной загрузке.

Величина максимальной мощности больше расчетной мощности, так как она не учитывает Коэффициенты спроса и одновременности.

Так, например, абонентам, имеющим однофазный ввод 220 В с максимальной мощностью 5 кВт и вводной коммутационный аппарат на 25 А, получив технические условия на увеличение максимальной мощности до трехфазных 15 кВт, также необходим вводной автоматический выключатель на 25 А, но уже трехфазный, на 380 В.

Наша строительная компания оказывает услуги по проектированию электроснабжения (в том числе временного и резервного) жилых, общественных и промышленных зданий. В составе проекта обязательно должен быть раздел по расчету электрических нагрузок. Предлагаем вам пример расчета электрических нагрузок садового товарищества на территории которого 229 земельных участков, который был выполнен нашей компанией в 2016 году: пример расчета.

Также, мы берем на себя все функции по выполнению строительно-монтажных работ (см. страницу Электромонтажные работы).

Если у вас остались вопросы, наши специалисты с радостью вам помогут. Позвоните нам прямо сейчас по телефону +7 (903) 137-59-05, или воспользуйтесь формой обратной связи.

Расчет мощности трехфазной сети: формулы для расчета

Электрическая энергия на все объекты изначально поступает через трехфазную сеть. В частные дома она может заводиться напрямую, а в многоквартирном доме доходит лишь до вводного распределительного устройства. Далее по квартирам расходятся уже однофазные линии. В любом случае потребуется выполнить расчет мощности трехфазной сети, чтобы заранее определить ее способность выдерживать запланированные нагрузки по току. Для того чтобы сделать правильные вычисления, нужно знать особенности таких сетей. Все необходимые расчеты выполняются вручную при помощи формул или с использованием онлайн-калькулятора.

Специфика и особенности трехфазных сетей

Трехфазные электрические сети наиболее эффективно передают ток через промежуточные звенья, вплоть до потребителя. В процессе доставки потери энергии минимальны.

Наличие трехфазной сети в квартире или частном доме очень легко определить. Для этого нужно просто заглянуть в щиток и посчитать количество проводов. Если в наличии 2 или 3 проводника, значит сеть однофазная. В ней два провода являются фазой и нулем. При наличии заземления может быть третий провод. В трехфазных сетях проводов больше на два из-за двух дополнительных фаз. При отсутствии заземления – их всего четыре, а при наличии заземляющего контура – пять.

Эту же задачу можно решить и с помощью вводного автоматического выключателя. К нему также подводится определенное количество проводов, подключаемых в соответствующие клеммы.

В процессе эксплуатации трехфазной сети велика вероятность неравномерного распределения нагрузки по отдельным фазам. Если к одной из них будет подключено только мощное оборудование, а к другим – обычные бытовые приборы, в этом случае может возникнуть ситуация, называемая перекосом фаз. В результате асимметрии тока и напряжения, отдельные потребители могут выйти из строя. Во избежание негативных последствий, нагрузка должна быть равномерно спланирована еще на стадии проектирования и выполнен расчет мощности трехфазной сети.

Трехфазная сеть, по сравнению с однофазной, отличается большим количеством кабельно-проводниковой продукции, автоматов и других устройств. К ней подключается специфическое трёхфазное оборудование Суммарная мощность будет выше ровно в три раза. Значение мощности рассчитывается по току и напряжению с использованием формул.

Расчет мощности потребителей

В первую очередь нужно заранее установить объемы потребляемой электроэнергии. Для этого суммируется мощность всех потребителей, находящихся в доме. Сюда входит мощное оборудование, обычная бытовая техника и осветительные приборы. У некоторых хозяев этот список может быть дополнен теплыми электрическими полами.

Все необходимы сведения можно посмотреть в техническом паспорте, который прилагается к каждому устройству. На некоторые приборы наносится соответствующая маркировка. Вначале идут самые мощные агрегаты и далее – все остальное оборудование, по мере уменьшения мощности.

Для вычислений берется стиральная машина-автомат, мощностью 2600 Вт, электрический водонагреватель – 1900 Вт, утюг – 1500 Вт, пылесос – 1000 Вт, микроволновка – 800 Вт, компьютер и оргтехника – 600 Вт, осветительные приборы (с лампами эконом) – 400 Вт, холодильник – 300 Вт, телевизор – 100 Вт. Итоговый результат получился 9200 Вт и его необходимо перевести в киловатты. Для этого 9200 Вт делится на 1000, получается 9,2 кВт, что и будет расчетным потреблением электроэнергии.

С данной мощностью может справиться и одна фаза, однако в частных домах устанавливается более мощное оборудование, для работы которого лучше пользоваться сетями 380в. В этом случае гарантируется бесперебойное функционирование отопительных и водонагревательных котлов, насосов, электродвигателей и других агрегатов.

Как рассчитать трехфазную сеть

В качестве примера можно взять некие производственные площади с установленным оборудованием и по этим исходным данным делать расчет мощности трехфазного тока.

В каждом станке используется электродвигатель. Их общая мощность Ру1 составляет 50 кВт, с учетом активной мощности. Кроме того, в помещении установлены осветительные приборы общей мощностью (Ру2) – 3 кВт. Символ Ру обозначает величину установленной суммарной мощности для конкретных групп потребителей. Работа оборудования осуществляется от трехфазной сети с 4 проводами и номинальным напряжением 380 В.

Кроме того, при расчетах учитывается коэффициент спроса Кс, действующий в режиме максимальной нагрузки. Он учитывает наивысшее количество включений потребителей данной группы. Для электродвигателей Кс1 берется с учетом величины их загруженности и составляет 0,35. Для приборов освещения Кс2 составляет 0,9. Все потребители выравниваются усредненным коэффициентом мощности cos φ = 0,75.

Расчеты начинаются с определения силовой нагрузки Р1 = 0,35 х 50 = 17,5 кВт. Далее рассчитывается осветительная нагрузка Р2 = 0,9 х 3 = 2,7 кВт. Таким образом, величина полной расчетной нагрузки составит Р = Р1 + Р2 = 17,5 + 2,7 = 20,2 кВт.

Для определения и расчета тока используется формула I = (1000 x P)/(1,73 x Uн x cos φ), в которой Р является расчетной мощностью потребителей, Uн – номинальным напряжением 380 вольт, cos φ – коэффициентом мощности.

Подставив нужные значения, находим значение силы и мощности по току: I = (1000 x 20,2)/(1,73 x 380 x 0,75) = 41 А. Полученный результат дает возможность узнать, сможет ли сеть обеспечить нормальную работу потребителей.

Использование калькулятора для расчета мощности

Онлайн-калькулятор существенно ускоряет проведение расчетов мощности в трехфазной сети. Для этого должны быть заранее известны мощность и характер нагрузки – активной и реактивной, сетевое напряжение, а также тип сети – одно- или трехфазный. Все параметры рассчитываются по формулам и методикам, приведенным выше. Достаточно всего лишь вставить в окна необходимые данные и нажать кнопку «Рассчитать ток». В окне с обозначением тока в А появится искомый результат, показывающий величину тока по мощности.

формулы расчета на 220в и 380в

Включение потребителей в бытовые или промышленные электрические сети с использованием кабеля меньшей мощности, чем это необходимо, может вызвать серьезные негативные последствия. В первую очередь это приведет к постоянному срабатыванию автоматических выключателей или перегоранию плавких предохранителей. При отсутствии защиты питающий провод или кабель может перегореть. В результате перегрева изоляция оплавляется, а между проводами возникает короткое замыкание. Чтобы избежать подобных ситуаций, необходимо заранее выполнить расчет тока по мощности и напряжению, в зависимости от имеющейся однофазной или трехфазной электрической сети.

Для чего нужен расчет тока

Расчет величины тока по мощности и напряжению выполняется еще на стадии проектирования электрических сетей объекта. Полученные данные позволяют правильно выбрать питающий кабель, к которому будут подключаться потребители. Для расчетов силы тока используется значение напряжения сети и полной нагрузки электрических приборов. В соответствии с величиной силы тока выбирается сечение жил кабелей и проводов.

Если все потребители в доме или квартире известны заранее, то выполнение расчетов не представляет особой сложности. В дальнейшем проведение электромонтажных работ значительно упрощается. Таким же образом проводятся расчеты для кабелей, питающих промышленное оборудование, преимущественно электрические двигатели и другие механизмы.

Расчет тока для однофазной сети

Измерение силы тока производится в амперах. Для расчета мощности и напряжения используется формула I = P/U, в которой P является мощностью или полной электрической нагрузкой, измеряемой в ваттах. Данный параметр обязательно заносится в технический паспорт устройства. U – представляет собой напряжение рассчитываемой сети, измеряемое в вольтах.

Взаимосвязь силы тока и напряжения хорошо просматривается в таблице:

Электрические приборы и оборудование

Потребляемая мощность (кВт)

Сила тока (А)

Стиральные машины

2,0 – 2,5

9,0 – 11,4

Электрические плиты стационарные

4,5 – 8,5

20,5 – 38,6

Микроволновые печи

0,9 – 1,3

4,1 – 5,9

Посудомоечные машины

2,0 – 2,5

9,0 – 11,4

Холодильники, морозильные камеры

0,14 – 0,3

0,6 – 1,4

Электрический подогрев полов

0,8 – 1,4

3,6 – 6,4

Мясорубка электрическая

1,1 – 1,2

5,0 – 5,5

Чайник электрический

1,8 – 2,0

8,4 – 9,0

Таким образом, взаимосвязь мощности и силы тока дает возможность выполнить предварительные расчеты нагрузок в однофазной сети. Таблица расчета поможет подобрать необходимое сечение провода, в зависимости от параметров.

Диаметры жил проводников (мм)

Сечение жил проводников (мм2)

Медные жилы

Алюминиевые жилы

Сила тока (А)

Мощность (кВт)

Сила (А)

Мощность (кВт)

0,8

0,5

6

1,3

0,98

0,75

10

2,2

1,13

1,0

14

3,1

1,38

1,5

15

3,3

10

2,2

1,6

2,0

19

4,2

14

3,1

1,78

2,5

21

4. 6

16

3,5

2,26

4,0

27

5,9

21

4,6

2,76

6,0

34

7,5

26

5,7

3,57

10,0

50

11,0

38

8,4

4,51

16,0

80

17,6

55

12,1

5,64

25,0

100

22,0

65

14,3

Расчет тока для трехфазной сети

В случае использования трехфазного электроснабжения вычисление силы тока производится по формуле: I = P/1,73U, в которой P означает потребляемую мощность, а U – напряжение в трехфазной сети. 1,73 является специальным коэффициентом, применяемым для трехфазных сетей.

Так как напряжение в этом случае составляет 380 вольт, то вся формула будет иметь вид: I = P/657,4.

Точно так же, как и в однофазной сети, диаметр и сечение проводников можно определить с помощью таблицы, отражающей зависимости этих параметров от различных нагрузок.

Диаметры жил проводников (мм)

Сечение жил проводников (мм2)

Медные жилы

Алюминиевые жилы

Сила тока (А)

Мощность (кВт)

Сила (А)

Мощность (кВт)

0,8

0,5

6

2,25

0,98

0,75

10

3,8

1,13

1,0

14

5,3

1,38

1,5

15

5,7

10

3,8

1,6

2,0

19

7,2

14

5,3

1,78

2,5

21

7,9

16

6,0

2,26

4,0

27

10,0

21

7,9

2,76

6,0

34

12,0

26

9,8

3,57

10,0

50

19,0

38

14,0

4,51

16,0

80

30,0

55

20,0

5,64

25,0

100

38,0

65

24,0

В некоторых случаях расчет тока по напряжению и мощности следует проводить с учетом полной реактивной мощности, присутствующей в электродвигателях, сварочном и другом оборудовании. Для таких устройств коэффициент мощности будет равен 0,8.

Как рассчитать мощность тока

Пример расчета тока трехфазного к.з. в сети 0,4 кВ

Содержание

В данном примере будет рассматриваться расчет тока трехфазного короткого замыкания в сети 0,4 кВ для схемы представленной на рис.1.

Исходные данные:

1. Ток короткого замыкания на зажимах ВН трансформатора 6/0,4 кВ составляет — 11 кА.

2. Питающий трансформатор типа ТМ — 400, основные технические характеристики принимаются по тех. информации на трансформатор:

  • номинальная мощностью Sн.т — 400 кВА;
  • номинальное напряжение обмотки ВН Uн.т.ВН – 6 кВ;
  • номинальное напряжение обмотки НН Uн. т.НН – 0,4 кВ;
  • напряжение КЗ тр-ра Uк – 4,5%;
  • мощность потерь КЗ в трансформаторе Рк – 5,5 кВт;
  • группа соединений обмоток по ГОСТ 11677-75 – Y/Yн-0;

3. Трансформатор соединен со сборкой 400 В, алюминиевыми шинами типа АД31Т по ГОСТ 15176-89 сечением 50х5 мм. Шины расположены в одной плоскости — вертикально, расстояние между ними 200 мм. Общая длина шин от выводов трансформатора до вводного автомата QF1 составляет 15 м.

4. На стороне 0,4 кВ установлен вводной автомат типа XS1250CE1000 на 1000 А (фирмы SOCOMEC), на отходящих линиях установлены автоматические выключатели типа E250SCF200 на 200 А (фирмы SOCOMEC) и трансформаторы тока типа ТСА 22 200/5 с классом точности 1 (фирмы SOCOMEC).

5. Кабельная линия выполнена алюминиевым кабелем марки АВВГнг сечением 3х70+1х35.

Решение

Для того, чтобы рассчитать токи КЗ, мы сначала должны составить схему замещения, которая состоит из всех сопротивлений цепи КЗ, после этого, определяем все сопротивления входящие в цепь КЗ. Активные и индуктивные сопротивления всех элементов схемы замещения выражаются в миллиомах (мОм).

В практических расчетах для упрощения расчетов токов к.з. учитывается только индуктивное сопротивление энергосистемы, которое равно полному. Активное сопротивление не учитывается, данные упрощения на точность расчетов – не влияют!

1.1 Определяем сопротивление энергосистемы со стороны ВН по выражению 2-7 [Л1. с. 28]:

1.2 Определяем сопротивление энергосистемы приведенное к напряжению 0,4 кВ по выражению 2-6 [Л1. с. 28]:

2.1 Определяем полное сопротивление трансформатора для стороны 0,4 кВ по выражению 2-8 [Л1. с. 28]:

2.2 Определяем активное сопротивление трансформатора для стороны 0,4 кВ по выражению 2-9 [Л1. с. 28]:

2.3 Определяем индуктивное сопротивление трансформатора для стороны 0,4 кВ по выражению 2-10 [Л1. с. 28]:

Для упрощения расчетов можно воспользоваться таблицей 2.4 [Л1. с. 28], как видно из результатов расчетов, активные и индуктивные сопротивления совпадают со значениями таблицы 2. 4.

3.1 Определяем индуктивное сопротивление алюминиевых прямоугольных шин типа АД31Т сечением 50х5 по выражению 2-12 [Л1. с. 29]:

3.1.1 Определяем среднее геометрическое расстояние между фазами 1, 2 и 3:

3.2 По таблице 2.6 определяем активное погонное сопротивление для алюминиевой шины сечением 50х5, где rуд. = 0,142 мОм/м.

Для упрощения расчетов, значения сопротивлений шин и шинопроводов, можно применять из таблицы 2.6 и 2.7 [Л1. с. 31].

3.3 Определяем сопротивление шин, учитывая длину от трансформатора ТМ-400 до РУ-0,4 кВ:

4.1 Определяем активное и индуктивное сопротивление кабелей по выражению 2-11 [Л1. с. 29]:

Значения активных и индуктивных сопротивлений обмоток для одного трансформатора тока типа ТСА 22 200/5 с классом точности 1, определяем по приложению 5 таблица 20 ГОСТ 28249-93, соответственно rта = 0,67 мОм, хта = 0,42 мОм.

Активным и индуктивным сопротивлением одновитковых трансформаторов (на токи более 500 А) при расчетах токов КЗ можно пренебречь.

Согласно [Л1. с. 32] для упрощения расчетов, сопротивления трансформаторов тока не учитывают ввиду почти незаметного влияния на токи КЗ.

Определяем активное сопротивление контактов по приложению 4 таблица 19 ГОСТ 28249-93:

  • для рубильника на ток 1000 А – rав1 = 0,12 мОм;
  • для автоматического выключателя на ток 200 А — rав2 = 0,60 мОм.

Для упрощения расчетов, сопротивления контактных соединений кабелей и шинопроводов, я пренебрегаю, ввиду почти незаметного влияния на токи КЗ.

Если же вы будете использовать в своем расчете ТКЗ значения сопротивления контактных соединений кабелей и шинопроводов, то они принимаются по приложению 4 таблицы 17,18 ГОСТ 28249-93.

При приближенном учете сопротивлений контактов принимают:

  • rк = 0,1 мОм — для контактных соединений кабелей;
  • rк = 0,01 мОм — для шинопроводов.

8.1 Определяем ток трехфазного к.з. в конце кабельной линии:

1. Беляев А.В. Выбор аппаратуры, защит и кабелей в сети 0,4 кВ. Учебное пособие. 2008 г.
2. Голубев М.Л. Расчет токов короткого замыкания в электросетях 0,4 — 35 кВ. 2-e изд. 1980 г.
3. ГОСТ 28249-93 – Методы расчета в электроустановках переменного тока напряжением до 1 кВ.

Всего наилучшего! До новых встреч на сайте Raschet.info.

Поделиться в социальных сетях

Трехфазный ток — простой расчет

Расчет тока в трехфазной системе был поднят на нашем сайте отзывов, и это обсуждение, в которое я, кажется, время от времени участвую. Хотя некоторые коллеги предпочитают запоминать формулы или коэффициенты, я предпочитаю решать проблему шаг за шагом, используя базовые принципы. Я подумал, что неплохо было бы написать, как я делаю эти расчеты. Надеюсь, это может оказаться полезным для кого-то еще.

Трехфазное питание и ток

Мощность, потребляемая цепью (одно- или трехфазной), измеряется в ваттах Вт (или кВт). Произведение напряжения и тока является полной мощностью и измеряется в ВА (или кВА). Соотношение между кВА и кВт — это коэффициент мощности (pf):


что также может быть выражено как:

Однофазная система — с этим проще всего иметь дело. Учитывая кВт и коэффициент мощности, можно легко рассчитать кВА. Сила тока — это просто кВА, деленная на напряжение. В качестве примера рассмотрим нагрузку, потребляющую 23 кВт мощности при 230 В и коэффициенте мощности 0.86:


Примечание: эти уравнения можно выполнять в ВА, В и А или в кВА, кВ и кА в зависимости от величины параметров, с которыми вы имеете дело. Чтобы преобразовать ВА в кВА, просто разделите на 1000.

Трехфазная система — Основное различие между трехфазной системой и однофазной системой — это напряжение. В трехфазной системе у нас есть линейное напряжение (V LL ) и фазное напряжение (V LN ), связанные следующим образом:


или как вариант:

чтобы лучше понять это или получить больше информации, вы можете прочитать статью

Введение в трехфазную электрическую мощность.

Для меня самый простой способ решить трехфазные проблемы — это преобразовать их в однофазную.Возьмем трехфазный двигатель (с тремя одинаковыми обмотками), потребляющий заданную кВт. Мощность в кВт на обмотку (одна фаза) должна быть разделена на 3. Точно так же трансформатор (с тремя обмотками, каждая из которых идентична), питающий заданную кВА, будет иметь каждую обмотку, обеспечивающую треть общей мощности. Чтобы преобразовать трехфазную задачу в однофазную, возьмите общую мощность в кВт (или кВА) и разделите ее на три.

В качестве примера рассмотрим сбалансированную трехфазную нагрузку, потребляющую 36 кВт при коэффициенте мощности 0.86 и линейное напряжение 400 В (В LL ):

линия к нейтрали (фаза) напряжение В LN = 400 / √3 = 230 В
трехфазная мощность 36 кВт, однофазная мощность = 36/3 = 12 кВт
теперь просто следуйте описанному выше однофазному методу

Достаточно просто. Чтобы найти мощность при заданном токе, умножьте его на напряжение, а затем на коэффициент мощности, чтобы преобразовать его в W. Для трехфазной системы умножьте на три, чтобы получить полную мощность.

Личная записка по методу

Как правило, я запоминаю метод (а не формулы) и переделываю его каждый раз, когда делаю расчет. Когда я пытаюсь запомнить формулы, я всегда быстро их забываю или неуверен, правильно ли я их запоминаю. Мой совет — всегда старайтесь запоминать метод, а не просто запоминать формулы. Конечно, если у вас есть суперспособности запоминать формулы, вы всегда можете придерживаться этого подхода.

Использование формул

Вывод формулы — пример

Сбалансированная трехфазная система с общей мощностью P (Вт), коэффициентом мощности pf и линейным напряжением В LL

Преобразование в однофазную проблему:
P1ph = P3

Полная мощность одной фазы S 1 фаза (ВА):
S1ph = P1phpf = P3 × pf

Фазный ток I (A) — это полная мощность одной фазы, деленная на напряжение между фазой и нейтралью (и дано В LN = В LL / √3):
I = S1phVLN = P3 × pf3VLL

Упрощение (и с 3 = √3 x √3):
I = P3 × pf × VLL

Приведенный выше метод основан на запоминании нескольких простых принципов и манипулировании проблемой, чтобы дать ответ.

Для получения того же результата можно использовать более традиционные формулы. Их можно легко получить из вышеизложенного, например:

I = W3 × pf × VLL, дюйм A

Несбалансированные трехфазные системы

Вышеупомянутое относится к сбалансированным трехфазным системам. То есть ток в каждой фазе одинаковый, и каждая фаза обеспечивает или потребляет одинаковое количество энергии. Это типично для систем передачи энергии, электродвигателей и аналогичного оборудования.

Часто, когда задействованы однофазные нагрузки, например, в жилых и коммерческих помещениях, система может быть несбалансированной, так как каждая фаза имеет разный ток и доставляет или потребляет разное количество энергии.

Сбалансированные напряжения

К счастью, на практике напряжения имеют тенденцию быть фиксированными или очень небольшими. В этой ситуации, немного подумав, можно распространить вышеупомянутый тип расчета на трехфазные системы с несимметричным током. Ключом к этому является то, что сумма мощности в каждой фазе равна общей мощности системы.

Например, возьмем трехфазную систему 400 В (V LL ) со следующими нагрузками: фаза 1 = 80 A, фаза 2 = 70 A, фаза 3 = 82 A

линия к нейтрали (фаза) напряжение В LN = 400 / √3 = 230 В
Полная мощность фазы 1 = 80 x 230 = 18400 ВА = 18,4 кВА
Полная мощность фазы 2 = 70 x 230 = 16100 ВА = 16,1 кВА
Полная мощность фазы 3 = 82 x 230 = 18 860 ВА = 18.86 кВА
Общая трехфазная мощность = 18,4 + 16,1 + 18,86 = 53,36 кВА

Аналогичным образом, учитывая мощность в каждой фазе, вы можете легко найти фазные токи. Если вам также известен коэффициент мощности, вы можете преобразовать его из кВА в кВт, как показано ранее.

Несбалансированные напряжения

Если напряжения становятся несимметричными или есть другие соображения (например, несбалансированный фазовый сдвиг), то необходимо вернуться к более традиционному анализу сети. Системные напряжения и токи можно найти, подробно изобразив схему и используя законы Кирхгофа и другие сетевые теоремы.

Сетевой анализ не является целью данной заметки. Если вас интересует введение, вы можете просмотреть наш пост: Теория сети — Введение и обзор

КПД и реактивная мощность

Другие факторы, которые следует учитывать при проведении расчетов, могут включать эффективность оборудования.Зная, что эффективность энергопотребляющего оборудования — это выходная мощность, деленная на входную, опять же, это легко подсчитать. Реактивная мощность не обсуждается в статье, а более подробную информацию можно найти в других заметках (просто воспользуйтесь поиском на сайте).

Сводка

Помня, что трехфазная мощность (кВт или кВА) просто в три раза больше однофазной мощности, любую трехфазную задачу можно упростить. Разделите кВт на коэффициент мощности, чтобы получить кВА. ВА — это просто ток, умноженный на напряжение, поэтому знание этого и напряжения может дать ток. При расчете тока используйте фазное напряжение, которое связано с линейным напряжением квадратным корнем из трех. Используя эти правила, можно решить любую трехфазную задачу без необходимости запоминать и / или прибегать к формулам.

Как рассчитать трехфазную мощность

Обновлено 12 ноября 2018 г.

Ли Джонсон

Трехфазная мощность — широко используемый метод для выработки и передачи электроэнергии, но вычисления, которые вам нужно выполнить, немного сложнее чем для однофазных систем.Тем не менее, при работе с уравнениями трехфазной мощности вам не нужно ничего делать, поэтому вы сможете легко решить любую поставленную вам задачу трехфазного питания. Главное, что вам нужно сделать, это найти ток с учетом мощности в цепи или наоборот.

TL; DR (слишком долго; не читал)

Выполните расчет трехфазной мощности по формуле:

P = √3 × pf × I × V

Где pf — коэффициент мощности, I — ток, В, — напряжение и P — мощность.

Однофазное и трехфазное питание

Однофазное и трехфазное питание — это термины, описывающие электричество переменного тока (AC). Ток в системах переменного тока постоянно изменяется по амплитуде (то есть по размеру) и направлению, и это изменение обычно принимает форму синусоидальной волны. Это означает, что он плавно изменяется с серией пиков и спадов, описываемых синусоидальной функцией. В однофазных системах такая волна всего одна.

Двухфазные системы разделяют его на две части.Каждая секция тока сдвинута по фазе с другой на половину цикла. Итак, когда одна из волн, описывающих первую часть переменного тока, находится на пике, другая — на минимальном значении.

Однако двухфазное питание встречается нечасто. Трехфазные системы используют тот же принцип разделения тока на противофазные составляющие, но с тремя вместо двух. Три части тока сдвинуты по фазе на треть цикла каждая. Это создает более сложную схему, чем двухфазное питание, но они одинаково компенсируют друг друга. Каждая часть тока одинакова по размеру, но противоположна направлению двух других частей, вместе взятых.

Формула трехфазной мощности

Наиболее важные уравнения трехфазной мощности связывают мощность ( P , в ваттах) с током ( I , в амперах) и зависят от напряжения ( V ). В уравнении также присутствует «коэффициент мощности» ( pf ), который учитывает разницу между реальной мощностью (которая выполняет полезную работу) и полной мощностью (которая подается в схему).Большинство типов расчетов трехфазной мощности выполняется с использованием этого уравнения:

P = √3 × pf × I × V

Здесь просто указано, что мощность является квадратным корнем из трех (около 1,732), умноженным на коэффициент мощности (обычно от 0,85 до 1, см. Ресурсы), ток и напряжение. Не позволяйте символам пугать вас, используя это уравнение; как только вы включите все необходимые составляющие в уравнение, им станет легко пользоваться.

Преобразование кВт в А

Допустим, у вас есть напряжение, общая мощность в киловаттах (кВт) и коэффициент мощности, и вы хотите узнать ток (в амперах) в цепи.Изменив приведенную выше формулу расчета мощности, мы получим:

I = P / (√3 × pf × V)

Если ваша мощность выражена в киловаттах (т.е. тысячах ватт), лучше либо преобразовать ее в ватт (умножив на 1000) или оставьте его в киловаттах. Убедитесь, что ваше напряжение указано в киловольтах (кВ = вольт ÷ 1000). Например, если у вас коэффициент мощности 0,85, мощность 1,5 кВт и напряжение 230 В, просто укажите мощность как 1500 Вт и вычислите:

I = P / (√3 × pf × V)

= 1500 Вт / √3 × 0.85 × 230 В

Аналогично, мы могли бы работать с кВ (учитывая, что 230 В = 0,23 кВ) и найти то же самое:

I = P / (√3 × pf × V)

= 1,5 кВт / √3 × 0,85 × 0,23 кВ

Преобразование ампер в кВт

Для обратного процесса используйте форму приведенного выше уравнения:

P = √3 × pf × I × V

Просто умножьте свои известные значения, чтобы найти ответ. Например, при I = 50 A, V = 250 V и pf = 0.9, это дает:

P = √3 × pf × I × V

= √3 × 0,9 × 50 A × 250 В

Поскольку это большое число, преобразуйте его в кВт, используя (значение в Вт) / 1000 = (значение в киловаттах).

19,486 Вт / 1000 = 19,486 кВт

Формула трехфазного напряжения

Используя вышеупомянутую формулу… V P = фазное напряжение V L = линейное напряжение I P = фазный ток I L = линейный ток R = R1 = R2 = R3 = сопротивление каждой ветви W = мощность, эквивалентная звездам и треугольнику W DELTA = 3 Вт, треугольник.Введите коэффициент мощности нагрузки. Таким образом, если угол зажигания равен нулю (cos (0) = 1), управляемый выпрямитель работает аналогично предыдущему трехфазному неуправляемому диодному выпрямителю со средними выходными напряжениями, такими же. Из этого поста вы узнаете, как рассчитать ток нагрузки трехфазного двигателя. Падения напряжения бывают междуфазными, для трехфазных, трехпроводных или трехфазных, четырехпроводных цепей 60 Гц. Большинство предыдущих ответов не ошибочны в отношении формул, но в большинстве из них не указывается, для какой конфигурации элемента (звезда или дельта) они действительны, или к какому напряжению или току (фазе или линии) они относятся. к.Если напряжения слишком сильно не сбалансированы, компоненты (например, двигатели и компрессоры) начнут перегреваться. Этот пост о объяснении формулы расчета тока трехфазного двигателя. Эти три напряжения должны быть почти, если не точно, равными друг другу. 4% от заявленного напряжения питания. Формула для расчета мощности, тока и напряжения в трехфазной проводке (несимметричная нагрузка, разные нагрузки на каждой из трех фаз): Pt = P1 + P2 + P3 P1 = V * I1 * cosφ1 I1 = P1 / (V * cosφ1) То же величина для каждой фазы… V = P1 / (I * cosφ1) Pt = общая мощность цепи в ваттах (Вт) P1, P2, P3 = мощность фазы 1, фазы 2 и фазы 3 в ваттах (Вт) 3-фазное питание 100 А / фаза TN-S в здание (Ze = 0.28 Ом), а новая распределительная цепь будет запитываться от новых хвостовиков счетчиков через выключатель-предохранитель TP + N с предохранителями BS88 63A на фазу. CM = Circular-Mils (калибр проводящего провода) Примечания: • Национальный электротехнический кодекс рекомендует не более 3% падения напряжения для параллельных цепей. Однофазное напряжение обычно составляет 115 В или 120 В, а трехфазное напряжение обычно составляет 208 В, 230 В или 480 В. Код для добавления этой кальки на ваш сайт. Формула падения напряжения для 3-фазных систем следующая: где: VD = падение напряжения в цепи в вольтах.Входное напряжение инвертора составляет 220 В постоянного тока, а частота основной составляющей выходного напряжения составляет 50 Гц. Используется, когда трехфазное питание недоступно, и позволяет удвоить нормальное рабочее напряжение для мощных нагрузок. Его рейтинг — 100 кВА. Если питание однофазное при обычном уровне 240 В, это означает максимальное падение напряжения 4% от 240 В, что составляет 9,6 В, что дает (простыми словами) напряжение нагрузки всего 230,4 В. Для 415 V трехфазная система, допустимое падение напряжения будет 16.6 В при напряжении линейной нагрузки… Для двигателей рекомендуется умножить значение FLA на паспортной табличке на 1,25 для определения сечения провода. Также прочтите: Значения трехфазного тока в трехфазной системе; Мощность в соединении звездой. Напряжение в сети или фазное напряжение выше 440 В можно измерить с помощью трансформатора напряжения. Основная формула для расчета полной мощности в одно- и трехфазных цепях EE. Полная мощность определяется как произведение текущего напряжения на время, проходящего через цепь переменного тока. Ли-онг Ип Ли-онг Ип.Я = Ампер. Фаза A начинается с 0 при фазовом угле 0 градусов, увеличивается до 1 при 90 градусах, обратно до 0 при 180, до -1 при 270 градусах и обратно до 1 при 360 градусах. Среднее значение выходного напряжения может быть получено путем усреднения по одному. Калькулятор трехфазной мощности рассчитывает ток активной и реактивной мощности по следующим параметрам: Напряжение (В): введите межфазное напряжение (\ (V_ {LL} \)) напряжение для трехфазной сети переменного тока в вольтах. Таким образом, если нагрузка однофазная, то одну фазу можно взять из трехфазной цепи, а нейтраль можно использовать в качестве заземления для завершения цепи. Каждая фаза представляет собой синусоидальную волну. Напряжение во всех трех каналах одинаковое. Если у вас сбалансированная трехфазная мощность, где все три фазных напряжения равны по величине и разнесены по фазе на 120 °, тогда: $$ V_ {LL} = \ sqrt {3} \ times V_ {LN} $$ Чтобы понять, почему рассмотрим векторную диаграмму: Применение базового триггера: share | улучшить этот ответ | следовать | Создан 06 дек. Создан 06 дек. Чтобы лучше понять трехфазное питание, человеку следует сначала изучить и понять принципы, применимые к однофазному питанию.11.4 (б). Математически задается как: Простая формула для расчета номинальной мощности трехфазных трансформаторов: KVA = (√3. Здесь формула однофазной мощности состоит только из колеблющихся членов, а значение мощности для полного цикла равно нулю. Следовательно, чтобы передавать 3-фазный ток 100 А на фазу по длине маршрута 150 м с общей формулой сбалансированной трехфазной мощности. Если у вас 3-фазный автоматический выключатель на 50 А, это 50 на фазу — при вычислении падения напряжения с использованием таблиц вы рассчитываете при использовании 50A или 150A? Пиковое выходное напряжение = пиковое линейное напряжение = 3 × Vm 2. Где: V — напряжение (вольт), а I — ток (амперы). Амперы — введите максимальный ток в амперах, который будет протекать через цепь. Конфигурация «треугольник» чаще всего используется для питания трехфазных промышленных нагрузок большей мощности. Для этого необходимо, чтобы анализ проводился во временной области. Ib — расчетный ток в амперах. Уравнение однофазной мощности для чисто емкостной цепи. Электропитание в трехфазной системе является непрерывным, поскольку все три фазы участвуют в выработке общей мощности.Первоначально мы исследовали идею трехфазных систем питания путем соединения трех источников напряжения вместе в так называемой конфигурации «Y» (или «звезда»). Поэтому единственное отличие от формулы, использованной выше для средней мощности Напряжение трехфазного мостового выпрямителя выражено косинусоидальным углом cos (α) пускового или пускового импульса. Формулы разомкнутой трехфазной цепи: Вт с разомкнутым треугольником = 2/3 Вт, треугольник, Вт с разомкнутой звездой = 1/2 Вт, звезда-треугольник, Вт, разомкнутый 4-проводный провод, звезда = 2/3 Вт, звезда Однако различные комбинации напряжений могут быть получены от одного трехфазного источника питания по схеме «треугольник», путем выполнения соединений или «ответвлений» вдоль обмоток трансформаторов питания. Например, сбалансированное двухфазное питание может быть получено от трехфазной сети с помощью двух специально сконструированных трансформаторов с ответвлениями на 50% и 86,6% первичного напряжения. R = сопротивление проводника. Формула силы тока трехфазной нагрузки поясняется данными паспортной таблички асинхронного двигателя напряжения трехфазной нагрузки. Формула для расчета однофазных и трехфазных коротких замыканий трансформаторов (кА): ВА = Вольт-ампер или активная мощность. Напряжение — введите напряжение на источнике цепи.Теперь, если вы посмотрите на часть этого уравнения «1000 4 1,732 В», вы увидите, что, вставив соответствующее трехфазное напряжение для «В» и умножив его на 1,732, вы можете затем разделить это количество на «1000. », Чтобы получить конкретное число (или константу), которое можно использовать для умножения« кВт », чтобы получить ток, потребляемый этой 3-фазной нагрузкой при соответствующем 3-фазном напряжении. Опять же, предполагая равные номинальные мощности трех источников однофазного переменного тока, общая мощность, доступная для подключенной нагрузки трехфазного переменного тока, является произведением линейного напряжения трехфазного переменного тока, умноженного на 3-фазный линейный ток, умноженного на √ 3. Коэффициент мощности (cosΦ). В трехфазной сбалансированной системе напряжение на фазе по отношению к другой фазе всегда равно величине напряжения и фазового угла, а векторная сумма трех фаз всегда равна нулю. По формуле: вольт-амперы (ВА) = √3 × В ЛИНИЯ × ЛИНИЯ Трехфазное напряжение или соединение звездой обычно состоит из напряжения, протекающего по трем различным каналам, для простоты мы называем это Напряжение в красной линии (VR), Напряжение в желтой линии (VY) напряжение в синей линии (VB).28 мая 2018 г. Основные формулы. Полная мощность определяется как произведение текущего напряжения на время, проходящего через цепь переменного тока. L = длина цепи от источника питания до нагрузки. Когда переменный ток проходит через конденсатор, он сначала заряжается до максимального значения, а затем разряжается. Предполагается, что распределительный кабель будет представлять собой 4-жильный кабель BS 6723 LSZH SWA сечением 16 мм2, использующий SWA в качестве CPC, и имеет длину 36 м, с четырьмя жилами TP + N. Трехфазное соединение звездой (Y). Эта конфигурация источников напряжения характеризуется общей точкой подключения, соединяющей одну сторону каждого источника.V x I) / 1000. Для однофазного подключения напряжение может быть математически получено из приведенной ниже формулы. Для трехфазного подключения напряжение может быть математически получено из приведенной ниже формулы. Калькулятор тока также используется в электротехнике для измерения неизвестного тока двумя известными величинами, кВА и напряжения, приложенного к приведенные ниже формулы. При соединении треугольником стороны фаз соединяются циклически, чтобы создать замкнутый контур, как показано на рисунке 1. Пример 11.3. В трехфазной цепи переменного тока полная истинная или активная мощность является суммой трехфазной мощности.Формула; Простой электрический калькулятор для расчета трех (3) фазной электрической мощности в цепи на основе напряжения и тока. % Импеданс = Импеданс трансформатора. В конце концов, трехфазная цепь — это, по сути, комбинация трех отдельных однофазных цепей, у которых есть пики и спады, разделенные периодом времени. Система трехфазного напряжения Трехфазная система напряжения состоит из трех синусоидальных напряжений равной величины, одинаковой частоты, разделенных на 120 градусов.Двухфазные цепи могут быть соединены двумя парами проводов, или два провода могут быть объединены, при этом для схемы требуется только три провода. т.е. 10-миллиметровый кабель, пропускающий 3 фазы 50A на 30 м VD = 3,8x50x30 / 1000 = 5,7V или VD = 3,8x150x30 / 1000 = 17,1V Я думаю, это должен быть первый, но я немного запутался, нужно освежить некоторые 3 фазы теория я думаю. Падение напряжения на отрезке кабеля (ов) рассчитывается по следующей формуле: где: мВ / А / м — табличное значение мВ / А / м, полученное из Приложения 4 к BS 7671.Форма волны выходного напряжения однофазного инвертора с синусоидальной широтно-импульсной модуляцией такая же, как на рисунке. Пример: на следующем рисунке представлена ​​паспортная табличка трехфазного трансформатора. Линейный и фазный токи связаны друг с другом следующим образом: I_line = square_root (3) * I_phase Это означает, что какой бы ток питания мы ни имели, нам нужно сечение провода, умноженное только на 1 / square_root (3) линейный ток. Формула: Трехфазная электрическая мощность = V * I * 1,732 * PF, где V = напряжение I = ток PF = коэффициент мощности (0.8) Расчет трехфазной электрической мощности упрощен с помощью этого онлайн-калькулятора. Разработайте выходной фильтр таким образом, чтобы коэффициент нелинейных искажений не превышал 5%. L — длина кабеля в метрах. Последовательность трехфазного вектора напряжения Последовательность {1-2-3} и последовательность {3-2-1} Обозначение индекса: после определения последовательности фаз и определения соответствующих индексов, вычисления с использованием этих индексов вместе с соглашениями, принятыми для Версия закона Ома для переменного тока предотвратит угловые ошибки.Синусоидальные волны для трехфазной системы показаны ниже. Каждая из трех фаз может использоваться как однофазная. Это соединение Scott T создает настоящую двухфазную систему с разницей во времени между фазами 90 °. Фаза B начинается с 0 при 120 градусах, а фаза C начинается с 0 при 240 градусах. Двухфазная электроэнергия Использует два напряжения переменного тока с фазовым сдвигом на 90 градусов между ними. На рисунке 1 показано в режиме реального время функциональности косинуса и связанный с ними фазором обозначение для системы напряжения 3-фазной линия к линии с линией напряжения V12 в качестве ссылки.Анализ трехфазного выпрямителя с резистивной нагрузкой: Обозначение: Пусть V m = Пиковое напряжение между фазой и нейтралью. Полезная формула интегрирования: 4 3 6 6 cos () 6 ∫ 2 = + — π ω ω π π td t 1. Или сумма мощность всех трех фаз — это полная активная или истинная мощность. Трехфазное питание состоит из 3 «горячих» проводов, каждый из которых имеет полное линейное напряжение относительно двух других. Вольт = Вольт трансформатора. Если Z Y = Z∠θ, фазные токи отстают от соответствующих фазных напряжений на θ. 3-фазная звезда (сбалансированная нагрузка) 3-фазная открытая звезда (без нейтрали) IP = ILVP = VL… Для нагрузки, подключенной по схеме Y, фазные напряжения равны (1), где коэффициент √2 необходим, потому что V p было определено как действующее значение фазного напряжения.Ссылка на таблицы падения напряжения указывает на то, что сечение кабеля с падением напряжения 0,7 / 1000 В / А / м (0,7 мВ / А / м) ИЛИ МЕНЬШЕ является медным проводником диаметром 70 мм. Нет необходимости в сложной формуле. Ток (I): введите ток в амперах (A).

Статистика распределения

Kde, Объективный идеализм Гегеля, Что означают маленькие часы в сообщении Facebook, Рецепт Эпплджек с Everclear, Emerson Prima Snugger 42, Домашние аудиосистемы, Уровни услуг в области психического здоровья, Детали горелки Whirlpool Gas Range 5, Непрерывное улучшение качества в сфере здравоохранения.

Three-Phase Power Equations

Большая часть энергии переменного тока сегодня вырабатывается и распределяется как трехфазная, где три синусоидальных напряжения генерируются в противофазе друг с другом.При однофазной сети переменного тока существует только одно синусоидальное напряжение.

Реальная мощность

Линейное напряжение:

Вт приложено = 3 1/2 U ll I cos Φ

= 3 1/2 U ll I PF (1)

где

Вт приложено = активная мощность (Вт, Вт)

U ll = линейное напряжение (В, вольт)

I = ток (А, амперы)

PF = cos Φ = коэффициент мощности (0. 7 — 0,95)

Линейное напряжение:

Вт приложено = 3 U ln I cos Φ (2)

где

U ln = линейное напряжение (В, вольт)

Для чисто резистивной нагрузки: PF = cos Φ = 1

  • резистивные нагрузки преобразует ток в другие формы энергии, такие как тепло
  • индуктивные нагрузки используют магнитные поля как двигатели , соленоиды и реле

Коэффициент мощности

Типовые коэффициенты мощности:

Устройство Коэффициент мощности
Лампа люминесцентная без компенсации 0.5
Лампа с люминесцентной компенсацией 0,93
Лампа накаливания 1
Двигатель, индукционная нагрузка 100% 0,85
Нагрузка 903 903 903 Двигатель 9038
Двигатель, индукционная нагрузка 0% 0,17
Двигатель, синхронный 0,9
Духовка, резистивный нагревательный элемент 1
Духовка, индукционная компенсация85
Чистая резистивная нагрузка 1
Пример — Чистая резистивная нагрузка

Для чисто резистивной нагрузки и коэффициента мощности = 1 фактическая мощность при напряжении 400/230 (от линии к линии / линии к нейтрали) 20 ампер Цепь можно рассчитать как

Вт приложено = 3 1/2 (400 В) (20 A) 1

= 13856 W

= 13. 9 кВт

Общая мощность

Вт = 3 1/2 UI (2)

Тормозная мощность

Вт л.с. = 3 1/2 UI PF μ / 746 (3)

, где

Вт л.с. = тормозная мощность (л.с.)

μ = КПД устройства

Расчет одно- и трехфазных параметров

Вы можете спросить, «Что такое константа?» Пример постоянной, с которой вы хорошо знакомы, — это число пи (π), которое получается делением длины окружности на ее диаметр.Независимо от длины окружности и диаметра соответствующего круга, их соотношение всегда равно пи. Вы можете использовать константы, относящиеся к определенным одно- и трехфазным напряжениям, для расчета тока (I) и киловатт (кВт). Посмотрим, как это сделать.

Однофазные расчеты

Базовая электрическая теория говорит нам, что для однофазной системы

кВт = (В × I × PF) ÷ 1000.

Для простоты предположим, что коэффициент мощности (PF) равен единице.Следовательно, приведенное выше уравнение становится

кВт = (В × I) ÷ 1000.

Решая относительно I, уравнение принимает вид

I = 1000 кВт ÷ В (Уравнение 1)

Теперь, если мы посмотрим на часть этого уравнения «1000 ÷ В», вы увидите, что, вставив соответствующее однофазное напряжение для «V» и разделив его на «1000», вы получите конкретное число (или постоянная), которую можно использовать для умножения «кВт», чтобы получить ток, потребляемый этой нагрузкой при соответствующем напряжении.

Например, константа для расчета 120 В составляет 8,33 (1000 ÷ 120). Используя эту константу, уравнение 1 становится

I = 8,33 кВт .

Итак, если у вас нагрузка 10 кВт, вы можете рассчитать потребляемый ток как 83,3 А (10 × 8,33). Если у вас есть оборудование, потребляющее 80A, вы можете рассчитать относительный размер необходимого источника питания, который составляет 10 кВт (80 ÷ 8,33).

Таблица 1. Константы, используемые в однофазных системах

Используя ту же процедуру, но вставив соответствующее однофазное напряжение, вы получите следующие однофазные константы, как показано в Таблица 1 .

Трехфазные расчеты

Для 3-фазных систем мы используем следующее уравнение:

кВт = (В × I × PF × 1,732) ÷ 1000.

Опять же, принимая единицу PF и решая это уравнение относительно «I», вы получаете:

I = 1000 кВт ÷ 1,732 В.

Таблица 2. Константы, используемые в трехфазных системах

Теперь, если вы посмотрите на часть этого уравнения «1000 4 1,732 В», вы увидите это, вставив соответствующее трехфазное напряжение для «V» и умножив его на 1. 732, вы можете затем разделить это количество на «1000», чтобы получить конкретное число (или константу), которое вы можете использовать для умножения «кВт», чтобы получить ток, потребляемый этой 3-фазной нагрузкой при соответствующем 3-фазном напряжении. Таблица 2 перечисляет каждую 3-фазную постоянную для соответствующего 3-фазного напряжения, полученного из вышеуказанного расчета.

Теория трехфазных сбалансированных цепей

    В трехфазных цепях есть источник питания, обычно трехфазный трансформатор, который питает трехфазную нагрузку.Эта нагрузка может быть сбалансированной, когда у нас есть одинаковое полное сопротивление нагрузки в трех фазах и, следовательно, одинаковый коэффициент мощности. Другая возможность — подключить несимметричную нагрузку, где импедансы, подключенные к вторичной обмотке, имеют разные значения хотя бы в одном из них. Несимметричная схема будет изучена в другой главе. А пока давайте сосредоточимся на исследовании балансной схемы.

    Давайте проанализируем четыре возможных способа соединения вторичной обмотки трансформатора с нагрузкой, предполагая, что последовательность является прямой или прямой, также известной как последовательность ABC.Для обратной последовательности мы должны заменить B на C и наоборот. Как следствие, все изменения в отрицательной последовательности должны быть противоположны изменениям в положительной последовательности.

    2,1 Вторичная в «Y» и нагрузка в «Y»

    На рисунке ниже мы показываем схему, в которой мы используем Y-соединение на вторичной обмотке трансформатора. В случае сбалансированной нагрузки электрический ток, протекающий через нейтраль, равен равно нулю. Благодаря этому отпадает необходимость в использовании провода, соединяющего нейтраль нагрузки и фидерный трансформатор (на рисунке обозначен пунктирной линией между точками N-N ‘).Поскольку схема сбалансированная, то Z A = Z B = Z C .

    Обратите внимание, что I строка = I F . Как было сказано ранее, ток нейтрали должен быть нулевым. Тогда мы можем рассматривать схему как однофазную. См. На рисунке ниже упрощение схемы, которая позволит рассчитать ток и мощность в нагрузке.

    Обратите внимание, что мы используем фазу A в качестве эталона.Следовательно, ток фазы A будет иметь фазовый угол, равный разнице между углом V AN ∠ θ A и Z A ∠ θ Z , то есть:

    I A ∠ θ IA = (V AN / Z A ) ∠ (θ A — θ Z )
    где, конечно, θ IA = ∠ (θ A — θ Z ). Поскольку θ Z одинаково для всех трех фаз, поэтому θ I будет зависеть только от угла напряжения фазы, в которой мы вычисляем ток.Обратите внимание, что поскольку напряжение в модуле одинаково для трех фаз, а также импедансы, то модуль тока будет одинаковым для трех фаз. Он изменяет только угол запаздывания θ I . Таким образом, ток в фазе B будет током фазы A по величине плюс 120 ° по углу θ IA . То же самое для фазы C, добавляя 240 ° (или вычитая 120 °, в зависимости от того, что более удобно) к углу θ IA .

    2,2 Вторичная в «Y» и нагрузка в «Дельте»

    На рисунке ниже представлена ​​схема, в которой мы используем Y-соединение на вторичной обмотке трансформатора, а нагрузка подключена по схеме треугольника.Поскольку схема сбалансированная, то Z AB = Z BC = Z CA .

    Обратите внимание, что в этом случае напряжение, приложенное к нагрузке, является линейным, а не фазным напряжением, как в предыдущем пункте. Следовательно, на нагрузке Z AB имеем напряжение V AB . Если в задаче подается фазное напряжение, а не линейное, мы должны выполнить соответствующее преобразование. Напомним соотношение между линейным напряжением и фазным напряжением в схеме звезды.

    Мы должны обратить пристальное внимание на тот факт, что мы должны добавить 30 ° к углу фазного напряжения, чтобы получить правильный угол линейного напряжения, в дополнение к умножению его величины на √ 3.

    Зная линейное напряжение, вы можете рассчитать фазный ток на нагрузке, разделив напряжение на полное сопротивление. С другой стороны, при необходимости вы можете рассчитать линейный ток, используя приведенное ниже уравнение.

    Мы не должны забывать умножать модуль фазного тока на √ 3, в дополнение к вычтите 30 ° из угла θ F фазного тока, чтобы получить правильный угол линейного тока.

    2,3 Вторичный в «Дельта» и нагрузка в «Y»

    Мы изучим эту конфигурацию с дидактической точки зрения, так как она не имеет широкого практического применения. из-за того, что у нас нет нейтральной ссылки во вторичной обмотке. Затем, используя вторичную обмотку трансформатора в схеме треугольника, трансформатор обеспечивает линейное напряжение. Поскольку нагрузка подключена к Y, мы должны найти фазное напряжение, разделив линейное напряжение на √3.Итак, чтобы найти линейный ток (I L ), протекающий через нагрузку (в данном конкретном случае фазный ток равен линейному току), мы должны разделить фазное напряжение на фазное сопротивление. В симметричной схеме три тока равны по величине, варьируя только угол.

    Обратите внимание, что данная ситуация противоречит описанной в п. 2.2. Затем мы должны обратить внимание на угол, который примет фазное напряжение. Когда мы переходим от схемы звезды к треугольнику, мы увеличиваем угол линейного напряжения на 30 ° по отношению к углу фазового напряжения.Теперь, когда мы переходим от схемы треугольника к схеме звезды, мы должны задерживать угол фазового напряжения (V F ) под углом 30 ° к углу наклона линии (V L ). Следовательно, мы должны использовать приведенное ниже уравнение.

    2,4 Вторичный в «Дельта» и нагрузка в «Дельта»

    Эта конфигурация также не имеет ссылки на нейтраль. Однако эта конфигурация широко используется в линиях передачи, отвечающих за транспортировку большого количества энергии между двумя точками, удаленными друг от друга.Как правило, в начальной точке линии есть трансформатор, называемый трансформатор лифта напряжения. Вторичная обмотка этого трансформатора работает от десятков или даже сотен тысяч вольт. На другой стороне линии передачи у нас есть еще один трансформатор, называемый Трансформатор падения напряжения, предназначенный для снижения напряжения в сети до значений, используемых в системе распределения электроэнергии. Тогда нагрузка на вторичной обмотке первого трансформатора является первичной обмоткой второго трансформатора.См. Рисунок ниже для схемы этой конфигурации.

    Обратите внимание, что в этой конфигурации нет необходимости изменять фазу напряжения. Надо только поправить угол токов фазы и линии. Для этого после вычисления фазного тока мы можем найти линейный ток, умножив величину фазного тока на √3 и вычтя 30 ° под углом, то есть мы должны использовать уравнение. 83-02, повторяется здесь.

    В этом уравнении θ F представляет угол фазового тока, и вычитая 30 ° от него, находим угол линии тока.


    3. Трехфазные цепи с более чем одной нагрузкой

    Как правило, трехфазные цепи питают более одной нагрузки. Например, в отрасли одновременно работает несколько оборудования, такого как двигатели, токарные станки, электрические печи, лифты и т. Д. Таким образом, мы должны знать, какие типы соединений используются в различном оборудовании. Давайте посмотрим на пример.

    Быть промышленным предприятием, работающим от трехфазной сети на 380 вольт.Предположим, электрическая духовка общей мощностью 30 кВт, подключенная по схеме треугольника, и два двигателя по 20 л.с. и cos φ = 0,8 каждый, соединенных по схеме звезды. Рассчитайте сетевой ток и фазный ток в электрической духовке. Предположим, что эффективность двигателей составляет 90%, а 1 л.с. = 746 Вт.

    Когда мы говорим о трехфазной сети, подразумевается, что подаваемое напряжение — это напряжение линия. Скоро V line = 380 вольт.У нас есть электрическая духовка мощностью 10 кВт на фазу. Поскольку он подключен по схеме треугольника, мы знаем, что V line = V F . Затем мы можем найти фазный ток, вычислив отношение мощности к напряжению. Так:

    I F = P F / V F = 10 000/380 = 26,32 A

    В симметричной схеме мы знаем, что I line = √3 I F . Потом:

    I строка = √3 x 26.32 = 45,60 А

    Это ток в линии только из-за электрической духовки. Теперь нам нужно рассчитать ток двух двигателей. Для этой задачи представим уравнение, позволяющее рассчитать электрический ток в линии трехфазного электродвигателя.

    Значение переменных в уравнении: Мы вычисляем линейный ток, Я мотора. В числителе этого уравнения P представляет мощность трехфазного двигателя, выраженную в л. с.Мы умножили на 746, потому что 1 л.с. = 746 Вт. В знаменателе имеем В L как линейное напряжение трехфазной системы. Греческая буква η обозначает коэффициент полезного действия двигателя и представляет собой число от нуля до единицы. Наконец, у нас есть коэффициент мощности, представленный как cos φ.

    Заменяя приведенные числовые значения, находим:

    I = 40 x 746 / (√3 x 380 x 0,9 x 0,8) = 62,96 A

    Этот ток создается двумя двигателями мощностью 20 л.с. каждый. Чтобы определить линейный ток сети, мы должны сложить значение, найденное для электрической духовки.Так:

    I rede = 62,96 + 45,60 = 108,56 A

    Наблюдение: Если мощность двигателя дана в CV, а единица измерения все еще широко используется, мы должны заменить значение 746 на значение 735, потому что 1 CV = 735 Вт.




Кажется, мы не можем найти эту страницу

(* {{l10n_strings. REQUIRED_FIELD}})

{{l10n_strings.CREATE_NEW_COLLECTION}} *

{{l10n_strings.ADD_COLLECTION_DESCRIPTION}}

{{l10n_strings.COLLECTION_DESCRIPTION}} {{addToCollection.description.length}} / 500 {{l10n_strings.TAGS}} {{$ item}} {{l10n_strings.PRODUCTS}} {{l10n_strings.DRAG_TEXT}}

{{l10n_strings.DRAG_TEXT_HELP}}

{{l10n_strings. LANGUAGE}} {{$ select.selected.display}}

{{article.content_lang.display}}

{{l10n_strings.AUTHOR}}

{{l10n_strings.AUTHOR_TOOLTIP_TEXT}}

{{$ select.selected.display}} {{l10n_strings.CREATE_AND_ADD_TO_COLLECTION_MODAL_BUTTON}} {{l10n_strings.CREATE_A_COLLECTION_ERROR}} .