Расширение воды при нагревании: Расширение воды при нагревании в процентах

Содержание

Тепловое расширение | Физика

Твердые тела

Все тела, за небольшим исключением, расширяются при нагревании, так как частички двигаются быстрее и «завоевывают» больше места. Различные тела при одинаковой температуре ведут себя по-разному. Например, при одинаковой температуре железо расширяется в четыре раза лучше, чем стекло. Это явление характеризуется коэффициентом расширения. Каждое твердое тело обладает собственным коэффициентом расширения.

Различное поведение веществ при нагревании используется, например, для биметаллов. Биметалл — это тело, полученное при сплаве двух разных металлов. Биметаллы используются для создания электрических выключателей и термометров, действие которых зависит от температуры.

Если мы нагреем полосу из биметалла, то, например, нижний металл расширится сильнее, чем верхний. Тогда полоса изогнется вверх.

Если мы охладим биметалл, то он примет первоначальную форму.

Газ

Частички газа, как было сказано выше, двигаются свободно и при нагревании быстро распространяются в пространстве.

Возьмем закрытую колбу, наполненную воздухом, поместим ее в воду и начнем нагревать. Скоро мы увидим, как воздух внутри колбы начнет выталкивать пробку.

Так как все газы состоят из свободных частичек, то их поведение при нагревании будет похожим. Все газы при достаточной температуре расширяются очень сильно, гораздо сильнее, чем жидкости или твердые тела.

Воздушный шар

Прежде чем воздушный шар начнет подниматься в небо, необходимо нагреть внутри шара холодный воздух, плотность которого составляет 1.23 кг/м3.

Подогревая воздух при помощи газовой горелки, мы сообщим ему энергию и частички, из которых он состоит, начнут двигаться быстрее, занимая все больше места.

Часть воздуха покинет баллон, благодаря чему плотность подогретого воздуха уменьшится до 1.11 кг на один кубический метр.

Действие подогретого воздуха внутри шара и холодного и более плотного воздуха снаружи даст необходимый результат: шар начнет подниматься.

Чем больше разница температур внутри шара и снаружи, тем быстрее будет подниматься воздушный шар. Поэтому для любителей покататься на воздушном шаре зима будет идеальным временем года.

Жидкость

Равномерное расширение жидкости можно использовать в термометре. Тоненький столбик жидкости поднимается на равные отрезки при нагревании на каждый градус. В 1742 г. Андерс Цельсиус установил шкалу температур, названную в честь него: 0 градусов по Цельсию является температурой плавления льда, а 100 градусов — температурой кипения воды.

К сожалению, невозможно использовать воду в термометре, так как тогда не было бы возможности измерять температуру ниже нуля. Поэтому в термометре используется специальный спиртовой раствор.

Аномалия воды

Если при больших морозах лопаются трубы или разбиваются цветочные горшки, то это связано с особенностью воды, единственного вещества в природе, которое при замерзании расширяется, а при температуре от нуля до четырех градусов по Цельсию возвращается в исходное состояние. Этот феномен называется «аномалия воды».

При 4 0C вода имеет большую плотность, чем лед, так как при замерзании вода расширяется. Поэтому, озеро начинает замерзать сверху, и лед с меньшей плотностью будет плавать на поверхности.

Слои незамерзшей воды благодаря высокой плотности опускаются на дно. Эта аномалия позволяет животному миру озера пережить холодное время года.

Тепловое расширение. Движение. Теплота

Тепловое расширение

Если нагреть тело, то движение атомов (молекул) будет более интенсивным. Они станут расталкивать друг друга и займут больше места. Этим и объясняется хорошо известный факт: при нагревании твердые, жидкие и газообразные тела расширяются.

О тепловом расширении газов долго говорить не приходится: ведь пропорциональность температуры объему газа была положена в основу нашей температурной шкалы.

Из формулы V = (V0/273)·Т мы видим, что объем газа при постоянном давлении возрастает при нагревании на 1 °C на 1/273 часть (т.е. на 0,0037) его объема при 0 °C (это положение иногда называют законом Гей-Люссака).

В обычных условиях, т. е. при комнатной температуре и нормальном атмосферном давлении, расширение большинства жидкостей раза в два-три меньше расширения газов.

Мы уже не раз говорили о своеобразии расширения воды. При нагревании от 0 до 4 °C объем воды уменьшается с нагреванием. Эта особенность в расширении воды играет колоссальную роль в жизни на Земле. Осенью по мере охлаждения воды верхние остывшие слои становятся плотнее и погружаются на дно. На их место снизу поступает более теплая вода. Но такое перемешивание происходит только до тех пор, пока температура воды не понизится до 4 °C. При дальнейшем падении температуры верхние слои уже не будут сжиматься, значит, не будут становиться тяжелее и не станут опускаться на дно. Начиная с этой температуры, верхний слой, постепенно охлаждаясь, доходит до нуля градусов и замерзает.

Только эта особенность воды и препятствует промерзанию рек до дна. Если бы вода вдруг потеряла свою замечательную особенность, даже при скромной фантазии легко представить себе бедственные последствия этого.

Тепловое расширение твердых тел существенно меньше, чем тепловое расширение жидкостей. Оно в сотни и тысячи раз меньше расширения газов.

Во многих случаях тепловое расширение является досадной помехой. Так, изменение размеров движущихся частей часового механизма с переменой температуры привело бы к изменению хода часов, если бы для этих тонких деталей не применялся особый сплав – инвар (инвариантный в переводе означает неизменный, отсюда и название «инвар»). Инвар – сталь с большим содержанием никеля – широко применяется в приборостроении. Стержень из инвара удлиняется лишь на одну миллионную долю своей длины при изменении температуры на 1 °C.

Ничтожное, казалось бы, тепловое расширение твердых тел может привести к серьезным последствиям. Дело в том, что нелегко мешать тепловому расширению твердых тел из-за их малой сжимаемости.

При нагревании на 1 °C стального стержня его длина возрастет всего на одну стотысячную, т.е. на незаметную глазом величину. Однако, чтобы воспрепятствовать расширению и сжать стержень на одну стотысячную, нужна сила в 20 кГ на 1 см2. И это только для того, чтобы уничтожить действие повышения температуры всего на 1 °C!

Распирающие силы, возникающие из-за теплового расширения, могут привести к поломкам и катастрофам, если с ними не считаться. Так, чтобы избежать действия этих сил, рельсы железнодорожного полотна укладывают с зазорами. Об этих силах приходится помнить при обращении со стеклянной посудой, которая легко трескается при неравномерном нагревании. В лабораторной практике поэтому пользуются лишенной этого недостатка посудой из кварцевого стекла (плавленый кварц – окись кремния, находящаяся в аморфном состоянии). При одном и том же нагреве медный брусок удлинится на миллиметр, а такой же брусок кварцевого стекла изменит свою длину на незаметную глазом величину 30–40 микрон. Расширение кварца настолько ничтожно, что кварцевый сосуд можно нагреть на несколько сот градусов, а потом без опасений бросить его в воду.

Аномальное тепловое расширение воды | География.

Реферат, доклад, сообщение, кратко, презентация, лекция, шпаргалка, конспект, ГДЗ, тест

Вода имеет способность к аномальному тепловому расширению

. Все жидкости, как и твёрдые тела, расширяются при нагревании. Их объёмное расширение можно наблюдать на следующем опыте.

Наполним колбу водой и закроем пробкой со вставленной в неё труб­кой. Будем нагревать воду в колбе и увидим, что вода начнёт подни­маться по трубке. Это происходит потому, что жидкость при нагрева­нии расширяется.

Тепловое расширение жидкости объясняется увеличением средних расстояний между положениями равновесия её молекул.

Все жидкости достаточно равномерно расширяются с повышением температуры. Исключение составляет вода. Вода расширяется только при нагревании свыше +4 °C. При нагревании от 0 до +4 °C она сжима­ется. При этом её объём уменьшается, а плотность увеличивается. Наибольшую плотность вода имеет при +4 °C.

Под действием солнечных лучей верхние слои воды нагреваются, предположим, до температуры +2 °C. Плотность воды в этом слое боль­ше, чем в слое, лежащем ниже и имеющем температуру 0 °C. Нагретая вода опускается вниз. Её место занимает вода, имеющая более низкую температуру. Таким образом, происходит непрерывная смена слоёв воды и равномерное прогревание всей её толщи. Это будет происхо­дить, пока температура воды не станет равной +4 °C. Материал с сайта http://doklad-referat.ru

При дальнейшем нагревании верхние слои становятся менее плот­ными и остаются вверху. Поэтому большие толщи воды прогреваются быстро лишь до +4 °C (наибольшая плотность), дальнейшее прогрева­ние нижних слоёв идёт медленно. Охлаждение воды до +4 °C происхо­дит быстро, а дальнейшее охлаждение замедляется. Это приводит к тому, что водоёмы, начиная с некоторой глубины, имеют температуру +2—3 °C. Даже зимой вода в водоёмах не промерзает до дна. Верхние, более холодные, слои воды опускаются вниз, а тёплые занимают их место. Такое перемещение происходит до тех пор, пока температура воды не станет +4 °C.

При дальнейшем охлаждении верхние слои не бу­дут опускаться вниз и постепенно замёрзнут.

Эта особенность теплового рас­ширения воды имеет очень боль­шое значение для формирования климата Земли, так как большая часть поверхности нашей планеты покрыта водой.

На этой странице материал по темам:
  • Особенности теплового расширения воды доклад

  • Реферат на тему аномальное расширения льда и воды

  • В чем заключается аномальное тепловое расширение воды

  • В чём заключается аномальное тепловое расширение воды

  • Аномальное расширение льда и воды реферат

Вопросы по этому материалу:
  • В чём заключается аномальное тепловое расширение воды?

Расширение — вода — Большая Энциклопедия Нефти и Газа, статья, страница 1

Расширение — вода

Cтраница 1

Расширение воды при замерзании является одной из причин и другого, важного в жизни Земли явления — разрушения горных пород. Во время мороза сначала замерзает верхний слой; при этом более глубокие слои будут заперты. Когда же и эти слои начнут замерзать, то они, увеличиваясь при этом в объеме, будут расширять трещину.  [1]

Расширение воды при замерзании является одной из причин и другого, важного в жизни Земли явления — разрушения горных пород. Во время мороза сначала замерзает верхний слой; при этом более глубокие слои будут заперты. Когда же и эти слои начнут замерзать, то они, увеличиваясь при этом в объеме, будут расширять трещину.  [3]

Расширение воды при замерзании связано с тем, что при нерегулярном расположении ( или при регулярном только в узких областях) молекулы воды занимают меньший объем, чем при совершенно регулярной ориентации в случае образования тридимитной структуры. Вследствие расширения воды при замерзании ( по принципу Ле-Шателье) с увеличением давления температура замерзания понижается. Однако если после замерзания давление превосходит определенную величину, то образуются другие модификации льда, которые плотнее обычного, даже большей частью плотнее жидкой воды. Поэтому разрывающего цействия, которое оказывает вода, заключенная в железные сосуды или скапливающаяся в трещинах скал, не происходит в том случае, если вода перед замерзанием оказывается уже под очень высоким давлением.  [5]

Расширение воды при ее назревании довольно существенно и учитывается при эксплоатаЦии паровых котлов: растопка котлов начинается при самом низком уровне воды в водомерных приборах, с TBMI, чтобы1 ко времени доведения давления пара в котле до рабочего этот уровень, повышаясь в результате расширения воды, достиг бы своего нормального положения.  [6]

Расширение воды при нагревании отличается от расширения других жидкостей, объем которых плавно увеличивается с повышением температуры. Если атмосферное давление нормально, то вода занимает наименьший объем при 4 С. С понижением температуры до О С ( точка замерзания) объем воды увеличивается. На рис. 9.4 представлен график зависимости объема воды от температуры только до 14 С, но уже видно, что кривая поднимается все круче к точке кипения.  [7]

Расширением воды при замерзании объясняется и то, что лед на воде плавает, а не падает на дно.  [8]

От расширения воды при замерзании в коробке 2 и невозможности выхода ее в замерзшие каналы 8 в коробке образуется значительное давление, которое, действуя на поршенек 3, продвигает его в сторону водяной рубашки, выжимает крышку 4 и открывает отверстие, закрытое этой крышкой, вследствие чего вода из водяной рубашки выливается наружу.  [9]

Вследствие расширения воды при замерзании ( по принципу Ле-Шателье) с увеличением давления температура замерзания понижается. Однака если после замерзания давление превосходит определенную величину, то образуются другие модификации льда, которые плотнее обычного, даже большей частью плотнее жидкой воды. Поэтому разрывающего действия, которое оказывает вода, заключенная в железные сосуды или образования трещин в камнях, при замерзании не происходит в том случае, если вода перед замерзанием оказывается уже под очень высоким давлением.  [11]

Вследствие расширения воды при замерзании ( по принципу Ле-Шателье) с увеличением давления температура замерзания понижается. Однако если после замерзания давление превосходит определенную величину, то образуются другие модификации льда, которые плотнее обычного, даже большей частью плотнее жидкой воды. Поэтому разрывающего действия, которое оказывает вода, заключенная в железные сосуды или образования трещин в камнях, при замерзании не происходит в том случае, если вода перед замерзанием оказывается уже под очень высоким давлением.  [13]

Особенности расширения воды имеют громадное значение для климата Земли. Большая часть ( 79 %) поверхности Земли покрыта водой. Солнечные лучи, падая на поверхность воды, частично отражаются от нее, частично проникают внутрь воды и нагревают ее. Если температура воды низка, то нагревшиеся слои ( например, при 2 С) более плртны, чем холодные слои ( например, при 1 С), и потому опускаются вниз. Их место занимают холодные слои, в свою очередь нагревающиеся. Таким образом, происходит непрерывная смена слоев воды, что способствует равномерному прогреванию всей толщи воды, пока не будет достигнута температура, соответствующая максимальной плотности. При дальнейшем нагревании верхние слои становятся все менее плотными, а потому и остаются вверху.  [14]

Особенности расширения воды имеют громадное значение для климата Земли. Большая часть ( 79 %) поверхности Земли покрыта водой. Солнечные лучи, падая на поверхность воды, частично отражаются от нее, частично проникают внутрь воды и нагревают ее. Если температура воды низка, то нагревшиеся слои ( например, при 2е С) более плотны, чем холодные слои ( например, при 1 С), и потому опускаются вниз. Их место занимают холодные слои, в свою очередь нагревающиеся. Таким образом, происходит непрерывная смена слоев воды, что способствует равномерному прогреванию всей толщи воды, пока не будет достигнута температура, соответствующая максимальной плотности. При дальнейшем нагревании верхние слои становятся все менее плотными, а потому и остаются вверху.  [15]

Страницы:      1    2    3    4

Коэффициент расширения теплоносителя пропиленгликоля | teplonositeli-pro.ru

Под коэффициентом теплового расширения любого тела понимают физическую величину, которая характеризует относительное изменение его объёма или линейных размеров при изменении (увеличении) температуры на 1К (˚С) при постоянном давлении. На практике более заметно расширение либо уменьшение объёма на примере жидкостей при их нагреве либо охлаждении, соответственно, по сравнению с твёрдыми телами. Изменение объёма обозначается показателем в виде коэффициента объёмного расширения: β = 1/V, К-1 (˚С-1).

Поскольку пропиленгликоль не может использоваться в чистом виде в качестве теплоносителя (состава низкозамерзающего всесезонного), ввиду его повышенной вязкости и коррозионной активности по отношению к металлам и сплавам, правильнее говорить о применении его водных растворах различной концентрации, в которые вводится пакет антикоррозионных присадок.

Водопропиленгликолевые составы низкозамерзающие всесезонные или жидкости охлаждающие для теплообменных систем относятся к одной из наиболее востребованной группе теплообменных жидкостей (после воды), применяемых в отопительной аппаратуре. Это обусловлено их довольно низкой температурой начала кристаллизации, что позволяет применять их и в зимний период (отопительный сезон).

К тому же они не столь токсичны как растворы этиленгликоля и не наносят вреда окружающей среде, хотя и обладают свойствами присущими гликолям. При низких отрицательных температурах окружающего воздуха они не переходят в твёрдую структуру льда (как это происходит с водой) и сохраняют работоспособность теплообменных систем.

Для чего необходимо знать коэффициент расширения?

Большинство автономных систем теплоснабжения спроектированы для применения воды, либо иногда — составов низкозамерзающих всесезонных, в качестве теплоносителя. Поэтому при расчётах и выборе аппаратов системы теплообмена (расширительной ёмкости) для них, учитываются и физические параметры.

Но если в качестве альтернативы будет использоваться не обычная техническая вода, нужно учитывать, что коэффициент расширения теплоносителя на основе пропиленгликоля (антифриза) будет другим. Его вычисляют для внесения необходимых корректировок, проверки соответствия объёма емкости расширительного бака.

Использование антифриза может привести к «завоздушиванию» отопительной системы. Этот процесс – результат более высокого (если сравнивать с водой) коэффициента температурного расширения теплоносителя на основе пропиленгликоля. В итоге объёма емкости расширительного бака оказывается недостаточно для его заполнения. Поэтому излишки антифриза при нагреве его до рабочей температуры (обычно это около 85 °C) сбрасываются путем слива через предохраняющий клапан.

После снижения тепловой нагрузки требуется подпитка системы теплообмена рабочей средой. Для этого используется вода, в которой содержатся растворённый воздух, который выделяется из жидкой фазы в результате нагрева. Все это провоцирует образование воздушных пробок, вызывающих серьезные аварии в системе отопления и поломки отдельной аппаратуры. На практике этот процесс хорошо демонстрируется во время эксплуатации двигателей внутреннего сгорания автотранспортной техники, когда система их охлаждения не обеспечивает нормальной работы и начинает «закипать».

Зависимость величины коэффициента расширения от температуры

Величина коэффициента объёмного теплового расширения теплоносителей на базе водных растворов пропиленгликоля зависит не только от его концентрации (содержании) в растворе, но и от температурного диапазона системы теплообмена в которой применяется теплоноситель. Существуют материалы и диапазоны температур, даже для воды когда, в узком интервале температур от 0˚С до + 4˚С, величина коэффициента отрицательная. Рассматриваемый коэффициент для теплоносителей на основе пропиленгликоля увеличивается с ростом температуры. Конкретные величины коэффициента объёмного расширения и динамику его увеличения при повышении температур для антифризов можно найти в справочной литературе.

Теплоноситель, в основе которого содержится пропиленгликоль, имеет значительно больший коэффициент расширения при нагреве, по сравнению с водой, поэтому рекомендуется подбирать бак для такой системы отопления большего объема. В отличие от воды, теплоемкость такого теплоносителя меньше на 15%. Это приводит к ухудшению условий теплообмена и требует монтажа дополнительных радиаторов, обладающих максимальной мощностью.

Кроме теплового расширения в результате нагрева, в теплоносителе на базе пропиленгликоля могут происходить необратимые изменения его химического состава в результате перегрева. Поэтому допускать повышение температуры антифриза до максимальных показателей не рекомендуется. Для объектов, где в отопительных системах требуется применение теплоносителей на основе водных растворов пропиленгликоля, гарантирующих экологическую безопасность, можно приобрести такую продукцию у компании «Савиа», которая занимается производством теплоносителей широкой номенклатуры.

Предлагаемые теплоносители сертифицированы, соответствуют международным и российским нормам качества. Составы подходят для обеспечения работы отопительных установок в жилых домах, на предприятиях пищевой промышленности. В случае утечки пропиленгликолевого антифриза исключается вероятность отравления.

3 класс. Окружающий мир. Свойства воды в жидком, твёрдом и газообразном состоянии — Свойства воды в жидком, твёрдом и газообразном состоянии

Комментарии преподавателя

В чи­стом виде вода не имеет вкуса, за­па­ха и цвета, но она почти ни­ко­гда не бы­ва­ет такой, по­то­му что ак­тив­но рас­тво­ря­ет в себе боль­шин­ство ве­ществ и со­еди­ня­ет­ся с их ча­сти­ца­ми. Так же вода может про­ни­кать в раз­лич­ные тела (уче­ные нашли воду даже в кам­нях).

 

Рис. 1. Вода (Ис­точ­ник)

Если в ста­кан на­брать воды из-под крана, она будет ка­зать­ся чи­стой. Но на самом деле, это – рас­твор мно­гих ве­ществ, среди ко­то­рых есть газы (кис­ло­род, аргон, азот, уг­ле­кис­лый газ), раз­лич­ные при­ме­си, со­дер­жа­щи­е­ся в воз­ду­хе, рас­тво­рен­ные соли из почвы, же­ле­зо из во­до­про­вод­ных труб, мель­чай­шие нерас­тво­рен­ные ча­сти­цы пыли и др.

 

Рис. 2. Вода в ста­кане (Ис­точ­ник)

Если на­не­сти пи­пет­кой ка­пель­ки во­до­про­вод­ной воды на чи­стое стек­ло и дать ей ис­па­рить­ся, оста­нут­ся едва за­мет­ные пят­ныш­ки.

 

Рис. 3. Капли воды на стек­ле (Ис­точ­ник)

В воде рек и ру­чьев, боль­шин­ства озер со­дер­жат­ся раз­лич­ные при­ме­си, на­при­мер, рас­тво­рен­ные соли. Но их немно­го, по­то­му что эта вода – прес­ная.

 

Рис. 4. Река (Ис­точ­ник)

Вода течет на земле и под зем­лей, на­пол­ня­ет ручьи, озера, реки, моря и оке­а­ны, со­зда­ет под­зем­ные двор­цы.

 

Рис. 5. Под­зем­ная пе­ще­ра (Ис­точ­ник)

Про­кла­ды­вая себе путь сквозь лег­ко­рас­тво­ри­мые ве­ще­ства, вода про­ни­ка­ет глу­бо­ко под землю, унося их с собой, и через ще­лоч­ки и тре­щин­ки в скаль­ных по­ро­дах, об­ра­зуя под­зем­ные пе­ще­ры, ка­па­ет с их свода, со­зда­вая при­чуд­ли­вые скульп­ту­ры. Мил­ли­ар­ды ка­пе­лек воды за сотни лет ис­па­ря­ют­ся, а рас­тво­рен­ные в воде ве­ще­ства (соли, из­вест­ня­ки) осе­да­ют на сво­дах пе­ще­ры, об­ра­зуя ка­мен­ные со­суль­ки, ко­то­рые на­зы­ва­ют ста­лак­ти­та­ми.

 

Рис. 6. Ста­лак­ти­ты (Ис­точ­ник)

Сход­ные об­ра­зо­ва­ния на полу пе­ще­ры на­зы­ва­ют­ся ста­лаг­ми­та­ми.

Рис. 7. Ста­лаг­ми­ты (Ис­точ­ник)

А когда ста­лак­тит и ста­лаг­мит срас­та­ет­ся, об­ра­зуя ка­мен­ную ко­лон­ну, это на­зы­ва­ют ста­ла­г­на­том.

Рис. 8. Ста­ла­г­нат (Ис­точ­ник)

На­блю­дая ле­до­ход на реке, мы видим воду в твер­дом (лед и снег), жид­ком (те­ку­щая под ним) и га­зо­об­раз­ном со­сто­я­нии (мель­чай­шие ча­сти­цы воды, под­ни­ма­ю­щи­е­ся в воз­дух, ко­то­рые ещё на­зы­ва­ют во­дя­ным паром).

Рис. 9. Ле­до­ход на реке (Ис­точ­ник)

Вода может од­но­вре­мен­но на­хо­дит­ся во всех трех со­сто­я­ни­ях: в воз­ду­хе все­гда есть во­дя­ной пар и об­ла­ка, ко­то­рые со­сто­ят из ка­пе­лек воды и кри­стал­ли­ков льда.

 

Рис. 10. Об­ла­ко (Ис­точ­ник)

Во­дя­ной пар неви­дим, но его можно легко об­на­ру­жить, если оста­вить в теп­лой ком­на­те охла­ждав­ший­ся в хо­ло­диль­ни­ке в те­че­ние часа ста­кан с водой, на стен­ках ко­то­ро­го сразу по­явят­ся ка­пель­ки воды. При со­при­кос­но­ве­нии с хо­лод­ны­ми стен­ка­ми ста­ка­на, во­дя­ной пар, со­дер­жа­щий­ся в воз­ду­хе, пре­об­ра­зу­ет­ся в ка­пель­ки воды и осе­да­ет на по­верх­но­сти ста­ка­на.

Рис. 11. Кон­ден­сат на стен­ках хо­лод­но­го ста­ка­на (Ис­точ­ник)

По этой же при­чине в хо­лод­ное время года за­по­те­ва­ет внут­рен­няя сто­ро­на окон­но­го стек­ла. Хо­лод­ный воз­дух не может со­дер­жать столь­ко же во­дя­но­го пара, сколь­ко и теп­лый, по­это­му ка­кое-то его ко­ли­че­ство кон­ден­си­ру­ет­ся – пре­вра­ща­ет­ся в ка­пель­ки воды.

 

Рис. 12. За­по­тев­шее окно (Ис­точ­ник)

Белый след за ле­тя­щим в небе са­мо­ле­том – тоже ре­зуль­тат кон­ден­са­ции воды.

 

Рис. 13. След за са­мо­ле­том (Ис­точ­ник)

Если под­не­сти к губам зер­каль­це и вы­дох­нуть, на его по­верх­но­сти оста­нут­ся мель­чай­шие ка­пель­ки воды, это до­ка­зы­ва­ет то, что при ды­ха­нии че­ло­век вды­ха­ет с воз­ду­хом во­дя­ной пар.

При на­гре­ва­нии вода «рас­ши­ря­ет­ся». Это может до­ка­зать про­стой опыт: в колбу с водой опу­сти­ли стек­лян­ную труб­ку и за­ме­ри­ли уро­вень воды в ней; затем колбу опу­сти­ли в сосуд с теп­лой водой и после на­гре­ва­ния воды по­втор­но за­ме­ри­ли уро­вень в труб­ке, ко­то­рый за­мет­но под­нял­ся, по­сколь­ку вода при на­гре­ва­нии уве­ли­чи­ва­ет­ся в объ­е­ме.

 

Рис. 14. Колба с труб­кой, циф­рой 1 и чер­той обо­зна­чен пер­во­на­чаль­ный уро­вень воды

 

Рис. 15. Колба с труб­кой, циф­рой 2 и чер­той обо­зна­чен уро­вень воды при на­гре­ва­нии

При охла­жде­нии вода «сжи­ма­ет­ся». Это может до­ка­зать сход­ный опыт: в этом слу­чае колбу с труб­кой опу­сти­ли в сосуд со льдом, после охла­жде­ния уро­вень воды в труб­ке по­ни­зил­ся от­но­си­тель­но пер­во­на­чаль­ной от­мет­ки, по­то­му что вода умень­ши­лась в объ­е­ме.

 

Рис. 16. Колба с труб­кой, циф­рой 3 и чер­той обо­зна­чен уро­вень воды при охла­жде­нии

Так про­ис­хо­дит, по­то­му что ча­сти­цы воды, мо­ле­ку­лы, при на­гре­ва­нии дви­жут­ся быст­рее, стал­ки­ва­ют­ся между собой, от­тал­ки­ва­ют­ся от сте­нок со­су­да, рас­сто­я­ние между мо­ле­ку­ла­ми уве­ли­чи­ва­ет­ся, и по­это­му жид­кость за­ни­ма­ет боль­ший объем. При охла­жде­нии воды дви­же­ние её ча­стиц за­мед­ля­ет­ся, рас­сто­я­ние между мо­ле­ку­ла­ми умень­ша­ет­ся, и жид­ко­сти тре­бу­ет­ся мень­ший объем.

 

Рис. 17. Мо­ле­ку­лы воды обыч­ной тем­пе­ра­ту­ры

 

 

Рис. 18. Мо­ле­ку­лы воды при на­гре­ва­нии

 

 

Рис. 19. Мо­ле­ку­лы воды при охла­жде­нии

Та­ки­ми свой­ства­ми об­ла­да­ет не толь­ко вода, но и дру­гие жид­ко­сти (спирт, ртуть, бен­зин, ке­ро­син).

Зна­ние этого свой­ства жид­ко­стей при­ве­ло к изоб­ре­те­нию тер­мо­мет­ра (гра­дус­ни­ка), где ис­поль­зу­ет­ся спирт или ртуть.

 

Рис. 20. Тер­мо­метр (Ис­точ­ник)

При за­мер­за­нии вода рас­ши­ря­ет­ся. Это можно до­ка­зать, если ем­кость, на­пол­нен­ную до краев водой, неплот­но на­крыть крыш­кой и по­ста­вить в мо­ро­зиль­ную ка­ме­ру, через время мы уви­дим, что об­ра­зо­вав­ший­ся лед при­под­ни­мет крыш­ку, выйдя за пре­де­лы ем­ко­сти.

Это свой­ство учи­ты­ва­ет­ся при про­кла­ды­ва­нии во­до­про­вод­ных труб, ко­то­рые обя­за­тель­но утеп­ля­ют­ся, чтобы при за­мер­за­нии об­ра­зо­вав­ший­ся из воды лед не разо­рвал трубы.

В при­ро­де за­мер­за­ю­щая вода может раз­ру­шать горы: если осе­нью в тре­щи­нах скал скап­ли­ва­ет­ся вода, зимой она за­мер­за­ет, и под на­по­ром льда, ко­то­рый за­ни­ма­ет боль­ший объем, чем вода, из ко­то­рой он об­ра­зо­вал­ся, гор­ные по­ро­ды трес­ка­ют­ся и раз­ру­ша­ют­ся.

Вода, за­мер­за­ю­щая в тре­щи­нах дорог, при­во­дит к раз­ру­ше­нию ас­фаль­то­во­го по­кры­тия.

Длин­ные греб­ни, на­по­ми­на­ю­щие склад­ки, на ство­лах де­ре­вьев – раны от раз­ры­вов дре­ве­си­ны под на­по­ром за­мер­за­ю­ще­го в ней дре­вес­но­го сока. По­это­му в хо­лод­ные зимы можно услы­шать треск де­ре­вьев в парке или в лесу.

В Ан­тарк­ти­де, по­кры­той че­ты­рех­ки­ло­мет­ро­вым слоем льда, на­хо­дят­ся ос­нов­ные за­па­сы этого ве­ще­ства на Земле.

 

Рис. 1. Ан­тарк­ти­да (Ис­точ­ник)

Лед встре­ча­ет под зем­лей, по­кры­ва­ет по­верх­но­сти во­до­е­мов.

 

Рис. 2. Лед в под­зем­ной пе­ще­ре (Ис­точ­ник)

 

Рис. 3. Лед на по­верх­но­сти реки (Ис­точ­ник)

Айс­бер­ги – пла­ва­ю­щие в море глыбы льда.

 

Рис. 4. Айс­берг (Ис­точ­ник)

Сне­жин­ки со­сто­ят из мел­ких кри­стал­ли­ков льда.

 

Рис. 5. Сне­жин­ка (Ис­точ­ник)

Узоры на стек­ле в зим­нее время – это кри­стал­лы льда, об­ра­зо­ван­ные за­мерз­шим во­дя­ным паром.

 

Рис. 6. Иней на стек­ле (Ис­точ­ник)

В со­вре­мен­ном мире по­лу­че­ние льда – про­цесс до­ступ­ный даже ре­бен­ку. До­ста­точ­но взять ка­кую-ни­будь ем­кость, на­пол­нить водой, по­ста­вить на время в мо­ро­зиль­ную ка­ме­ру, и по­лу­чит­ся лед.

 

Рис. 7. По­лу­че­ние льда из форм (Ис­точ­ник)

Иней в хо­ло­диль­ни­ке – это за­мерз­ший во­дя­ной пар. Иней и лед – это вода в твер­дом со­сто­я­нии.

Лед имеет свой­ство таять в теп­лом по­ме­ще­нии (выше 0°), пре­вра­ща­ясь в воду.

Лед хо­лод­ный и скольз­кий на ощупь.

 

Рис. 8. Лед на руке (Ис­точ­ник)

Люди знали о том, что лед скольз­кий, и за­щи­ща­ли кре­по­сти на воз­вы­ше­ни­ях рвами с водой. В хо­лод­ное время года за­щит­ни­ки по­ли­ва­ли стены водой, и по скольз­кой ле­дя­ной стене за­хват­чи­ки не могли про­брать­ся внутрь.

 

Рис. 9. Кре­пость зимой

При тем­пе­ра­ту­ре ниже 0° вода на по­верх­но­сти почвы за­мер­за­ет, пре­вра­ща­ясь в го­ло­лед – опас­ное яв­ле­ние при­ро­ды (в спеш­ке можно по­скольз­нуть­ся, упасть и по­лу­чить трав­му). Чтобы из­бе­жать травм, нужно не то­ро­пить­ся, вы­хо­дить из дому за­ра­нее, при ходь­бе на­сту­пать на всю по­дош­ву. Осо­бен­но осто­рож­но нужно пе­ре­хо­дить до­ро­гу – на скольз­ком пути во­ди­те­лю слож­нее быст­ро за­тор­мо­зить.

 

Рис. 10. Осто­рож­но! Го­ло­лед! (Ис­точ­ник)

Лед – хруп­кий. Если стук­нуть по ку­би­ку льда мо­ло­точ­ком, он рас­ко­лет­ся на мно­же­ство льди­нок.

Рис. 11. Ко­ло­тый лед (Ис­точ­ник)

 

Лед со­хра­ня­ет свою форму. Если пе­ре­ло­жить льдин­ку из блю­деч­ка в ста­кан, её форма не из­ме­нить­ся, по­то­му что лед – твер­дое ве­ще­ство и не ме­ня­ет свою форму.

 

Рис. 12. Кубик льда (Ис­точ­ник)

 

За­мерз­шую по­верх­ность во­до­е­ма можно ис­поль­зо­вать для пе­ре­ме­ще­ний на транс­пор­те или пеш­ком, по­то­му что лед, в от­ли­чие от воды, спо­со­бен вы­дер­жи­вать на своей по­верх­но­сти до­ста­точ­но боль­шой вес.

 

Рис. 13. Мо­то­кросс по льду (Ис­точ­ник)

Для за­ня­тий спор­том и раз­вле­че­ний за­ли­ва­ют катки – боль­шие ров­ные про­стран­ства льда.

 

Рис. 14. Каток на Крас­ной пло­ща­ди (Ис­точ­ник)

Во время ка­та­ния на конь­ках лед, со­при­ка­са­ю­щий­ся с лез­ви­я­ми, тает, пре­вра­ща­ясь в воду. Если бы не было этого тон­ко­го слоя воды, ка­тать­ся по льду было бы так же труд­но, как по полу. Вода, как масло в ма­шине, умень­ша­ет тре­ние между льдом и конь­ком и об­лег­ча­ет сколь­же­ние.

 

Рис. 15. Сколь­же­ние конь­ков по льду (Ис­точ­ник)

По той же при­чине про­ис­хо­дит дви­же­ние лед­ни­ков с гор. Под дав­ле­ни­ем огром­ной массы льда его ниж­ние слои на­чи­на­ют таять и ле­дя­ная река сколь­зит по гор­но­му скло­ну вниз, как конь­ки по по­верх­но­сти катка.

 

Рис. 16. Схож­де­ние лед­ни­ка с горы (Ис­точ­ник)

 

Лед не тонет в воде. Если бро­сить ку­со­чек льда в ем­кость с водой, он не уто­нет, а будет пла­вать на по­верх­но­сти.

 

Рис. 17. Лед пла­ва­ет на по­верх­но­сти воды (Ис­точ­ник)

Обыч­но твер­дые ве­ще­ства тя­же­лее, чем те же ве­ще­ства в жид­ком со­сто­я­нии. На­при­мер, ку­со­чек же­ле­за тонет в рас­плав­лен­ном же­ле­зе, а свин­цо­вый кубик тонет в рас­плав­лен­ном свин­це. При за­мер­за­нии вода за­ни­ма­ет боль­ший объем, чем пре­жде, она рас­ши­ря­ет­ся, по­это­му лед легче воды. Уже од­но­го этого свой­ства до­ста­точ­но, чтобы вы­де­лить лед из ряда твер­дых ве­ществ как ис­клю­че­ние.

Если бы лед тонул, на по­верх­но­сти во­до­е­мов в те­че­ние хо­лод­но­го вре­ме­ни года об­ра­зо­вы­ва­лись бы новые и новые слои льда на месте за­то­нув­ших и во­до­ем про­мер­зал бы до са­мо­го дна. В ре­зуль­та­те вод­ные жи­вот­ные и рас­те­ния ока­за­лись бы ско­ва­ны льдом, им гро­зи­ла бы неми­ну­е­мая ги­бель. К сча­стью, в при­ро­де этого не про­ис­хо­дит, по­то­му что лед не тонет в воде.

 

Рис. 18. Слой льда на по­верх­но­сти во­до­е­ма (Ис­точ­ник)

 

Лед плохо про­во­дит тепло. В во­до­е­ме он за­щи­ща­ет воду под ним от даль­ней­ше­го охла­жде­ния. Вода тоже плохо пе­ре­да­ет тепло. Это до­ка­зы­ва­ет такой опыт: на дно про­бир­ки с водой опус­ка­ют кубик льда с тя­же­лым гру­зом (по­сколь­ку лед не тонет в воде, в него за­ра­нее вмо­ра­жи­ва­ют гру­зик), край про­бир­ки на­гре­ва­ют, верх­ний слой воды кипит, а лед не пла­вит­ся. Из опыта можно сде­лать вывод, что не толь­ко лед, но и вода плохо про­во­дит тепло. Верх­ние слои воды на­гре­ва­ют­ся, в то время как ниж­ние оста­ют­ся хо­лод­ны­ми. Это объ­яс­ня­ет, по­че­му ис­па­ре­ния про­ис­хо­дят толь­ко с по­верх­но­сти во­до­е­мов.

 

Рис. 19. Опыт по на­гре­ва­нию края про­бир­ки с водой и утоп­лен­ным льдом (Ис­точ­ник)

Если же на­гре­вать воду в ем­ко­сти снизу, то вско­ре весь объем воды за­ки­пит (на­при­мер, если мы по­ста­вим на плиту ка­стрю­лю с супом). Так про­ис­хо­дит по­то­му, что ниж­ний слой воды на­гре­ва­ет­ся, рас­ши­ря­ет­ся и под­ни­ма­ет­ся вверх, на его место опус­ка­ет­ся еще не про­гре­тая вода, и про­цесс по­вто­ря­ет­ся до тех пор, пока вся вода не про­гре­ет­ся до 100°. При такой тем­пе­ра­ту­ре вода за­ки­па­ет и пре­вра­ща­ет­ся в во­дя­ной пар.

 

Рис. 20. Опыт по на­гре­ва­нию ем­ко­сти с водой снизу (Ис­точ­ник)

Лед, как и стек­ло, бес­цве­тен и про­зра­чен.

 

Рис. 21. Лед (Ис­точ­ник)

 

Рис. 22. Стек­ло (Ис­точ­ник)

 

Снег – одно из твер­дых со­сто­я­ний воды. Он белый, рых­лый, непро­зрач­ный, тает в тепле и пла­ва­ет в воде. 

 

Рис. 23. Снег (Ис­точ­ник)

 

Вода со­сто­ит из мо­ле­кул, ко­то­рые на­хо­дят­ся в непре­рыв­ном дви­же­нии.

 

Рис. 1. Мо­ле­ку­лы воды обыч­ной тем­пе­ра­ту­ры

Те из них, что ока­зы­ва­ют­ся близ­ко к по­верх­но­сти, ока­зы­ва­ют­ся в воз­ду­хе и пе­ре­ме­ши­ва­ют­ся с его ча­сти­ца­ми, пре­вра­ща­ясь в во­дя­ной пар. Ча­сти­цы воз­ду­ха и во­дя­но­го пара так малы, что их невоз­мож­но уви­деть нево­ору­жен­ным гла­зом. Во­дя­ной пар – это про­зрач­ный бес­цвет­ный газ, неви­ди­мый, как и воз­дух.

 

Рис. 2. Об­ра­зо­ва­ние во­дя­но­го пара при ки­пе­нии (Ис­точ­ник)

Ис­па­ре­ние – пе­ре­ход воды из жид­ко­го со­сто­я­ния в га­зо­об­раз­ное.

 

Рис. 3. Ис­па­ре­ние воды с по­верх­но­сти во­до­е­ма (Ис­точ­ник)

Лед тоже ис­па­ря­ет­ся, но зна­чи­тель­но мед­лен­нее, чем вода в жид­ком со­сто­я­нии. На­при­мер, если зимой вы­ве­сить мокрое белье на улицу, сна­ча­ла оно по­кро­ет­ся ле­дя­ной кор­кой, а потом вы­сох­нет.

 

Рис. 4. Сушка мок­ро­го белья зимой (Ис­точ­ник)

В каком бы со­сто­я­нии вода не была, она по­сто­ян­но ис­па­ря­ет­ся с по­верх­но­сти Земли.

Че­ло­век ис­поль­зу­ет зна­ния об ис­па­ре­нии воды. Про­су­ши­ва­ют со­бран­ное зерно, за­го­тов­лен­ные дрова, ошту­ка­ту­рен­ные стены, вы­мы­тую по­су­ду, вы­сти­ран­ное белье.

 

Рис. 5. Сушка зерна (Ис­точ­ник)

 

Рис. 6. Сушка дров (Ис­точ­ник)

 

Рис. 7. Сушка ошту­ка­ту­рен­ных стен (Ис­точ­ник)

 

Рис. 8. Сушка по­су­ды (Ис­точ­ник)

 

Рис. 9. Сушка белья (Ис­точ­ник)

Мок­рые во­ло­сы сушат элек­три­че­ским феном.

 

Рис. 10. Сушка волос феном (Ис­точ­ник)

 

Ин­тен­сив­ность ис­па­ре­ния за­ви­сит от тем­пе­ра­ту­ры воды: чем выше тем­пе­ра­ту­ра, тем выше ско­рость дви­же­ния мо­ле­кул воды, а зна­чит и ис­па­ре­ния. Это до­ка­зы­ва­ет про­стой опыт: если в 2 ем­ко­сти на­лить оди­на­ко­вое ко­ли­че­ство воды, а затем одну по­ста­вить в хо­лод­ное место, а дру­гую – в теп­лое, через неко­то­рое время ста­нет ясно, что вода в хо­лод­ном месте ис­па­ря­ет­ся мед­лен­нее, чем в теп­лом.

Мок­рая до­ро­га летом вы­сох­нет на­мно­го быст­рее, чем осе­нью.

Рис. 11. Мок­рая до­ро­га (Ис­точ­ник)

Ско­шен­ная трава в сол­неч­ный день вы­сох­нет быст­рее, чем в пас­мур­ный.

 

Рис. 12. Ско­шен­ная трава (Ис­точ­ник)

Зна­ние этого свой­ства по­мо­га­ет людям. На­при­мер, если под­мок­ла ста­рин­ная книга, её остав­ля­ют в спе­ци­аль­ной мо­ро­зиль­ной ка­ме­ре, чтобы вы­сы­ха­ние шло мед­лен­но и стра­ни­цы книги не по­вре­ди­лись.

Ис­па­ре­ние про­ис­хо­дит в месте со­при­кос­но­ве­ния по­верх­но­сти воды с воз­ду­хом, со­от­вет­ствен­но, чем боль­ше пло­щадь со­при­кос­но­ве­ния, тем быст­рее про­ис­хо­дит ис­па­ре­ние. До­ка­зать это можно с по­мо­щью неслож­но­го опыта: нужно на­лить оди­на­ко­вое ко­ли­че­ство воды в 3 ем­ко­сти с раз­ной пло­ща­дью со­при­кос­но­ве­ния на­ли­той воды с воз­ду­хом (на­при­мер, бу­тыл­ка с узким гор­лыш­ком, стек­лян­ная банка и ши­ро­кая та­рел­ка). Через неко­то­рое время мы уви­дим, что вода из та­рел­ки ис­па­ря­ет­ся быст­рее всего, по­то­му что пло­щадь со­при­кос­но­ве­ния воды с воз­ду­хом наи­боль­шая. Из банки немно­го мед­лен­нее, по­то­му что пло­щадь со­при­кос­но­ве­ния мень­ше. А из бу­тыл­ки мед­лен­нее всего, по­то­му что пло­щадь со­при­кос­но­ве­ния воды с воз­ду­хом наи­мень­шая.

 

Рис. 13. Опыт по ис­па­ре­нию воды из ем­ко­стей с раз­лич­ной пло­ща­дью со­при­кос­но­ве­ния воды с воз­ду­хом (Ис­точ­ник)

По­это­му фрук­ты, пред­на­зна­чен­ные для сушки, раз­ре­за­ют на тон­кие лом­ти­ки – чтобы уве­ли­чить по­верх­ность со­при­кос­но­ве­ния с воз­ду­хом и уве­ли­чить ско­рость ис­па­ре­ния.

 

Рис. 14. Сушка яблок (Ис­точ­ник)

 

Под воз­дей­стви­ем ветра ис­па­ре­ние идет быст­рее, по­то­му что мо­ле­ку­лы воды ак­тив­нее со­еди­ня­ют­ся с мо­ле­ку­ла­ми воз­ду­ха. В вет­ре­ную по­го­ду влаж­ные по­верх­но­сти вы­сы­ха­ют быст­рее, если дер­жать руки под су­шил­кой, они вы­сох­нут быст­рее.

 

Рис. 15. Сушка рук под воз­дей­стви­ем по­то­ка теп­ло­го воз­ду­ха (Ис­точ­ник)

Наи­бо­лее ак­тив­но ис­па­ре­ние идет при на­гре­ва­нии. При 100г вода кипит и пре­вра­ща­ет­ся в во­дя­ной пар. Мо­ле­ку­лы во­дя­но­го пара под воз­дей­стви­ем вы­со­кой тем­пе­ра­ту­ры дви­га­ют­ся очень быст­ро, ему необ­хо­дим боль­шой объем, по­это­му у ки­пя­ще­го чай­ни­ка «под­пры­ги­ва­ет» крыш­ка.

 

Рис. 16. Ки­пя­щий чай­ник (Ис­точ­ник)

 

Зна­ние этого свой­ства во­дя­но­го пара поз­во­ли­ло людям скон­стру­и­ро­вать па­ро­вые дви­га­те­ли.

 

Рис. 17. Ма­ши­на с па­ро­вым дви­га­те­лем (Ис­точ­ник)

Часто, когда пе­чет­ся яб­ло­ко, его ко­жу­ра ло­па­ет­ся – это яб­лоч­ный сок, пре­вра­ща­ясь в пар, раз­ры­ва­ет ко­жу­ру.

 

Рис. 18. Пе­че­ное яб­ло­ко (Ис­точ­ник)

Или можно услы­шать треск дров в печи – под воз­дей­стви­ем вы­со­кой тем­пе­ра­ту­ры вода в дро­вах пре­вра­ща­ет­ся в во­дя­ной пар и раз­ры­ва­ет дре­ве­си­ну.

 

Рис. 19. Дро­вя­ная печь (Ис­точ­ник)

Как было ска­за­но, во­дя­ной пар – неви­дим. Так по­че­му же мы видим пар, когда кипит чай­ник? В хо­лод­ном воз­ду­хе разо­гре­тый во­дя­ной пар кон­ден­си­ру­ет­ся – пре­вра­ща­ет­ся в мель­чай­шие ка­пель­ки воды, ко­то­рые мы видим как белый пар. А неви­ди­мый во­дя­ной пар на­хо­дит­ся возле но­си­ка чай­ни­ка на гра­ни­це бе­ло­го об­лач­ка пара.

 

Рис. 20. Ки­пя­щий чай­ник (Ис­точ­ник)

Если по­ме­стить у но­си­ка ки­пя­ще­го чай­ни­ка хо­лод­ный ме­тал­ли­че­ский пред­мет, то очень скоро на нем по­явят­ся ка­пель­ки осев­шей воды. Этот опыт до­ка­зы­ва­ет на­ли­чие во­дя­но­го пара у но­си­ка чай­ни­ка.

 

Рис. 21. Опыт по кон­ден­са­ции во­дя­но­го пара у но­си­ка чай­ни­ка (Ис­точ­ник)

 

источник конспекта:

http://interneturok.ru/ru/school/okruj-mir/3-klass/undefined/svoystva-vody-v-zhidkom-sostoyanii?seconds=0&chapter_id=826

http://interneturok. ru/ru/school/okruj-mir/3-klass/undefined/svoystva-vody-v-tverdom-sostoyanii

http://interneturok.ru/ru/school/okruj-mir/3-klass/undefined/svoystva-vody-v-gazoobraznom-sostoyanii

исчтоник презентации — http://prezentacii.com/biologiya/6000-tri-sostoyaniya-vody.html

источник видео:

http://www.youtube.com/watch?v=nGsOh3iCC70

http://www.youtube.com/watch?v=WL_GTjYByG8

http://www.youtube.com/watch?v=BsjlZh2kKbo

ТЕПЛОВОЕ РАСШИРЕНИЕ, ТЕПЛОПРОВОДНОСТЬ

ТЕПЛОВОЕ РАСШИРЕНИЕ, ТЕПЛОПРОВОДНОСТЬ

ТЕПЛОВОЕ РАСШИРЕНИЕ, ТЕПЛОПРОВОДНОСТЬ


(приблизительно от 1800 до 1815 г.)
ТЕПЛОВОЕ РАСШИРЕНИЕ ГАЗОВ

Наблюдение, что изменения температуры тел постоянно сопровождаются изменениями их объемов, относятся уже к отдаленной древности, тем не менее, определение абсолютной величины отношения этих изменений принадлежит только новейшему времени. До изобретения термометров о подобных определениях, разумеется, нельзя было и думать, но зато с развитием термометрии точное исследование этой связи становилось совершенно необходимым. Сверх того, в конце прошлого XVIII и в начале нынешнего XIX века накопилось множество различных явлений, побуждавших заняться тщательными измерениями расширения тел от теплоты; таковы были: необходимость поправок барометрических показаний при определении высот, определение астрономической рефракции, вопрос об упругости газов и паров, постепенно возраставшее применение металлов для научных приборов и технических целей и т. д.

Прежде всего, естественно, обратилась к определению расширения воздуха, которое по своей величине больше всего бросалось в глаза и представлялось наиболее легко измеримым. Множество физиков вскоре получило большое количество результатов, но частично довольно разноречивых. Амонтон для регулирования своего нормального термометра измерил расширение воздуха при нагревании его от 0° до 80° R и сравнительно точно определил его в 0,380 части его объема при 0°. С другой стороны, Нюге в 1705 г. получил при посредстве несколько видоизмененного прибора один раз число, вдвое большее, а другой раз — число, даже в 16 раз большее. Ла-Гир (1708) тоже получил вместо амонтоновского числа 1,5 и даже 3,5. Гоуксби (1709) нашел число 0,455; Крюкиус (1720) — 0,411; Полени — 0,333; Бонн — 0,462; Мушенбрек — 0,500; Ламбер («Pyrométrie», стр. 47)—0,375; Делюк — 0,372; И. Т. Мейер — 0,3755 и 0,3656; Соссюр — 0,339; Вандермонд, Бертолле и Монж получили (1786) — 0,4328. Пристли, получивший для расширения воздуха значительно отклоняющееся от истинного число 0,9375, утверждал, сверх того, что кислород, азот, водород, угольная кислота, пары азотной, соляной, сернистой, плавиковой кислот и аммиака — все они отличаются по своему расширению от воздуха. Г. Г. Шмидт («Green’s Neues Journ. », IV, стр. 379) получил для расширения воздуха число 0,3574, для кислорода 0,3213, наконец, для водорода, угольной кислоты и азота 0,4400, 0,4352, 0,4787. Морво и Дювернуа примкнули к мнению Пристли, но вообще нашли, что расширение газов не вполне пропорционально изменению температуры.

РАБОТЫ ДАЛЬТОНА ПО РАСШИРЕНИЮ ГАЗОВ

Джон Дальтон (1766-1844)

Решающий приговор над этими разноречивыми результатами и мнениями, ясное и всеми признанное представление о расширении газов от теплоты внесли в науку только работы Гей-Люссака и Дальтона, которые, одновременно и вполне независимо друг от друга, пришли к совершенно согласным результатам. Гей-Люссак, разыскивая причину расхождения множества полученных им коэффициентов расширения, обратил внимание, прежде всего на присутствие в измерительных приборах воды, которая при нагревании превращается в пар и неопределенным, неподдающимся учету образом увеличивает объем заключенных в сосуде газов. Поэтому он обратил самое тщательное внимание на полное и совершенное высушивание сосудов, предназначенных для опыта, и на освобождение исследуемых газов от всякой влажности. После этих предосторожностей уже первая серия опытов дала ему очень согласные результаты. Шесть опытов с атмосферным воздухом показали расширение его, в промежутке между 0° и 100° С, на 0,3740, 0,3760, 0,3744, 0,3755, 0,3748, 0,3757. Следовательно, в среднем итоге получилось 0,3750, т. е. число, которое разнится от каждого в отдельности не более как на 0,001. Соответствующие опыты для водорода дали: 0,3749 и 0,3756; для кислорода: 0,3747, 0,3754 и 0,3745; для азота: 0,3742, 0,3756, 0,3750, 0,3746 и 0,3755 1. Результат своих опытов Гей-Люссак выразил в следующих словах: «Описанные выше опыты, которые были произведены мною с величайшей тщательностью, ясно показывают, что атмосферный воздух, кислород, водород, азот, пары азотной кислоты, аммиака, соляной, серной и угольной кислот при одинаковом повышении температуры расширяются тоже равномерно; что, следовательно, величина расширения не зависит от различных физических свойств или особой природы этих тел и что все газы вообще, насколько я могу заключить, расширяются от теплоты в одинаковой степени».


Гей-Люссак Жозеф Луи (1778-1850)

Дальтон, который стал заниматься тем же вопросом немного раньше Гей-Люссака, опубликовал часть своих результатов уже в 1801 г. Он изучал расширение, испытываемое воздухом, высушенным посредством серной кислоты, при нагревании его в градуированных трубках, и нашел, что при повышении температуры на 157° F расширение составляет 0,321 первоначального объема, а когда он ввел в расчет коэффициент расширения газа 0,004, то получил число 0,325. Если принять расширение воздуха равномерным, то для расширения воздуха между обеими постоянными точками термометра получается 0,373. Позднее, после ряда повторных опытов, Дальтон дал в качестве общего результата своих измерений число 0,376 и притом не только для одного воздуха, но и для всех газов вообще и даже для всех паров. На этом основании коэффициентом расширения газов и было окончательно признано число 0,375; а закон, утверждавший общность этого коэффициента для всех газообразных тел, по всей справедливости получил название дальтоно-гей-люссаковского. Но Дальтон сам представлял себе этот закон в несколько ином виде, чем Гей-Люссак, и не совсем так, как этот закон был окончательно принят. Он сходился с Гей-Люссаком в том, что все газы расширяются одинаково; но он считал это расширение неравномерным и даже утверждал, что расширение всякого постоянного газа увеличивается в геометрической прогрессии, в то время как температура повышается в арифметической. Однако и формулировка Гей-Люссака должна была еще подвергнуться некоторому ограничению. Оба исследователя считали свой закон справедливым для всех вообще газообразных веществ, т. е. как для постоянных газов, так и для газов, поддающихся сжижению. Между тем позднейшие опыты показали, что последнего рода газы, когда температура их понижается настолько, что они приближаются к жидкому состоянию, более или менее отклоняются от общего закона в изменениях своих объемов, и что, следовательно, для этого рода газов рассматриваемый закон сохраняет всю свою силу лишь при температурах, далеких от точки их перехода в жидкое состояние.

Эти сжимаемые в жидкость газы или пары вообще представляли явления крайне сложные. Ясно, что закон Дальтона-Гей-Люссака может быть приблизительно верен для сжижаемых газов лишь в том случае, когда они ограждены от всякого количественного прироста. Если же они находятся в соприкосновении с жидкостью, из которой они выделяются, то, разумеется, не может быть и речи об объеме определенного количества паров при определенной температуре, так как количество их должно постоянно увеличиваться с повышением температуры. Пары, находящиеся в соприкосновении с жидкостью, остаются насыщенными при любой температуре, и увеличение объема и упругости подобных насыщенных паров должно следовать совсем иному закону, чем закон Дальтона-Гей-Люссака. С другой стороны, определение давления этих насыщенных паров при различных температурах имеет огромное значение для применения пара к механической работе, а также для метеорологических целей, и потому разрешение этого вопроса занимало физиков не меньше, чем определение коэффициента расширения газов.

ИССЛЕДОВАНИЕ УПРУГОСТИ ВОДЯНЫХ ПАРОВ

Первое более подробное исследование упругости водяных паров было произведено Циглером из Винтертура в 1769 г. Однако различные серии его опытов по своим результатам еще плохо согласовались между собою. К более правильным результатам пришел Джемс Уатт в 1764 и 1765 гг., а затем позднее в 1773 и 1774 гг. Для более высоких температур он, подобно Циглеру, применял папинов котел, а для низких температур — барометр, верхнюю часть которого он окружал согревательным прибором, а в пустоту вводил немного воды.

Бетанкур приделал в 1792 г. к папинову котлу открытый манометр того самого образца, который применяется до настоящего времени. Его многочисленные опыты, прежде всего, интересны тем, что на основании их Прони (Nouvelle arhitecture hydraulique, Paris 1790 и 1796) пытался вывести первую общую формулу для вычисления силы упругости пара по заданной температуре — формулу, которая, однако, отличалась скорее своею сложностью, чем точностью. Немного позднее Шмидтом в Гиссене, Бикером и Руппом в Роттердаме были произведены тщательные опыты для определения упругости водяного пара. Но общее признание и притом на продолжительный отрезок времени получили только опыты Дальтона. Последний вводил в торичеллиеву пустоту чашечного барометра столбик жидкости, пары которой он желал исследовать, высотой в 2—3 линии; на конец барометрической трубки он для нагревания этой жидкости надевал более широкую стеклянную трубку, которая снизу совершенно закрывалась пробкой, а сверху закрывалась наполовину, для того чтобы можно было в нее свободно наливать воду различной температуры.

Для проверки этих опытов Дальтон кипятил те же жидкости под колоколом воздушного насоса при различных степенях разрежения воздуха. Для измерения силы упругости, превышавшей давление 1 ат, он применял сифонный барометр, в короткое запаянное колено которого он наливал исследуемую жидкость, а длинное оставлял открытым. Мунке (Gehler’s physik. Wörterbuch, 2. Aufl. , II, стр. 328) выражается очень пренебрежительно о приборах Дальтона: «Нецелесообразность этого прибора бросается тотчас же в глаза и наводит на мысль, не получена ли большая часть дальтоновских результатов… при помощи (одного) воздушного насоса». Другие исследователи тоже отмечали, что в дальтоновских приборах температура нагревающей воды была неравномерна и не могла быть точно определена. При всем том его результаты оказались очень надежными и таблица упругости водяных паров, которую Био привел в своем «Учебнике экспериментальной физики» (1, стр. 259), целиком основана на опытах Дальтона.

ИССЛЕДОВАНИЕ УПРУГОСТИ ПАРОВ

Меньше успеха имела попытка Дальтона подвести под один общий закон силу упругости паров различных жидкостей. По его мнению, он своими опытами доказал, по крайней мере для серного эфира, спирта, жидкого аммиака, жидкого хлористого кальция, сернистой кислоты и ртути, что для одинаковых температур ниже или выше точки кипения данных жидкостей, все пары этих жидкостей обладают равной упругостью, и был склонен распространить это правило на все жидкости вообще. Этот мнимый закон был встречен с недоверием современниками, а впоследствии Депре, Уре и другие доказали, что хотя он приблизительно верен для некоторых паров, но как общий закон он определенно неверен.

ДИФФУЗИЯ ГАЗОВ. ТЕОРИЯ ИСПАРЕНИЯ

Теория Дальтона относительно смеси газов и паров тоже вызвала возражения, но выдержала испытание лучше предыдущей. Дальтон устарастворения. Если насыщаемость известного пространства для пара какой-либо жидкости независима от присутствия и свойства другого находящегося в том же пространстве газа, то последний, очевидно, не может быть причиной испарения жидкости, и, следовательно, абсолютно невозможно, чтобы жидкость испарялась только вследствие растворения ее атмосферным воздухом, с которым она приходит в соприкосновение. Напротив, отталкивательная сила теплоты повсюду стремится удалять друг от друга частицы жидкости и превращать ее в пар. Последнее не всегда возможно во внутренних частях жидкостей, так как атмосферное давление, воздействующее на верхние слои, задерживает образование паров, по крайней мере, до тех пор, пока постепенно нарастающая при нагревании упругость их не пересилит давления воздуха, после чего уже и начинается кипение. На поверхности же жидкости, где частицы только окружены атмосферой, теплота способна оказывать свое действие при всякой температуре, так как пространство, заполненное газом, ведет себя по отношению к поступлению в него паров, как пустое пространство. Вот почему с поверхности жидкости все время равномерно распространяются в пространство пары, которые поднимаются вверх против силы тяжести, атмосферное же давление никогда не может воспрепятствовать ни испарению, ни повсеместному распространению паров в пространстве, а способно только более или менее замедлить его. Давнишний спорный вопрос заключается теперь уже не в том, каким образом вода поднимается в облака, а в том, каким образом вновь сгустившаяся из паров вода может держаться в облаках. Для ответа на этот вопрос большинство прибегало еще к старой теории пузырьков.

ОТНОШЕНИЕ ФИЗИКОВ К ТРУДАМ ДАЛЬТОНА

Для ответа на этот вопрос большинство прибегало еще к старой теории пузырьков. Лишь немногие физики отрицали вообще возможность парения облаков и считали облака скоплением водяных капелек, постоянно опускающихся в атмосфере: но так как сопротивление воздуха по отношению к ничтожным размерам капелек очень велико, то падение капелек воды происходит так медленно, что малейший ток воздуха превращает это падение в подъем. Впечатление, произведенное теорией испарения Дальтона на современных ему физиков, очень характерно описано Эрманом («Gilbert’s Ann.», XL, стр. 392, 1812). «После того, как было фактически доказано, что упругость водяного пара и его количество в пустом пространстве совершенно те же, что и под атмосферным давлением, многим физикам не стоило особенных усилий отказаться от системы растворения … Таким образом значительное большинство, обыкновенно не отличающееся строгой выдержкой, сразу оставило гипотезу растворения, не дав себе ясного отчета в том, что предполагает и что заключает в себе теория, сводящая все явления просто к одной температуре. Дальтон спокойно сделал выводы из этой теории и продолжал с мужественной выдержкой прокладывать себе дорогу между всеми устрашающими последствиями настоящего противорастворного учения. И тогда обе партии были поражены почти в одинаковой степени». Такие физики, как Траллес, Бертолле, Муррей, Томсон и многие другие, решительно отказались признать правильность дальтоновского воззрения на состав нашей атмосферы. Дальтону приходилось бороться с множеством возражений, имевших прочные точки опоры в господствовавшей тогда теории теплоты; и хотя он защищался с большим искусством, а иногда с излишним увлечением, тем не менее, недоверие к его теории окончательно исчезло только позднее с приближением к новейшему учению о теплоте.

Вообще научные труды Дальтона имели странную участь: их и восторженно превозносили и беспощадно порицали. Выше было уже отмечено, с каким высокомерием Мунке, обыкновенно столь объективный, отозвался о дальтоновских приборах. Приведем еще один из его суровых отзывов: «Нелегко указать на исследования, которые обратили бы на себя столько внимания и были бы настолько оценены выше всяких заслуг, чем опыты, произведенные Джоном Дальтоном для открытия общего закона упругости паров». Фехнер замечает: «Дальтоновская гипотеза, согласно которой разнородные газы, составляющие атмосферный воздух, не производят друг на друга никакого давления, имеет пока успех у весьма немногих физиков, между которыми особенно выделяется Бенценберг по тому усердию, с каким он в течение целых 20 лет защищает эту теорию». Дове высказывает следующее суждение: «Дальтоновское положение о связи упругости паров всех жидкостей, к сожалению, не подтвердилось; тем не менее, этот вывод дает такое значительное приближение наблюдаемых величин к вычисленным, что за недостатком лучшего им можно пользоваться». С другой стороны, Био во всех относящихся к этому вопросу отделах своего «Учебника экспериментальной физики» (1, стр. 251—281) принимает за основание опыты Дальтона, расценивая их очень высоко. Причины такого различия взглядов лежат отчасти в самом характере дальтоновских работ. «Подобно тому, как Дальтону рано пришлось самому прокладывать себе дорогу в жизни, так и в науке он вскоре отыскал самостоятельные пути. Как у всех самоучек, в нем было меньше развито желание знать то, что сделали другие, чем твердая уверенность в правильности найденного им самим… Острый ум побуждал его при проведении своих исследований, для которых в плодотворнейшую пору своей жизни он мог располагать лишь самыми скудными средствами, стремиться больше к возможному упрощению приборов и самих опытов, чем к достижению особенно тонких результатов; точность его количественных определений значительно уступает той, которая уже ранее была выработана его современниками. Но он и не особенно задумывался над степенью согласия эмпирических наблюдений с выводами из теоретических построений, если последние принадлежали ему самому, чтобы признать их действительными». Это замечание Коппа, относящееся к химическим работам Дальтона и прилагаемое также к его физическим исследованиям, все-таки не вполне объясняет суровость суждений, высказанных по поводу работ Дальтона. Некоторая доля вины лежит, очевидно, и на тех лицах, которые их высказывали. Физики постепенно приучились смотреть на опыт, как на довлеющую себе цель, и считать точность опыта высшим критерием ценности научной работы. К этому присоединилась еще несколько чрезмерная осторожность — боязнь подвергнуть науку опасности попятных шагов и склонность изгонять из своей области всякое быстрое движение вперед, всякую смелую гипотезу. Конечно, с этой точки зрения Дальтон с множеством допущенных им в своих опытных данных неточностей, а равно со своим зачастую слишком поспешным построением законов природы, должен был подвергнуться строгому осуждению. Однако позднее оказалось, что руководящие мысли Дальтона были светлы и плодотворны, что в соединении с более совершенной техникой опытов им суждено было двинуть науку вперед по настоящему пути. И в наши дни только историк науки останавливается на теневых сторонах, которые совершенно естественно и неизбежно должны иметь место и в трудах Дальтона.

РАСШИРЕНИЕ ЖИДКОСТЕЙ

Дюлонг Пьер Луи (1785-1838)

Для исследования расширения капельных жидкостей Делюк, а в несколько измененной форме и Гей-Люссак употребляли открытые термометры, Г. Г. Шмидт — ареометры с грузом, Дюлонг и Пти — сообщающиеся трубки, одно колено которых они держали при нормальной температуре, а другое нагревали до желаемой температуры. Все эти опыты показали, что предположение Дальтона, будто расширение всех однородных жидкостей пропорционально квадрату температур, не соответствует действительности. Расширение, правда, увеличивается с температурой, но это возрастание иное и, по всей вероятности, оно следует различным законам для отдельных жидкостей. Особенное затруднение вызывали аномалии, встречающиеся при изучении расширения жидкостей. По отношению к воде уже давно было замечено, что, начиная с известной температуры, дальнейшее понижение последней дает расширение объема вместо сокращения последнего; но до некоторого времени эту аномалию были склонны признать мнимой, предполагая, что она вызывается не особенностями воды, а является результатом сжатия сосуда, содержащего воду. Делюк, по-видимому, первый стал относить причину этого явления к самой воде и определил точку наибольшей плотности ее. Последняя у него определилась несколько выше действительной вследствие того, что им не было принято в расчет сжатие сосуда, а именно Делюк получил 5° С; в силу той же причины он нашел, что и для одинаковых разностей температур выше и ниже этой точки объемы, жидкостей одинаковы. Дальтон, который тоже упустил из виду расширение сосуда, определил температуру наибольшей плотности еще выше Делюка, а именно 5,83° С. Румфорд пытался разрешить этот вопрос, охлаждая воду в открытом сосуде с поверхности и наблюдая температуру, при которой вода переставала опускаться. Хотя этот способ и теперь еще считается хорошим в принципе, Румфорд мог определить только пределы для температуры наибольшей плотности, которые оказались между 4 и 5° С.

РАСШИРЕНИЕ ТВЕРДЫХ ТЕЛ

Точные измерения расширения твердых тел были предприняты, в связи с интересными наблюдениями Рише в Кайенне и спорами, которые они возбуждали 4. Однако несовершенство тогдашних термометров было достаточной причиной для того, чтобы тщательные исследования Далансе, Пикара, Ла-Гира, Дергама и др. не могли привести к согласным результатам. Даже известный пирометр Мушенбрека дал сомнительные результаты, так как исследуемый брусок не был надлежащим образом укреплен и действие нагревания распространялось не только на брусок, но и на измерительный прибор. Смитон (Smeaton, Philosophical Transactions, XLVIII, 1754) получил уже несколько более точные числа. Но действительно ценные и пригодные для практики результаты были получены впервые Лавуазье и Лапласом. Они избрали в качестве постоянных, находящихся вне влияния тепла точек каменные столбы, а для измерения расширения применили зрительную трубу, которая вращалась три удлинении нагреваемого металлического стержня. Однако их опыты остались сначала незамеченными и стали впервые общеизвестными благодаря Био.

ТЕПЛОПРОВОДНОСТЬ ТВЕРДЫХ ТЕЛ И ЖИДКОСТЕЙ. БОРЬБА ВОКРУГ ТЕОРИЙ ТЕПЛОПРОВОДНОСТИ

Определение расширения тел во многих отношениях теоретически и практически зависит от их теплопроводности. Поэтому естественно, что исследование шло рука об руку с описанными выше работами.

Рихман брал (в 1750—1751 гг.) шары из различных металлов, но одинаковой величины, и наблюдал время одинакового их охлаждения; при этом он установил такого рода последовательность: свинец, олово, железо, медь, латунь, и отсюда пришел к выводу, что свинец всего быстрее воспринимает теплоту и отдает ее и т. д. Во всяком случае полученный им ряд доказал, что, вопреки существовавшему раньше мнению, теплопроводность тел во всяком случае непропорциональна их плотности. Франклин и немного позже Ахард были склонны думать, что теплопроводность тел равна их электропроводности. Для разрешения этого вопроса, Ингенгоус, по предложению Франклина, покрыл проволоки из различных металлов слоем воска, опустил концы их в сосуд с горячим маслом и наблюдал скорость распространения тепла, необходимого для плавления воска на различных проволоках. Согласно его опытам порядок распределения металлов по «их теплопроводности оказался почти противоположным рихмановскому, а именно: серебро, медь, золото, железо, сталь, свинец. Разногласие объясняется тем, что Ингенгоус приписал более высокую теплопроводимость тому металлу, у которого плавление воска происходило всего выше, т. е. по которому тепло проникало всего дальше; И. Т. Мейер, напротив, был склонен приписать большую проводимость тому металлу, который всегда быстрее отдавал тепло наружу и на котором, следовательно, воск плавился всего медленнее; при таком истолковании опыты Ингенгоуса и Рихмана должны были привести к одинаковым выводам. Как мы увидим ниже, Фурье доказал, что оба противника были в равной мере и правы и неправы.

Совершенно иначе кончился спор о проводимости тепла жидкостями, возникший после работ графа Румфорда. Бюффон утверждал (как и многие до него), что жидкости проводят тепло лучше, чем твердые тела; Румфорд же доказал совершенно обратное. Уже в 1786 и 1792 гг. он напечатал в Philosophical Transactions статьи о теплопроводности различных веществ; в 1797 г. появились вызвавшие наибольший интерес исследования его относительно жидкостей 6. Поводом для этих исследований послужило наблюдение, что густая пища остывает очень медленно и что в воде, нагревавшейся снизу в широкой трубе, на одной стороне постоянно поднимались токи, которые на другой стороне опускались вниз. Сопоставляя оба эти явления, Румфорд предположил, что частицы жидкостей способны воспринимать тепло от других тел и отдавать его другим, но что между частицами самой жидкости передачи тепла не происходит; другими словами, что жидкости никогда не нагреваются путем внутренней проводимости, а только внутренними токами, и что, следовательно, жидкости являются абсолютными непроводниками тепла. Для того чтобы это убедительнее доказать, он положил в цилиндрический стеклянный сосуд ледяной кружок, имевший острие, и налил сверху оливковое масло; после этого ввел туда железный цилиндр, нагретый в кипятке; он приближал его на расстояние 0,2 дюйма к острию и при этом не замечал признаков таяния или какого бы то ни было изменения в ледяном острие, — если только он опускал цилиндр в «масло настолько осторожно, чтоб не вызвать в нем токов.

Несмотря на всю убедительность этого опыта, выводы Румфорда вызвали сильную бурю между тогдашними физиками. Делюк выступил с теоретическими возражениями, исходя из своей теории теплоты; Никольсон пытался опровергнуть самые опыты Румфорда рядом других опытов; Соке доказал, что, по крайней мере, сквозь ртуть получается таяние льда от поставленного поблизости горячего цилиндра; Муррей утверждал, что при опускании термометра в масло он все-таки наблюдал некоторое повышение температуры. Между тем Дальтон уже в 1799 г. пришел к заключению, что хотя у воды и нельзя вполне отрицать наличия теплопроводности, но что последняя во всяком случае ничтожно мала сравнительно с теплопроводностью твердых тел. На этот компромисс вскоре пошло большинство физиков, и Фишер в своей «Истории физики» (VII, стр. 362, 1806) выражается по этому поводу очень определенно: «Граф Румфорд, по-видимому, доказал, что упругие и неупругие жидкие вещества являются плохими проводниками тепла, но во всяком случае не являются совершенными непроводниками».



Используются технологии uCoz

Вода расширяется или сжимается при нагревании?

Вода, как и любое другое соединение, реагирует на изменение температуры, но аномалия возникает в узком диапазоне вокруг точки плавления, и это изменение имеет большое значение. Когда вы нагреваете лед, молекулы получают кинетическую энергию, и лед расширяется, пока не тает. Но как только весь лед превратился в воду и температура снова начинает расти, расширение прекращается. При температуре от 32 до 40 градусов по Фаренгейту (от 0 до 4 градусов по Цельсию) талая вода фактически сжимается при повышении температуры.При температуре выше 40 F (4 C) он снова начинает расширяться. Это явление делает лед менее плотным, чем вода вокруг него, поэтому лед плавает.

TL; DR (слишком долго; не читал)

Лед расширяется с фиксированной скоростью, жидкая вода расширяется с ускорением с повышением температуры, а пар снова расширяется с фиксированной скоростью. Между температурами от 32 F (0 C) до 40 F (4 C) жидкая вода фактически сжимается при повышении температуры.

Расширение льда, воды и пара

В твердом состоянии лед может расширяться только линейно, что означает, что длина и ширина кубика льда могут изменяться.Коэффициент линейного расширения для льда, который измеряет относительное изменение длины и ширины на градус Кельвина, является постоянным 50 x 10 -6 ÷ K. Это означает, что лед расширяется в равном количестве с каждым градусом тепла, которое вы добавляете. Это.

Когда лед становится жидкой водой, он больше не имеет фиксированных линейных размеров, но имеет объем. Ученые используют другой тепловой коэффициент — коэффициент объемного расширения — для измерения реакции жидкой воды на температуру. Этот коэффициент, который измеряет относительные изменения объема на градус Кельвина, не является фиксированным.Он увеличивается с ростом температуры, пока вода не закипит. Другими словами, жидкая вода расширяется с возрастающей скоростью при повышении температуры.

Когда вода превращается в пар, она расширяется в соответствии с законом идеального газа: PV = nRT. Если давление (P) и количество молей пара (n) остаются постоянными, объем пара (V) увеличивается линейно с температурой (T). В этом уравнении R — постоянная, называемая постоянной идеального газа.

Решающая аномалия

В точке плавления вода обладает характеристиками, характерными для других соединений.Вместо того, чтобы продолжать расширяться в жидком состоянии, он сжимается, и его плотность увеличивается, пока не достигает максимума при 40 F (4 C). От точки плавления до этой критической точки коэффициент расширения отрицательный, а в точке максимальной плотности коэффициент расширения равен 0. Если температура продолжает повышаться, коэффициент расширения снова становится положительным.

Если изменить температурный градиент и охладить воду до точки замерзания, она начнет расширяться при 40 F (4 C) и продолжит расширяться, пока не замерзнет. Это причина того, что водопроводные трубы лопаются в морозную погоду, и почему вы никогда не должны ставить стеклянную бутылку с водой в морозильную камеру.

Странное свойство воды заставляет океаны подниматься

По мере нагрева воды ее объем увеличивается.(За исключением одной странной аномалии.) wa.edu.au С 1992 года уровень океанов Земли поднялся в среднем на три дюйма, и повышение температуры воды не показывает никаких признаков остановки, заявило НАСА 26 августа.

Стив Нерем, климатолог, возглавляющий группу НАСА по изменению уровня моря, сказал, что «мы заперты на 3 фута. повышения уровня моря и, возможно, еще больше «, если нынешняя скорость сохранится.

Но поскольку океан продолжает поглощать тепло от глобального потепления, эта оценка может быть преуменьшением. В зоне риска находятся такие низменные города, как Новый Орлеан, разрушенный ураганом Катрина 10 лет назад.

Таяние ледников и ледяных щитов в Гренландии и Антарктиде является причиной повышения уровня моря как минимум на две трети. Недостающий фрагмент головоломки — это странное явление, называемое тепловым расширением, когда тепло вызывает расширение объема воды.

Вода странная. Это одна из немногих жидкостей, которая расширяется при замерзании при 0 градусах Цельсия, но сжимается при нагревании до 4 C. (Вот почему вода плавает, а лед плавает, а большинство других типов льда тонет в ).

Но если вы нагреете воду выше 4 ° C, молекулы сильно надавят друг на друга, увеличивая общий объем жидкости и заставляя ее занимать больше места.

Поверхность Земли прогрелась примерно на 0.8 градусов по Цельсию в среднем с 1880 года, вскоре после начала промышленной революции.

Это увеличение не кажется большим, объясняет NASA Earth Observatory, но оно имеет серьезные последствия:

Глобальное изменение на один градус является значительным, потому что требуется огромное количество тепла, чтобы нагреть все океаны, атмосферу и т. Д. и приземлиться на столько. В прошлом падение на один-два градуса было всем, что нужно было, чтобы погрузить Землю в малый ледниковый период. Падения на пять градусов было достаточно, чтобы 20 000 лет назад большая часть Северной Америки была погребена под огромной массой льда.

И наш мир подвергается значительному потеплению, особенно на северном полюсе:

Мир нагревается, и это увеличивает объем воды в океане. Земная обсерватория НАСА Особой опасности подвергаются океаны Земли — они отреагировали на это увеличение, впитывая все больше и больше тепла по мере повышения глобальной температуры: Океан — один из крупнейших поглотителей тепла на Земле.NOAA

И поскольку вода расширяется при нагревании, это избыточное поглощение тепла привело к увеличению объема океанов Земли.

На данный момент этот объем увеличивается лишь на долю процента от первоначального объема океана.

Но применимо даже к части из 335 миллионов кубических миль воды на планете , e.грамм. поверхностных вод, это увеличение приводит к значительному повышению уровня моря — вдобавок к увеличению стока воды из мировых запасов тающего льда.

Повышение мирового уровня моря после промышленной революции. Союз неравнодушных ученых

По данным Союза обеспокоенных ученых, с 1880 по 2009 год уровень моря поднялся примерно на 8 дюймов, при этом преобладающей причиной было тепловое расширение.

Новые данные НАСА показывают рост на 3 дюйма с 1992 года — большой скачок по сравнению с прошлыми примерно 100 годами.

Опять же, это не так уж много. Но любое усиление дает штормовые нагоны, которые могут сокрушить прибрежные болота, опрокинуть дамбы и нанести ущерб все глубже и глубже вглубь суши.

Это упрощенная иллюстрация того, как это выглядит для прибрежных городов, но это опасный сценарий:

Союз неравнодушных ученых

Более того, скорость повышения уровня моря только увеличивается, поскольку океаны впитывают больше тепла, расширяются, а айсберги и ледники продолжают таять.

Что способствует повышению уровня моря. Земная обсерватория НАСА

Земля безумно динамична — особенно океаны.Отчасти поэтому прежде всего требуется так много времени, чтобы выявить эти тенденции; вам нужно проводить измерения в течение длительного времени, чтобы увидеть тенденции.

С этой целью исследователи до сих пор не уверены в взаимосвязи поверхностных вод и глубоководного потепления океана. Но само собой разумеется, что, если на планете будет продолжаться потепление, а океаны будут поглощать тепло, уязвимые прибрежные города, такие как Новый Орлеан, окажутся в беде.

Thermal Expansion — The Physics Hypertextbook

Обсуждение

Твердые вещества

Для многих твердых тел расширение прямо пропорционально изменению температуры.

∆ℓ = αℓ 0 T

Области расширяются вдвое больше, чем длина.

A = 2α A 0 T

Объемы увеличиваются в три раза по сравнению с длиной.

В = 3α В 0 T

заявки

  • изгиб
  • компенсационный зазор / стык
  • клапан против ожогов
  • планка биметаллическая, термостат
  • расширение отверстий (крепление поездных шин)
  • «Более того, самолет расширяется на 15-25 сантиметров во время полета из-за палящего тепла, создаваемого трением с воздухом.Дизайнеры использовали ролики, чтобы изолировать кабину от тела, чтобы растяжение не разорвало самолет на части. «Хелен Пирсон» Concorde уходит в отставку. «Nature Physics Portal. Октябрь 2003 г.
  • «Конкорд имеет длину 204 фута — растяжение в полете от шести до десяти дюймов из-за нагрева планера. Он окрашен в специально разработанную белую краску, чтобы учесть эти изменения и рассеять тепло, генерируемое сверхзвуковым полетом». источник
  • Тепловое расширение — небольшой, но не всегда незначительный эффект.Типичные коэффициенты измеряются в частях на миллион на кельвин (10 -6 / K). Это означает, что длина вашей типичной классной измерительной линейки никогда не изменяется более чем на 100 мкм за весь срок службы — вероятно, никогда не более чем на 10 мкм, пока учащиеся ее используют.

методы измерения

  • компаратор длины
  • дилатометр с толкателем (дает относительное расширение, так как сам прибор расширяется)
  • интерферометр (метод высшей точности)
  • рентгеновский дифактометр
  • дилатометр емкостной
  • тензодатчик
  • дилатометр оптический (в основном цифровой фотоаппарат)

анизотропное расширение

  • Некоторые материалы расширяются по-разному в разных направлениях, особенно графит и дерево (пиломатериалы).

жидкости

Жидкости могут только увеличиваться в объеме.

В = β В 0 T

Жидкости имеют более высокий коэффициент расширения, чем твердые.

β ~ 10 −3 / K, 3α ~ 10 −5 / K

заявки

Коэффициенты линейного теплового расширения
материал α (10 −6 / К)
оксид алюминия (αAl 2 O 3 ) 5.30
алюминий 23,1
феррит бария 10
латунь 20,3
карбон, алмаз 1,18
уголь, графит ∥ 6,5
уголь, графит ⊥ 0,5
хром 4,9
бетон 8–12
медь 16. 65
эпоксидная 55
германий 6,1
стекло, обычное 8,5
стекло со сверхнизким расширением 0,04
золото 14,2
инвар (64% Fe, 36% Ni) 1,2
утюг 11,8
свинец 28.9
никель 13,3
пластмассы 40–120
оргстекло 93
платина 8,8
плутоний 54
кремний 4,68
серебристый 18,9
припой свинцово-оловянный 25
сталь, нержавеющая 17. 3
сталь конструкционная 12
банка 22
титан 8,5
вольфрам 4,5
уран 13,9
вода, лед (0 ° C) 51
древесина (пиломатериалы) тангенциальная 36
дерево (пиломатериал) радиально 26
дерево (пиломатериал) осевое 3.7
цинк 30,2
вольфрамат циркония (ZrW 2 O 8 ) −8,8
Коэффициенты объема тепловое расширение ☞ Все значения в обеих таблицах являются средними для температур около 20 ° C, если не указано иное.
материал β (10 −6 / К)
спирт этиловый 1120
бензин 950
Топливо реактивное, керосин 990
ртуть 181
вода, жидкость (1 ° C) −50
вода, жидкость (4 ° C) 0
вода, жидкость (10 ° C) 88
вода, жидкость (20 ° C) 207
вода, жидкость (30 ° C) 303
вода, жидкость (40 ° C) 385
вода, жидкость (50 ° C) 457
вода, жидкость (60 ° C) 522
вода, жидкость (70 ° C) 582
вода, жидкость (80 ° C) 640
вода, жидкость (90 ° C) 695

вода

  • аномальное расширение воды
    • лед менее плотный, чем вода
    • наиболее плотная вода при 4 ° C (ρ = 999. 973 кг / м 3 )
  • заявок
    • замерзшие трубы лопнули
    • оборот озерной воды весной

плутоний

Плутоний претерпевает больше фазовых переходов при обычных давлениях, чем любой другой элемент. При нагревании плутоний перед плавлением трансформируется через шесть различных кристаллических структур — α [альфа], β [бета], γ [гамма], Δ [дельта], Δ ‘[простое дельта] и ε [эпсилон].Физические свойства, такие как плотность и тепловое расширение, значительно различаются от фазы к фазе, что делает его одним из самых сложных металлов для обработки и обработки. Металлургию плутония лучше доверить специалистам.

Примечания формируют LLNL, которые необходимо перефразировать. «Одно из уникальных физических свойств плутония заключается в том, что чистый металл демонстрирует шесть фазовых превращений в твердом состоянии, прежде чем достигнет своего жидкого состояния, переходя от альфа, бета, гамма, дельта, дельта-простота к эпсилону. стабильная альфа-фаза при комнатной температуре и жидкое состояние элемента.Другой необычной особенностью является то, что нелегированный плутоний плавится при относительно низкой температуре, примерно 640 ° C, с образованием жидкости с более высокой плотностью, чем твердое тело, из которого он плавится. Кроме того, упругие свойства дельта-гранецентрированной кубической (ГЦК) фазы плутония являются сильно направленными (анизотропными). То есть эластичность металла широко варьируется по разным кристаллографическим направлениям в шесть-семь раз ».

инвар

Газы

Поведение газов более сложное, газы будут расширяться настолько, насколько позволит давление.Ознакомьтесь с законами о газе.

Термическое расширение твердых тел и жидкостей

Цели обучения

К концу этого раздела вы сможете:

  • Определите и опишите тепловое расширение.
  • Рассчитайте линейное расширение объекта с учетом его начальной длины, изменения температуры и коэффициента линейного расширения.
  • Рассчитайте объемное расширение объекта с учетом его исходного объема, изменения температуры и коэффициента объемного расширения.
  • Рассчитайте термическое напряжение на объекте с учетом его исходного объема, изменения температуры, изменения объема и модуля объемной упругости.

Рис. 1. Подобные термические компенсаторы на мосту Окленд Харбор-Бридж в Новой Зеландии позволяют мостам изменять длину без потери устойчивости. (Источник: Ингольфсон, Wikimedia Commons)

Расширение спирта в градуснике — один из многих часто встречающихся примеров теплового расширения , изменения размера или объема данной массы с температурой.Горячий воздух поднимается вверх, потому что его объем увеличивается, что приводит к тому, что плотность горячего воздуха меньше плотности окружающего воздуха, вызывая подъемную (восходящую) силу на горячий воздух. То же самое происходит со всеми жидкостями и газами, вызывая естественный теплоперенос вверх в домах, океанах и погодных системах. Твердые тела также подвергаются тепловому расширению. Например, железнодорожные пути и мосты имеют компенсаторы, позволяющие им свободно расширяться и сжиматься при изменении температуры.

Каковы основные свойства теплового расширения? Во-первых, тепловое расширение явно связано с изменением температуры.Чем больше изменение температуры, тем больше будет гнуться биметаллическая полоса. Во-вторых, это зависит от материала. В термометре, например, расширение спирта намного больше, чем расширение содержащего его стекла.

Какова основная причина теплового расширения? Как обсуждается в «Кинетической теории: атомное и молекулярное объяснение давления и температуры», повышение температуры подразумевает увеличение кинетической энергии отдельных атомов. В твердом теле, в отличие от газа, атомы или молекулы плотно упакованы вместе, но их кинетическая энергия (в виде небольших быстрых колебаний) отталкивает соседние атомы или молекулы друг от друга.Это перемещение между соседними объектами приводит к увеличению расстояния между соседями в среднем и увеличению размера всего тела. Для большинства веществ в обычных условиях нет предпочтительного направления, и повышение температуры увеличит размер твердого вещества на определенную долю в каждом измерении.

Линейное тепловое расширение — тепловое расширение в одном измерении

Изменение длины Δ L пропорционально длине L .Зависимость теплового расширения от температуры, вещества и длины резюмируется в уравнении Δ L = αL Δ T , где Δ L — изменение длины L , Δ T — величина изменение температуры, а α — это коэффициент линейного расширения , который незначительно изменяется в зависимости от температуры.

В таблице 1 приведены типичные значения коэффициента линейного расширения, которые могут иметь единицы 1 / ºC или 1 / K.Поскольку величина кельвина и градуса Цельсия одинакова, значения α и Δ T могут быть выражены в кельвинах или градусах Цельсия. Уравнение Δ L = αL Δ T является точным для небольших изменений температуры и может использоваться для больших изменений температуры, если используется среднее значение α .

Таблица 1. Коэффициенты теплового расширения при 20ºC
Материал Коэффициент линейного расширения α (1 / ºC) Коэффициент объемного расширения β (1 / ºC)
Твердые вещества
Алюминий 25 × 10 6 75 × 10 6
Латунь 19 × 10 6 56 × 10 6
Медь 17 × 10 6 51 × 10 6
Золото 14 × 10 6 42 × 10 6
Чугун или сталь 12 × 10 6 35 × 10 6
Инвар (железо-никелевый сплав) 0. 9 × 10 6 2,7 × 10 6
Свинец 29 × 10 6 87 × 10 6
Серебро 18 × 10 6 54 × 10 6
Стекло (обычное) 9 × 10 6 27 × 10 6
Стекло (Pyrex®) 3 × 10 6 9 × 10 6
кварцевый 0.4 × 10 6 1 × 10 6
Бетон, Кирпич ~ 12 × 10 6 ~ 36 × 10 6
Мрамор (средний) 2,5 × 10 6 7,5 × 10 6
Жидкости
эфир 1650 × 10 6
Спирт этиловый 1100 × 10 6
Бензин 950 × 10 6
Глицерин 500 × 10 6
Меркурий180 × 10 6
Вода 210 × 10 6
Газы
Воздух и большинство других газов при атмосферном давлении 3400 × 10 6

Пример 1.

Расчет линейного теплового расширения: мост Золотые Ворота

Главный пролет моста Золотые Ворота Сан-Франциско составляет 1275 м в самые холодные дни. Мост подвергается воздействию температур от до от 15 ° C до 40 ° C. Каково его изменение длины между этими температурами? Предположим, что мост полностью стальной.

Стратегия

Используйте уравнение для линейного теплового расширения Δ L = α L Δ T , чтобы рассчитать изменение длины Δ L .{\ circ} \ text {C} \ right) = 0,84 \ text {m} \\ [/ latex]

Обсуждение

Это изменение длины заметно, хотя и невелико по сравнению с длиной моста. Обычно он распространяется на многие компенсаторы, поэтому расширение в каждом стыке невелико.

Тепловое расширение в двух и трех измерениях

Объекты расширяются во всех измерениях, как показано на рисунке 2. То есть их площадь и объем, а также их длина увеличиваются с температурой. Отверстия также увеличиваются с увеличением температуры. Если вы прорежете отверстие в металлической пластине, оставшийся материал расширится точно так же, как если бы заглушка все еще была на месте. Заглушка станет больше, а значит, и отверстие должно стать больше. (Представьте, что кольцо соседних атомов или молекул на стенке дыры отталкивает друг друга все дальше друг от друга при повышении температуры. Очевидно, что кольцо соседей должно становиться немного больше, поэтому дыра становится немного больше).

Тепловое расширение в двух измерениях

Для небольших изменений температуры изменение площади Δ A определяется как Δ A = 2αAΔ T , где Δ A — изменение площади A , Δ T — изменение температуры , а α — коэффициент линейного расширения, который незначительно меняется в зависимости от температуры.

Рис. 2. В общем, объекты расширяются во всех направлениях при повышении температуры. На этих чертежах исходные границы объектов показаны сплошными линиями, а расширенные границы — пунктирными линиями. (а) Площадь увеличивается из-за увеличения как длины, так и ширины. Увеличивается и площадь круглой пробки. (b) Если заглушку удалить, оставшееся отверстие становится больше с повышением температуры, как если бы расширяющаяся заглушка все еще оставалась на месте. (c) Объем также увеличивается, потому что все три измерения увеличиваются.

Тепловое расширение в трех измерениях

Изменение объема Δ V очень близко к Δ V = 3 α V Δ T . Это уравнение обычно записывается как Δ V = βV Δ T , где β — коэффициент объемного расширения и β ≈ 3α. Обратите внимание, что значения β в таблице 1 почти точно равны 3α.

Обычно объекты расширяются с повышением температуры.Вода — самое важное исключение из этого правила. Вода расширяется с повышением температуры (ее плотность уменьшается до ), когда она находится при температуре выше 4ºC (40ºF). Однако он расширяется с при понижении температуры , когда она составляет от + 4ºC до 0ºC (от 40ºF до 32ºF). Вода самая плотная при + 4ºC. (См. Рис. 3.) Возможно, самым поразительным эффектом этого явления является замерзание воды в пруду. Когда вода у поверхности охлаждается до 4ºC, она становится плотнее, чем оставшаяся вода, и поэтому опускается на дно.Этот «оборот» приводит к образованию более теплой воды у поверхности, которая затем охлаждается. В конце концов, пруд имеет постоянную температуру 4ºC. Если температура в поверхностном слое опускается ниже 4ºC, вода становится менее плотной, чем вода внизу, и, таким образом, остается наверху. В результате поверхность водоема может полностью промерзнуть. Лед поверх жидкой воды обеспечивает изолирующий слой от резких зимних температур наружного воздуха. Рыба и другие водные животные могут выжить в воде с температурой 4ºC подо льдом из-за этой необычной характеристики воды.Он также обеспечивает циркуляцию воды в пруду, что необходимо для здоровой экосистемы водоема.

Рис. 3. Плотность воды как функция температуры. Обратите внимание, что тепловое расширение на самом деле очень мало. Максимальная плотность при + 4ºC только на 0,0075% больше, чем плотность при 2ºC, и на 0,012% больше, чем при 0ºC.

Установление соединений: соединения в реальном мире — заполнение резервуара

Рис. 4. Поскольку при повышении температуры газ расширяется больше, чем бензобак, вы не можете проехать столько миль на «пустом» летом, как зимой.(Источник: Гектор Алехандро, Flickr)

Различия в тепловом расширении материалов могут привести к интересным эффектам на заправочной станции. Один из примеров — капание бензина из только что залитого бака в жаркий день. Бензин начинается при температуре земли под заправочной станцией, которая ниже температуры воздуха наверху. Бензин охлаждает стальной бак при его наполнении. Как бензин, так и стальной бак расширяются, когда они нагреваются до температуры воздуха, но бензин расширяется намного больше, чем сталь, и поэтому он может переливаться через край.

Эта разница в расширении также может вызвать проблемы при интерпретации показаний датчика бензина. Фактическое количество (масса) бензина, оставшегося в баке, когда манометр показывает «пустой», летом намного меньше, чем зимой. Бензин имеет тот же объем, что и зимой, когда горит лампочка «долейте топлива», но из-за того, что бензин расширился, масса меньше. Если вы привыкли зимой пробегать еще 40 миль «пусто», будьте осторожны — летом вы, вероятно, выбегаете намного быстрее.

Пример 2. Расчет теплового расширения: газ по сравнению с газовым баллоном

Предположим, ваш стальной бензобак объемом 60,0 л (15,9 галлона) заполнен бензином, поэтому температура и бака, и бензина составляет 15,0 ° C. Сколько бензина вылилось к тому времени, когда они нагрелись до 35,0ºC?

Стратегия

Бак и бензин увеличиваются в объеме, но бензин увеличивается больше, поэтому количество пролитого является разницей в изменении их объема. (Бензобак можно рассматривать как стальной.) Мы можем использовать уравнение для объемного расширения, чтобы рассчитать изменение объема бензина и бака.

Решение
  1. Используйте уравнение для объемного расширения, чтобы рассчитать увеличение объема стального резервуара: Δ V с = β с V с Δ T .
  2. Увеличение объема бензина определяется следующим уравнением: Δ V газ = β газ V газ Δ T .
  3. Найдите разницу в объеме, чтобы определить количество разлитого как V разлив = Δ V газ — Δ V s .

В качестве альтернативы мы можем объединить эти три уравнения в одно уравнение. (Обратите внимание, что исходные объемы равны.)

[латекс] \ begin {array} {lll} {V} _ {\ text {spill}} & = & \ left ({\ beta} _ {\ text {gas}} — {\ beta} _ {\ text {s}} \ right) V \ Delta T \\ & = & \ left [\ left (\ text {950} — \ text {35} \ right) \ times {\ text {10}} ^ {- 6} / ^ {\ circ} \ text {C} \ right] \ left (\ text {60} \ text {.{\ circ} \ text {C} \ right) \\ & = & 1 \ text {.} \ text {10} \ text {L} \ end {array} \\ [/ latex]

Обсуждение

Это значительное количество, особенно для резервуара объемом 60,0 л. Эффект такой поразительный, потому что бензин и сталь быстро расширяются. Скорость изменения тепловых свойств обсуждается в главе «Тепло и методы теплопередачи».

Если вы попытаетесь плотно закрыть резервуар, чтобы предотвратить переполнение, вы обнаружите, что он все равно протекает либо вокруг крышки, либо в результате разрыва резервуара.Сильное сжатие расширяющегося газа эквивалентно его сжатию, и как жидкости, так и твердые тела сопротивляются сжатию с чрезвычайно большими силами. Чтобы избежать разрыва жестких контейнеров, в этих контейнерах есть воздушные зазоры, которые позволяют им расширяться и сжиматься, не нагружая их.

Термическое напряжение

Термическое напряжение создается в результате теплового расширения или сжатия (см. «Эластичность: напряжение и деформация» для обсуждения напряжения и деформации). Термическое напряжение может быть разрушительным, например, когда бензин разрывает бак при расширении.Это также может быть полезно, например, когда две части соединяются вместе путем нагревания одной при производстве, затем надевания ее на другую и охлаждения комбинации. Термический стресс может объяснить многие явления, такие как выветривание скал и тротуаров из-за расширения льда при замерзании.

Пример 3. Расчет термического напряжения: давление газа

Какое давление будет создано в бензобаке, рассмотренном в примере 2, если температура бензина повысится с 15?От 0 ° C до 35,0 ° C без возможности расширения? Предположим, что модуль объемной упругости B для бензина составляет 1,00 × 10 9 Н / м 2 .

Стратегия

Чтобы решить эту проблему, мы должны использовать следующее уравнение, которое связывает изменение объема Δ V с давлением:

[латекс] \ Delta {V} = \ frac {1} {B} \ frac {F} {A} V_0 \\ [/ latex]

, где [латекс] \ frac {F} {A} \\ [/ latex] — давление, V 0 — исходный объем, а B — модуль объемной упругости рассматриваемого материала.Мы будем использовать количество пролитого в Примере 2 как изменение объема Δ V .

Решение
  1. Измените уравнение для расчета давления: [латекс] P = \ frac {F} {A} = \ frac {\ Delta {V}} {V_0} B \\ [/ latex].
  2. Вставьте известные значения. Модуль объемной упругости для бензина составляет B = 1,00 × 10 9 Н / м 2 . В предыдущем примере изменение объема Δ V = 1,10 л — это количество, которое может разлиться. Здесь V 0 = 60.7 \ text {Pa} \\ [/ latex].
Обсуждение

Это давление составляет около 2500 фунтов / дюйм 2 , намного больше, чем может выдержать бензобак.

Силы и давления, создаваемые термическим напряжением, обычно такие же большие, как в приведенном выше примере. Железнодорожные пути и дороги могут деформироваться в жаркие дни, если у них нет достаточных компенсационных швов. (См. Рис. 5.) Линии электропередач провисают больше летом, чем зимой, и в холодную погоду они лопнут, если провисания недостаточно.Трещины в оштукатуренных стенах открываются и закрываются по мере того, как дом нагревается и остывает. Стеклянные сковороды треснут при быстром или неравномерном охлаждении из-за различного сжатия и создаваемых им напряжений. (Pyrex® менее чувствителен из-за своего небольшого коэффициента теплового расширения.) Сосуды под давлением ядерных реакторов находятся под угрозой из-за чрезмерно быстрого охлаждения, и, хотя ни один из них не вышел из строя, некоторые из них охлаждались быстрее, чем считалось желательным. Биологические клетки разрываются при замораживании продуктов, что ухудшает их вкус.Повторные оттаивания и замораживания усугубляют ущерб. Даже океаны могут быть затронуты. Значительная часть повышения уровня моря в результате глобального потепления происходит из-за теплового расширения морской воды.

Рис. 5. Термическое напряжение способствует образованию выбоин. (кредит: Editor5807, Wikimedia Commons)

Металл регулярно используется в человеческом теле для имплантатов бедра и колена. Большинство имплантатов со временем необходимо заменять, потому что, помимо прочего, металл не сцепляется с костью.Исследователи пытаются найти более качественные металлические покрытия, которые позволили бы соединить металл с костью. Одна из проблем — найти покрытие с коэффициентом расширения, аналогичным коэффициенту расширения металла. Если коэффициенты расширения слишком разные, термические напряжения во время производственного процесса приводят к трещинам на границе раздела покрытие-металл.

Другой пример термического стресса — во рту. Зубные пломбы могут расширяться иначе, чем зубная эмаль. Может вызывать боль при поедании мороженого или горячем напитке.В наполнении могут образоваться трещины. На смену металлическим пломбам (золото, серебро и др.) Приходят композитные пломбы (фарфор), которые имеют меньший коэффициент расширения и ближе к зубам.

Проверьте свое понимание

Два блока, A и B, сделаны из одного материала. Блок A имеет размеры л × ш × в = л × 2 л × L , а блок B имеет размеры 2 л × 2 л × 2 л .Если температура меняется, что такое

  1. изменение объема двух блоков,
  2. изменение площади поперечного сечения l × w и
  3. изменение высоты h двух блоков?

Рисунок 6.

Решение
  1. Изменение громкости пропорционально исходной громкости. Блок А имеет объем л × 2 л × л = 2 л 3 . Блок B имеет объем 2 л × 2 л × 2 л = 8 л 3 , , что в 4 раза больше, чем у блока A. Таким образом, изменение объема блока B должно быть в 4 раза больше, чем в блоке A.
  2. Изменение площади пропорционально площади. Площадь поперечного сечения блока A составляет л × 2 л = 2 л 2 , , а у блока B 2 л × 2 л = 4 л 2 .Поскольку площадь поперечного сечения блока B вдвое больше, чем у блока A, изменение площади поперечного сечения блока B вдвое больше, чем у блока A.
  3. Изменение высоты пропорционально исходной высоте. Поскольку исходная высота блока B вдвое больше, чем у A, изменение высоты блока B вдвое больше, чем у блока A.

Сводка раздела

  • Термическое расширение — это увеличение или уменьшение размера (длины, площади или объема) тела из-за изменения температуры.
  • Тепловое расширение велико для газов и относительно невелико, но им нельзя пренебрегать, для жидкостей и твердых тел.
  • Линейное тепловое расширение Δ L = α L Δ T , где Δ L — изменение длины L , Δ T — изменение температуры, а α — коэффициент линейного расширение, которое незначительно меняется в зависимости от температуры.
  • Изменение площади из-за теплового расширения составляет Δ A = 2α A Δ T , где Δ A — изменение площади.
  • Изменение объема из-за теплового расширения составляет Δ V = βV Δ T , где β — коэффициент объемного расширения, а β ≈ 3α. Тепловое напряжение создается, когда ограничивается тепловое расширение.

Концептуальные вопросы

  1. Температурные нагрузки, вызванные неравномерным охлаждением, могут легко разбить стеклянную посуду. Объясните, почему Pyrex®, стекло с небольшим коэффициентом линейного расширения, менее восприимчиво.
  2. Вода значительно расширяется при замерзании: происходит увеличение объема примерно на 9%. В результате этого расширения и из-за образования и роста кристаллов при замерзании воды от 10% до 30% биологических клеток разрываются при замораживании материала животного или растительного происхождения. Обсудите последствия этого повреждения клеток для перспективы сохранения человеческих тел путем замораживания, чтобы их можно было разморозить в будущем, когда есть надежда, что все болезни излечимы.
  3. Один из методов обеспечения плотной посадки, например металлического штифта в отверстии в металлическом блоке, заключается в изготовлении штифта немного большего размера, чем отверстие.Затем вставляется колышек, когда температура отличается от температуры блока. Должен ли блок быть горячее или холоднее стержня во время вставки? Поясните свой ответ.
  4. Действительно ли помогает полить горячей водой плотную металлическую крышку стеклянной банки, прежде чем пытаться ее открыть? Поясните свой ответ.
  5. Жидкости и твердые тела расширяются с повышением температуры, потому что кинетическая энергия атомов и молекул тела увеличивается. Объясните, почему некоторые материалы сжимаются при повышении температуры.

Задачи и упражнения

  1. Высота монумента Вашингтона составляет 170 м в день при температуре 35 ° C.0ºC. Какой будет его высота в день, когда температура опустится до –10,0ºC? Хотя памятник сделан из известняка, предположим, что его коэффициент теплового расширения такой же, как у мрамора.
  2. Насколько выше Эйфелева башня становится в конце дня, когда температура повышается на 15ºC? Его первоначальная высота составляет 321 м, и можно предположить, что он сделан из стали.
  3. Как изменится длина столба ртути длиной 3,00 см, если его температура изменится с 37?От 0 ° C до 40,0 ° C, если ртуть не ограничена?
  4. Насколько большой следует оставить температурный зазор между стальными железнодорожными рельсами, если они могут достигать максимальной температуры на 35,0 ° C выше, чем при укладке? Их первоначальная длина — 10,0 м.
  5. Вы хотите приобрести небольшой участок земли в Гонконге. Цена «всего» 60 000 долларов за квадратный метр! В праве собственности на землю указано, что его размеры составляют 20 м × 30 м. Насколько изменилась бы общая цена, если бы вы измерили посылку стальной рулеткой в ​​день, когда температура была на 20ºC выше нормы?
  6. Глобальное потепление вызовет повышение уровня моря отчасти из-за таяния ледяных шапок, но также из-за расширения воды по мере повышения средней температуры океана.Чтобы получить некоторое представление о величине этого эффекта, рассчитайте изменение длины водяного столба высотой 1,00 км при повышении температуры на 1,00 ° C. Обратите внимание, что этот расчет является приблизительным, потому что потепление океана не равномерно по глубине.
  7. Покажите, что 60,0 л бензина при исходной температуре 15,0 ° C расширится до 61,1 л при нагревании до 35,0 ° C, как заявлено в Примере 2.
  8. (a) Предположим, что стержень из стали и стержень из инвара (сплав железа и никеля) имеют одинаковую длину при 0 ° C.Какова их разница в длине при 22,0ºC? (b) Повторите расчет для двух геодезических лент длиной 30,0 м.
  9. (a) Если стеклянный стакан емкостью 500 мл заполнен до краев этиловым спиртом при температуре 5,00 ° C, сколько его объема выльется, когда его температура достигнет 22,0 ° C? б) Насколько меньше воды могло бы перелиться через край при тех же условиях?
  10. Большинство автомобилей имеют резервуар с охлаждающей жидкостью для сбора жидкости радиатора, которая может вылиться из-под горячего двигателя. Радиатор сделан из меди и залит на 16.Емкость 0 л при температуре 10,0 ° C. Какой объем радиаторной жидкости переполнится, когда радиатор и жидкость достигнут своей рабочей температуры 95,0ºC, учитывая, что объемный коэффициент расширения жидкости составляет β = 400 × 10 –6 / ºC? Обратите внимание, что этот коэффициент является приблизительным, потому что большинство автомобильных радиаторов имеют рабочие температуры выше 95,0 ° C.
  11. Физик делает чашку растворимого кофе и замечает, что по мере охлаждения кофе его уровень в стеклянной чашке падает на 3,00 мм.Покажите, что это уменьшение не может быть связано с термическим сжатием, рассчитав снижение уровня, если 350 см3 кофе находится в чашке диаметром 7,00 см, а температура снижается с 95,0 ° C до 45,0 ° C. (Большая часть падения уровня происходит из-за выхода пузырьков воздуха.)
  12. (a) Плотность воды при 0ºC составляет почти 1000 кг / м3 (на самом деле 999,84 кг / м 3 ), тогда как плотность льда при 0ºC составляет 917 кг / м 3 . Рассчитайте давление, необходимое для предотвращения расширения льда при замерзании, пренебрегая влиянием такого большого давления на температуру замерзания.(Эта проблема дает вам только представление о том, насколько велики могут быть силы, связанные с замораживанием воды.) (Б) Каковы последствия этого результата для замороженных биологических клеток?
  13. Покажите, что β ≈ 3α, вычислив изменение объема Δ V куба со сторонами длиной L .

Глоссарий

тепловое расширение: изменение размера или объема объекта при изменении температуры

коэффициент линейного расширения: α, изменение длины на единицу длины при изменении температуры на 1 ° C; константа, используемая при расчете линейного расширения; коэффициент линейного расширения зависит от материала и в некоторой степени от температуры материала

коэффициент объемного расширения: β , изменение объема на единицу объема при изменении температуры на 1 ° C

термическое напряжение: напряжение, вызванное тепловым расширением или сжатием

Избранные ответы на задачи и упражнения

1.{\ circ} \ text {C} \ right) \ right] \\ & = & \ text {61} \ text {.} 1 \ text {L} \ end {array} \\ [/ latex]

9. (а) 9,35 мл; (б) 7,56 мл

11. 0,832 мм

13. Мы знаем, как длина изменяется в зависимости от температуры: Δ L = α L 0 Δ T . Также мы знаем, что объем куба связан с его длиной следующим образом: V = L 3 , поэтому окончательный объем будет V = V 0 + Δ V = ( L 0 + Δ L ) 3 .Подстановка Δ L дает V = ( L 0 + α L 0 Δ T ) 3 = L 0 3 (1 + αΔ T ) 3 .

Теперь, поскольку αΔ T мало, мы можем использовать биномиальное расширение: V L 0 3 (1 + 3αΔ T ) = L 0 3 + 3α L 0 3 Δ T .

Таким образом, запись длины в единицах объемов дает V = V 0 + Δ V V 0 + 3α V 0 Δ T и, следовательно, Δ V = βV 0 Δ T ≈ 3α V 0 Δ T , или β ≈ 3α.


Тепловое расширение и плотность | ЗЕМЛЯ 111: Вода: наука и общество

Тепловое расширение и плотность

Когда вода является жидкостью, молекулы воды упакованы относительно близко друг к другу, но могут скользить мимо друг друга и свободно перемещаться (как говорилось ранее, что делает ее жидкостью).Чистая вода имеет плотность 1.000 г / см3 при 4˚C. При повышении или понижении температуры от 4˚C плотность воды уменьшается. Фактически, если вы измеряете температуру глубокой воды в больших озерах умеренных широт (например, на широте Пенсильвании и Нью-Йорка), которые замерзают зимой (например, Великие озера), вы обнаружите, что температура составляет 4˚ C; Это связано с тем, что при этой температуре пресная вода имеет максимальную плотность, а когда поверхностные воды остывают осенью и в начале зимы, озера переворачиваются и наполняются водой с температурой 4˚C.

Рис. 3. График зависимости плотности от температуры

Источник: Майк Артур и Демиан Саффер

Однако, когда растворенные твердые вещества добавляются к чистой воде для увеличения солености, плотность увеличивается. Средняя плотность морской воды с соленостью 35 o / oo (35 г / кг) и при 4 atC составляет 1,028 г / см3 по сравнению с 1.000 г / см3 для чистой воды. Добавляя соли в морскую воду, вы также меняете некоторые другие свойства. Между прочим, увеличение солености увеличивает температуру кипения и снижает температуру замерзания.Обычная морская вода замерзает при -2˚C, что на 2˚C холоднее чистой воды. Повышение солености также снижает температуру максимальной плотности. Этот эффект также помогает объяснить, почему вы должны добавлять соль ко льду при приготовлении мороженого или добавлять соль в воду при приготовлении спагетти (хотя в этом случае влияние на температуру кипения незначительно, а добавленная соль предназначена в основном для вкуса) .

Однако, когда вода замерзает, образуются связи, которые фиксируют молекулы на месте в правильном (гексагональном) узоре.Почти для каждого известного химического соединения молекулы удерживаются ближе друг к другу (связаны) в твердом состоянии (например, в минеральной форме или во льду), чем в жидком состоянии. Однако вода уникальна тем, что связывает ее таким образом, что в твердой форме (лед) молекулы удерживаются дальше друг от друга, чем в жидкости. Вода расширяется при замерзании, делая ее менее плотной, чем вода, из которой она замерзает. Фактически, его объем чуть более чем на 9% больше (или плотность примерно на 9% ниже), чем в жидком состоянии. По этой причине лед плавает по воде (как кубик льда в стакане воды).Последнее свойство очень важно для организмов в океанах и / или пресноводных озерах. Например, рыба в пруду переживает зиму, потому что лед образуется на вершине пруда (он плавает) и эффективно изолирует (не так эффективно отводит тепло от пруда в атмосферу) остальную часть пруда внизу, предотвращая его замерзание. сверху вниз (или снизу вверх).

Если бы вода не расширялась при замерзании, тогда она была бы плотнее жидкой воды при замерзании; поэтому он тонет и заполняет озера или океан снизу доверху.Когда океаны заполнятся льдом, жизнь там станет невозможной. Все мы знаем, что расширение жидкой воды до льда имеет огромную силу. Вы или член семьи (вы бы не признались в этом, не так ли?) Оставляли когда-нибудь полную емкость с водой с плотно закрывающейся крышкой (или даже банку газировки?) В морозильной камере? Другими словами, 10 чашек воды, помещенных в морозильную камеру, превратятся в 11 чашек льда, когда они замерзнут (ой). Сила кристаллизации льда способна разорвать водопроводные трубы и вызвать расширение трещин в скалах, тем самым ускоряя эрозию гор!

Примерный набросок молекул воды в форме кристаллов льда ниже.

Грубый набросок молекул воды в форме кристалла льда

Источник: Майкл Артур и Тесс Руссо (Государственный университет Пенсильвании — Университетский парк)

Тепловое расширение — Видео по физике от Brightstorm

Большая часть вещества расширяется при нагревании и сжимается при охлаждении, принцип, называемый тепловым расширением . Средняя кинетическая энергия частиц увеличивается, когда вещество нагревается, и это увеличение движения увеличивает среднее расстояние между его атомами.Важно отметить, что вода не подчиняется правилу теплового расширения . Вода расширяется при замерзании, потому что кристаллическая структура льда занимает больше места, чем жидкая вода.

Вы когда-нибудь замечали, когда вы кладете в холодильник теплую бутылку содовой, возвращаете через пару часов, она застегивается и теряет часть своего объема? Вы заметите это, особенно если в бутылке много воздуха.То, что вы видите, является результатом теплового расширения или, в данном случае, теплового сжатия, и это в основном говорит о тепловом расширении по мере того, как объект нагревается, молекулы движутся быстрее, получают кинетическую энергию и отскакивают дальше друг от друга, в результате в расширении этого объекта. И наоборот, когда объект охлаждается, объект теряет кинетическую энергию, эти молекулы движутся медленнее и собираются собираться вместе немного ближе, поэтому мы видим сжатие, когда объект охлаждается.Возможно, вы заметили, что если у вас возникли проблемы с избавлением, например, от банки с маринадом, вы можете легко ее достать, пропустив ее под горячей водой в течение нескольких секунд, это как вода будет нагревать металл, и он будет расширить, и тогда вам будет легче снять его.

Есть одно исключение, мы говорим, что большая часть вещества расширяется при нагревании и сжимается при охлаждении, и это единственное исключение — вода, и особенно когда вода приближается к точке замерзания, когда вода охлаждается, она будет продолжать сжиматься и сжиматься, но когда она достигает ее точка замерзания, часто он будет расширяться, и поэтому мы видим, что плавающий лед имеет меньшую плотность, чем вода, окружающая его, подталкивая его вверх, почему это так? Оказывается, вода в жидкой форме прилипает к себе, так называемые водородные связи, потому что она имеет довольно высокую плотность, и когда она замерзает, она переходит в кристаллическое образование, где молекулы на самом деле находятся дальше друг от друга, так что это свойство воды, которое когда она замерзает, расширяется, позволяет жизни существовать на земле.Наши океаны замерзли бы зимой, когда весь этот лед опускался на дно и продолжал замерзать, но, к счастью, плавающий лед обеспечивает своего рода парниковый эффект, который предотвращает замерзание наших океанов, поэтому важное качество воды противоречит тепловому расширению при температуре окружающей среды. это точка замерзания, но по большей части все остальное вещество расширяется при нагревании и сжимается при охлаждении.

Тепловое расширение воды в бассейне

Я уже говорил о повышении температуры в бассейне.Мой отец сказал, что, по его мнению, уровень воды в бассейне повысился примерно на полдюйма при повышении температуры (примерно на 10 градусов по Фаренгейту). Итак, остается вопрос: мой отец сумасшедший или это возможно? Или оба верны?

Расширяется ли вода при нагревании? Да, кроме случаев, когда он тает. Почему это происходит? Жидкости на самом деле очень сложны, но вот основной ответ. Взгляните на этот газовый симулятор PhET, я знаю, что он предназначен для газов, а не для жидкостей. Я думаю, мы можем заставить его вести себя как жидкость, если вы увеличите гравитацию до максимума (в симуляторе) и немного охладите, чтобы это выглядело так:

А что произойдет, если я увеличу энергию? Каждая частица имеет больше энергии, и в результате происходит расширение.

Я действительно не уверен, действительно ли это сравнение, но, возможно, этого достаточно, чтобы вы поняли идею. Между прочим, тренажер PhET потрясающий.

Итак, что насчет воды? Один из способов смоделировать расширение воды (или что-то еще):

Где? — коэффициент расширения, который обычно не зависит от температуры. Для диапазона температуры воды в этом случае я буду использовать (с сайта hypertextbook.com)

Отлично.Теперь я могу найти изменение объема бассейна, но мне нужно изменение уровня воды. Предположим, бассейн представляет собой прямоугольный куб с площадью дна A и глубиной d. Начальный объем этого пула будет:

А затем, когда объем увеличится, окончательный объем будет:

Итак, теперь я могу переписать материал о тепловом расширении:

Самое лучшее заключается в том, что нижняя часть бассейна отменяется.