Индикатор наличия тока | Мастер-класс своими руками
Бывает надобность отследить наличие протекающего в цепи тока в двух состояниях: либо есть, либо нет. Пример: вы заряжает аккумулятор со встроенным контроллером зарядки, подключили к источнику питания, а как контролировать процесс? Можно конечно же включить в цепь амперметр скажете вы, и будете правы. Но постоянно это делать не будешь. Проще один раз встроить в блок питания индикатор протекания заряда, который будет показывать – идет ли ток в аккумулятор или нет.Ещё пример. Допустим есть какая-то лампа накаливания в автомобиле, которую вы не видите и не знаете горит она или перегорела. В цепь к этой лампе можно так же включить индикатор тока и контролировать протекание. Если лампа перегорит – это будет сразу видно.
Или же есть некий датчик с нитью накала. Тапа газового или датчика кислорода. И вам нужно точно знать, что нить накала не оборвалась и все исправно работает. Тут и придет на помощь индикатор, схему которого я приведу ниже.
Применений может быть масса, основная конечно идея одна – контроль наличия тока.
Схема индикатора тока
Схема очень простая. Резистор со звездочкой подбирается в зависимости от контролируемого тока, он может быть от 0,4 до 10 Ом. Для зарядки литии ионного аккумулятора я брал 4,7 Ом. Через этот резистор протекает ток (если протекает), по закону Ома на нем выделяется напряжение, которое открывает транзистор. В результате загорается светодиод, индицирующий идущую зарядку. Как только аккумулятор зарядиться, внутренний контроллер отключит батарею, ток в цепи пропадет. Транзистор закроется и светодиод погаснет, тем самым давая понять, что зарядка завершена.
Диод VD1 ограничивает напряжение до 0,6 В. Можно взять любой, на ток от 1 А. Опять же, все зависит от вашей нагрузки. Но нельзя брать диод Шоттки, так как у него слишком маленькое падение – транзистор попросту может не открыться от 0,4 В. Через такую схему можно даже заряжать автомобильные аккумуляторы, главное диод выбрать с током выше, тока желаемой зарядки.
В данном примере светодиод включается во время прохождения тока, а если нужно показывать, когда нет тока? На этот случай есть схема с обратной логикой работы.
Все тоже самое, только добавляется инвертирующий ключ на одном транзисторе такой же марки. Кстати транзистор любой этой же структуры. Подойдет отечественный аналоги – КТ315, КТ3102.
Параллельно резистору со светодиодом можно включить зуммер, и когда при контроле, скажем лампочки, тока не будет – раздастся звуковой сигнал. Что будет очень удобны, и не придаться выводить светодиод не панель управления.
В общем, задумок может быть много, где использовать данный индикатор.
Простая электронная нагрузка для начинающих
РадиоКот >Схемы >Аналоговые схемы >Измерения >Простая электронная нагрузка для начинающих
Начну с цитаты: «Обычно при изготовлении (как впрочем и при ремонте) блоков питания или преобразователей напряжения требуется проверить их работоспособность под нагрузкой. И тут начинаются поиски. В ход идёт всё, что есть под рукой: различные лампочки накаливания, старые электронные лампы, мощные резисторы и тому подобное. Подбирать нужную нагрузку таким образом — это невероятно затратное (как по времени, так и по нервам) занятие. (Лучше и не скажешь! Сам сталкивался с такой проблемой.) Вместо этого очень удобно пользоваться электронной регулируемой нагрузкой. Нет, нет, не надо ничего покупать. Сделать такую нагрузку сможет даже школьник. Всё, что нужно, — это мощный полевик, операционный усилитель, несколько резисторов и радиатор побольше. Схема — более чем простая и, тем не менее, отлично работает.» — https://radiohlam.ru/raznoe/nagruzka.htmНачиналось все с вышеуказаной статьи и вот такой схемы с расчетами (за описанием отсылаю к первоисточнику):
На основе этой схемы собрано устройство, практически идентичное авторскому, которое верой и правдой служило пару лет при напряжения на нем до 20-25В. Видно, что низкоомный резистор Rti собран аж из четырех! подручных.
К сожалению, при тестировании очередного блока и подаче с него напряжения более 30В нагрузка сгорела — пробился полевик, скорее всего из-за превышения напряжения затвор-сток. Кроме того, ток в этой схеме очень сильно зависит от поданого напряжения. Поэтому схема была немного доработана — добавлены стабилизаторы напряжения питания ОУ, опорного напряжения и индикатор высокого опасного (для схемы) напряжения.
Описывать здесь особо нечего. На стабилитроне VD2 собран источник опорного напряжения, который вполне сносно (достаточно для таких задач) работает при напряжениях от 7 до 30В. При напряжении менее 5В не выходит на режим стабилитрон VD2 и вследствие уменьшения напряжения на нем, а также недостаточного напряжения на выходе U1 максимальный ток, устанавливаемый нагрузкой снижается.
Операционный усилитель U1, транзистор Q1 и резисторы R6, R7 образуют источник стабильного тока, значение которого регулируется изменением напряжения, подаваемого с резистора R3.
Вспомогательными элементами схемы являются:
- диод VD1 защищающий схему от неправильной подачи питания;
- интегральный стабилизатор U2, ограничивающий напряжение питания микросхемы, вентилятора и напряжение на затворе полевого транзистора;
- светодиод HL1, индицирующий подачу питания;
- светодиод HL2, индицирующий опасно высокое входное напряжение.
Конечно, при входном напряжении менее 13В на выходе интегрального стабилизатора напряжение также будет снижено, но существенного вляиния на работу схемы это не оказывает.
Плата и расположение деталей (вид со стороны деталей, одна перемычка голубого цвета):
Рисунок платы — в прилагаемом файле, зеркалить не нужно.
Устройство собрано из того, что было под рукой вперемешку от блоков питания, мониторов и даже старых советских радиодеталей. Полевой транзистор практически любой такой структуры с током более 5А и напряжением более 30В, например IRFZ34, 44 и аналогичные — что есть под рукой. Диодная сборка — от блока питания AT(X). Радиатор и вентилятор — от процессора (побольше). Для подачи напряжения имеет разъемы — стандартный Molex от винчестера (папа) и два винтовых.
Минимальный ток определяется током вентилятора. Нагрузка достаточно уверенно держит 12В/4А т.е. рассеиваемую мощность около 50Вт. в течении 10 мин. После этого по запаху чувствуется, что не хватает охлаждения. При больших напряжениях желательно не устанавливать большие токи, чтобы не превышать эту мощность и не допустить перегрева транзистора, или применить больший радиатор и вентилятор.
Таким образом, получилось простое устройство, собираемое из «хлама», не требующее отдельного источника питания, не содержащее в себе импульсных преобразователей и в 95% случаем обеспечивающее потребности радиолюбителя при проверке и регулировке блоков питания.
А об аналогчной нагрузке с модульной структурой и расширеной функциональностью я расскажу в следующий раз.
Файлы:
Схема и плата в формате OrCAD 9
Рисунок дорожек для ЛУТ
Все вопросы в Форум.
Как вам эта статья? | Заработало ли это устройство у вас? |
⚡️Экономичные светодиодные индикаторы тока |
На чтение 5 мин. Опубликовано Обновлено
Для сигнализации и контроля в современной аппаратуре широко используются световые индикаторы, излучающими элементами в которых служат светодиоды различного цвета свечения. Такие устройства выполняют в основном по схеме индикаторов напряжения, хотя во многих случаях индикаторы тока (далее для краткости — ИТ) более информативны.
Широкому распространению светодиодных ИТ (рис. 1) препятствует необходимость обеспечения падения напряжения на датчике тока — резисторе R1, превышающего напряжение свечения светодиода, т. е, в среднем около 1,8 В для светодиодов красного и зелёного свечения и примерно 2,9 В синего, вследствие чего такие ИТ имеют низкую экономичность. Для снижения падения напряжения на датчике тока, необходимого для работы светодиодного ИТ, применяют различные усилители постоянного тока или (в целях переменного тока) трансформаторы тока.
Применение усилителей усложняет устройство и требует их подключения трехполюсником, трансформаторы тока весьма громоздки. Известен способ питания светодиода от источника с низким напряжением, заключающийся в использовании преобразователя напряжения. Такие устройства различной степени сложности применяют профессионалы и радиолюбители, конструирующие малогабаритные фонари, в которых осветительный светодиод белого свечения питается от одного гальванического элемента или аккумулятора. Преобразователи сохраняют работоспособность при напряжении питания ниже 1 В. Это сравнительно мощные устройства, обеспечивающие ток через светодиод в несколько десятков миллиампер.
Если для питания светодиода применить преобразователь напряжения, а в качестве источника питания для него использовать падение напряжения на датчике тока (рис. 2,а), то потери мощности можно существенно снизить. Современные сверхъяркие индикаторные светодиоды различного свечения светят достаточно ярко при токе около 200 мкА, и мощность преобразователей, применяемых в фонариках, оказывается излишней.
При проведении экспериментов по снижению выходной мощности простейшего преобразователя — блокинг генератора — выяснилось, что этот преобразователь, выполненный на маломощном германиевом транзисторе, развивает выходную мощность, достаточную для свечения сверхъяркого светодиода, при напряжении питания всего 0,1…0,2 В, что сопоставимо с падением напряжения на шунте стрелочного электроизмерительного прибора.
В устройстве по схеме на рис. 2,6 отсутствует защита от перегрузки по току. Поэтому это устройство можно применять в цепях, в которых отсутствуют броски тока.
На рис. 2,б изображена схема наиболее экономичного светодиодного индикатора тока для устройств, потребляющих сравнительно стабильный ток. При применении транзистора МП20А со статическим коэффициентом передачи тока базы не менее 100 светодиод HL1 светит достаточно ярко при падении напряжения на датчике тока резисторе R1 не более 0,1 В.
Если ИТ будет эксплуатироваться совместно с устройством, чувствительным к пульсациям питающего напряжения, то датчик тока следует шунтировать керамическим конденсатором ёмкостью 0,5… 1 мкФ(С1). Сопротивление датчика тока подбирают таким, чтобы при максимальном токе нагрузки яркость свечения светодиода была комфортной. Потребляемый преобразователем ток при этом обычно не превышает 2 мА.
Если ток, потребляемый нагрузкой, может изменяться в широких пределах, в таких устройствах в качестве датчика тока для ИТ следует применять диод Шотки (рис. 2,в). Его обратное напряжение может быть не более 25 В, а вот предельно допустимое значение прямого тока должно быть больше максимального тока нагрузки в несколько раз (например, для диода КД269А ток нагрузки не должен превышать 2 А, а для диода КД273А — 10 А).
При выполнении этих условий и изменении тока нагрузки от 5 мА до максимального падение напряжения на диоде будет изменяться в пределах 0,2…0,35 В. Это позволяет использовать в преобразователе более распространённые низкочастотные германиевые транзисторы серий МП39—МП42 (минимальное напряжение питания преобразователя — 0,14…0,16 В) или высокочастотные серий ГТ308—ГТ310 (минимальное напряжение питания преобразователя — 0,2 В). Статический коэффициент передачи тока базы h3)3 транзистора в таком применении должен быть не менее 15.
Трансформатор для этого ИТ намотан на таком же, что и предыдущем случае магнитопроводе, обе обмотки содержат по десять витков эмалированного провода диаметром 0,1 мм.
Резистор R1 подбирают по оптимальной яркости свечения светодиода HL1 при максимальном токе нагрузки. Если встречнопараллельно VD1 подключить такой же диод VD2 (показано на рис. 2,в штриховыми линиями), то получится экономичный светодиодный индикатор переменного тока, который можно применить в цепях переменного тока напряжением от нескольких вольт до нескольких сотен вольт.
Весьма удобно использовать его в качестве индикатора сетевого тока. При мощности нагрузки до 400 Вт диоды КД269А нагреваются незначительно, поэтому индикатор можно смонтировать навесным монтажом в евровилке. Если мощность нагрузки не превышает 100 Вт, то при использовании малогабаритных деталей (диодов Шотки 1N5818, сверхьяркого светодиода и транзистора серии ГТ310) индикатор сетевого тока можно собрать и в обычной вилке (рис. 3).
Магнитопровод трансформатора этого ИТ — ферритовая трубка с наружным диаметром 5 и длиной 6 мм (такие трубки надевают на выводы некоторых деталей в импульсных блоках питания). При необходимости трубку можно разрезать пополам, получив сразу два кольцевых магнитопровода. Перед намоткой острые кромки колец необходимо скруглить мелкозернистой наждачной бумагой.
Обе обмотки содержат по десять витков эмалированного провода диаметром 0,1 мм. Наматывать их рекомендуется одновременно двумя проводами, продев их в ушко тонкой швейной иглы, а после намотки соединить начало одной обмотки с концом второй. Для светодиода в корпусе вилки нужно просверлить отверстие. После монтажа детали фиксируют в корпусе вилки несколькими каплями термоклея. Предлагаемые светодиодные ИТ просты, дёшевы, экономичны, легко встраиваются в любую аппаратуру и способствуют повышению её потребительских свойств, расширяя область применения светодиодных индикаторов.
Схемы индикаторов разряда li-ion аккумуляторов для определения уровня заряда литиевой батареи (например, 18650)
Что может быть печальнее, чем внезапно севший аккумулятор в квадрокоптере во время полета или отключившийся металлоискатель на перспективной поляне? Вот если бы можно было бы заранее узнать, насколько сильно заряжен аккумулятор! Тогда мы могли бы подключить зарядку или поставить новый комплект батарей, не дожидаясь грустных последствий.
И вот тут как раз рождается идея сделать какой-нибудь индикатор, который заранее подаст сигнал о том, что батарейка скоро сядет. Над реализацией этой задачи пыхтели радиолюбители всего мира и сегодня существует целый вагон и маленькая тележка различных схемотехнических решений — от схем на одном транзисторе до навороченных устройств на микроконтроллерах.
Далее будут представлены только те индикаторы разряда li-ion аккумуляторов, которые не только проверены временем и заслуживают вашего внимания, но и с легкостью собираются своими руками.
Внимание! Приведенные в статье схемы только лишь сигнализируют о низком напряжении на аккумуляторе. Для предупреждения глубокого разряда необходимо вручную отключить нагрузку либо использовать контроллеры разряда.Вариант №1
Начнем, пожалуй, с простенькой схемки на стабилитроне и транзисторе:
Разберем, как она работает.
Пока напряжение выше определенного порога (2.0 Вольта), стабилитрон находится в пробое, соответственно, транзистор закрыт и весь ток течет через зеленый светодиод. Как только напряжение на аккумуляторе начинает падать и достигает значения порядка 2.0В + 1.2В (падение напряжение на переходе база-эмиттер транзистора VT1), транзистор начинает открываться и ток начинает перераспределяться между обоими светодиодами.
Если взять двухцветный светодиод, то мы получим плавный переход от зеленого к красному, включая всю промежуточную гамму цветов.
Типовое различие прямого напряжения в двухцветных светодиодах составляет 0.25 Вольта (красный зажигается при более низком напряжении). Именно этой разницей определяется область полного перехода между зеленым и красным цветом.
Таким образом, не смотря на свою простоту, схема позволяет заранее узнать, что батарейка начала подходить к концу. Пока напряжение на аккумуляторе составляет 3.25В или более, горит зеленый светодиод. В промежутке между 3.00 и 3.25V к зеленому начинает подмешиваться красный — чем ближе к 3.00 Вольтам, тем больше красного. И, наконец, при 3V горит только чисто красный цвет.
Недостаток схемы в сложности подбора стабилитронов для получения необходимого порога срабатывания, а также в постоянном потреблении тока порядка 1 мА. Ну и, не исключено, что дальтоники не оценят эту задумку с меняющимися цветами.
Кстати, если в эту схему поставить транзистор другого типа, ее можно заставить работать противоположным образом — переход от зеленого к красному будет происходить, наоборот, в случае повышения входного напряжения. Вот модифицированная схема:
Вариант №2
В следующей схеме использована микросхема TL431, представляющая собой прецизионный стабилизатор напряжения.
Порог срабатывания определяется делителем напряжения R2-R3. При указанных в схеме номиналах он составляет 3.2 Вольта. При снижении напряжения на аккумуляторе до этого значения, микросхема перестает шунтировать светодиод и он зажигается. Это будет сигналом к тому, что полный разряд батареи совсем близок (минимально допустимое напряжение на одной банке li-ion равно 3.0 В).
Если для питания устройства применяется батарея из нескольких последовательно включенных банок литий-ионного аккумулятора, то приведенную выше схему необходимо подключить к каждой банке отдельно. Вот таким образом:
Для настройки схемы подключаем вместо батарей регулируемый блок питания и подбором резистора R2 (R4) добиваемся зажигания светодиода в нужный нам момент.
Вариант №3
А вот простая схема индикатора разрядки li-ion аккумулятора на двух транзисторах:Порог срабатывания задается резисторами R2, R3. Старые советские транзисторы можно заменить на BC237, BC238, BC317 (КТ3102) и BC556, BC557 (КТ3107).
Вариант №4
Схема на двух полевых транзисторах, потребляющая в ждущем режиме буквально микротоки.
При подключении схемы к источнику питания, положительное напряжение на затворе транзистора VT1 формируется с помощью делителя R1-R2. Если напряжение выше напряжение отсечки полевого транзистора, он открывается и притягивает затвор VT2 на землю, тем самым закрывая его.
В определенный момент, по мере разряда аккумулятора, напряжение, снимаемое с делителя становится недостаточным для отпирания VT1 и он закрывается. Следовательно, на затворе второго полевика появляется напряжение, близкое к напряжению питания. Он открывается и зажигает светодиод. Свечение светодиода сигнализирует нам о необходимости подзаряда аккумулятора.
Транзисторы подойдут любые n-канальные с низким напряжением отсечки (чем меньше — тем лучше). Работоспособность 2N7000 в этой схеме не проверялась.
Вариант №5
На трех транзисторах:
Думаю, схема не нуждается в пояснениях. Благодаря большому коэфф. усиления трех транзисторных каскадов, схема срабатывает очень четко — между горящим и не горящим светодиодом достаточно разницы в 1 сотую долю вольта. Потребляемый ток при включенной индикации — 3 мА, при выключенном светодиоде — 0.3 мА.
Не смотря на громоздкий вид схемы, готовая плата имеет достаточно скромные габариты:
С коллектора VT2 можно брать сигнал, разрешающий подключение нагрузки: 1 — разрешено, 0 — запрещено.
Транзисторы BC848 и BC856 можно заменить на ВС546 и ВС556 соответственно.
Вариант №6
Эта схема мне нравится тем, что она не только включает индикацию, но и отрубает нагрузку.
Жаль только, что сама схема от аккумулятора не отключается, продолжая потреблять энергию. А жрет она, благодаря постоянно горящему светодиоду, немало.
Зеленый светодиод в данном случае выступает в роли источника опорного напряжения, потребляя ток порядка 15-20 мА. Чтобы избавиться от такого прожорливого элемента, вместо источника образцового напряжения можно применить ту же TL431, включив ее по такой схеме*:
*катод TL431 подключить ко 2-ому выводу LM393.
Вариант №7
Схема с применением так называемых мониторов напряжения. Их еще называют супервизорами и детекторами напряжения (voltdetector’ами). Это специализированные микросхемы, разработанные специально для контроля за напряжением.
Вот, например, схема, поджигающая светодиод при снижении напряжения на аккумуляторе до 3.1V. Собрана на BD4731.
Согласитесь, проще некуда! BD47xx имеет открытый коллектор на выходе, а также самостоятельно ограничивает выходной ток на уровне 12 мА. Это позволяет подключать к ней светодиод напрямую, без ограничительных резисторов.
Аналогичным образом можно применить любой другой супервизор на любое другое напряжение.
Вот еще несколько вариантов на выбор:
- на 3.08V: TS809CXD, TCM809TENB713, MCP103T-315E/TT, CAT809TTBI-G;
- на 2.93V: MCP102T-300E/TT, TPS3809K33DBVRG4, TPS3825-33DBVT, CAT811STBI-T3;
- серия MN1380 (или 1381, 1382 — они отличаются только корпусами). Для наших целей лучше всего подходит вариант с открытым стоком, о чем свидетельствует дополнительная циферка «1» в обозначении микросхемы — MN13801, MN13811, MN13821. Напряжение срабатывания определяется буквенным индексом: MN13811-L как раз на 3,0 Вольта.
Также можно взять советский аналог — КР1171СПхх:
В зависимости от цифрового обозначения, напряжение детекции будет разным:
Сетка напряжений не очень-то подходит для контроля за li-ion аккумуляторами, но совсем сбрасывать эту микросхему со счетов, думаю, не стоит.
Неоспоримые достоинства схем на мониторах напряжения — чрезвычайно низкое энергопотребление в выключенном состоянии (единицы и даже доли микроампер), а также ее крайняя простота. Зачастую вся схема умещается прямо на выводах светодиода:
Чтобы сделать индикацию разряда еще более заметной, выход детектора напряжения можно нагрузить на мигающий светодиод (например, серии L-314). Или самому собрать простейшую «моргалку» на двух биполярных транзисторах.
Пример готовой схемы, оповещающей о севшей батарейке с помощью вспыхивающего светодиода приведен ниже:
Еще одна схема с моргающим светодиодом будет рассмотрена ниже.
Вариант №8
Крутая схема, запускающая моргание светодиода, если напряжение на литиевом аккумуляторе упадет до 3.0 Вольта:
Эта схема заставляет вспыхивать сверхяркий светодиод с коэффициентом заполнения 2.5% (т.е. длительная пауза — коротка вспышка — опять пауза). Это позволяет снизить потребляемый ток до смешных значений — в выключенном состоянии схема потребляет 50 нА (нано!), а в режиме моргания светодиодом — всего 35 мкА. Сможете предложить что-нибудь более экономичное? Вряд ли.
Как можно было заметить, работа большинства схем контроля за разрядом сводится к сравнению некоего образцового напряжения с контролируемым напряжением. В дальнейшем эта разница усиливается и включает/отключает светодиод.
Обычно в качестве усилителя разницы между опорным напряжением и напряжением на литиевом аккумуляторе используют каскад на транзисторе или операционный усилитель, включенный по схеме компаратора.
Но есть и другое решение. В качестве усилителя можно применить логические элементы — инверторы. Да, это нестандартное использование логики, но это работает. Подобная схема приведена в следующем варианте.
Вариант №9
Схема на 74HC04.
Рабочее напряжение стабилитрона должно быть ниже напряжение срабатывания схемы. Например, можно взять стабилитроны на 2.0 — 2.7 Вольта. Точная подстройка порога срабатывания задается резистором R2.
Схема потребляет от батареи около 2 мА, так что ее тоже надо включать после выключателя питания.
Вариант №10
Это даже не индикатор разряда, а, скорее, целый светодиодный вольтметр! Линейная шкала из 10 светодиодов дает наглядное представление о состоянии аккумулятора. Весь функционал реализован всего на одной-единственной микросхеме LM3914:
Делитель R3-R4-R5 задает нижнее (DIV_LO) и верхнее (DIV_HI) пороговые напряжения. При указанных на схеме значениях свечению верхнего светодиода соответствует напряжение 4.2 Вольта, а при снижении напряжения ниже 3х вольт, погаснет последний (нижний) светодиод.
Подключив 9-ый вывод микросхемы на «землю», можно перевести ее в режим «точка». В этом режиме всегда светится только один светодиод, соответствующий напряжению питания. Если оставить как на схеме, то будет светиться целая шкала из светодиодов, что нерационально с точки зрения экономичности.
В качестве светодиодов нужно брать только светодиоды красного свечения, т.к. они обладают самым малым прямым напряжением при работе. Если, например, взять синие светодиоды, то при севшем до 3х вольт аккумуляторе, они, скорее всего, вообще не загорятся.
Сама микросхема потребляет около 2.5 мА, плюс 5 мА на каждый зажженный светодиод.
Недостатком схемы можно считать невозможность индивидуальной настройки порога зажигания каждого светодиода. Можно задать только начальное и конечное значение, а встроенный в микросхему делитель разобьет этот интервал на равные 9 отрезков. Но, как известно, ближе к концу разряда, напряжение на аккумуляторе начинает очень стремительно падать. Разница между аккумуляторами, разряженными на 10% и 20% может составлять десятые доли вольта, а если сравнить эти же аккумуляторы, только разряженненные на 90% и 100%, то можно увидеть разницу в целый вольт!
Типичный график разряда Li-ion аккумулятора, приведенный ниже, наглядно демонстрирует данное обстоятельство:
Таким образом, использование линейной шкалы для индикации степени разряда аккумулятора представляется не слишком целесообразным. Нужна схема, позволяющая задать точные значения напряжений, при которых будет загораться тот или иной светодиод.
Полный контроль над моментами включения светодиодов дает схема, представленная ниже.
Вариант №11
Данная схема является 4-разрядным индикатором напряжения на аккумуляторе/батарейке. Реализована на четырех ОУ, входящих в состав микросхемы LM339.
Схема работоспособна вплоть до напряжения 2 Вольта, потребляет меньше миллиампера (не считая светодиода).
Разумеется, для отражения реального значения израсходованной и оставшейся емкости аккумулятора, необходимо при настройке схемы учесть кривую разряда используемого аккумулятора (с учетом тока нагрузки). Это позволит задать точные значения напряжения, соответствующие, например, 5%-25%-50%-100% остаточной емкости.
Вариант №12
Ну и, конечно, широчайший простор открывается при использовании микроконтроллеров со встроенным источником опорного напряжения и имеющих вход АЦП. Тут функционал ограничивается только вашей фантазией и умением программировать.
Как пример приведем простейшую схему на контроллере ATMega328.
Хотя тут, для уменьшения габаритов платы, лучше было бы взять 8-миногую ATTiny13 в корпусе SOP8. Тогда было бы вообще шикарно. Но пусть это будет вашим домашним заданием.
Светодиод взят трехцветный (от светодиодной ленты), но задействованы только красный и зеленый.
Готовую программу (скетч) можно скачать по этой ссылке.
Программа работает следующим образом: каждые 10 секунд опрашивается напряжение питания. Исходя из результатов измерений МК управляет светодиодами с помощью ШИМ, что позволяет получать различные оттенки свечения смешением красного и зеленого цветов.
Свежезаряженный аккумулятор выдает порядка 4.1В — светится зеленый индикатор. Во время зарядки на АКБ присутствует напряжение 4.2В, при этом будет моргать зеленый светодиод. Как только напряжение упадет ниже 3.5В, начнет мигать красный светодиод. Это будет сигналом к тому, что аккумулятор почти сел и его пора заряжать. В остальном диапазоне напряжений индикатор будет менять цвет от зеленого к красному (в зависимости от напряжения).
Вариант №13
Ну и на закуску предлагаю вариант переделки стандартной платы защиты (их еще называют контроллерами заряда-разряда), превращающий ее в индикатор севшего аккумулятора.
Эти платы (PCB-модули) добываются из старых батарей мобильных телефонов чуть ли не в промышленных масштабах. Просто подбираете на улице выброшенный аккумулятор от мобилы, потрошите его и плата у вас в руках. Все остальное утилизируете как положено.
Внимание!!! Попадаются платы, включающие защиту от переразряда при недопустимо низком напряжении (2.5В и ниже). Поэтому из всех имеющихся у вас плат необходимо отобрать только те экземпляры, которые срабатывают при правильном напряжении (3.0-3.2V).
Чаще всего PCB-плата представляет собой вот такую схемку:
Микросборка 8205 — это два миллиомных полевика, собранных в одном корпусе.
Внеся в схему некоторые изменения (показаны красным цветом), мы получим прекрасный индикатор разряда li-ion аккумулятора, практически не потребляющий ток в выключенном состоянии.
Так как транзистор VT1.2 отвечает за отключение зарядного устройства от банки аккумулятора от при перезаряде, то он в нашей схеме лишний. Поэтому мы полностью исключили этот транзистор из работы, разорвав цепь стока.
Резистор R3 ограничивает ток через светодиод. Его сопротивление необходимо подобрать таким образом, чтобы свечение светодиода было уже заметным, но потребляемый ток еще не был слишком велик.
Кстати, можно сохранить все функции модуля защиты, а индикацию сделать с помощью отдельного транзистор, управляющий светодиодом. То есть индикатор будет загораться одновременно с отключением аккумулятора в момент разряда.
Вместо 2N3906 подойдет любой имеющийся под рукой маломощный p-n-p транзистор. Просто подпаять светодиод напрямую не получится, т.к. выходной ток микросхемы, управляющий ключами, слишком мал и требует усиления.
Пожалуйста, учитывайте тот факт, что схемы индикаторов разряда сами потребляют энергию аккумулятора! Во избежание недопустимого разряда, подключайте схемы индикаторов после выключателя питания или используйте схемы защиты, предотвращающие глубокий разряд.Как, наверное, не сложно догадаться, схемы могут быть использованы и наоборот — в качестве индикатора заряда.
Индикатор напряжения. Виды и использование. Особенности
Индикатор напряжения является специализированным диагностическим инструментом в виде отвертки, указывающим на наличие в электрической цепи напряжения. С его помощью осуществляется проверка безопасности контакта с элементами электрической цепи в частности фазного провода. При наличии напряжения световой индикатор на приборе загорается.
Какие задачи решает индикатор напряжения
Существует несколько конфигураций индикаторных отверток, которые отличаются по функциональному набору.
При этом их применение позволяет:
- Определять наличия напряжения в сети.
- Искать фазные провода в пучке, отсеивая нулевые и линии заземления.
- Проверять целостность проводки на предмет обрывов жил под изоляцией.
- Искать места обрыва для частичной замены проводки вставкой нового кабеля.
Отвертка кроме работы как индикатор также может применяться для выкручивания саморезов и различных винтов. Она имеет достаточно хлипкое устройство, поэтому непригодна для серьезных нагрузок, к примеру, выкручивания приржавевшего крепежа. Однако инструмент вполне может использоваться при монтаже новых розеток, выключателей, диммеров, регуляторов температуры для теплого пола и т.д.
Виды индикаторных отверток
Существует несколько разновидностей индикаторных отверток в зависимости от их устройства. Конструкция инструмента влияет на его функциональные возможности, надежность и естественно стоимость.
Наиболее распространенными являются следующие виды отверток тестеров:
- Обычная с неоновой лампой.
- С дисплеем.
- Со светодиодом.
Обычная с неоновой лампой
Является самой дешевой и при этом надежной благодаря своей простоте. Такой инструмент оснащается долговечной неоновой лампой, которая загорается при пропуске через отвертку фазы электрической цепи. Прибор реагирует на напряжение в пределах 60-500 В.
Обычная отвертка тестер способна определять только фазный провод и присутствие в нем напряжения. С ее помощью невозможно искать места обрыва в проводке. Чтобы инструмент сработал, нужно прикоснуться его жалом к оголенной части фазного провода или подключенному к нему элементу. При этом нужно прижать пальцем контакт на торце отвертки. Это позволит замкнуть электрическую цепь на теле человека и добиться свечения лампочки. Хотя цепь замыкается на тело, это не вызывает никого дискомфорта и никак не ощущается.
Стоит отметить, что такая отвертка сработает только если человек выступит проводником. Если же замыкать контакт на торце отвертки пальцем и стоять при этом на резиновом коврике или в диэлектрической обуви, то инструмент не сработает. В результате возникнет ложное впечатление, что сеть обесточена. В связи с этим неоновый индикатор напряжения должен использоваться с осторожностью.
Данный инструмент имеет простое устройство:
- Металлическое контактное жало отвертки.
- Резистор 0,5-1 мОм.
- Неоновая лампа.
- Металлический замыкающий контакт на торце рукоятки.
Абсолютная безопасность проверки напряжения такой отверткой обеспечивается за счет ее изоляции. С оголенной электросетью контактирует лишь часть незащищенного стального жала инструмента. При этом изоляция на ручке предотвращает поражение током человека. Когда при проверке сети прижимается контакт на торце отвертки, то ток протекает на руку человека через резистор, который снижает его до абсолютно безопасной неощутимой величины.
Отвертка с дисплеем
Более удобными и многофункциональными являются отвертки с дисплеем. Их можно приравнять к простенькому мультиметру.
Инструмент выполняет ряд функций, отдельные из которых выходят за рамки обычной индикаторной отвертки:
- Определяет напряжение.
- Ищет фазный провод.
- Замеряет величину напряжения в сети.
- Ищет скрытую электропроводку в штукатурке.
- Способна работать в сетях переменного и постоянного тока.
Данный инструмент выглядит менее всего похожим на отвертку. У него имеется ЖК дисплей. Этот инструмент оснащается собственным источником питания. Без батареек он не работает. По своему устройству отвертка больше напоминает маркер. Ее контактное жало скрывается колпачком. Оно крайне узкое, а сама конструкция достаточно хлипкая, поэтому такую отвертку лучше вообще не использовать для монтажа крепежа, а применять только как индикатор.
Индикатор напряжения с дисплеем имеет 3 режима работы. Переключение между ними осуществляется кнопкой на корпусе.
Отвертка работает в следующих режимах:
- О – это контактный режим с проводником, подразумевает проверку путем прикладывания жала и придавливания кнопки на торце инструмента.
- L – бесконтактный режим, который позволяет среагировать на электрическую цепь на расстоянии от нее до пера отвертки в 1-3 см.
- Н – бесконтактный режим с повышенной чувствительностью, что позволяет определять напряжение в проводке даже скрытой в слое штукатурки.
Данный инструмент позволяет при работе в режиме Н найти скрытую электропроводку в стене при условии, что ток подается на фазный провод. Для этого перо отвертки водится в непосредственной близости к стене и как только оно окажется возле провода, то загорится световой индикатор.
Также такой индикатор напряжения позволяет найти на проводке места обрыва фазной жилы. Для этого перо инструмента ведется вдоль подключенного провода. Его световой индикатор будет гореть, несмотря на отсутствие контакта с жилой, поскольку отвертка выставляется в бесконтактный режим реагирования. При достижении участка провода с обрывом световой индикатор потухнет. Найденное место отмечается, а в дальнейшем срезается и меняется отрезком нового кабеля.
Отвертка со светодиодом
Внешне практически полностью повторяет конструкцию отвертки с неоновой лампой. При этом он является более чувствительным для сетей с напряжением менее 60 В.
Такой индикатор напряжения имеет свой собственный источник питания. Благодаря этому он выполняет много функций:
- Указывает на фазный провод.
- Определяет присутствие напряжения в сети.
- Ищет обрыв проводки.
- Прозванивает проводку не под напряжением.
- Определяет маршрут скрытой в стене проводки.
Фактически это та же отвертка с дисплеем, но не указывающая на количество вольт в сети, поскольку не имеет экрана. Инструмент этого типа существенно крепче дисплейного, поэтому вполне может использоваться для затягивания крепежных элементов в розетках и выключателях.
Схема отвертки со светодиодом позволяет определять фазный провод без замыкания контакта на торце ручки. Достаточно просто прикоснуться к нему пером и индикатор загорится, если провод не обесточен.
Если нужно проверить обесточенный провод на предмет обрыва его жилы, нужно коснуться к одному его краю отверткой, а второй взять рукой. При этом на индикаторе следует придавить пальцем контакт. Если отвертка засветится, то обрыва нет. То есть таким методом можно проверять абсолютно любой провод, не подключая его к фазе.
При использовании светодиодной отвертки для поиска обрыва провода в стене необходимо работать не обесточивая сеть. Для этого инструмент с прижатым контактом водится по маршруту провода, при условии, что тот залегает на глубине не более 1,5 см. В месте где индикатор погаснет и будет точка обрыва. При этом нужно учитывать, что такая отвертка крайне чувствительна, поэтому при узком обрыве провода может не погаснуть, а слегка снизить яркость свечения.
Проверка индикатора перед использованием
Отвертка тестер должна использоваться исключительно в исправном состоянии, в противном случае при прямом контакте с фазным проводом существует опасность получения поражения электрическим током. Чтобы этого избежать индикатор напряжения нужно осматривать перед каждым использованием. Он может сломаться при хранении, к примеру, если складывается в ящике вместе с молотками и прочим тяжелым инструментом, способным расколоть его корпус.
Проверка отвертки выполняется в 2 этапа:
- Визуальный контроль целостности.
- Контрольное касание к фазе.
Для начала индикатор осматривается на предмет сколов изоляции. У большинства инструментов она сделана за счет использования пластиковых деталей, которые при механическом воздействии разлетаются на осколки. Если отвертки имеет сколы и оголенные токопроводящие части, то ее нельзя использовать как индикатор.
Далее нужно убедиться, что индикатор работает. Для этого следует проверить исправную не обесточенную розетку. Отвертка вставляется в отверстие розетка и прижимается к ее контакту. Если в первом индикатор не сработал, то это нулевой провод. Заведя перо отвертки во второе отверстие можно увидеть ее свечение, поскольку там находится фаза. При этом если отвертка не засветиться, то это даст понять, что она не работает.
Если отвертка при внешней исправности и целостности изоляции не срабатывает на фазу, то ее можно попробовать отремонтировать. Так обычное неоновое и светодиодное устройство нужно разобрать, чтобы прочистить контакты. Также у светодиодной и отвертки с дисплеем нужно заменить батарейки. Выполняя замену батареек нужно соблюсти полярность их подключения.
Если неоновый или светодиодный индикатор напряжения имеют небольшие сколы изоляции на стальном стержне пера, то оголенный участок можно замотать изолентой или защитить термоусадкой. После изоляции таким инструментом можно продолжать пользоваться.
Таким же способом можно отремонтировать трещину на рукоятке. Однако, отвертка с повреждением должна в дальнейшем использоваться только как индикатор. Ее нельзя применяться для работы с крепежными элементами, так как от нагрузки та может разломиться на несколько частей.
Похожие темы:
Схема индикаторов выходной мощности усилителя на светодиодах своими руками
Второй год реанимирую усилитель Солнцева, собранный 20 лет назад. Одним из узлов усилителя является индикатор выходной мощности. В момент создания в состав усилителя входил индикатор, собранный на К155ЛА3 – 8 корпусов + обвес. Работал хорошо, но сейчас не современно. Реинкарнация на современной базе под катом.В процессе реанимации решил соорудить новый индикатор, на современной элементной базе. Популярной в данный момент является схема индикаторов на LM3915.
К сожалению сразу в наших краях не нашел в продаже линейки светодиодных индикаторов в одном корпусе и собрал на отдельных светодиодах.
В целом, получилось неплохо, но размытость (даже мутность) световых пятен не совсем устраивала.
В поисках светодиодной ленты набрел на линейки светодиодных индикаторов в одном корпусе на 12 сегментов, 8 из которых зеленого цвета и 4 красного.
В моей конструкции 10 светодиодов используются для индикации выходной мощности усилителя, а два светодиода для индикации появления отрицательного или положительного напряжения на выходе усилителя.
Ожидание посылки, символическая плата за доставку и переделка индикатора не удержали от покупки.
Выводы каждого индикатора были заботливо защищены продавцом и упакованы в конверт с пупыркой.
Лицевая сторона каждой панели закрыта защитной наклейкой.
С внутренней стороны индикаторы залиты прозрачным компаундом
В целом даже был очень приятно удивлен качеством исполнения индикаторов – не безликое изделие.
Размеры, заявленные продавцом, в точности совпадают с реальностью. На длине выводов производитель не экономил.
Поскольку продавец не указал ни ток потребления светодиодов, ни рабочее напряжение, то счел эти данные общепринятыми, ориентировочно 2 – 3 Вольта, при токе 20-30 мА.
Однако, предварительно произвел проверку светодиодов индикатора тестером Т4.
Uf, v – напряжение, при котором светодиод начинает светиться в вольтах,
C, pf – емкость перехода в пикофарадах
В таблице светодиоды с 1 по 8 – зеленые, 9-12 – красные.
Некоторый разброс параметров присутствует, но на работе ни как не сказывается.
До того момента как индикаторы приехали, думал не заниматься травлением новой платы, а воспользоваться макеткой, но оказалось, что шаг между выводами не 2,54 мм, а ровно 2. Это собственно видно из чертежей на странице продавца, но на такие мелочи при покупке внимания не обратил.
Установив метрическую сетку в Sprint-Layout, развел плату. В процессе столкнулся еще с одной если не трудностью, то не стандартностью панели – выводы светодиодов расположены не в центре корпуса, а сдвинуты к одному краю – находятся на расстоянии 1,6 мм от центра. Это создало небольшое неудобство – мне нужно было расположить два индикатора рядом, без зазора между корпусами. Пришлось шаг сетки уменьшить до 0,25 мм и несколько раз печатать плату на бумаге, примеряя индикаторы.
В результате, получилась такая плата
Сравнение результатов:
Монтаж в схему и испытания
Фотоаппарат немного мылит свечение сегментов, но вживую все выглядит очень прилично. Каждый светодиод создает свое четко очерченное свечение, не создавая ватного пятна.
Возможно это субъективное ощущение, но индикатор ожил, скорость индикации увеличилась и стала более адекватной по сравнению с первоначальным вариантом – исчезла некая заторможенность.
Покупкой, полученным результатом, не смотря на нестандартный шаг выводов и их смещение относительно центра корпуса, крайне доволен и могу рекомендовать данный товар.
Кроме того, у продавца различные индикаторы в широком ассортименте и для разных целей.
Плата в спринте:
yadi.sk/d/om_6R3kj3ExiCC
В первой вкладке — плата с микросхемами + плата индикатора на отдельных светодиодах. Во второй вкладке — плата для обозреваемых индикаторов.
с использованием только двух транзисторов
В следующем посте описывается простая схема индикатора разряда батареи с использованием всего двух недорогих NPN-транзисторов. Главная особенность этой схемы — очень низкое энергопотребление в режиме ожидания.
Принципиальная схема
До сих пор мы видели, как создать схемы индикатора разряда батареи с использованием микросхем 741 IC и 555, которые, несомненно, обладают выдающейся способностью обнаруживать и отображать пороговые значения низкого напряжения батареи.
Однако следующий пост относится к еще одной подобной схеме, которая намного дешевле и использует всего пару NPN-транзисторов для получения необходимых индикаторов низкого заряда батареи.
Преимущество транзистора перед IC
Основным преимуществом предлагаемой схемы индикатора низкого заряда батареи с двумя транзисторами является очень низкое потребление тока по сравнению с аналогами IC, которые потребляют относительно более высокие токи.
IC 555 потребляет около 5 мА, IC741 — около 3 мА, в то время как нынешняя схема будет потреблять около 1.Ток 5 мА.
Таким образом, настоящая схема становится более эффективной, особенно в тех случаях, когда потребление тока в режиме ожидания становится проблемой, например, предположим, в устройствах, которые зависят от источников питания от слаботочных батарей, таких как батарея PP3 на 9 В.
Схема может работать при напряжении 1,5 В
Еще одним преимуществом этой схемы является ее способность работать даже при напряжении около 1,5 В, что дает ей явное преимущество перед схемами на основе IC.
Как показано на следующей принципиальной схеме, два транзистора сконфигурированы как датчик напряжения и инвертор.
Первый транзистор слева определяет уровень порогового напряжения в соответствии с настройкой предустановки 47K. Пока этот транзистор является проводящим, второй транзистор справа остается выключенным, при этом светодиод остается выключенным.
Как только напряжение батареи упадет ниже установленного порогового уровня, левый транзистор больше не сможет проводить.
В этой ситуации мгновенно срабатывает правый транзистор, включая светодиод.
Светодиод включается и обеспечивает необходимую индикацию предупреждения о низком заряде батареи.
Принципиальная схема
Видео-демонстрация:
Вышеупомянутая схема была успешно построена и установлена г-ном Алланом в его блоке детектора паранормального истощения. На следующем видео представлены результаты реализации:
Модернизация вышеуказанной транзисторной схемы разряда батареи в схему отключения разряда батареи
Ссылаясь на приведенную выше диаграмму, индикатор разряда батареи сформирован двумя транзисторами NPN, в то время как дополнительные BC557 и реле используются для отключения батареи от нагрузки, когда она достигает нижнего порога, в этом состоянии реле подключает батарею к доступному входу зарядки.
Однако, когда аккумулятор находится в нормальном состоянии, реле соединяет аккумулятор с нагрузкой и позволяет нагрузке работать от аккумулятора.
Добавление гистерезиса
Одним из недостатков описанной выше конструкции может быть дребезг реле при пороговых уровнях напряжения из-за падения напряжения батареи сразу во время процесса переключения реле.
Этого можно избежать, добавив 100 мкФ к основанию среднего BC547. Тем не менее, это все равно не остановит реле от постоянного включения / выключения при низком пороге переключения батареи.
Чтобы исправить это, необходимо ввести эффект гистерезиса, который может быть реализован с помощью резистора обратной связи между коллектором BC557 и средним транзистором BC547.
Модифицированный дизайн для реализации вышеуказанного условия можно увидеть на следующей диаграмме:
Два резистора, один на базе BC547, а другой на коллекторе BC557, определяют другой порог переключения реле, что означает полное порог отсечки заряда АКБ.Здесь значения выбираются произвольно, для получения точных результатов эти значения необходимо будет оптимизировать методом проб и ошибок.
О Swagatam
Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какой-либо вопрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!
Индикаторы короткого замыкания —
Перейти к содержанию.| Перейти к навигации
Персональные инструменты
- Авторизоваться регистр
- английский
- Deutsch
только в текущем разделе
Расширенный поиск…Разделы
- Дом
- Дом
- Новости
- События
- Видео
- Компания
- О нас
- Качественный
- Карьера
- Продукты
- Индикаторы короткого замыкания и замыкания на землю
- Индикаторы направленного короткого замыкания и направленного замыкания на землю
- ComPass B 2.0
- Коммутатор ComPass BS 2.0
- ComPass B
- Сигма D
- Сигма D +
- Сигма D ++
- Индикаторы короткого замыкания и замыкания на землю
- ComPass A
- Сигма Ф + Е 3 2.0
- СИГМА F + E 2.0
- СИГМА плюс
- OPTO-F + E 3.0
- Индикаторы короткого замыкания
- Сигма 2.0
- Альфа E
- Альфа М
- Opto F 3.0
- Индикатор ротора
- Индикатор жидкости
- Индикаторы замыкания на землю
- Земля 4.0
- Земля Зеро
- Флаг Earth Zero Typ
- Индикаторы короткого замыкания воздушных линий
- Навигатор LM
- Навигатор LM HV
- Аксессуары
- Датчики тока
- Трансформаторы тока
- Оптические трансформаторы тока
- Внешние сигнальные лампы
- Настенные корпуса
- Прочие аксессуары для индикаторов короткого замыкания и замыкания на землю
- Принадлежности для индикаторов неисправности воздушных линий
- Индикаторы направленного короткого замыкания и направленного замыкания на землю
- Решения для удаленного мониторинга
- iHost — Системное решение
- iHost — Решения для удаленного мониторинга распределительных сетей
- iHost Cloud
- iHost Компактный
- iHost Solo
- iHost Pro
- Электростанция
- GSM-РЕПОРТЕР 1.0
- Воздушная линия
- Радио GSM-РЕПОРТЕР
- Умный репортер
- Детекторы напряжения и системы обнаружения напряжения
- Интегрированные системы обнаружения напряжения
- WEGA 1.2 C вариометр
- WEGA 1.2 C
- WEGA 2.2 C
- WEGA 3
- WEGA T1
- Системы обнаружения и индикации напряжения
- ORION M1
- ОРИОН 3.1
- LRM-ST
- HR-ST
- Детекторы напряжения
- Комета BS-I
- Комета BS-A
- Комета BL-I
- Комета BL-A
- Комета BK-I
- Комета BK-A
- БО-А
- FL-I
- TP-I
- Фазовые компенсаторы
- PG II
- СРАВНИТЬ 2.0
- Вольтметр
- BL-M
- Аксессуары
- Монтажный комплект Wega
- Комплект соединительных кабелей
- случай
- Удлинитель
- Удлинитель с контактным электродом
- Наконечник зонда / двухконтактный адаптер
- Адаптер для ORION
- Функциональный тестер
- Интегрированные системы обнаружения напряжения
- Индикаторы короткого замыкания и замыкания на землю
Испытание на обрыв и короткое замыкание на трансформаторе — векторная диаграмма
Испытание на обрыв и короткое замыкание выполняется для определения таких параметров трансформатора, как их КПД, регулирование напряжения, постоянная цепи и т. Д.Эти испытания выполняются без фактической нагрузки, и по этой причине для испытания требуется гораздо меньше энергии. Тест на разрыв цепи и короткое замыкание дает очень точный результат по сравнению с тестом при полной нагрузке.
В комплекте:
Тест на разрыв цепи
Целью испытания на разрыв цепи является определение тока холостого хода и потерь трансформатора, по которым определяются их параметры холостого хода. Это испытание проводится на первичной обмотке трансформатора.Ваттметр, амперметр и напряжение подключены к их первичной обмотке. Номинальное номинальное напряжение подается на их первичную обмотку с помощью источника переменного тока.
Принципиальная схема испытания на обрыв цепи трансформатора
Вторичная обмотка трансформатора остается открытой, и вольтметр подключается к их клеммам. Этот вольтметр измеряет вторичное наведенное напряжение . Поскольку вторичная обмотка трансформатора разомкнута, ток холостого хода протекает через первичную обмотку.
Значение тока холостого хода очень мало по сравнению с полным номинальным током. Потери в меди возникают только на первичной обмотке трансформатора, поскольку вторичная обмотка открыта. Показания ваттметра отражают только потери в сердечнике и стали. Потери в сердечнике трансформатора одинаковы для всех типов нагрузок.
Расчет теста на обрыв
Лет,
- W 0 — показания ваттметра
- В 1 — показания вольтметра
- I 0 — показания амперметра
Тогда потери в стали трансформатора P i = W 0 и
Коэффициент мощности без нагрузки
Рабочий компонент I w is
Подставив значение W 0 из уравнения (1) в уравнение (2), вы получите значение рабочего компонента как
Намагничивающая составляющая
Параметры холостого хода приведены ниже:
Эквивалентное возбуждающее сопротивление
Эквивалентное реактивное сопротивление возбуждения
Векторная диаграмма трансформатора на холостом ходу или при испытании обрыва цепи показана ниже
.Векторная диаграмма теста на обрыв цепи
Потери в стали, измеренные при испытании на разрыв цепи, используются для расчета КПД трансформатора.
Тест на короткое замыкание
Испытание на короткое замыкание выполняется для определения нижеуказанного параметра трансформатора.
- Определяет потери в меди при полной нагрузке. Потери в меди используются для определения эффективности трансформатора.
- Эквивалентное сопротивление, импеданс и реактивное сопротивление утечки известны при испытании на короткое замыкание.
Испытание на короткое замыкание выполняется на вторичной или высоковольтной обмотке трансформатора.Измерительный прибор, такой как ваттметр, вольтметр и амперметр, подключается к высоковольтной обмотке трансформатора. Их первичная обмотка замыкается накоротко с помощью толстой ленты или амперметра, подключенного к ее выводу.
Источник низкого напряжения подключается ко вторичной обмотке, поэтому полный ток нагрузки течет как от вторичной, так и от первичной обмотки трансформатора. Ток полной нагрузки измеряется амперметром, подключенным к их вторичной обмотке.
Принципиальная схема теста на короткое замыкание показана ниже:
Принципиальная схема испытания на короткое замыкание на трансформаторе
Источник низкого напряжения подается на вторичную обмотку, что составляет примерно от 5 до 10% нормального номинального напряжения. Магнитный поток создается в сердечнике трансформатора. Величина потока мала по сравнению с нормальным потоком.
Потери в стали трансформатора зависят от магнитного потока. Это меньше происходит при испытании на короткое замыкание из-за низкого значения магнитного потока.По показаниям ваттметра можно определить только потерю меди в их обмотках. Вольтметр измеряет напряжение, приложенное к их обмотке высокого напряжения. Вторичный ток индуцируется в трансформаторе из-за приложенного напряжения.
Расчет теста на короткое замыкание
Лет,
- W c — Показания ваттметра
- V 2sc — показания вольтметра
- I 2sc — показания амперметра
Тогда потери в меди при полной нагрузке трансформатора равны