Схема подключения трехфазного генератора к сети дома схема: схема подключения с сети загородного дома через розетку

Содержание

через реверсивный переключатель, автоматическое переключение линии, с автозапуском АВР + видео

Концепция частных домов основана на максимальной независимости. Электричество не является исключением. Большинство владельцев частных строений начинают задумываться о резерве электроэнергии из альтернативных источников.

Отсутствие электричества или регулярные сбои в подаче вынуждают многих владельцев частных домов и дач предусматривать резервное питание. Однако встает вопрос правильного подключения генератора к домашней сети. В первую очередь стоит безопасность. Необходимо четко понимать, что допустимо, а что категорически запрещено.

Основные ошибки

Существует ряд ошибок, которые допускают неопытные «электрики».

Нельзя подключать мини-электростанцию к домашней розетке, когда автоматы в щитке  ввода отключены. При редких перебоях в электроэнергии становится традицией «подкидывать» кабель бензогенератора к ближайшему разъему через штепсель. Большинство рассуждают: зачем обустраивать резервный ввод, если свет пропадает 2-3 раза за год. Русский человек живет по принципу: мужик не перекреститься пока гром не грянет. Электрики не рекомендуют даже задумываться о подключении генератора через розетку по следующим причинам:

  • В линии отсутствует отдельный автомат.
  • Розеточная группа не способна принять магистральную нагрузку.
  • Срабатывает человеческий фактор: владельцы забывают отключить вводной автомат, что приводит к перегрузкам, срабатыванию защиты.
  • Существует вероятность «встречки»: электричество начинает поступать с общей сети при работающем генераторе. Агрегат выходит из строя.
  • Не стоит пренебрегать комфортной и надежной системой эксплуатации узла. Лучше изучить схемы подключения генератора к домашней сети и подобрать оптимальный вариант. Это позволит сохранить оборудование и электросеть.

Генератор должен иметь мощность несколько раз меньше пропускной способности проводки. К примеру, значение для розетки – 3,5 кВт. В противном случае возникает перегрев, короткое замыкание и пожар. При включении автомата возобновиться питание, а резервный источник сломается.

Однако в некоторых случаях подключение генератора через розетку возможно. Если мини-станция соответствует по мощности, то ее можно подключить к распределительному щитку к контактам рубильника, но со стороны генератора. Лучшим вариантом будет, если к нему подключить сперва удлинитель, а только потом нужные приборы. Это исключит связь резервного источника с домашней сетью.

На даче и в загородном доме при постоянных отключениях основного источника резерв подключают через перекидной рубильник, системы автоматического запуска или реверсивный переключатель.

Оборудование для монтажа

Для подключения электрогенератора к электросети дома не потребуется много оборудования. Достаточно определить место расположения агрегата, обеспечить шумоизоляцию и вентиляцию в соответствии с нормами. Скорее всего, в помещении придется сделать цементно-песчаную стяжку для снижения вибрации.

Рассматривать монтаж мобильных генераторов до 2 кВт не имеет смысла. Они не могут полноценно обеспечить дом электричеством. К тому же они мобильны и не требует специальных условий месторасположения.

Опишем установку электрогенератора с мощностью от 2 кВт. Для организации резервной сети электропитания потребуется:

  • Медный кабель с сечением от 4 кв. мм для организации отдельного ввода. Длина должна соответствовать расстоянию между вводным устройством и месторасположением генераторного агрегата.
  • Модульный перекидной рубильник, который можно зафиксировать на DIN-рейке 35 мм. Среди недорогих моделей хорошо зарекомендовал TDM-63, а более надежными являются ABB, Hager.

Уделить внимание следует заземлению, так как подсоединение должно соответствовать ПУЭ. Другими словами перед подключением резерва необходимо организовать систему заземления TN-C-S или ТТ.

Дифзащита на выходе генератора не будет лишней. Даже при двухпроводном типе разводки заземление генерирующего устройства никто не отменял.

Подбор электрогенератора

Домашняя электростанция представляет собой двигатель внутреннего сгорания и вращающийся генератор, который вырабатывает электроэнергию. Наиболее распространены четырехтактные модели с максимальной частотой 3 тыс. оборотов. Объем топливного бака в бытовых моделях – 10-15 литров. Основной критерий выбора должна быть область использования. Генераторы могут выступать основным источником энергии, но чаще – это резерв при аварийной ситуации.

При выборе стоит обратить внимание на некоторые параметры:

  • моторесурс;
  • мощность;
  • экономичность;
  • удобство.

При подключении важно обеспечить слаженную работу 3 элементов:

  • домашней сети – потребителя;
  • централизованной цепи подачи;
  • кабеля от резерва.

Перед подключением определяются со следующими моментами:

  • безопасное и экономичное расположение электрогенератора;
  • частота сбоев подачи электроэнергии в общей сети, необходимость в автоматики;
  • рассчитанная мощность потребления с учетом запаса и потерь.

Требуется обеспечить подходящую схему подключения.

Автоматизация электрификации требует много финансовых вложений и регулярного квалифицированного обслуживания. Для индивидуального дома щадящим режимом будет ручное подключение. Есть смысл в использовании частичной автоматизации в форма полуавтоматов – их стоимость не высока. Однако при любом выборе систему необходимо периодически контролировать.

Непрерывна подача энергии стоит достаточно дорого, частный дом редко нуждается в подобном обеспечении. На важные потребители электроэнергии, такие как компьютер, можно подключить бесперебойный источник питания.

В первую очередь необходимо рассчитать мощность потребляемой энергии. Она является суммой мощностей нагрузок, которые запланировано подключить. Дополнительно прибавляют запас в размере 30% от суммарного значения. Это требуется для учета пусковых токов двигателей бытовой техники, которые в 2-3 раза превышают допустимых.

По расчетной мощности можно выбирать агрегат.

Пример расчета. В доме установлена стиральная машина 2 кВт, холодильник – 0,5 кВт, электроплита – 3 кВт, общее освещение – 0,5 кВт, телевизор компьютер – 0,5 кВт. Суммарная мощность составляет 6,5 кВт, но при учете запаса расчетное значение повысится до 8,5 кВт.

Генератор негативно реагирует на отсутствие нагрузки. Постоянно потребление должно быть меньше максимум на 30% от наибольшего номинального значения. При минимальном потреблении необходимо использовать компактные модели с мощностью 2-3кВт на время отсутствия электроэнергии в основной сети.

Схема подключения к домашней сети бензинового генератора должна быть наиболее простой. Главное, чтобы она была правильной и позволяла обеспечить агрегат требуемой нагрузкой.

Виды генераторов

Бытовыми источниками энергии могут быть различные типы генераторов, но наиболее востребованными являются бензиновые. Они обладают следующими особенностями:

  • широкий диапазон цен;
  • мощность 0,8-12 кВт;
  • небольшие размеры;
  • существуют стационарные и мобильные модели;
  • существуют однофазные и трехфазные;
  • используется четырехтактный двигатель внутреннего сгорания.

При выборе схемы подключения необходимо учитывать способ охлаждения ДВС, что в свою очередь зависит от времени и частоты работы. Наиболее часто модели оснащены воздушными радиаторами. Промышленные модели способны работать длительное время, так как в них предусмотрено жидкостное охлаждение. Это увеличивает габаритные размеры, но повышает экономичность.

Дизель-генераторы используются реже в домашних сетях, так как их стоимость выше. Однако их использование обосновано большим ресурсом.

Типы электрогенераторов

Существует несколько типов электрогенераторов:

  • Асинхронные. Имеют простую и надежную конструкцию. Все узлы полностью защищены от влаги и пыли. Устройства лучше использовать для активных нагрузок. Асинхронные генераторы не рекомендуют использовать для питания электродвигателя.
  • Синхронные. Они не содержат перечисленных недостатков асинхронных генераторов. Также они способны более точно поддерживать напряжение. Отдавать предпочтение следует бесщеточную конструкцию с лучшими характеристиками тока и меньшими радиопомехами. У инвентарных моделей меньшая мощность и выше стоимость. Однофазные имеют хуже характеристики, особенно недорогие. Немного лучше трехфазные генераторы. Вторым недостатком считается высокая стоимость и более низкая надежность.

Однофазные и трехфазные

Если в доме нет трехфазных потребителей, то лучше установить более простую модель для рационального использования мощности. Подключить самостоятельно однофазный генератор намного проще. Стоимость трехфазных агрегатов выше, а сам генератор должен быть равномерно нагружен по трем нагрузкам равномерно. Выход из строя происходит при превышении разницы на 25%. В качестве резервного источника однофазный генератор предпочтительнее при любых выходах.

Схема подключения

Существует несколько способов использования дополнительного источника питания:

  • Подключение по отдельной схеме резерва к выделенной группе.
  • Использование трехпозиционного переключателя или перекидного рубильника. Для запитки всей цепи делаются перемычки со стороны генератора на входе. Единственный минус – трехфазные потребители не работают.
  • Монтаж двух контактов для питания от резервного источника и городской сети. Метод применяется при АВР. Со стороны резерва обязательно делают перемычки.

Трехфазный генератор подключают к трехфазной сети при наличии электроприемника. Примером может быть электродвигатель станков.

Автозапуск генератора

Полноценным методом переключения нагрузки подразумевает использование АВР. В системе есть электростартер. Устройство автозапуска начинает контролировать внешнюю сеть после подачи питания на него. Перед подключением генератора автоматика ждет около 10 секунд после исчезновения напряжения. Далее внешняя сеть полностью изолируется и запускается дизель-генератор. Для полного набора оборотов требуется около 20 секунд, после чего организуется подключение к домашней сети. После восстановления работы внешней сети резерв отключается, а домашняя сеть начинает работать в привычно режиме. Только после этого двигатель генератора глушится.

Схема предполагает наличие у генератора системы остановки двигателя и стартера. При наличии большого опыта можно организовать ее самостоятельно, но это хлопотно. Вопрос можно решить двумя способами:

  • С электрогенератором приобрести комплектный блок управления. Его подключают по указанной с инструкции схеме. Он не только будет регулировать запуск и остановку, но и частоту оборотов, то есть итоговую мощность.
  • Устройства АВР, в которых есть компоненты, устанавливающиеся на генератор в качестве дополнительного оборудования для управления дроссельной заслонкой и стартером.

Комплекты имеют защиту по току и страхуют от перенапряжения и утечек. Монтаж заключается в подсоединении проводов потребителя и ввода на коммутирующие приборы.

Использование генератора с АВР дорогостоящее, но удобное решение.

Использование перекидного рубильника

Расположение щита с ВРУ в легкодоступном месте может оказаться камнем преткновения для домовладельцев. Есть смысл использования автоматического устройства переключения. Реализация метода не сложнее проходного выключателя. Потребуются два модульных контакта, количество контактных пар соответствует необходимому числу, и пара нормально замкнутых и разомкнутых контактов. В обычном режиме городская сеть будет на подхвате включенного контактора. Если в общей сети электричество пропадает, то контакты отбрасывает и пара контактов замыкается, что приводит в действие другие контакты, ответственных за резерв.

Рубильник помогает обособить схемы источников питания – крайний контакт рубильника подключают к вводу электросети и кабелю электростанции, а средний – к потребителю. Хорошо, если в рубильнике будет промежуточное нейтральное положение. Исходным положением будет подключение главной сети. Но при переключении электропитание начинает идти с генератора.

Старые модели рубильников отличаются открытыми токоведущими частями и искрением. В современных моделях предусмотрен защитный кожух, который прячет подвижные части.

Переключатель закрепляют в щитке управления так, чтобы исходным положением была работа основной сети. При падении напряжения переключатель становиться в нейтральное положение, после чего запускается генератор. Он должен прогреться и только после подключиться к домашней нагрузке.

Целесообразно установить временное реле, которое начнет подачу электропитания через пару минут после запуска генератора. Это требуется для прогрева оборудования. Резервный контактор должен питаться через коммуникатор главного ввода, точнее его нормально замкнутый контакт.

При возобновлении общего энергоснабжения первый контакт включается и размыкает цепь, запутывающую второй ввод. Подобная схема с натягом называется автоматической, так как пуск все же осуществляется под человеческим контролем.

Подключение нагрузки

Чаще всего генератор не способен обеспечить полную потребность домашней сети. Он используется на основные потребители – часть бытовых приборов и освещение. Следует рассмотреть переоборудование проводки, чтобы исключить множества переключателей. Как правило, организуют одну отдельную линию для дежурного освещения и вторую – к розеткам компьютера, холодильника и телевизора. В щиток монтируют клеммник для подключения выхода генератора.

Реверсивный переключатель

Используют реверсивный рубильник для переключения источников питания. В устройстве ручка имеет три положения для замыкания и размыкания цепи, среднее положение для размыкания всех контактов. На даче или в частном доме с небольшим потреблением можно использовать однофазную схему подключения к домашней сети резервного источника. В щитке должны быть индикаторные лампы для сигнализации включения генератора или сети.

Традиционно нижние контакты используют для нагрузки, а с противоположной стороны подключают вводы.

Трёхпозиционный переключатель не имеет теплового или электромагнитного разъединителя. По этой причине каждый ввод должен быть подстрахован автоматом, который срабатывает при превышении допустимой нагрузки.

Этапы подключения генератора по схеме с пакетным переключателем:

  • Автомат ввода отключить.
  • Рукоятку переключателя установить на сеть генераторной установки.
  • Автомат нагрузки отключить.
  • Соединить кабель ручного переключателя к розетки генератора.
  • Запустить генератор, позволить прогреться пару минут.
  • Подать питание на рубильник.
  •  Автоматы нагрузки включить.

После появления электроэнергии в основной сети агрегат отключают от нагрузки, используя обратную последовательность.

Если достойное перекидное устройство отсутствует, то его делают из двух двухполюсных однотипных автоматов. Они должны быть установлены на одном уровне. Один из них крепят перевернутым, но чтобы клавиши были на одном уровне и фиксируют стальным штифтом.

Система АВР

Организация автоматического запуска стоит значительно больше ручного. Однако внешний контроль она не отменяет – запуск ДВС подразумевает управление дроссельной заслонкой. Как и ранее отмечалось, двигатель после пуска необходимо прогреть. Некоторые хозяева используют частичную автоматизацию – основное питание подключено через контактор. При отключении входа он размыкается. На следующем этапе требуется запустить вручную генератор. В нем встроено реле для прогрева и автоматического перехода домашней сети на резервный источник. При появлении электричества в основной сети контактор отключается, а нагрузка идет на общую сеть. При полной автоматизации электроснабжения резерв имеет микропроцессорное регулирование работы генератора.

Подключение генератора

Генератор должен быть хорошо защищен от влаги. Для этого используют отдельное помещение или навес. При монтаже в помещении обязательно предусматривают отвод выхлопа газа. Электрогенератор устанавливают после счетчика, в противном случае придется платить за выработанную самостоятельно энергию. Резервный источник может быть подпиткой во время пиковых нагрузок. Необходимо правильно подобрать схему монтажа, чтобы исключить необоснованных трат.

Нестабильная подача электроэнергии приводит к проблеме – как подключить генератор к домашней сети. Выбирать следует простые и безопасные схемы. Удобным источником энергии станет генератор с ДВС. Оборудование легко перевозить  и использовать, его стоимость не высока. Для правильного подбора оптимальной схемы потребуется узнать особенности устройства, переключающего оборудования.

Схема Подключения Генератора К Сети Дома

Количество фаз, которые будут использоваться в генераторе зависит от того, сколько фаз приходит по основному питанию.

Поиск на сайте

Схемы с АВР

Подключение генератора Генератор должен быть хорошо защищен от влаги. Данный тип подключения бензинового или дизельного генератора к существующему объекту позволяет подключить генератор, как с ручным запуском, так и генераторы оборудованные электростартером.

Широкое распространение получили бензиновые генераторы. Трехфазные двигатели на генераторах малой мощности используются очень редко в частных домах из-за своей дороговизны и непрактичности, такие генераторы обычно используют на стройках для подключения трехфазного оборудования и машин. На следующем этапе требуется запустить вручную генератор.

Есть стационарные варианты, которые рассчитаны на очень большую нагрузку. Нестабильная подача электроэнергии приводит к проблеме — как подключить генератор к домашней сети.

При использовании однофазного генератора следует учесть, что если есть трехфазные приборы, их необходимо отключить от питания на время работы от генератора, так как это может привести к выходу из строя данных приборов. Некоторые хозяева используют частичную автоматизацию — основное питание подключено через контактор. В этом случае можно обеспечить питание всех розеток и выключателей в доме, если проводка рассчитана на мощность генератора. Когда восстановится напряжение во внешней сети, резерв отключается и домашняя сеть переходит в обычный режим работы.

В случае же применения блока автоматического запуска генератором — АВР, без использования контакторов вам не обойтись. Для реализации этого алгоритма потребуются четыре временных реле, столько же электромагнитных пускателей и магнитных толкателей с выключателями на концах.


Перед тем как подключить генератор к сети дома с автозапуском, автоматика выжидает 10 секунд после потери напряжения. Если напряжение пропадает, контактор размыкает цепь, которая связываем АВР со стационарной электросетью. Установка двух контакторов, где один подключает питание от городской сети, а другой — от резервного источника. При этом не забыть о заземлении, для которого также предусматривается определенное место.

Подключение генератора с АВР к сети дома — это удобное решение, хотя и дорогостоящее. При этом отключаются автоматы, чтобы обезопасить приборы от центральной сети питания.

Выбор наилучшего варианта схемы

Если в общей сети электричество пропадает, то контакты отбрасывает и пара контактов замыкается, что приводит в действие другие контакты, ответственных за резерв.

Достаточно подключить основные потребители: освещение и некоторые бытовые приборы.

Мощность выбирается в зависимости от того, как много оборудования будет питаться от генератора. Перекидной рубильник или контакторы? Наиболее часто модели оснащены воздушными радиаторами.

На следующем этапе требуется запустить вручную генератор. Его подключают по указанной с инструкции схеме. Есть отдельный выход на 12 вольт для запуска соответствующих потребителей.

См. также: Свидетельство о регистрации электролаборатории в органах ростехнадзора

Алгоритм работы устройства достаточно прост: При пропадании городского электричества подходите к генератору и заводите его, если в основной сети нет электричества, замкнется контактор генератора. Важно составить ее правильно и защитить сам генератор и потребителей от высокой нагрузки.

Так как вы имеете дело с горючим топливом, не забывайте об этом! Процесс запуска происходит полностью в ручном режиме. Что касается технологии подсоединения, она выглядит так: Отключите электропитание в доме автоматы на щитке. Согласно характеристикам такой проводки, она может выдерживать потребляемую мощность до 3,5 кВт.

Выбор электрогенератора

Рекомендуемые записи. К особенностям применения подобного устройства относятся следующие моменты: Переключатель может находиться в трех положениях: крайние замыкают две цепи, центральное размыкает обе. Стоимость трехфазных агрегатов выше, а сам генератор должен быть равномерно нагружен по трем нагрузкам равномерно.

Электрическое преобразование, однофазное, трехфазное питание

В дополнение к обеспечению того, чтобы частота генератора соответствовала частоте сети или устройств, также должны быть выполнены следующие условия:

(a) Выходное напряжение генератора должно соответствовать рабочему напряжению сети или устройств, питаемых от генератор.
(b) Не должно быть разности фаз между напряжением сети и напряжением генератора.

Чтобы понять преобразование трехфазного генератора в однофазный и наоборот, давайте сначала кратко рассмотрим внутреннюю конфигурацию этих двух типов генераторов.

Однофазные генераторы:
В однофазном генераторе статор имеет ряд обмоток, соединенных последовательно, образуя единую цепь, в которой генерируется выходное напряжение.

• Равное напряжение на всех обмотках статора в фазе друг с другом
Например, в 4-полюсном генераторе четыре полюса ротора равномерно распределены по раме статора. В любой момент времени каждый полюс ротора находится в том же положении относительно обмоток статора, что и любой другой полюс ротора. Следовательно, напряжения, индуцируемые во всех обмотках статора, имеют одинаковое значение и амплитуду, а также находятся в фазе друг с другом в каждый момент времени.

• Последовательное соединение обмоток статора
Кроме того, поскольку обмотки соединены последовательно, напряжения, создаваемые в каждой обмотке, складываются, чтобы получить конечное выходное напряжение генератора, которое в четыре раза превышает напряжение на каждой из отдельных обмоток статора.

Однофазное распределение электроэнергии обычно используется в жилых районах, а также в сельской местности, где нагрузки небольшие и редкие, а стоимость установки трехфазной распределительной сети высока.

Трехфазные генераторы:
В трехфазном генераторе три однофазные обмотки расположены так, что имеется разность фаз 120° между напряжениями, индуцируемыми в каждой из обмоток статора. Три фазы независимы друг от друга.

• Звезда или конфигурация Y
При соединении звездой или звездой один провод от каждой обмотки соединяется с нейтралью. Противоположный конец каждой обмотки, известный как конечный конец, каждый подключается к клемме линии. Это создает линейное напряжение больше, чем отдельное напряжение на каждой обмотке.

• Дельта-конфигурация
В конфигурации «треугольник» начальный конец одной фазы соединяется с конечным концом соседней фазы. Это создает линейное напряжение, равное фазному напряжению. Электроэнергетические предприятия и коммерческие генераторы производят трехфазную электроэнергию.

Преобразование фаз в генераторах:
(1) Изменение конфигурации соединения катушки
Трехфазный генератор можно преобразовать в однофазный, изменив соединение между его обмотками статора внутри или снаружи головки генератора. Например, в случае трехфазного генератора у вас будет 6 выводов. Большие генераторы обычно имеют 12 выводов от шести катушек, и все провода выходят из генератора, что упрощает настройку генератора различными способами, как показано ниже —

• Последовательное соединение катушек преобразует генератор в однофазный.
• Соединив противоположные катушки последовательно, можно удвоить выходное напряжение.
• Параллельное соединение удвоит ток.

Сложная часть перенастройки генератора заключается в сопоставлении проводов, выходящих из генератора, с катушками, к которым они подключены. Необходимо иметь документы производителя. В противном случае вам нужно будет изучить, как в настоящее время подключен ваш генератор, и работать в обратном направлении.

(2) Однофазные нагрузки с отводом от середины к трехфазным генераторам
Трехфазный генератор можно рассматривать как комбинацию трех однофазных блоков. Однофазные нагрузки можно подключить к трехфазному генератору одним из следующих способов –

• Подключить нагрузку между фазным проводом и нейтралью системы. Обычно это делается для маломощных нагрузок.
• Подключите нагрузку к двум проводникам под напряжением в междуфазном соединении. Обычно это делается для мощных нагрузок, таких как кондиционеры или обогреватели, и обеспечивает 208 В. Однако это может привести к снижению производительности, поскольку устройства, требующие для работы 240 В, будут работать на 75 % от их номинальной мощности при 208 В.

(3) Фазовые преобразователи:
Вращающийся фазовый преобразователь (RPC) может быть напрямую подключен к однофазному генератору для получения трехфазного источника питания. Для этого требуется простая конфигурация, включающая два входных соединения, известных как холостые входы от однофазного генератора. На третьей клемме возникает напряжение, не подключенное к однофазной сети. Наведенное напряжение отличается по фазе от напряжения на двух других клеммах на 120°.

(4) Преобразователи частоты (VSD) / частотно-регулируемые приводы (VFD) / инверторы
Они похожи на вращающиеся фазовые преобразователи. Комбинация частотно-регулируемого привода и однофазного генератора наиболее эффективна в случаях, когда требуется мощность менее 20 л.с.

Выбор между однофазными и трехфазными генераторами
Мощность однофазных генераторов обычно ограничивается 25 кВА. При более высоких номиналах дешевле получать однофазное питание от трехфазного генератора, чем покупать специальные однофазные блоки для более высоких нагрузок. Прочтите следующую статью «Советы по покупке подержанных генераторов», чтобы найти подходящий генератор для любой ситуации.

Выбор между однофазным и трехфазным выходом зависит исключительно от типа питаемого приложения. Однофазные генераторы лучше всего подходят для однофазного выхода, тогда как трехфазный генератор может легко обеспечить как однофазную, так и трехфазную мощность. Если все ваши электроприборы работают от однофазной сети, имеет смысл выбрать однофазный генератор. Если вам необходимо эксплуатировать приборы, работающие на разных фазах, лучше всего вам подойдет трехфазный генератор. Однако важно учитывать баланс нагрузки при преобразовании однофазного генератора в трехфазный агрегат.

Three-Phase Electric Power — Подвал электрических цепей

Трехфазное питание повсеместно, и это важная концепция электротехники, которую необходимо понять. Здесь Роберт объясняет трехфазное распределение электроэнергии, почему оно так распространено и как его использовать. Он также помогает нам самостоятельно собрать небольшой экспериментальный трехфазный источник питания.

Добро пожаловать на «Темную сторону». С тех пор, как в конце 1880-х годов были разработаны первые электрические сети, трехфазная электроэнергия была наиболее распространенным методом доставки электроэнергии во всем мире. Я думаю, что большинство из Circuit Cellar Читатели больше привыкли к напряжению постоянного тока 5 В или 3,3 В, но трехфазное питание является нормой для электрических сетей, даже если ваш дом питается от одной фазы.

Недавно перед моей компанией впервые за многие годы была поставлена ​​задача разработать продукт, напрямую подключенный к трехфазному источнику. По служебным причинам я не могу объяснить, что это был за дизайн, но он дал мне идею для этой статьи. В этом месяце я объясню, что такое трехфазное распределение, почему оно так распространено и как его использовать. Кроме того, я также покажу вам, как построить небольшой экспериментальный трехфазный источник питания примерно за 300 долларов. Как обычно, я не буду использовать сложную математику. Итак, присаживайтесь и сохраняйте спокойствие!

ОДНОФАЗНЫЙ

На заре электрических сетей использование постоянного (непрерывного) тока (DC) или переменного тока (AC) в течение многих лет было техническим, коммерческим, общественным и патентным конфликтом, известным как « Война течений». В частности, Томас Эдисон был сторонником DC, тогда как Джордж Вестингауз возглавлял лагерь AC. Короче говоря, ребята из AC выиграли, но я рекомендую вам прочитать статью в Википедии об этом интересном фрагменте истории [1].

Как известно, переменный ток передается по паре проводов. Напряжение между двумя проводами попеременно положительное и отрицательное, и более точно следует синусоидальной функции времени. Передача энергии дифференциальная, поэтому важна только разница напряжений между этими двумя линиями. Тем не менее, обычно одна из двух линий, называемая «нейтральной», имеет напряжение, близкое к напряжению земли, в то время как другая линия, «фаза», колеблется вокруг этого опорного напряжения. Чтобы сделать нашу жизнь более интересной, частота и амплитуда этого напряжения зависят от страны, как известно каждому путешественнику. Например, если вы, как и я, живете во Франции, то переменное напряжение как функция времени будет:

Фаза(t) = 325×sin(2π×50×t)

Следовательно, мгновенное напряжение в наших вилках изменяется от -325В до +325В с частотой 50Гц. Эквивалентное среднеквадратичное значение напряжения составляет 325 В, деленное на квадратный корень из 2 (√2), что дает 230 В RMS . Это означает, что наши источники переменного тока в среднем обеспечивают ту же мощность, что и источник постоянного тока 230 В.

ТРИ ФАЗЫ?

Я сейчас объясню, почему, но однофазные источники электроэнергии почти всегда берутся из трехфазной распределительной сети. Что такое трехфазная система электроснабжения? Как следует из названия, здесь уже не один, а три фазных проводника, по каждому из которых течет переменный ток той же частоты и напряжения, что и при измерении от заданной нулевой точки. Однако между каждым из них существует разность фаз в 120 градусов, что составляет ровно одну треть цикла (360 градусов/3=120 градусов или 2π/3, если выразить в радианах). Как и в случае однофазного распределения, нейтраль обычно где-то соединена с землей.

— РЕКЛАМА—

—Реклама здесь—

На рис. 1 (вверху) показаны линейные напряжения трехфазной распределительной системы на примере Франции. Каждая фаза имеет размах напряжения ±325 В и частоту 50 Гц, как и одна фаза, но имеет фазовый сдвиг на 120 градусов по отношению к двум другим. Итак, в двух словах:

Phase1(t) = 325 × sin(2π × 50 × t + 0)

Phase2(t) = 325 × sin(2π × 50 × t + 2π/3)

Phase3(t) = 325 × sin(2π × 50 × t + 2π/3 ) Внизу Напряжение, измеренное между любыми парами фаз, в 1,73 раза выше, чем между фазой и нейтралью

. В этом примере напряжение между каждой фазой и нейтралью по-прежнему составляет ±325 В P-P  (размах) или 230 В RMS . Но какое напряжение измеряется между любыми двумя из трех фаз? Это по-прежнему синус с той же частотой, здесь 50 Гц, но с напряжением, умноженным на √3, что равно 1,73. Следовательно, мгновенное напряжение между двумя фазами во Франции составляет ±562 В P-P или 400 В RMS . Почему этот коэффициент √3? Есть три способа понять это. Первый — просто посмотреть на график Рисунок 1 . Измерьте разницу между двумя фазами на верхнем графике для одного и того же временного шага или посмотрите на график на Рисунок 1 (внизу) , на котором показано напряжение между любыми двумя парами фаз. Вы увидите, что пиковое напряжение в 1,73 раза выше, чем при измерении между одной фазой и нейтралью.

Второй способ — нарисовать так называемую «векторную диаграмму», как показано на  Рисунок 2 . Длина каждого вектора соответствует амплитуде синусоиды, тогда как их угловое положение соответствует их фазам. Амплитуды могут быть либо пиковыми, либо среднеквадратичными значениями. Здесь три вектора зеленого цвета показывают соответствующее напряжение и фазу для каждой из трех фаз. Разность напряжений между двумя фазами представлена ​​оранжевыми векторами, и они, несомненно, длиннее. Проведите тригонометрию или измерьте на диаграмме, и вы обнаружите, что отношение равно √3 .

Рисунок 2
Эта векторная диаграмма позволяет нам понять, откуда взялось соотношение 1,73. Справа перечислены наиболее распространенные трехфазные напряжения.

Последний способ — использовать приведенные выше уравнения для Фазы 1 и Фазы 2. Вычтите их и запомните небольшую формулу разности двух синусоидальных функций. (не обижу вас напоминанием). Вы обнаружите, что разница составляет:

2 × sin(π/3), что равно √3
ЗВЕЗДА И ТРЕУГОЛЬНИК

Как объяснялось, каждая фаза трехфазного распределения обеспечивает источник питания переменного тока с нейтраль как обратка. Эта нейтральная линия обычно проходит через четвертую линию и позволяет использовать три фазы как три независимые однофазные сети: просто используйте одну из фаз и нейтраль в качестве обратного пути, и вы получите однофазный эквивалент. . Вот, собственно, как однофазное распределение подается в наши дома.

Такая конфигурация, при которой нагрузки подключаются между одной из фаз и нейтралью, называется «конфигурацией звезда» (Y) или конфигурацией звезды. Здесь нулевой провод обязателен и обычно заземляется на станции доставки. Эту нейтраль, конечно, не следует путать с соединением защитного заземления, которое всегда является независимым и используется исключительно для защиты от замыканий. При нормальном использовании он не пропускает ток.

При использовании конфигурации «звезда» нагрузки, подключенные к каждой фазе, располагаются таким образом, чтобы, насколько это возможно, от каждой фазы потреблялась одинаковая мощность. В такой идеально сбалансированной конфигурации и при чисто резистивных нагрузках математика показывает, что сумма токов трех фаз равна нулю. Это означает, что ток, проходящий через нейтральный провод, также равен нулю! Фактически, обратный ток нагрузок, подключенных, например, к фазе 1, точно уравновешивает обратный ток нагрузок, подключенных к двум другим фазам, которые, соответственно, сдвинуты по фазе на 120 и 240 градусов. Я не буду приводить демонстрацию здесь, но если вам интересно, есть хорошая статья на эту тему на Википедия  [2].

Таким образом, для конфигурации «звезда» нейтральная линия теоретически может быть опущена, если нагрузки были точно сбалансированы. В реальной жизни их нет, и нейтральная линия абсолютно обязательна. Если вы перережете нейтральную линию в несбалансированной конфигурации «звезда», то напряжение в центральном соединении больше не будет фиксированным, и напряжения, приложенные к нагрузкам на трех фазах, больше не будут одинаковыми: некоторые получают напряжение значительно ниже номинального, тогда как другие получают перенапряжение.

ОТСУТСТВУЕТ ВИНТ

Несколько лет назад мы столкнулись с такой ситуацией в здании, где находится моя компания. Причиной стал ослабленный винт на одной из главных распределительных шин здания. Последствия, к счастью, ограничились большим количеством дыма от нескольких приборов, возгоранием лазерного принтера и ущербом примерно в 10 000 долларов.

— РЕКЛАМА—

—Реклама здесь—

Теперь давайте рассмотрим другой способ использования трехфазной сети, называемый «конфигурацией треугольника» (Δ). Как вы уже догадались, здесь нагрузки подключаются между каждой парой фаз и получают более высокое напряжение, как объяснено. Таким образом, в конфигурации треугольника для передачи требуется только три провода, поскольку нейтраль не задействована. Опять же, сюда не входит защитное заземление, которое всегда независимо, но не пропускает ток, за исключением случаев возникновения неисправности. Конфигурация «треугольник» менее распространена, чем «звезда», для бытовых установок, но в основном используется на промышленных объектах, например, для питания двигателей или мощных трансформаторов. Конфигурация треугольника также используется для передачи электроэнергии на большие расстояния, просто потому, что она исключает необходимость в четвертом проводнике.

Наконец, вы должны знать, что существует множество способов преобразовать соединение по схеме «звезда» в соединение по схеме «треугольник» или наоборот, или изолировать две сети по схеме «звезда» или «треугольник». Вам просто нужно использовать правильный тип трансформатора. Например, трансформатор с четырехпроводной вторичной обмоткой «звезда» и трехпроводной первичной обмоткой «треугольник» используется для подключения несимметричных нагрузок при сохранении полностью сбалансированного тока в распределительных линиях.

ЗА И ПРОТИВ?

Давайте уделим минуту преимуществам трехфазного распределения по сравнению с однофазным. Почему все поставщики электроэнергии используют трехфазную сеть, для которой требуется больше проводов? Просто потому, что трехфазная схема более экономична. Он использует меньше проводящего материала для передачи того же количества энергии. Точнее, при той же общей массе проводников трехфазная система позволяет передавать не менее чем в два раза больше энергии! Ты мне не веришь? Давайте проделаем очень простую математику. Представьте, что у вас есть однофазный, 230В RMS  с током, ограниченным 100 А из-за максимального номинального тока двух проводов. Это дает доступную мощность 230 × 100 = 23 кВт.

Теперь перейдем к трехфазной сети. Если вы используете конфигурацию треугольника для длинных линий, вам потребуется три провода, а не два, поэтому ваш бюджет на провода будет умножен на 1,5 для того же номинала 100 А. Однако теперь вы получите до 23 кВт с каждой фазы, или всего 69 кВт. Это в 3 раза больше мощности и в 1,5 раза больше стоимости провода, поэтому чистый выигрыш представляет собой соотношение 3/1,5 = 2, а не маленький выигрыш.

С другой стороны, есть некоторые недостатки трехфазной электроустановки по сравнению с однофазной: они включают более высокую сложность, более дорогие трансформаторы и несколько больший риск для безопасности, поскольку между парами фаз напряжения выше. Однако для конструктора электроники или экспериментатора есть еще один недостаток: безопасно играть с трехфазными сетями не так просто. В частности, нет ничего похожего на недорогой трехфазный настраиваемый лабораторный генератор.

Столкнувшись с этой трудностью для нашего конкретного проекта, моя компания решила собрать небольшой самодельный трехфазный генератор. Цель состояла не в том, чтобы получить от него какую-то значительную мощность, а просто в том, чтобы получить три источника переменного тока с 120-градусным фазовым сдвигом, и простой способ изменения напряжения от 0 до 250В RMS , и частоты от 50Гц до 60Гц. . Просто продолжайте читать, если хотите знать, как это сделать.

ДДС ВОКРУГ?

Первым строительным блоком для такого генератора должен быть генератор синусоидального сигнала с тремя выходами, способный как можно точнее определить фазовый сдвиг между выходами. Постоянные читатели могут помнить давнюю колонку о технологии прямого цифрового синтеза (DDS) («Direct Digital Synthesis 101»,  Circuit Cellar  217, август 2008 г.) [3]. Короче говоря, DDS — это полностью цифровое решение для генерации синусоидального сигнала с точным контролем всех параметров генерируемого сигнала (, рис. 3, ).

Рисунок 3
Схема прямого цифрового синтеза (DDS) представляет собой полностью цифровой способ генерации синусоидальных сигналов.

Схема основана на фазовом регистре, который увеличивается на заданную величину в каждом такте. Полученная фаза затем используется в качестве адреса для справочной таблицы синусоиды, а затем направляется в цифро-аналоговый преобразователь и фильтруется. Приятно то, что тогда можно точно управлять фазой, просто добавляя постоянное значение в регистр фазы.

Для реализации настоящей DDS вы можете разработать собственную аппаратную или встроенную программу, но самым простым решением будет купить микросхему DDS у лидера рынка, компании Analog Devices. В частности, этот производитель предлагает микросхему, которая, кажется, точно предназначена для того, что нам нужно, AD9959 [4]. Посмотрите на его архитектуру ( рис. 4 ). Этот кусок кремния объединяет четыре независимых генератора DDS с независимыми регуляторами частоты, фазы и амплитуды. Использование трех из них с одинаковой частотой, но смещением фаз на 120 градусов — хорошая отправная точка для трехфазного генератора. Эти микросхемы DDS могут генерировать частоты до 200 МГц, но ничто не мешает нам настроить их на 50 Гц.

Рисунок 4
Внутренняя структура AD9959 от Analog Devices, четырехканального DDS-генератора, идеально подходящего для этого проекта за готовую плату на основе этого чипа AD9959, и нашел установку, предложенную несколькими китайскими дилерами ( Рисунок 5 ). Чуть больше чем за 100 долларов мы получили плату генератора на базе AD9959, плату контроллера микроконтроллера STMicroelectronics STM32 с готовой прошивкой и даже тактильный TFT-дисплей для его настройки.

Затем нам нужно было усилить выходные сигналы AD9959 с сотен милливольт до более чем 325 В от пика к пику. Как? И снова мы выбрали ленивый маршрут (, рис. 6, ). Поскольку частота 50 Гц или 60 Гц относится к нижним звуковым частотам, мы купили и подключили четырехканальный аудиоусилитель — автомобильный усилитель GPX1000.4 от немецкого поставщика Crunch, рассчитанный на 4 × 70 Вт RMS [5]. Этот усилитель обеспечивает огромный прирост мощности, но выходное напряжение все равно довольно низкое, поскольку он рассчитан на динамики 4 Ом или 8 Ом.

Мы подключили три небольших трансформатора с 230 В на 12 В назад, чтобы увеличить напряжение примерно в 20 раз, и это обеспечило требуемый диапазон выходного напряжения. Наконец, мы добавили готовый блок питания 230 В в 12 В переменного/постоянного тока для питания аудиоусилителя от основной линии и небольшой изолированный преобразователь 12 В в ±5 В постоянного/постоянного тока для AD9959 и платы контроллера. . Вот и все! Общая стоимость всех деталей составила около 300 долларов, не считая корпуса.

Для безопасности и удобства один из моих коллег интегрировал полное устройство в стойку 3U (спасибо, Антуан!) и добавил вольтметры на выходе. Мы даже собрали четвертый канал, который можно было использовать как отдельный однофазный источник. Вы можете увидеть окончательные внутренности сборки в Рисунок 7 , имея в виду, что это был просто быстро собранный инструмент для стендовых испытаний, а не готовый продукт.

  • Рисунок 5
  • Рисунок 6
  • Рисунок 7
Рисунок 5
118 долларов США за четырехъядерную плату генератора DDS, тактильный TFT-дисплей и плату контроллера. Разумно, не так ли? Рисунок 6
Общая архитектура нашего трехфазного испытательного генератора Рисунок 7
Внутреннее устройство собранного генератора. Плата DDS и контроллер находятся прямо за передней панелью в левом верхнем углу. Аудиоусилитель находится внизу, и хорошо видны четыре трансформатора 230/12 В. Блок справа — это блок питания переменного/постоянного тока. Для наших конкретных тестов были добавлены небольшие дополнительные платы.
ЗАВЕРШЕНИЕ И ПРЕДОСТЕРЕЖЕНИЕ

Вот и все. Я знаю, что тема трехфазного питания может показаться немного неудобной для разработчиков электроники, но вам, возможно, как и нам, когда-нибудь придется углубиться в эту тему. Более того, я надеюсь, что то, как мы построили наш небольшой тестовый генератор, даст вам некоторые идеи для ваших собственных проектов.

На данный момент, и даже если я уверен, что Circuit Cellar читатели уже знают об этом, я должен подчеркнуть, что работа над такими проектами может быть смертельной — даже если высокое напряжение генерируется 12-вольтовым аудиоусилителем, который кажется безвредным. Не пытайтесь воспроизвести эти эксперименты, если вы не квалифицированы и не обучены работе с высокими напряжениями. И в любом случае всегда соблюдайте три основных правила безопасности:

— РЕКЛАМА —

— Реклама здесь —

1) Никогда не работайте в одиночку, когда может присутствовать напряжение выше 24 В, поэтому, как минимум, кто-то может позвать на помощь. если что-то пойдет не так.
2) Всегда полностью отсоединяйте сетевой шнур и ждите разрядки конденсатора, прежде чем открывать устройство, даже и особенно, если вы спешите.
3) Если вам нужно выполнить какое-либо измерение, используйте изолированные щупы класса безопасности, всегда держите одну руку в кармане и дважды подумайте.

В качестве примера На рис. 8 показан наш тестовый генератор, подключенный к осциллографу. Три небольших блока между осциллографом и генератором представляют собой изолированные дифференциальные пробники класса безопасности на 2 кВ, что является одним из немногих способов подключения неизолированного контрольно-измерительного прибора, такого как осциллограф, к источнику высокого напряжения.

Экспериментировать весело, но не рискуйте и не играйте, если не знаете правил.

Рис. 8
Работающий самодельный генератор, подключенный к осциллографу Keysight DSO-X 3024A для тестирования через три дифференциальных пробника с безопасной изоляцией. Примечание. Здесь осциллограф не показывает трехфазное питание. Датчик синего сигнала был случайно перевернут.

РЕСУРСЫ

Ссылки:
[1] https://en.wikipedia.org/wiki/War_of_the_currents
[2] https://en.wikipedia.org/wiki/Mathematics_of_three-phase_electric_power 3
[] «Прямой цифровой синтез 101»,  Circuit Cellar  217, август 2008 г. .crunchaudio.de/english/gpx1000.4-amplifier.html

https://en.wikipedia.org/wiki/Three-phase_electric_power

https://www.ecmag.com/section/your-business/wye — имеет ли значение

https://www.electronicshub.org/comparison-star-delta-connections

http://www.chauvin-arnoux.com/sites/default/files/documents/d00vai84_representations_of_a_three-phase_signal_gb .pdf

Аналоговые устройства | www.analog.com
Хруст | www.crunchaudio.de
Keysight Technologies | www.keysight.com
STMicroelectronics | www.st.com

ПУБЛИКУЕТСЯ В ЖУРНАЛЕ CIRCUIT CELLAR • АВГУСТ 2021 № 373 – получите номер в формате PDF

Будьте в курсе наших БЕСПЛАТНЫХ еженедельных информационных бюллетеней!

Не пропустите новые выпуски Circuit Cellar.

Подписаться на журнал Circuit Cellar

Примечание. Мы сделали выпуск Circuit Cellar за май 2020 г. бесплатным образцом. В нем вы найдете большое разнообразие статей и информации, иллюстрирующих типичный номер текущего журнала.

Хотите написать для Circuit Cellar ? Мы всегда принимаем статьи/сообщения от технического сообщества. Свяжитесь с нами и давайте обсудим ваши идеи.
Спонсор этой статьи

Роберт Лакост

Учредитель в Альциом | + сообщения

Робер Лакост живет во Франции, между Парижем и Версалем. Он имеет более чем 30-летний опыт работы с радиочастотными системами, аналоговыми конструкциями и высокоскоростной электроникой. Роберт выиграл призы в более чем 15 международных конкурсах дизайна. В 2003 году он основал консалтинговую компанию ALCIOM, чтобы поделиться своей страстью к инновационным проектам смешанного сигнала.