Система отопления двухтрубная попутная: Попутная система отопления схема | Всё об отоплении

Содержание

Попутная система отопления — петля Тихельмана: tvin270584 — LiveJournal

Для отопления частных домов и дачных построек широко применяются установки автономного обогрева. Распространенным является вариант с двумя трубами и маленьким генератором, который может работать на разных типах топлива. Существуют разные схемы двухтрубной системы отопления. Одна из распространенных – схема Тихельмана. Она характеризуется стабильностью работы и равномерным прогревом радиаторных элементов. В статье мастер сантехник расскажет, о её устройстве, плюсах и минусах.

Решение Альберта Тихельмана

Немецкий инженер Альберт Тихельман в 1901 году предложил применить так называемую «возвратную систему реверсивного типа», изменив принцип работы «обратки». Что в последствии и получило название отопление петлей Тихельмана (попутная схема). Согласно его идее первый радиатор на получение горячего теплоносителя становился последним в «обратке», а первый в «обратке» (самый близкий к котлу) получал точно такой же горячий теплоноситель последним.

В итоге улучшилась циркуляция теплоносителя во всей схеме, и был обеспечен одинаковый прогрев всех радиаторов, отпала необходимость в дополнительной регулирующей арматуре и приобретении радиаторов разных размеров, теплоноситель получил условия легкой проточности, а отопительные котлы смогли, наконец, проявить свою настоящую эффективность.
Проблема лишь была в том, что в 1901 году эта система могла функционировать лишь в одноэтажных зданиях, то есть строго горизонтально. Однако с появлением циркуляционных насосов, принудительно прокачивающих теплоноситель по системе, двухтрубная система отопления проявила себя во всей красе.
Современные распределительные коллекторы раскрывают все новые преимущества этой схемы, позволяя объединять в ней для одного дома и привычные всем радиаторы, и систему водяного теплого пола.
Все больше владельцев частных домов решают устанавливать системы отопления по попутной схеме Тихельмана. Это неудивительно, она обладает довольно большим рядом плюсов:

  • Наверное, самым главным достоинством этого метода является то, что такая система отопления позволяет всем приборам отопления работать максимально эффективно. Например, подающая и обратная магистрали подключаются вместе, идя в одном направлении цепи радиаторов, отдача тепла каждого последующего радиатора уменьшается, последний может вообще остаться холодным;
  • Трубы идут по двум отдельным цепям в одном направлении, КПД радиаторов становится заметно выше, продолжая уменьшаться;
  • Благодаря петле Тихельмана радиаторы способны работать на 100%;
  • Система имеет адаптивный характер, для установки подойдут маленькие и большие помещения бытового или промышленного назначения;
  • Каждый радиатор дает одинаковое количество тепла, поэтому помещение прогреется равномерно;
  • Способ прост в исполнении, не имеет сложных этапов, важно лишь следовать технологии;
  • Присутствует возможность установки дополнительных устройств отопления;
  • Так как радиаторы уже сбалансированы, не требуется тратить время на их балансировку ради равномерного прогрева, установка системы не требует покупки каких-либо дополнительных элементов;
  • Отопление, установленное по схеме Тихельмана, прослужит очень долго.

Минусы схемы:

  • Отопление по схеме Тихельмана – удовольствие недешевое, для системы требуется довольно продолжительная длина трубопроводов, поэтому ради удобства придется выложить некоторую сумму. Это самый существенный минус;
  • Прокладка системы отопления по такой схеме вызывает много проблем из-за мешающих архитектурных особенностей помещений (дверных проемов, например). Именно из-за этого момента петлю Тихельмана бывает невозможно проложить;
  • Данная схема проводится горизонтально. Прокладывая систему отопления вертикально, придется использовать другие схемы.

Описание системы

В профессиональных кругах петля Тихельмана именуется двухтрубной системой отопления с попутным движением теплоносителя. Такое название полностью отражает суть и принцип работы, отличительные черты лучше всего видны на фоне двухтрубной системы с обратным движением теплоносителя, которая знакома практически всем.
Представим радиаторную сеть, развёрнутую в прямой ряд. При классической схеме тепловой узел расположен в начале этого ряда, от него вдоль всей сети следует две трубы для подачи горячего и возврата холодного теплоносителя соответственно. При этом каждый радиатор представляет собой своего рода шунт, поэтому, чем больше удаление нагревательного прибора от теплового узла, тем выше гидравлическое сопротивление в петле его подключения.

Система отопления: 1 — Двухтрубная схема подключения радиаторов со встречным током теплоносителя в подаче и обратке; 2 — схема подключения Петля Тихельмана с попутным подключением
Если же мы ряд радиаторов свернём в кольцо, то оба его края будут примыкать к тепловому узлу. В этом случае гораздо выгоднее сделать так, чтобы возвратный трубопровод направлял теплоноситель не обратно в котельную, а продолжал следовать далее по цепочке, то есть попутно подаче. Иными словами труба подачи следует от теплового узла и заканчивается на крайнем радиаторе, в свою очередь возвратный трубопровод берет свое начало от первого радиатора и направляется в котельную.

Этот же принцип может быть реализован, даже если радиаторы расположены в пространстве линейно, просто от места врезки крайнего радиатора в обратку труба разворачивается чтобы вернуть охлажденный теплоноситель. При этом на определенном участке система отопления будет трёхтрубной, так петлю Тихельмана тоже иногда называют.

Петля Тихельмана с размещением радиаторов по периметру здания. От каждого радиатора общая длина труб подачи и обратки примерно одинакова. 1 — котёл отопления; 2 — группа безопасности; 3 — радиаторы отопления; 4 — труба подачи; 5 — труба обратки; 6 — циркуляционный насос; 7 — расширительный бак
Но зачем нужны такие сложности? Если внимательно изучить схему, то окажется, что сумма длин питающего и возвратного трубопровода для каждого радиатора одинакова. Отсюда вывод: гидравлическое сопротивление каждой отдельно взятой петли подключения эквивалентно остальным участкам, то есть система попросту не нуждается в балансировке.


Область применения

Тем не менее, соблазн избежать гидравлической настройки системы не должен приводить к поспешным необдуманным решениям. Двухтрубная попутная система характеризуется высокой материалоёмкостью, потому её монтаж оправдан далеко не во всех случаях.
Рассмотрим такое понятие как степень «прижатия» нагревательного прибора при балансировке двухтрубной обратной системы. Занижая условный проход в месте подключения нескольких первых радиаторов можно сократить расход теплоносителя в них, тем самым снизив перепад давления, чтобы на последующих участках сети сохранялся достаточный напор. Если радиаторная сеть состоит из большого числа нагревательных приборов, расположенных на большом удалении друг от друга, ограничивать проток на начальных радиаторах придётся до такой степени, что протока в них будет недостаточно для нормального выделения тепла. Это вынуждает использовать насосы с более высокой производительностью, из-за чего при течении теплоносителя в отдельных узлах образуется ощутимый шум.

В целом можно сказать, что устройство двухтрубной попутной системы оправдано только при количестве радиаторов более 8–10 при общей длине трубопроводного става свыше 70 м.
Материалоёмкость системы Тихельмана существенно увеличивается при невозможности завернуть радиаторную сеть в кольцо, то есть расположить отопительный трубопровод строго по периметру здания. Этому обычно мешают дверные проемы и фронты остекления в пол. В таких случаях приходится монтировать дополнительную трубу, по которой теплоноситель будет возвращаться в котельную, а поскольку общая длина произвольно взятой петли увеличивается как минимум на половину — увеличивать условный проход магистрали или производительность насоса. Избежать дополнительных затрат в принципе можно за счёт устройства коллекторной (лучевой) системы, однако лучше предварительно выполнить сравнительный расчёт материалоёмкости.
Данные по гидравлике
Работа системы, устроенной по принципу петли Тихельмана, отличается высокой стабильностью. Сей факт наглядно демонстрируется данными гидравлического расчёта, однако для этого требуется соблюдение ряда монтажных правил.
Основным функциональным элементом такой системы остаётся гидравлический насос. Он создает давление на выходе, то есть на подаче, и разрежение на входе — обратке. Численно величина обоих значений снижается по мере удаления от насоса, причём падение напора происходит не линейно, оно описывается квадратичной величиной динамического напора. Эта закономерность прослеживается и для подающей ветки, и для возвратной, условно падение можно описать на примере трубопровода длиной 100 м:

Это усреднённые данные, но даже по ним видно, что при кажущейся равномерности потери напора в середине радиаторной сети немного выше, нежели по краям. Действительно, за счёт пропорционального изменения давления и разрежения в каждом радиаторе поддерживается практически одинаковый перепад давлений в каждом нагревательном приборе, однако для корректной и стабильной работы петли Тихельмана следует соблюдать ряд правил, о которых речь пойдет дальше.
Процесс установки системы
Работы по монтажу отопления Тихельмана начинаются с установки котла, размещать который полагается в помещении не ниже 250 см. Мощность устройства зависит от обогреваемой площади: на 10 м2 площади потребуется 1000 Вт.

После этого нужно выполнить следующие действия:

  • Навесить секции радиаторов. Определив нужное число элементов, разметить их будущую локализацию – обычно их помещают под окнами. Укрепить радиаторы кронштейнами.
  • Протянуть трубы из металлопластика, по которым будут идти подача и обратка. Такой материал рекомендуется благодаря простоте установки и устойчивости к высоким температурам. Диаметры должны быть 20-25 мм (у магистральных труб) и 16 мм (подключение батарей).
  • Смонтировать циркуляционный насос на обратке рядом с котлом. Перед ним нужно поместить устройство фильтрации. Врезают насос через байпас с тремя кранами.
  • Установить расширительный бачок и предохранительные детали, отвечающие за безопасность системы.

Самый простой и недорогой метод подготовки воды – использование в петле Тихельмана косвенного бойлера. Автоматизированные котлы обычно легко коммутируются с устройством нагрева и осуществляют управление им. В ином случае для включения бойлера потребуется создание обвязки.
В подсобных и хозяйственных постройках считается допустимым размещать обводной трубопровод непосредственно над дверьми. В этом случае в высшей точке конфигурации нужно поместить устройство отвода воздуха, а в нижней обустроить сливной механизм.
Арматура радиаторов

Часто можно встретить мнение, что двухтрубная система отопления с попутным движением теплоносителя не нуждается в комплектации радиаторов регулировочной арматурой. Считается, что якобы этот факт нивелирует дополнительные затраты на дополнительные трубы и фитинги для них. Однако корректная работа радиаторов в таком случае вряд ли возможна.
Термостатические головки для радиаторов в системе Тихельмана должны быть установлены обязательно. Без них никак не выполнить индивидуальную настройку радиаторов в разных комнатах, что не очень комфортно при изменяющихся климатических условиях. Что до балансировочных клапанов (дросселей), то на этот счёт споры особенно жаркие. Как упоминалось выше, даже при попутном движении теплоносителя отмечается перепад давления на радиаторах. При грамотном расчёте системы это явление можно компенсировать, варьируя число секций в радиаторах разных зон. Тем не менее, если существует даже минимальный риск ошибки, лучше установить регулировочные клапаны хотя бы на нескольких первых радиаторах с каждого края.
Петля Тихельмана также может балансироваться статическими методами регулировки. Речь идёт о так называемом «шайбовании». Если гидравлическим расчётом заранее определены коэффициенты местных сопротивлений, регулировочные клапаны могут быть заменены вставками, занижающими условный проход на определённую величину. Из простейших вариантов можно предложить самостоятельно изготовленные кольцевые уплотнения с разным внутренним диаметром, которые устанавливаются в местах резьбового подключения радиаторов.
Видео
В сюжете — Двухтрубная система отопления, разные схемы (схема Тихельмана)

В сюжете — Достоинства и недостатки попутной системы отопления, петля Тихельмана

В сюжете — Причины неправильной работы попутной схемы отопления

В сюжете — Подробный разбор на реальном примере причин плохой работы попутной схемы

В продолжение темы посмотрите также наш обзор Погодозависимое регулирование системы отопления — стоит ли его устанавливать

Источник

https://santekhnik-moskva.blogspot.com/2020/12/Poputnaya-sistema-otopleniya-petlya-Tikhelmana.html

Двухтрубная тупиковая система отопления. Лучше попутной?

При проектировании и монтаже автономных отопительных систем в частных домовладениях используются различные разновидности одно- и двухтрубных систем. Несмотря на то, что каждый из вариантов имеет право на использование и применение в соответствии со сложившимися условиями и обстоятельствами, по своим эксплуатационным показателям последние более выгодны и популярны среди домовладельцев. В свою очередь, среди двухтрубных систем обогрева зданий, наиболее востребованной выступает тупиковая система отопления. В подготовленной нами статье мы расскажем, что собой представляет двухтрубная тупиковая система обогрева зданий, какие бывают варианты монтажных схем и осветим ряд других вопросов.

Почему тупиковая система?

Свое название «тупиковая» эта двухтрубная система обогрева помещений получила из-за направления движения рабочей среды до и после теплообменников в отоплении. Нагретый теплоноситель перемещается по подающей магистрали в одном направлении до ее попадания в радиатор. После нагрева батареи, вода поступает в обратку и движется в противоположном направлении до тех пор, пока не поступит в теплообменник нагревательной установки. То есть, подача и отвод рабочей среды от каждой батареи производится по различным магистралям. Подающая тепло к радиаторам труба имеет большую протяженность, нежели магистраль, отводящая остывший теплоноситель к теплогенератору.

Однотрубная система обогрева зданий так же может быть тупиковой, но такая система обогрева зданий встречается достаточно редко и является исключением, а не правилом при обустройстве автономных отопительных систем частных домовладений.

К особенностям двухтрубных тупиковых систем отопления следует отнести:

  1. Важность теплоэнергетического расчета системы обогрева. Если все составляющие отопительной системы рассчитаны верно, то в каждый радиатор будет поступать рабочая среда одинаковой температуры.
  2. Незначительное влияние изменения количества проходящего через батарею теплоносителя на теплоотдачу соседних теплообменников.
  3. Возможность установки на одном трубопроводе до 40 батарей, при условии, что диаметр подводящей магистрали и производительность нагнетателя способны обеспечить рассчитанный расход теплоносителя. Максимальное количество устанавливаемых на одной ветви теплообменников определено на основании реальных проектов систем отопления производственных помещений. Вполне естественно, что для частного дома этот показатель редко превышает десяток установленных батарей. Если собственнику здания необходимо выполнить разводку по постройке с двумя и более этажами, то отопительная система делится на несколько контуров.

Движение рабочей среды по трубопроводам отопительной системы может быть как конвекционным (естественным), так и принудительным.

Виды тупиковой системы

В зависимости от прокладки трубопроводов в двухтрубных тупиковых отопительных системах различаются два типа:

  1. Горизонтальная.
  2. Вертикальная или плечеваая.

Горизонтальная система

Эта разновидность разводки трубопроводов характеризуется горизонтальной ориентацией подающего нагретого и отводящего остывшего теплоносителя трубопровода. При горизонтальной двухтрубной тупиковой системе используются трубы единого сечения, что значительно упрощает монтаж системы отопления, экономит средства, снижает трудоемкость работ, а также «прощает» некоторые ошибки, допущенные при теплоэнергетическом расчете и обеспечивает подачу теплоносителя одной температуры в каждый из теплообменников.

Горизонтальная ориентация позволяет скрытно развести трубопроводы. К примеру, скрыть магистрали в цементной стяжке, что минимизирует «ущерб» наносимый системой отопления интерьеру комнаты. В случае скрытия трубопроводов в бетонной стяжке, лучше задействовать при обустройстве системы обогрева здания армированные полимерные трубы, которые соединены надвижными гильзами.

Плюсом горизонтальной тупиковой разводки трубопроводов выступает возможность подключения к отопительной системе дополнительных контуров, к примеру, на обогрев пола или установку полотенцесушителя.  Недостатком станет необходимость включения в систему обогрева здания насоса, для обеспечения циркуляции рабочей среды, и смесительного контура с температурным датчиком. Это необходимо для изоляции влияния второстепенного контура на систему.

Горизонтальная ориентация магистралей в автономных системах подогрева воздуха может быть установлена лишь в одноэтажных домах. Их использование постройках, в которых несколько этажей, невозможно из-за сложностей с обеспечением подачи рабочей среды единой температуры в каждый из теплообменников.

Вертикальная система

При вертикальной тупиковой разводке магистралей от теплогенератора отходят несколько трубопроводов, количество которых зависит от этажности здания. Первая магистраль используется для обогрева помещений на первом этаже, вторая, через вертикальные трубы выводит теплоноситель для отопления второго этажа и т.д. Отводящий остывший теплоноситель трубопровод размещается под потолком последнего этажа или на чердаке.

При монтаже двухтрубной системы отопления здания с вертикальной ориентацией трубопроводов обязательно включение в схему насоса, обеспечивающего искусственное движение рабочей среды, т. к. в таких системах обеспечить конвекционное движение рабочей среды невозможно. Кроме насоса в систему подогрева воздуха должны быть включена система автоматического контроля и регулировки давления. Для компенсации разности значений температуры в разных комнатах на теплообменниках должны быть установлены терморегуляторы, а сами трубы должны быть различного сечения.

При вертикальной разводке трубопроводов батареи последовательно подключаются к главному стояку, проходящему сквозь все здание. Поэтому этот тип двухтрубных отопительных систем нашел свое применение при обогреве многоэтажных домов.

 

Тупиковая или попутная схема?

Помимо тупиковой двухтрубной системы отопления, в индивидуальных домовладениях устанавливаются попутные системы обогрева (петля Тихельмана) и между ними есть принципиальное отличие. В попутной схеме течения рабочей среды трубопровод с остывшей водой начинается от первого радиатора, после чего, последовательно проходит через все теплообменники, а после последнего, рабочая среда возвращается к теплогенератору.

Попутная схема отопления

Создание такой системы отопления обусловлено необходимостью ее балансировки. Если в одном из циркуляционных контуров падение давления будет больше, нежели в других, то рабочая среда будет стремиться в кольцо с минимальным давлением. Это приводит к уменьшению эффективности системы подогрева воздуха в соответствующей комнате. Именно балансировка должна обеспечить минимальные показатели потери давления в каждой из веток.

В системах, в которых все радиаторы имеют одинаковое количество секций и единый типоразмер не требуется включение в систему подогрева воздуха дополнительной арматуры, так как такая система считается сбалансированной. Если в системе установлены разные батареи, то необходимо устанавливать дополнительную арматуру. Но и в таком случае, вопросы балансировки системы отопления при попутном направлении движения рабочей жидкости значительно проще решить, нежели в тупиковой схеме.

В большинстве случаев, попутное движение рабочей среды обеспечивается горизонтальной разводкой трубопроводов.

К сильным сторонам попутного движения рабочей среды в отопительной системе относят:

  1. Сбалансированность системы обогрева помещения, что позволяет отказаться от установки регулирующей арматуры. Это в общем упрощает ее обслуживание и повышает надежность отопительной системы.
  2. Единая длина циркуляционных контуров в каждой из батарей облегчает поддержание одинаковой температуры рабочей среды на всем протяжении кольца, что обеспечивает оптимальные показатели КПД системы обогрева.
  3. Работа теплогенератора и циркуляционного насоса в оптимальном режиме снижает расход энергоносителей и продлевает их срок службы, что позволяет экономить на эксплуатационных расходах.
  4. Облегчается гидравлический расчет системы с большой длиной магистралей.

Но у попутной системы движения рабочей среды есть и свои слабые стороны:

  1. Максимальная эффективность системы достигается лишь при ее комплектации теплообменниками с высокой теплоотдачей.
  2. Использование трубопроводов различного сечения усложняет монтаж и требует больших затрат при установке автономной системы отопления.
  3. Три магистрали, требуемые для обустройства систему отопления помещений способны нанести ущерб интерьеру комнаты.

Наиболее полно системы с попутным движением теплоносителя раскрываются при обустройстве системы отопления со значительным количеством теплообменников и протяженностью магистралей. Следовательно, использование такой схемы в системах отопления частных домовладений не является оптимальным выбором.

Читайте так же:

Схема двухтрубной системы отопления с нижней разводкой

Существует несколько способов водяного отопления помещения. Есть двухтрубная, однотрубная схема размещения и два типа подведения труб: нижнее и верхнее. Рассмотрим конструкцию с двумя трубами и разводкой внизу.

Характеристика

Наиболее распространенной является именно двухтрубная организация отопления, несмотря на некоторые достоинства однотрубных конструкций. Какой бы сложной ни была такая магистраль с двумя трубами (отдельно для подачи воды и ее возврата) большинство предпочитает именно ее.

Такие системы стоят в многоэтажных и многоквартирных домах.

Устройство

Элементы двухмагистрального отопления с нижней врезкой труб следующие:

  • котел и насос;
  • автовоздушник, термостатические и предохранительные клапаны, вентили;
  • батареи и расширительный бак;
  • фильтры, регулирующие устройства, датчики температуры и давления;
  • можно применять байпасы, но необязательно.

Преимущества и недостатки

Рассматриваемая двухтрубная схема соединения при использовании обнаруживает много плюсов. Во-первых, равномерность распространения тепла по всей магистрали и индивидуальная подача теплоносителя в радиаторы.

Поэтому есть возможность регулировать отопительные приборы по отдельности: включать/выключать (нужно только перекрыть стояк), изменять напор.

В разных комнатах можно устанавливать разную температуру.

Во-вторых, такие системы не требуют отключения или слива всего теплоносителя при поломке одного отопительного прибора. В-третьих, систему можно устанавливать после возведения нижнего этажа и не ждать, пока будет готов весь дом. Кроме того, трубопровод имеет меньший диаметр, чем в системе с одной трубой.

Есть и некоторые недостатки:

  • требуется больше материалов, чем для однотрубной магистрали;
  • небольшое давление в подающем стояке создает необходимость часто спускать воздух, подключив дополнительные клапаны.

Сравнение с другими типами

В нижней врезке подающая магистраль прокладывается снизу, рядом с обраткой, потому теплоноситель направляется снизу вверх по стоякам подачи. Оба вида разводок могут быть сконструированы с одним или несколькими контурами, тупиковым и попутным течением воды в подающей трубе и обратке.

Системы естественной циркуляции с подводкой внизу применяются очень редко, так как они требуют большое количество стояков, а смысл такой врезки труб – свести их количество к минимуму. С учетом этого такие конструкции чаще всего имеют принудительную циркуляцию.

Крыша и этажи — значение

В верхнем подведении подающая магистраль – выше уровня радиатора. Ее монтируют на чердаке, в потолочном перекрытии. Нагретая вода поступает наверх, затем – через стояки подачи равномерно растекается по батареям. Радиаторы должны находиться выше обратки. Чтобы исключить скопление воздуха, монтируют компенсирующий бак в самой топовой точке (на чердаке). Потому она не подходит для домов с плоской крышей без чердака.

Разводка снизу имеет две трубы – подающую и отводящую, – батареи отопления должны быть выше их. Она очень удобна для удаления воздушных пробок кранами Маевского. Подающая магистраль находится в подвале, в цоколе, под полом. Подающий трубопровод должен находиться выше, чем обратка. Дополнительный уклон магистрали в сторону котла сводит к минимуму воздушные пробки.

Обе разводки наиболее эффективны при вертикальной конфигурации, когда батареи смонтированы на различных этажах или уровнях.

Принцип работы

Главной характеристикой двухтрубной системы является наличие индивидуальной магистрали подачи воды в каждый радиатор. В этой схеме каждая из батарей снабжена двумя отдельными трубами: подводящей воду и отводящей. К батареям теплоноситель течет снизу вверх. Остывшая вода возвращается по обратным стоякам в обратную магистраль, а по ней в котел.

В многоэтажном помещении уместно ставить именно двухтрубную конструкцию с вертикальным расположением магистрали и нижней разводкой. В этом случае разница температур между теплоносителем в подающей трубе и обратке создает сильное давление, увеличивающееся по мере повышения этажа. Давление помогает воде продвигаться по трубопроводу.

В рассматриваемом нижнем соединении труб котел должен находиться в углублении, так как батареи и отопительные приборы должны быть выше для обеспечения равномерной доставки воды к ним.

Воздух, который накапливается, удаляется кранами Маевского или спускниками, они монтируются на всех отопительных приборах. Применяют также автоматические сбросники, которые фиксируются на стояках или специальных воздухоотводных линиях.

Виды

Двухтрубная система отопления может быть следующих типов:

  • горизонтальная и вертикальная;
  • прямоточная — теплоноситель течет в одном направлении по обеим трубам;
  • тупиковая — горячая и остывшая вода движется в разных направлениях;
  • с циркуляцией принудительной или естественной: для первой нужен насос, для второй – уклон труб в сторону котла.

Горизонтальная схема может быть с тупиками, с попутным движением воды, с коллектором. Она подходит для одноэтажных зданий со значительной протяженностью, когда батареи целесообразно подсоединять к горизонтально расположенной магистральной трубе. Удобна такая система также для зданий без простенков, в панельно-каркасных домах, где стояки удобно размещать на лестничной клетке или коридоре.

По мнению специалистов, самой эффективной стала вертикальная схема с принудительным током воды. Для нее нужен насос, который располагают на обратке перед котлом. На ней же монтируют и расширительный бак. За счет насоса трубы могут быть меньше, чем в конструкции с естественным движением: вода с его помощью гарантировано будет двигаться по всей линии.

Все отопительные приборы подсоединяются к вертикально расположенному стояку. Это оптимальный вариант для многоэтажек. Каждый этаж соединяется с трубой стояка отдельно. Преимуществом является отсутствие воздушных пробок.

Монтаж

Условно можно выделить несколько этапов работ. Сначала определяется тип отопления. Если к дому подведен газ, то самым идеальным вариантом будет установка двух котлов: один – газовый, второй – запасной, твердотопливный или на электричестве.

Далее следует согласовать установку системы отопления в проектной документации и приступить к покупке необходимых материалов, устройств, подготовке инструментов.

Этапы

Вкратце монтаж состоит из таких пунктов:

  • от котла выводится вверх труба подачи и соединяется с компенсаторным бачком;
  • из бачка выводят трубу верхней магистрали, которая идет ко всем радиаторам;
  • устанавливается байпас (если он предусмотрен) и насос;
  • проводится обратная линия параллельно подающей, ее же соединяют с радиаторами и врезают в котел.

Котел

Для двухтрубной системы первым устанавливается котел, для чего создается мини-котельная. В большинстве случаев это подвал (в идеале — отдельное помещение). Основное требование – хорошая вентиляция. Котел должен иметь свободный доступ и располагаться на некотором отдалении от стен.

Пол и стены вокруг него облицовываются огнеупорным материалом, а дымоход выводится на улицу. При необходимости устанавливается насос для циркуляции, коллектор для распределения, регулирующие, измерительные приборы около котла.

Радиаторы

Их монтируют в последнюю очередь. Они располагаются под окнами и фиксируются кронштейнами. Рекомендуемая высота от пола – 10–12 см, от стен – 2-5 см, от подоконников – 10 см. Впуск и выпуск батареи фиксируется запорными и регулирующими устройствами.

Желательно установить термодатчики — с их помощью можно отслеживать показатели температуры и регулировать их.

Если котел отопления газовый, то необходимо наличие соответствующей документации и присутствие представителя газового хозяйства при первом запуске.

Советы

Расширительный бак располагается на уровне или выше самой пиковой точки магистрали. Если есть автономная водоподача, то его можно интегрировать с расходным бачком. Уклон подающей и обратной труб должен быть не больше 10 см на 20 и более погонных метров.

Если трубопровод оказался у входной двери – уместно разделить его на два колена. Тогда разводка создается от места верхней точки системы. Нижняя магистраль двухтрубной конструкции должна находиться симметрично и параллельно верхней.

Все технологические узлы нужно оснастить кранами, а подающую трубу желательно утеплить. Распределительный бак также желательно разместить в утепленном помещении. При этом не должно быть прямых углов, резких переломов, которые создадут впоследствии сопротивление и воздушные пробки. Наконец, нельзя забывать про опоры для труб — они должны быть из стали и врезаться на каждые 1,2 метра.

Двухтрубная гравитационная система с верхним регулированием

Вода из котла идет вверх по подающей трубе, а затем по трубам к отопительным приборам (см. Рисунок 3). Горизонтальные трубы должны иметь уклон 0,002–0,003. От отопительных приборов по обратным и вертикальным трубам вода поступает в обратную трубу котла. Каждое устройство в этой системе обслуживается двумя трубами — подающей и обратной — и поэтому называется двухтрубной системой. По мере необходимости в систему добавляется вода из водопровода.Но если у вас его нет, то вы можете долить воду вручную через расширительный бачок. Добавляя воду из местного водопровода, лучше делать это через обратную трубу: холодная вода из водопровода смешивается с более теплой водой из обратных труб и увеличивает ее плотность, тем самым увеличивая циркуляционный напор за время воды. добавляется.

Рисунок 3: Схема двухтрубной гравитационной системы отопления с верхней установкой

Для улучшения циркуляции теплоносителя основной вертикальный трубопровод (от котла к расширительному баку) должен быть изолирован, чтобы вода оставалась максимально горячей. , подающий воду в горизонтальные трубы.Расширительный бак может быть выполнен двумя способами: простой, без циркуляции воды; и более сложные, с циркуляцией воды.

Простой тип представляет собой сосуд с двумя приваренными к нему трубами или с резиновыми прокладками. Одна труба — это вертикальная подающая линия, а вторая труба подает сигнал о переливе из резервуара. Место подключения вертикальной трубы к расширительному бачку не имеет значения; трубу можно вставить в резервуар снизу или сбоку.Важно, чтобы он был вставлен как можно ниже, чтобы полностью использовать объем расширительного бачка. Сигнальная труба входит в резервуар на боковой стенке на 100 мм от верха: при добавлении воды в систему резервуар заполняется только до этого уровня, а затем вода начинает поступать в сигнальную трубу, показывая, что система исправна. начинка. Во время использования системы нагретая вода будет расширяться и течь вниз по сигнальной трубе. В конце концов, когда вода нагреется до максимума, система будет выплевывать лишнюю воду в сигнальную трубу, обеспечивая тем самым саморегулирование уровня воды в резервуаре. При дальнейшем увеличении и уменьшении объема уровень воды в баке будет изменяться, но перелива в сигнальную трубу не будет. У этого типа расширительного бачка два недостатка: во-первых, периодически (примерно два раза в год) нужно проверять визуально, сколько воды в баке; во-вторых, резервуар должен быть очень хорошо изолирован — вода в нем будет холодной, а при очень низких температурах может замерзнуть. Однако в такой простой системе эти недостатки несущественны.К этому быстро привыкаешь: нужно всего один раз утеплить бак, а когда нужно доливать воду (раз в год, два раза и т. Д.). Обычно уровень проверяется и доливается вода перед началом отопительного сезона, и об этом можно забыть до начала следующего сезона.

В деревенских домах, которые получают тепло от котла, но в которых нет водопровода или канализации, простая конструкция расширительного бака может быть еще проще, если не включать сигнальную трубу.Очень хороший резервуар можно сделать из старой банки для молока с крышкой и достаточным объемом, если снять уплотнение. Крышка, закрытая или почти закрытая, пропускает воздух, но не пропускает мусор. Когда вам понадобится добавить воды, просто поднимите крышку. Система наполняется водой из ведер или шланга с визуальным контролем уровня воды. Расширительный бак должен быть заполнен от одной трети до половины, оставляя место для расширения воды. Если вы добавите слишком много воды, система отопления вытолкнет ее через верхнюю часть бака, поскольку он открыт.Конечно, в этом случае вода будет просачиваться через потолок, поэтому владелец дома вряд ли налит слишком много воды — это еще один вид саморегулирования.

Рисунок 4: Схема гравитационного нагрева с более сложным расширительным баком

При использовании более сложного расширительного бака (см. Рисунок 4) четыре трубы привариваются или ввинчиваются в бак вместо двух. Два из них — подающий и возвратный, они обеспечивают циркуляцию воды в резервуаре, значительно снижая вероятность замерзания. Две другие — переливная и регулирующая трубы: они контролируют уровень воды в баке. При добавлении воды в систему отопления клапан на нижнем конце регулирующей трубы открывается. Как только из него пойдет вода, нужно прекратить заливку системы: труба показывает, что система и бак заполнены водой. После этого необходимо закрыть клапан на регулирующей трубе и открывать его только после следующего добавления воды в систему. Переливная труба работает так же, как и в случае с обычным баком, то есть при резком увеличении объема горячей воды эта труба забирает лишнюю воду и сплевывает ее в канализацию.На переливной трубе не должно быть клапанов. Следует отметить, что, несмотря на то, что эти резервуары обеспечивают большую автоматизацию, они не пользуются популярностью в частных домах из-за большого количества труб.

Гравитационные системы могут иметь один или два контура. В одноконтурных системах котел ставится в начале контура, а трубы располагаются с левой или правой стороны, идя поясом по всему дому или квартире, причем длина контура по горизонтали должна быть меньше 30 метров (а лучше менее 20 метров). Чем длиннее петля, тем больше гидравлическое сопротивление будет в системе (силы трения внутри труб). Если длина петли превышает 30 метров, система не будет иметь достаточного напора для преодоления этого сопротивления. Даже на 25 метров возникнут проблемы с напором циркуляции. В двухконтурных системах котел размещается по центру, а трубопроводы (контуры контуров) размещаются по обеим сторонам котла, а общая длина труб каждого контура по горизонтали должна быть меньше 30 (20 ) метров.Для гидравлической балансировки системы длины контуров двухконтурной системы и общее количество секций в радиаторах должны быть примерно одинаковыми (см. Рисунок 5).

Рисунок 5: Примеры двухтрубных гравитационных систем с верхним расположением Примечание: схема труб, способ размещения радиаторов и диаметры труб, показанные на схеме, являются только иллюстрациями; в реальных схемах возможны и другие решения.

В зависимости от направления движения воды в магистральных трубах система отопления может быть «тупиковой» или «проточной».

В «тупиковых» системах отопления движение горячей воды в магистральном подающем трубопроводе противоположно движению охлажденной воды в магистральном обратном трубопроводе. В этой схеме длины циркуляционных петель отличаются друг от друга; чем дальше от котла находится отопительный прибор, тем длиннее циркуляционный контур; и наоборот — чем ближе к основному вертикальному трубопроводу расположен нагревательный прибор, тем короче протяженность циркуляционного контура.

В «тупиковых» системах сложно добиться равных сопротивлений в коротких и дальних циркуляционных контурах.Следовательно, нагревательные устройства, расположенные рядом с основным вертикальным трубопроводом, будут обогреваться намного лучше, чем те, которые находятся дальше от основного вертикального трубопровода. А когда циркуляционные контуры, которые находятся ближе всего к основному вертикальному трубопроводу, не имеют большой тепловой нагрузки (теплопередача в помещение), балансировка циркуляционных контуров становится еще более сложной.

В системах отопления с «непрерывным потоком» воды все циркуляционные контуры имеют одинаковую длину.Поэтому вертикальные трубопроводы и отопительные приборы работают в равных условиях. В таких системах, независимо от расположения нагревательных устройств по горизонтали относительно основного вертикального трубопровода, тепло будет одинаковым. Однако этот тип системы отопления имеет ограниченное применение, потому что часто при проектировании реальных систем, учитывающих планировку дома, видно, что для таких систем потребуется больше труб, чем для «тупиковых» систем. Но в том случае, когда балансировка «тупиковых» систем невозможна, применяется система «непрерывного потока».

Для более широкого применения «тупиковых» систем длины магистральных трубопроводов уменьшены, и вместо одного длинного контура используются два или более более коротких контура. В таких случаях достигается лучшая горизонтальная балансировка системы. Балансировка нагревательных контуров контура должна стать отправной точкой при проектировании системы. Чтобы система работала равномерно, все петли контура должны иметь примерно равные гидравлические сопротивления. Другими словами, петля, расположенная рядом с основным вертикальным трубопроводом, должна иметь почти такое же сопротивление, как петля, расположенная дальше от основного вертикального трубопровода, а сумма гидравлических сопротивлений всех петель не должна превышать циркуляционная головка; в противном случае вода в системе остановится.Такие системы называют «зажимными».

Представим, что контур отопления имеет форму замкнутой дороги (например, гоночной трассы), на которой одновременно стартуют шесть грузовиков, загруженных горячей водой. Давайте посмотрим на их движение при условии, что все шесть грузовиков движутся с одинаковой скоростью и не могут двигаться вперед или позади друг друга. Задача грузовиков — добраться до радиаторов, разгрузиться и вернуться на старт за новым запасом горячей воды.

Рисунок 6: Иллюстрация движения воды по контуру системы отопления

Очевидно, что для одновременного старта грузовиков должна быть дорога с шестью полосами движения. Это будет основной вертикальный трубопровод системы, имеющий наибольший диаметр трубы. Допустим, мы находимся в двухконтурной системе отопления. Поэтому после старта на нашей дороге есть Т-образный перекресток (тройник в системе отопления). Грузовики делятся на две группы: одна группа поворачивает налево, а другая — направо. При повороте грузовики, находящиеся ближе к центральной линии, поворачивают на больший радиус: они проходят большее расстояние и, выйдя из поворота, немного отстают от грузовиков, повернувших на меньшем радиусе.Произошла первая потеря энергии. В системе отопления молекулы воды, расположенные ближе к центру трубы, более удачливы, чем молекулы, расположенные близко к стенкам трубы. В этом тройнике происходят потери гидравлического давления.

Смотрите дальше. Шесть грузовиков подъехали к Т-образному перекрестку, шесть из них должны его выехать. (Объем воды, поступающей в арматуру, равен объему воды, которая выходит. Это аксиома.) Для трех грузовиков, которые поворачивают налево, нам не нужна дорога с шестью полосами движения; трех полос достаточно.Поэтому площадь поперечного сечения трубы может составлять половину. Обратите внимание, мы уменьшаем вдвое площадь, но не диаметр. Они разные количества. Остается три грузовика, которые едут по трем полосам движения. Сделайте первую ветку от магистрального трубопровода до первого места разгрузки шириной в одну полосу. (Ставим еще одну тройник на трубопровод.) На вновь созданный перекресток подъезжают три грузовика. Один из них замечает ветку на дороге и делает поворот. Два других продолжаются, потому что в этой ветке была только одна линия.Вторая потеря давления произошла в тройнике на повороте. Вода, проходящая по повороту, почти не теряет напор. Для проходящей воды необходимо дальнейшее уменьшение площади поперечного сечения и диаметра трубы; в данном случае с соотношением 2: 1 для двухстороннего и одностороннего движения грузовиков. Грузовик, который превратился в ветку, почти как его цель: он бежит к месту разгрузки. Двое других продолжают движение вперед по дороге.

Сделаем еще одну ветку на дороге (поставим тройник) и разделим грузовики.Один из них идет к месту разгрузки; другой продолжается по главной дороге. Очевидно, что с этого перекрестка для каждого грузовика хватит одной полосы движения, поэтому площадь поперечного сечения каждой трубы будет одинаковой. Делать еще один перекресток не нужно, так как последний грузовик повернет к месту разгрузки. На главной дороге нет места для разгрузки. Теплоотдача котла полностью исчерпана; дальнейшее увеличение длины трубы ничего не даст.

Но вернемся к грузовику, который сделал первый поворот. Он давно разгрузился (выдал тепло) и вернулся к месту погрузки, при этом второй грузовик как раз подъезжает к месту разгрузки, а третий все еще находится на трассе. Мы видим разбалансировку системы отопления. Пока третий грузовик подъезжает к месту разгрузки, первый может сделать еще один круг и доставить еще одну порцию горячей воды. Поэтому необходимо, чтобы первый грузовик ехал медленнее: наложить неровности на дороге (уменьшить площадь сечения трубы) или поставить ГАИ (регулятор изменения количества горячей воды, т. Е. клапан).Полицейский может остановить его и заставить разгрузиться вручную, а не автоматически. Мы можем установить такой же контроль над вторым грузовиком, и пока первые два заняты разгрузкой, третий грузовик может добраться до места назначения и разгрузиться автоматически. При «одинаковом» движении регуляторы не нужны, поскольку длины всех циркуляционных контуров равны.

В результате уменьшения диаметров подводящих к радиаторам труб или установки на них вентилей (ручных или автоматических терморегуляторов) можно добиться ситуации, когда все три грузовика, идущие по этому контуру, одновременно прибудут к месту встречи. с тремя грузовиками, приехавшими с другого контура.Здесь они снова объединяются в один поток на шестиполосной главной дороге и возвращаются к месту погрузки, чтобы снова начать. Эту систему сейчас можно считать сбалансированной.

Уравновешивание системы с помощью клапанов выполняется после запуска системы отопления. Кто-то должен заходить в каждую комнату по очереди, записывать температуру в каждой и закрывать вентили, ведущие к радиаторам. Процедуру необходимо повторять много раз, пока не будет получен равномерный баланс тепла. Если использовать термостатические клапаны, то процесс проще.Желаемая температура воздуха устанавливается на ручке клапана, после чего клапан автоматически открывается и закрывает горячую воду, подаваемую в радиатор.

Следует отметить, что при движении на разные расстояния грузовики расходуют разное количество энергии: те, которые на дальнем расстоянии сжигают больше топлива и сталкиваются с большим количеством препятствий. Двигаясь по прямой, вода преодолевает гидравлическое сопротивление трения стенок труб: у стальных труб трубы больше, у полимерных — меньше.Все тройники, крестовины и повороты тоже имеют сопротивления. Сумма всех сопротивлений не должна превышать напор. А что будет, если мы решим уменьшить количество полос для шести грузовиков с шести до двух (другими словами, увеличить гидравлическое сопротивление)? Результат известен — будет пробка. Поток не остановится полностью, но это нельзя назвать движением. Так, чтобы избежать эффекта «зажатой» системы отопления, площади сечения трубопроводов должны соответствовать потоку горячей воды.

Горячая вода в трубе должна двигаться с определенной скоростью, потому что каждую секунду в радиаторы должен поступать достаточный объем горячей воды, обеспечивая необходимый запас тепла. Этот объем называется «Подача горячей воды».

Чем выше скорость воды, тем больше ее расход. Но если скорость увеличивается, увеличивается сопротивление (трение) в трубе. Другими словами, с увеличением использования горячей воды сопротивление системы увеличивается. Если вы используете трубу большего диаметра, сопротивление уменьшается, и наоборот — если вы используете трубу меньшего диаметра, сопротивление увеличивается.

При слишком тонких трубах из-за увеличения силы трения (гидравлического сопротивления) расход горячей воды снижается и котел чаще перегревается, но нагревательные приборы остаются холодными, потому что горячая вода не идет в них в необходимом объеме.

Расчеты системы отопления выполняются инженерами-теплотехниками и слишком сложны для размещения на этом сайте. Однако для гравитационных систем с горизонтальной длиной стальных трубопроводов не более 20 метров эти расчеты проводились тысячи раз, поэтому мы можем использовать этот предыдущий опыт.

Обычно от котла вертикальный трубопровод имеет диаметр 50 мм (2 дюйма). Труба, которая подает или собирает воду от одного или нескольких радиаторов, всего более 35 секций, должна иметь диаметр 2 дюйма; при 25–35 чугунных секциях диаметр должен составлять 1,5 дюйма; для 10–25 секций — 1 дюйм; и для менее чем 10 секций — 3/4 дюйма. Для длины трубы без радиаторов более 10 метров следует добавить 1/2 дюйма к указанным выше размерам, чтобы уменьшить сопротивление движению воды в трубах.

Для выбора мощности радиаторов для климата в Подмосковье можно руководствоваться простым правилом: для обогрева десяти квадратных метров жилой площади в комнате высотой 2,5 метра, с одной внешней стеной и одной. окно, достаточно использовать 1 кВт; если в комнате две внешние стены и одно окно, то для отопления достаточно 1,2 кВт; если в комнате две внешние стены и два окна, то вам потребуется 1,3 кВт. Вам просто нужно знать площадь каждого отапливаемого помещения и рассчитать необходимую мощность радиатора.Обычно мощность одной секции радиатора указывается в магазине на ценнике. Мощность котла должна обеспечивать суммарную мощность всех секций всех радиаторов.

При выборе материала трубы, мощности радиаторов и котла лучше спроектировать систему отопления с большей мощностью, чем вам потребуется, чем с меньшей. Например, полимерные трубы имеют меньшее гидравлическое сопротивление, чем стальные, и вы можете выбрать меньший диаметр. Однако лучше не уменьшать диаметр, а сделать систему того же диаметра, что и для стальных труб.Аналогично для радиаторов и бойлера. Причина в том, что регуляторы могут уменьшать мощность, но не увеличивать ее.

Здесь я должен кое-что объяснить. В теплотехнике есть два способа регулирования системы теплоснабжения, качества и количества, которые изменяют напор теплоты и, следовательно, скорость воды, температуру и объем жидкости в системе, в соответствии с определенной площадью поперечного сечения теплоносителя. труб в единицу времени.

Регулирование количества достигается с помощью различных типов клапанов, которые вы открываете или закрываете.Регулирование качества осуществляется путем изменения теплоты воды в системе (регулированием пламени в котле) и, следовательно, ее плотности, что приводит к изменениям объема, напора и температуры.

Трубы Общие — Номинальный размер трубы (NPS) и график (SCH)

Что такое номинальный размер трубы?

Номинальный размер трубы (NPS) — это североамериканский набор стандартных размеров труб, используемых для высоких или низких давлений и температур.Название NPS основано на более ранней системе «Размер железной трубы» (IPS).

Эта система IPS была создана для обозначения размера трубы. Размер представляет собой приблизительный внутренний диаметр трубы в дюймах. Труба IPS 6 дюймов — это труба, внутренний диаметр которой составляет приблизительно 6 дюймов. Пользователи начали называть эту трубу как 2-дюймовую, 4-дюймовую, 6-дюймовую трубу и т. Д. Для начала каждый размер трубы производился с одной толщиной, которая позже была названа стандартный (STD) или стандартный вес (STD.WT.) Внешний диаметр трубы был стандартизирован.

В соответствии с промышленными требованиями, предъявляемыми к жидкостям под высоким давлением, трубы производились с более толстыми стенками, что стало известно как сверхпрочные (XS) или сверхтяжелые (XH). Требования к более высокому давлению увеличились еще больше с трубами с более толстыми стенками. Соответственно, трубы производились с двойными сверхпрочными (XXS) или двойными сверхтяжелыми (XXH) стенками, при этом стандартизованные наружные диаметры не изменились. Обратите внимание, что на этом веб-сайте используются только термины XS и XXS .

Таблица труб

Итак, во времена IPS использовались только три толщины стены. В марте 1927 года Американская ассоциация стандартов провела обследование отрасли и создала систему, определяющую толщину стенок на основе меньших шагов между размерами. Обозначение, известное как номинальный размер трубы, заменило размер железной трубы, а термин «график» ( SCH ) был изобретен для определения номинальной толщины стенки трубы. Добавляя номера спецификации к стандартам IPS, сегодня мы знаем диапазон толщины стенок, а именно:

SCH 5, 5S, 10, 10S, 20, 30, 40, 40S, 60, 80, 80S, 100, 120, 140, 160, STD, XS и XXS.

Номинальный размер трубы ( NPS ) — это безразмерное обозначение размера трубы. Он указывает стандартный размер трубы, если за ним следует номер обозначения конкретного размера без символа дюйма. Например, NPS 6 обозначает трубу, внешний диаметр которой составляет 168,3 мм.

NPS очень слабо связано с внутренним диаметром в дюймах, а трубы NPS 12 и меньшие имеют внешний диаметр больше, чем обозначение размера. Для NPS 14 и больше NPS равен 14 дюймам.

Для данного NPS внешний диаметр остается постоянным, а толщина стенки увеличивается с увеличением номера спецификации.Внутренний диаметр будет зависеть от толщины стенки трубы, указанной в спецификации.

Резюме:
Размер трубы указывается двумя безразмерными числами,

  • номинальный размер трубы (NPS)
  • номер расписания (SCH)

и соотношение между этими числами определяют внутренний диаметр трубы.

Размеры труб из нержавеющей стали определены стандартом ASME B36.19, охватывающим внешний диаметр и толщину стенки по спецификации.Обратите внимание, что все толщины стенок нержавеющей стали по ASME B36.19 имеют суффикс «S». Размеры без суффикса «S» соответствуют стандарту ASME B36.10, который предназначен для труб из углеродистой стали.

Международная организация по стандартизации (ISO) также использует систему с безразмерным обозначением.
Диаметр номинальный ( DN ) используется в метрической системе единиц. Он указывает стандартный размер трубы, если за ним следует номер обозначения конкретного размера без символа миллиметра. Например, DN 80 — это эквивалентное обозначение NPS 3.Ниже приведена таблица с эквивалентами для размеров труб NPS и DN.

NPS 1/2 3/4 1 2 3 4
DN 15 20 25 32 40 50 65 80 90 100

Примечание. Для NPS ≥ 4 соответствующий DN = 25, умноженный на номер NPS.

Вы знаете, что такое «ein zweihunderter Rohr» ?. Немцы подразумевают под этим трубу NPS 8 или DN 200. В данном случае голландцы говорят о «8 duimer». Мне действительно любопытно, как люди в других странах указывают на трубку.

Примеры действительного наружного диаметра. и И.Д.

Фактический наружный диаметр

  • Фактический наружный диаметр NPS 1 = 1,5 / 16 дюйма (33,4 мм)
  • Фактический наружный диаметр NPS 2 = 2,3 / 8 дюйма (60,3 мм)
  • Фактический наружный диаметр NPS 3 = 3½ дюйма (88,9 мм)
  • NPS 4 фактический O.D. = 4½ дюйма (114,3 мм)
  • Фактический наружный диаметр NPS 12 = 12¾ «(323,9 мм)
  • Фактический наружный диаметр NPS 14 = 14 дюймов (355,6 мм)

Фактический внутренний диаметр 1 дюймовой трубы.

  • NPS 1-SCH 40 = Внешний диаметр 33,4 мм — WT. 3,38 мм — I.D. 26,64 мм
  • NPS 1-SCH 80 = Внешний диаметр 33,4 мм — WT. 4,55 мм — I.D. 24,30 мм
  • NPS 1-SCH 160 = Внешний диаметр 33,4 мм — WT. 6,35 мм — I.D. 20,70 мм

Как указано выше, никакой внутренний диаметр не соответствует истине 1 дюйм (25,4 мм).
Внутренний диаметр определяется толщиной стенки ( WT ).

Факты, которые вам необходимо знать!

Schedule 40 и 80 приближаются к STD и XS и во многих случаях одинаковы.
От NPS 12 и выше толщина стенок между сортаментами 40 и STD отличается, от NPS 10 и выше толщина стенки между сортами 80 и XS отличается.

Список 10, 40 и 80 во многих случаях аналогичен списку 10S, 40S и 80S.
Но будьте осторожны, от NPS 12 до NPS 22 толщина стенки в некоторых случаях отличается.В этом диапазоне трубы с индексом «S» имеют более тонкую толщину стенки.

ASME B36.19 не распространяется на все размеры труб. Таким образом, требования к размерам ASME B36.10 применяются к трубам из нержавеющей стали размеров и графиков, не охватываемых ASME B36.19.

Примечание автора …

История номинального размера трубы 9 марта 2006 г.
  • Персоналу PM Engineer (PME) (один из дочерних журналов SUPPLY HOUSE TIMES) был задан вопрос о том, как получился номинальный размер трубы.Вот ответ, предоставленный редакционным директором PME Юлиусом Балланко.
  • Человеком, непосредственно ответственным за номинальный размер трубы, был джентльмен по имени Роберт Бриггс. Бриггс был суперинтендантом завода Pascal Iron Works в Филадельфии. В 1862 году он написал набор спецификаций труб для железных труб и разослал их всем заводам в этом районе.
  • Поймите, что в 1862 году Соединенные Штаты были вовлечены в Гражданскую войну. Каждый трубный завод производил свои трубы и фитинги по своим техническим требованиям.Бриггс попытался стандартизировать размеры, что также помогло бы военным усилиям. Труба и фитинги будут взаимозаменяемыми между мельницами. В 1862 году это было довольно необычно.
  • Стандарты на трубы стали известны как «Стандарты Бриггса». В конечном итоге они стали американскими стандартами и, наконец, стандартами, используемыми для современных труб.
  • В текущем стандарте стальных труб ASTM A53 в основном используется стандарт Бриггса для труб размером от 1/2 дюйма до 4 дюймов. Вы заметите, что после 4 дюймов труба начинает приближаться к фактическому размеру. используется для идентификации трубы.
  • Итак, вы, наверное, спросите, откуда взялись размеры? Ну, это были размеры штампов, используемых в Pascal Iron Works. Бриггс заставил всех подстроиться под себя. Отсюда и название «именная» труба. размер возник, что означает «близко к» или «где-то рядом» с действительным измерением.

Я нашел историю номинального размера трубы в Supplyhouse Times

ТЕПЛООБМЕННИКИ

Теплообменник — это устройство, используемое для передачи тепла между двумя или более жидкостями.Жидкости могут быть одно- или двухфазными и, в зависимости от типа теплообменника, могут быть разделены или находиться в прямом контакте. Устройства, в которых используются источники энергии, такие как стержни ядерного топлива или огневые нагреватели, обычно не считаются теплообменниками, хотя многие принципы, заложенные в их конструкции, одинаковы.

Чтобы обсудить теплообменники, необходимо дать некоторую форму категоризации. Обычно используются два подхода. Первый рассматривает конфигурацию потока в теплообменнике, а второй основан на классификации типа оборудования в первую очередь по конструкции.Оба рассмотрены здесь.

Классификация теплообменников по конфигурации потока

Существует четыре основных конфигурации потока:

На рисунке 1 показан идеализированный противоточный теплообменник, в котором две жидкости текут параллельно друг другу, но в противоположных направлениях. Этот тип устройства потока позволяет максимально изменить температуру обеих жидкостей и, следовательно, является наиболее эффективным (где эффективность — это количество фактически переданного тепла по сравнению с теоретическим максимальным количеством тепла, которое может быть передано).

Рисунок 1. Противоток.

В теплообменниках с прямоточным потоком потоки текут параллельно друг другу и в том же направлении, как показано на рисунке 2. Это менее эффективно, чем противоток, но обеспечивает более однородную температуру стенок.

Рисунок 2. Попутный поток.

По эффективности теплообменники с перекрестным потоком занимают промежуточное положение между противоточными и параллельными теплообменниками. В этих установках потоки текут под прямым углом друг к другу, как показано на рисунке 3.

Рисунок 3. Поперечный поток.

В промышленных теплообменниках часто встречаются гибриды вышеуказанных проточных типов. Примерами являются комбинированные теплообменники с поперечным / противотоком и многопроходные теплообменники. (См., Например, рисунок 4.)

Рисунок 4. Поперечный / противоточный поток.

Классификация теплообменников по конструкции

В этом разделе теплообменники классифицируются в основном по их конструкции, Garland (1990) (см. Рисунок 5).Первый уровень классификации — разделение типов теплообменников на рекуперативные и регенеративные. Рекуперативный теплообменник имеет отдельные пути потока для каждой текучей среды, и текучие среды одновременно протекают через теплообменник, обмениваясь теплом через стенку, разделяющую пути потока. Рекуперативный теплообменник имеет единственный путь потока, по которому попеременно проходят горячие и холодные жидкости.

Рисунок 5. Классификация теплообменников.

Регенеративные теплообменники

В регенеративном теплообменнике путь потока обычно состоит из матрицы, которая нагревается, когда горячая жидкость проходит через нее (это известно как «горячий удар»).Это тепло затем передается холодной жидкости, когда она протекает через матрицу («холодный удар»). Регенеративные теплообменники иногда называют емкостными теплообменниками . Хороший обзор регенераторов дает Walker (1982).

Регенераторы в основном используются для рекуперации тепла газа / газа на электростанциях и в других энергоемких отраслях. Два основных типа регенераторов — статические и динамические. Оба типа регенераторов являются кратковременными в эксплуатации, и, если при их проектировании не будут приняты особые меры, обычно происходит перекрестное загрязнение горячего и холодного потоков.Однако использование регенераторов, вероятно, расширится в будущем, поскольку предпринимаются попытки повысить энергоэффективность и утилизировать больше низкопотенциального тепла. Однако, поскольку регенеративные теплообменники, как правило, используются для специальных применений, рекуперативные теплообменники более распространены.

Рекуперативные теплообменники

Существует много типов рекуперативных теплообменников, которые можно в широком смысле сгруппировать в непрямой контакт, прямой контакт и специальные. В теплообменниках непрямого контакта теплоносители разделяются с помощью трубок, пластин и т. Д.. Теплообменники с прямым контактом не разделяют жидкости, обмениваясь теплом, и фактически полагаются на то, что жидкости находятся в тесном контакте.

В этом разделе кратко описаны некоторые из наиболее распространенных типов теплообменников, и они расположены в соответствии с классификацией, приведенной на рисунке 5.

В этом типе пары разделены стенкой, обычно металлической. Примерами являются трубчатые теплообменники, см. Рисунок 6, и пластинчатые теплообменники, см. Рисунок 7.

Трубчатые теплообменники очень популярны из-за гибкости, которую проектировщик должен учитывать в широком диапазоне давлений и температур.Трубчатые теплообменники можно разделить на несколько категорий, из которых кожухотрубный теплообменник является наиболее распространенным.

Кожухотрубный теплообменник состоит из ряда трубок, установленных внутри цилиндрической оболочки. На рисунке 8 показан типичный блок, который можно найти на нефтехимическом заводе. Две жидкости могут обмениваться теплом, одна жидкость течет по внешней стороне труб, а вторая жидкость течет по трубкам. Жидкости могут быть одно- или двухфазными и могут течь в параллельном или перекрестном / противотоке.Кожухотрубный теплообменник состоит из четырех основных частей:

  • Передняя часть — это то место, где жидкость входит в трубную часть теплообменника.

  • Задний конец — это то место, где жидкость на трубной стороне выходит из теплообменника или где она возвращается в передний коллектор в теплообменниках с несколькими проходами на трубной стороне.

  • Пучок труб — состоит из трубок, трубных решеток, перегородок, анкерных стержней и т. Д. Для удержания пучка вместе.

  • Кожух — содержит пучок труб.

Популярность кожухотрубных теплообменников привела к разработке стандарта для их обозначения и использования. Это стандарт ассоциации производителей трубчатых теплообменников (TEMA). Обычно кожухотрубные теплообменники изготавливаются из металла, но для специальных применений (например, с использованием сильных кислот в фармацевтических препаратах) могут использоваться другие материалы, такие как графит, пластик и стекло. Также нормально, чтобы трубки были прямыми, но в некоторых криогенных применениях используются спиральные или катушки Хэмпсона .Простая форма кожухотрубного теплообменника — это двухтрубный теплообменник. Этот теплообменник состоит из одной или нескольких трубок, содержащихся внутри трубы большего размера. В наиболее сложной форме многотрубный двухтрубный теплообменник мало отличается от кожухотрубного теплообменника. Однако двухтрубные теплообменники, как правило, имеют модульную конструкцию, поэтому несколько блоков могут быть соединены болтами для достижения требуемой нагрузки. Книга Э.А.Д. Сондерс [Saunders (1988)] дает хороший обзор трубчатых теплообменников.

К другим типам трубчатых теплообменников относятся:

  • Печи — технологическая жидкость проходит через печь в прямых или спирально намотанных трубах, а нагрев осуществляется горелками или электрическими нагревателями.

  • Пластинчатые трубы — в основном используются в системах рекуперации тепла и кондиционирования воздуха. Трубки обычно монтируются в какой-либо форме воздуховода, а пластины действуют как опоры и обеспечивают дополнительную площадь поверхности в виде ребер.

  • С электрическим нагревом — в этом случае жидкость обычно течет по внешней стороне электрически нагреваемых трубок (см. Джоулев нагрев).

  • Теплообменники с воздушным охлаждением состоят из пучка труб, вентиляторной системы и несущей конструкции. Трубки могут иметь ребра различного типа, чтобы обеспечить дополнительную площадь поверхности со стороны воздуха. Воздух либо всасывается через трубы вентилятором, установленным над пучком (принудительная тяга), либо продувается через трубы вентилятором, установленным под пучком (принудительная тяга). Они, как правило, используются в местах, где есть проблемы с получением достаточного количества охлаждающей воды.

  • Тепловые трубы, сосуды с мешалкой и теплообменники из графитовых блоков могут рассматриваться как трубчатые или могут быть помещены в Рекуперативные «Особые предложения». Тепловая труба состоит из трубы, материала фитиля и рабочей жидкости. Рабочая жидкость поглощает тепло, испаряется и переходит на другой конец тепловой трубки, где она конденсируется и выделяет тепло. Затем жидкость под действием капилляров возвращается к горячему концу тепловой трубы для повторного испарения. Сосуды с мешалкой в ​​основном используются для нагрева вязких жидкостей.Они состоят из емкости с трубками внутри и мешалки, такой как пропеллер или ленточный винтовой импеллер. Трубки несут горячую жидкость, а мешалка вводится для обеспечения равномерного нагрева холодной жидкости. Теплообменники с угольным блоком обычно используются, когда необходимо нагреть или охладить агрессивные жидкости. Они состоят из твердых блоков углерода, в которых просверлены отверстия для прохождения жидкости. Затем блоки скрепляются болтами вместе с коллекторами, образуя теплообменник.

Пластинчатые теплообменники отделяют жидкости, обменивающиеся теплом, с помощью пластин.У них обычно есть улучшенные поверхности, такие как ребра или тиснение, и они скреплены болтами, припаяны или сварены. Пластинчатые теплообменники в основном используются в криогенной и пищевой промышленности. Однако из-за высокого отношения площади поверхности к объему, малого количества жидкостей и способности обрабатывать более двух паров они также начинают использоваться в химической промышленности.

Пластинчатые и рамные теплообменники состоят из двух прямоугольных концевых элементов, которые удерживают вместе несколько рельефных прямоугольных пластин с отверстиями на углу для прохождения жидкостей.Каждая из пластин разделена прокладкой, которая герметизирует пластины и обеспечивает поток жидкости между пластинами, см. Рис. 9. Этот тип теплообменника широко используется в пищевой промышленности, поскольку его можно легко разобрать для очистки. Если утечка в окружающую среду вызывает беспокойство, можно сварить две пластины вместе, чтобы гарантировать, что жидкость, протекающая между сваренными пластинами, не сможет протечь. Однако, поскольку некоторые прокладки все еще присутствуют, утечка все еще возможна. Паяные пластинчатые теплообменники предотвращают возможность утечки за счет пайки всех пластин вместе, а затем приваривания входных и выходных отверстий.

Рисунок 6. Классификация трубчатых теплообменников.

Рис. 7. Классификация пластинчатых теплообменников.

Рисунок 8. Кожухотрубный теплообменник.

Рисунок 9. Пластинчато-рамный теплообменник.

Пластинчато-ребристые теплообменники состоят из ребер или распорок, зажатых между параллельными пластинами. Ребра могут быть расположены так, чтобы допускать любую комбинацию поперечного или параллельного потока между соседними пластинами. Также возможно пропустить до 12 потоков жидкости через один теплообменник за счет тщательного расположения коллекторов.Обычно они изготавливаются из алюминия или нержавеющей стали и спаяны вместе. Их основное применение — сжижение газа из-за их способности работать с близкими температурами.

Пластинчатые теплообменники в некоторых отношениях похожи на кожухотрубные. Прямоугольные трубы с закругленными углами уложены друг на друга, образуя пучок, который помещается внутри оболочки. Одна жидкость проходит через трубки, тогда как жидкость течет параллельно через промежутки между трубками.Они, как правило, используются в целлюлозно-бумажной промышленности, где требуются проточные каналы большего размера.

Спиральные пластинчатые теплообменники образуются путем наматывания двух плоских параллельных пластин вместе в змеевик. Затем концы уплотняются прокладками или свариваются. Они в основном используются с вязкими, сильно загрязняющими жидкостями или жидкостями, содержащими частицы или волокна.

В теплообменниках этой категории не используется поверхность теплопередачи, из-за чего они часто дешевле, чем косвенные теплообменники.Однако, чтобы использовать теплообменник с прямым контактом с двумя жидкостями, они должны быть несмешиваемыми, или, если будет использоваться одна жидкость, она должна претерпеть фазовый переход. (См. Прямая контактная теплопередача.)

Наиболее легко узнаваемая форма теплообменника с прямым контактом — градирня с естественной тягой, которая используется на многих электростанциях. Эти агрегаты состоят из большой приблизительно цилиндрической оболочки (обычно более 100 м в высоту) и насадки внизу для увеличения площади поверхности. Охлаждаемая вода распыляется на набивку сверху, в то время как воздух проходит через дно набивки и поднимается вверх через башню за счет естественной плавучести.Основная проблема с этим и другими типами градирен с прямым контактом — это постоянная необходимость восполнения подачи охлаждающей воды за счет испарения.

Конденсаторы прямого контакта иногда используются вместо трубчатых конденсаторов из-за их низких капитальных затрат и затрат на обслуживание. Есть много вариантов конденсатора прямого контакта. В простейшей форме охлаждающая жидкость разбрызгивается сверху емкости над паром, поступающим сбоку емкости. Затем конденсат и охлаждающая жидкость собираются внизу.Большая площадь поверхности распылителя гарантирует, что они являются достаточно эффективными теплообменниками.

Закачка пара используется для нагрева жидкости в резервуарах или в трубопроводах. Пар способствует передаче тепла за счет турбулентности, создаваемой впрыском, и передает тепло путем конденсации. Обычно попытки собрать конденсат не предпринимаются.

Прямой нагрев в основном используется в сушилках, где влажное твердое вещество сушится путем пропускания его через поток горячего воздуха. Другой вид прямого нагрева — это горение под водой.Он был разработан в основном для концентрирования и кристаллизации коррозионных растворов. Жидкость испаряется пламенем, и выхлопные газы направляются вниз в жидкость, которая находится в резервуаре.

Воздухоохладитель с мокрой поверхностью в некоторых отношениях похож на теплообменник с воздушным охлаждением. Однако в этом типе устройства вода распыляется по трубкам, а вентилятор всасывает воздух и воду по пучку труб. Вся система закрыта, и теплый влажный воздух обычно выбрасывается в атмосферу.

Скребковые теплообменники состоят из емкости с рубашкой, через которую проходит жидкость, и вращающегося скребка, который непрерывно удаляет отложения с внутренних стенок емкости. Эти агрегаты используются в пищевой и фармацевтической промышленности в процессе образования отложений на нагретых стенках сосуда с рубашкой.

Статические регенераторы или регенераторы с неподвижным слоем не имеют движущихся частей, кроме клапанов. В этом случае горячий газ проходит через матрицу в течение фиксированного периода времени, в конце которого происходит реверсирование, горячий газ отключается, а холодный газ проходит через матрицу.Основная проблема с этим типом агрегатов заключается в том, что и горячий, и холодный поток прерывистый. Для преодоления этого и обеспечения непрерывной работы требуются по крайней мере два статических регенератора или можно использовать роторный регенератор.

В роторном регенераторе насадка цилиндрической формы вращается вокруг оси цилиндра между парой газовых уплотнений. Горячий и холодный газ протекает одновременно через воздуховоды с обеих сторон газовых уплотнений и через вращающуюся насадку. (См. Рекуперативные теплообменники.)

Термический анализ любого теплообменника включает решение основного уравнения теплопередачи.

(1)

Это уравнение рассчитывает количество тепла, передаваемого через область dA, где T h и T c — местные температуры горячей и холодной жидкости, α — местный коэффициент теплопередачи, а dA — местная дополнительная площадь, на которой α основывается. Для плоской стены

(2)

где δ w — толщина стенки, а λ w — ее теплопроводность.

Для однофазного обтекания стенки α для каждого из потоков является функцией Re и Pr. Когда происходит конденсация или кипение, α также может зависеть от разницы температур. Как только коэффициент теплопередачи для каждого потока и стены известен, общий коэффициент теплопередачи U определяется как

(3)

где сопротивление стенки r w равно 1 / α w . Общая скорость теплопередачи между горячей и холодной текучими средами тогда определяется выражением

(4)

Это уравнение предназначено для постоянных температур и коэффициентов теплопередачи.В большинстве теплообменников это не так, поэтому используется другая форма уравнения

(5)

где — общая тепловая нагрузка, U — средний общий коэффициент теплопередачи, а ΔT M — средняя разница температур. Расчет ΔT M и отказ от предположения о постоянном коэффициенте теплопередачи описаны в разделе «Средняя разница температур».

Расчет U и ΔT M требует информации о типе теплообменника, геометрии (например,g., размер проходов в пластине или диаметр трубы), ориентация потока, чистый противоток или поперечный поток и т. д. Затем можно рассчитать общую нагрузку с использованием предполагаемого значения AT и сравнить с требуемой нагрузкой. Затем можно внести изменения в предполагаемую геометрию и U, ΔT M и пересчитать, чтобы в конечном итоге перейти к решению, которое равно требуемой нагрузке. Однако при выполнении термического анализа на каждой итерации также следует проверять, не превышен ли допустимый перепад давления.Компьютерные программы, такие как TASC от HTFS (Heat Transfer and Fluid Flow Service), автоматически выполняют эти расчеты и оптимизируют конструкцию.

Механические аспекты

Все типы теплообменников должны подвергаться механической конструкции в той или иной форме. Любой теплообменник, работающий при давлении выше атмосферного, должен быть спроектирован в соответствии с местным кодом конструкции сосуда под давлением , например ASME VIII (Американское общество инженеров-механиков) или BS 5500 (Британский стандарт).Эти нормы определяют требования к резервуару высокого давления, но не касаются каких-либо специфических особенностей конкретного типа теплообменника. В некоторых случаях для определенных типов теплообменников существуют специальные стандарты. Два из них перечислены ниже, но в целом отдельные производители определяют свои собственные стандарты.

ССЫЛКИ

Гарланд, У. Дж. (1990) Частное сообщение.

Уокер, Г. (1982) Промышленные теплообменники — Основное руководство , Hemisphere Publishing Corporation.

Rohsenow, W. M. и Hartnett, J. P. (1973) Справочник по теплопередаче , Нью-Йорк: McGraw-Hill Book Company.