Теплопроводность у воды: У воды теплопроводность высокая или низкая

Содержание

Физические свойства воды :: HighExpert.RU

Вода (обычная) — вещество, описываемое химической формулой H2O, самое распространенное соединение на земле, состоящее из двух атомов водорода и одного атома кислорода, растворитель минеральных солей.

Плотность воды при различной температуре

Температура водыПлотность воды
оСкг/м3
0999,9
51000
10999,7
20998,2
30995,7
40992,2
50988,1
60983,2
70977,8
80971,8
90965,3
100958,4


Динамическая и кинематическая вязкость воды при различной температуре

Температура
Динамическая вязкость, μКинематическая вязкость, ν
оС(Н • c/м 2) • 103 — [сПуаз]м2/с • 106 — [сСтокс]
01,7871,787
51,5191,519
101,3071,307
201,0021,004
300,7980,801
400,6530,658
500,5470,658
600,4670,475
700,4040,413
800,3550,365
900,3150,326
1000,2820,294


Основные физические свойства воды при различной температуре

Температура
Плотность, ρУдельная теплоёмкость, CpКоэффициент температурного линейного расширения, αЧисло Прандтля, Pr
оСкг/м3кДж / (кг • К)(1 / K) x 103
0999,94,217-0,0713,67
20998,24,1820,2077,01
40992,14,1790,3854,34
60983,24,1850,5232,99
80971,84,1970,6432,23
100958,44,2160,7521,75

Температура кипения воды в зависимости от давления

1,013 бар

1,379 бар

2,068 бар

2,758 бар

3,585 бар

4,826 бар

6,205 бар

7,929 бар

10,34 бар

15,51 бар



Формулы физических свойств воды

При проведении инженерных расчетов удобнее использовать приближённые формулы для определения физических свойств воды⋆.

Плотность воды

⋆ [ кг/м3 ]

Теплоёмкость воды

⋆ [ Дж/(кг • К) ]

Теплопроводность воды

⋆ [ Вт/(м • K) ]

Динамическая вязкость воды

[ Па • c ]


Кинематическая вязкость воды

⋆ [ м
2
/с ]

Температуропроводность воды

⋆ [ м2/с ]

Число Прандтля воды

[ — ]

⋆ Приближённые формулы физических свойств воды получены авторами настоящего сайта.

Размерность величин: температура — К (Кельвин).

Приближённые формулы действительны в диапазоне температур воды от 283 К до 373 К.

Теплопроводность воды и водяного пара


    А. Теплопроводность воды и водяного пара (Н2О) [c. 180]

    Теплопроводность воды и водяного пара экспериментально исследована до 720° С и 350 кГ см , а три давлениях от 5 до 500 кГ/см до 560° С с погрешностью, не превышающей 2%. [c.189]

    Коэффициенты теплопроводности воды и водяного пара при раз личных температурах и давлениях. ……….. [c.1180]

    На рис. 4-3 приведена зависимость теплопроводности воды и водяного пара от температуры по изобарам [Л. 4-23] на основании данных исследований Варгафтика 180 

[c.180]

    Нанесенные на рис. 4-3 данные по теплопроводности воды и водяного пара, включая кривую насыщения и [c.181]

    По уравнениям (4-25) и (4-26) вычислены таблицы для теплопроводности воды и водяного пара (Л. 4-23]. [c.183]

    На рис. 7 приведена диаграмма зависимости коэффициента теплопроводности воды и водяного пара от температуры и давления. [c.43]

    Коэффициенты теплопроводности воды и водяного пара [c. 23]

    КОЭФФИЦИЕНТЫ ТЕПЛОПРОВОДНОСТИ ВОДЫ и ВОДЯНОГО ПАРА ПРИ РАЗЛИЧНЫХ ТЕМПЕРАТУРАХ И ДАВЛЕНИЯХ [c.22]

    Теплопроводность воды и водяного пара, несомненно, изучена лучше всех других веществ. [c.189]

    Интерполяционное уравнение для промышленных расчетов теплопроводности воды и водяного пара «к, мВт/(м>К [59, 60]  

[c.85]

    Александров А. А. Международные таблицы и уравнения для теплопроводности воды и водяного пара//Теплоэнергетика. 1980. № 4. С. 70—74. [c.310]

    Коэффициент теплопроводности воды и водяного пара Х ккал/м ч град Л. 28] [c.74]

    III. ТЕПЛОПРОВОДНОСТЬ воды и водяного ПАРА [c.38]

    До 1964 г. не существовало Международной скелетной таблицы коэффициента теплопроводности воды и водяного пара. При теплотехнических расчетах использовались таблицы, основанные на экспериментальных данных о жидкой фазе, полученных Шмидтом при давлениях [c. 38]

    Как видно из приведенного обзора, ко времени VI Международной конференции был накоплен обширный экспериментальный материал о теплопроводности воды и водяного пара. Однако, как показал анализ, в некоторых областях опытные данные различных авторов значительно отличались друг от друга. В связи с этим VI Международная конференция не смогла принять согласованную скелетную таблицу коэффициента 

[c.40]

    Помещаемые в настоящем издании подробные таблицы теплопроводности воды и водяного пара базируются на данных этой скелетной таблицы. При расчете подробных таблиц для тех областей, для которых имеются согласованные международные уравнения, разработанные при составлении скелетной таблицы, использовались именно эти уравнения. [c.41]

    X. И. Амирханов и А. П. Адамов [20], используя метод плоского слоя, исследовали теплопроводность воды и водяного пара в околокритическом и сверхкритическом состояния , Недавно этот [c.14]

    В 1940 г. Тимрот и Варгафтик [Л. 4-54, 4-55] закончили исследования теплопроводности воды и водяного пара, получили единую диаграмму до абсолютного давления 400 ат при температурах до 500° С. 

[c.161]

    Это были первые надежные данные по теплопроводности воды и водяного пара в. ш-ироком интервале температур и давлений. Однако последующие, более позд- нне исследования уточнили их, что видно из рис. 4-4. [c.183]

    Для повышения точности значений при вычислении таблиц теплопроводности воды и водяного пара Варгафтик [Л. 4-50] взял новые значения показателя п. При удельном весе 200 кг1м , т. е. для водяного пара при всех температурах до давления меньше критического, включая и кривую насыщения, им получены значения й=1,25 и 5 = 1,33- 10-1 Для воды при у > 500 кГ/м при давлении до 300 ата, п=1,20 и В = 1,6- 10 . Для промежуточной области при 500>y>200 значение = 1,23, а В=1,43-10- . [c.227]

    Чернеева Л. И. Экспериментальное исследование теплопроводности воды и водяного пара при высоких давлениях и температурах.

— В кн. Двухфазные потоки и вопросы теплообмена, — М. Энергия, 1970. [c.278]


Изучем разницу теплопроводности воздуха и воды — занимательная физика, экспериментируем с детьми | Екатерина Прекрасная

Изучем разницу теплопроводности воздуха и воды — занимательная физика, экспериментируем с детьми

И снова мы мучили воздушные шарики, снова проводили над ними занимательные, увлекательные и веселые эксперименты.

В этот раз мы планировали эксперимент опасный и взрывной 🤣

Опасный тем, что мы его планировали проводить с огнем 🔥, а взрывной потому что у нас должен произойти как минимум один 💥 взрыв! НО, увы и ах, у нас происходили только взрывы, пока мы не сменили место подогрева. И все таки мы довели эксперимент до конца и он оказался успешным.

Убедительная просьба проводить опыты только со взрослыми, потому что огонь, а Аркадий Паровозов только в мультике! (справочно: мультгерой, который спасал детей от пожара)

По началу он мне казался исключительно провальным и я уже была готова сдаться, но факт провала не давал мне покоя и я полезла в ванну. …. Об этом чуть позже, а пока о провальной части.

Теплопроводность воздуха ниже, чем теплопроводность воды. По эксперименту видно, что шарик без воды очень быстро нагревается и происходит взрыв. А вот шарик с водой прогревается дольше, а точнее, шарик отдает свою температуру воде быстрее, чем нагревается сам, за счет чего шарик не лопается.

Для проведения нам понадобилось:

  1. Два воздушных шарика, целых и невредимых (мы взяли много)🎈
  2. Вода.
  3. Источник огня (свеча, зажигалка или спичка).
Изучем разницу теплопроводности воздуха и воды — занимательная физика, экспериментируем с детьми

Первая часть эксперимента — сухой шарик.🎈

Мы надули шарик, завязали его носик на узелок и приставили к стенке, что наблюдать взрыв.

Внутри сухой шарик

Внутри сухой шарик

Мой малыш слегка опасается взрывов🎆 шариков, поэтому он держал свечку на вытянутой руке, а я держала шарик 😅 Иногда приходилось догонять шариком свечку.

Изучем разницу теплопроводности воздуха и воды — занимательная физика, экспериментируем с детьми

В идеале мы должны были держать свечку на расстоянии 2-3 см от шарика, но у меня были только свечки — таблетки, поэтому огонёк был не особо большой, мы приблизили до каймы свечки.

Бабах! Взрыв, я от неожиданности аж дернулась. Мы взорвали таким образом три шарика и остались довольны, что часть первая нашего эксперимента оказалась успешной (вконце статьи я прикрепила ссылку на видео нашего эксперимента).

Финал шарика

Финал шарика

Часть вторая. Шарик с водой.

Вторую часть мы начали с попытки налить воды в шарик как можно больше. Но у нас никак это не получилось. В шарик мы смогли вместить столько воды, сколько помещалось в сдутый шарик. Когда мы надули шарик, оказалось, что воды совсем на донышке.

Изучем разницу теплопроводности воздуха и воды — занимательная физика, экспериментируем с детьми

Завязали шарик на узелок и остались довольны результатом.

Изучем разницу теплопроводности воздуха и воды — занимательная физика, экспериментируем с детьми

Зажгли свечку и вернулись в комнату в надежде, что именно сейчас мы увидим несгораемый шарик и нелопающийся. Но увы и ах, неожиданно он лопнул и соответственно облил нам весь паркет. Радовало только то, что в шарик не смогло влезть больше воды.

Изучем разницу теплопроводности воздуха и воды — занимательная физика, экспериментируем с детьми

Дальше мы сделали паузу для быстрой уборки и налили еще два шарика.

Подносили мы свечу в том же месте сбоку, к той части шарика, где не было воды. И какое было наше разочарование, что вместо копченой боковины шарика мы получили ошметки и уборку паркета!

Изучем разницу теплопроводности воздуха и воды — занимательная физика, экспериментируем с детьми

Дважды вымыв паркет, мы перебрались в ванну. Так стало удобнее делать эксперимент и мы поставили горящую свечку на бортик, а шарик опускать стали снизу. Правда не с первого раза, поэтому мы испортили предварительно еще два шарика. Ниже можно посмотреть наше небольшое видео этого мини эксперимента с удачами и неудачами, чтоб было наглядно.

Свеча горела на столе…

Свеча горела на столе…

Поставили свечку на бортик ванны возле стены, чтоб если что вся вода попадала в ванну, а не на пол и повторили наш эксперимент в очередной раз, но все таки решили приложить шарик к свече именно тем местом, где в нем находилась вода:

Наконец-то

Наконец-то

Честно, не знаю, почему я упорно подносила свечку с боку и хотела, чтоб он не лопался, когда знала что вода внизу. Сейчас мне кажется, что это было так очевидно, а я делала что-то, что заранее знала, что будет провально. Эх

Но последний эксперимент был более чем успешен.

Шарик ни разу не лопнул, накоптил себе дно как мог об нашу свечку, о чем предъявляю Вам фото — доказательства:

Почти затушили шариком огонь, по фото видно слабый огонекИзучем разницу теплопроводности воздуха и воды — занимательная физика, экспериментируем с детьмиИзучем разницу теплопроводности воздуха и воды — занимательная физика, экспериментируем с детьмиИзучем разницу теплопроводности воздуха и воды — занимательная физика, экспериментируем с детьми

Почти затушили шариком огонь, по фото видно слабый огонек

Наша «попка» шарика закоптилась, и это то самое, чего я так не могла достичь в предыдущих шариках:

Изучем разницу теплопроводности воздуха и воды — занимательная физика, экспериментируем с детьмиИзучем разницу теплопроводности воздуха и воды — занимательная физика, экспериментируем с детьми

А вот и наша небольшая нарезочка наших попыток — провалов и успехов:

Проводите больше времени с детьми, они так быстро растут!

Если Вам понравился наш эксперимент, обязательно ставьте лайк — огромнейшее спасибо за него 😘

Еще наши опыты с шариками можно посмотреть на нашем канале: Расширение воздуха — Реактивное движение

5.

Плотность воды и её зависимость от температуры и солености

Плотность воды. Плотность – одна из важнейших физических характе-ристик любого вещества. Она представляет собой массу однородного вещества,

приходящуюся на единицу объема и измеряется в кг/м3. Плотность воды явля-ется функцией температуры, солености, давления, коллоидных взвесей.

Вода – единственное вещество, у которого в твердом состоянии плот-ность меньше, чем в жидком. При нормальном давлении плотность жидкой во-ды в диапазоне от 0 до 4°С ведет себя аномально, увеличиваясь с возрастанием

температуры от 999,87 до 1000 кг/м3. Поэтому при охлаждении от 4 до 0°С, т. е.

непосредственно перед замерзанием, охлаждающаяся вода не опускается вниз,

что сохраняет на глубинах в пресноводных водоемах положительную темпера-туру и предохраняет воду от замерзания, а водные организмы от гибели.

При последующем увеличении температуры выше 4 °С плотность воды,

как и у всех веществ, уменьшается. Плотность льда заметно меньше жидкой

воды, что также аномально. При температуре меньшей 0°С с уменьшением

температуры плотность падает и составляет 920 кг/м3 при температуре — 20°С.

Это приводит к тому, что лед, как вещество более легкое, чем вода всплывает и

экранизирует водную толщу, защищая ее от охлаждения. Влияние солености на

плотность также очень велико. Плотность морской воды может достигать 1025-1033 кг/м3. Морская вода при солености 35‰ и нормальном давлении имеет

при 0 и 20°С плотность 1028,17 и 1024,78 кг/м3 соответственно. Температура

замерзания воды при увеличении солености на каждые 10‰ уменьшается при-близительно на 0,54°С, поэтому вода замерзает при отрицательной температу-ре, составляющей, например, -1,9°С при солености 35‰.

6.

Теплоемкость и теплопроводность воды. Вязкость воды. Поверхностное натяжение.

Теплоемкость — это количество теплоты, поглощаемой телом при нагре-вании его на 1°С. Определяется она по формуле:

C = dQ/dt или C = Q/Δt,

где dQ – бесконечно малое количество теплоты, вызвавшее бесконечно

малое повышение температуры dt; Δt = t2  t1 – изменение температуры тела,

происходящее в результате подвода к нему количества теплоты Q; t1 и t2 – тем-пература тела до и после подвода к нему теплоты.

Характеристикой теплоемкости вещества принята удельная теплоемкость –

отношение теплоемкости тела к его массе:

c = C/m или c = Q/(m Δt).

Температуропроводность – физический параметр вещества и, в частно-сти, воды, способствующий передаче теплоты таким образом, что температура

в каждой точке стремится к соответствующему в данный момент установивше-муся состоянию. Характеристикой температуропроводности является коэффи-циент температуропроводности a = λ/(cρ), где λ – коэффициент теплопровод-ности. Коэффициент температуропроводности воды слабо зависит от темпера-туры: при температуре, равной 0 и 10°С, a соответственно равно 0,485·10-3 и

0,504·10-3 м2ч.

Поверхностное натяжение воды достаточно велико, поэтому образуется

мениск – капиллярные силы, благодаря которым растения способны брать воду

из почвы. Вторым следствием является то, что водяные капли обладают боль-шой ударной силой, и являются одной из причин возникновения эрозии.

О влиянии воды на теплопроводность монтажной пены

Разумеется, попадание в монтажную пену 1 миллиграмма воды вряд ли приведет к нарушению теплозащиты помещения. Однако определенное критическое значение влагонакопления для монтажной пены все же существует. Сколько оно составляет, мы найти в результатах исследований монтажных или межпанельных швов не смогли, поэтому была вероятность, что для существенного изменения теплотехники необходимо промочить пену таким количеством воды, которого она никогда не наберет в реальных условиях. Целью описанного далее исследования как раз и являлась проверка этого факта.

Так как проверка с помощью расчета сложна и потому вряд ли будет интересна широким массам Читателей, мы приведем описание эксперимента, который позволил ответить на поставленный вопрос.

Суть проведенного эксперимента состояла в том, что образец монтажной пены промочили путем моделирования самого простого способа, по которому вода может попасть в пену – путем дождевания. Далее, этот образец пены помещался над источником «холода» — над емкостью со льдом, охлажденным до температуры -20°С. Через 1 час выдержки над источником холода с помощью тепловизора определялась температура поверхности монтажной пены с обратной от источника холода стороны. Для того чтобы можно было сравнить значения температуры промокшей и сухой пены, половина образца во время дождевания была закрыта гидроизоляционной пленкой. С видео эксперимента Вы можете ознакомиться ниже.

Как можно увидеть, температура сухой и промоченной монтажной пены отличается на 12,5°С. Много ли это или мало? Оценить это можно следующим образом. Средняя температура на внутренней поверхности монтажной пены зимой составляет в районе 10…15°С. Уменьшение температуры на 12,5°С означает, что температура будет составлять -2,5…2,5°С, что практически гарантированно приведет к конденсации влаги на поверхности монтажной пены и в приграничной с внутренней поверхностью области. В свою очередь это приведет к смещению изотерм внутрь здания и дальнейшему промоканию, а затем и промерзанию монтажного шва.

Отметим, что падение температуры на 12,5 °С произошло при влагонакоплении, равном 16,8%. Подобные эксперименты, проведенные в разное время, показали, что в среднем падение температуры на 10°С (которую мы лично для себя определили как существенное) происходит при влагонакоплении, равном 13%. Такое количество воды может попасть в монтажную пену не только во время дождя, но даже за счет конденсации потока влажного воздуха, проходящего сквозь шов изнутри помещения наружу. Таким образом, мы однозначно определили, что даже небольшое влагонакопление в монтажной пене приводит к резкому снижению ее теплотехнических свойств.


* Коэффициент теплопроводности характеризует способность вещества проводить тепло. Например, если материал имеет низкий коэффициент теплопроводности, то он плохо пропускает сквозь себя тепло или холод. Поэтому материалы с низкой теплопроводностью (например, минеральная вата или пенобетон) используют для теплоизоляции.

Опыт теплопроводности вода и металлической ложки. Исследовательская работа «теплопроводность». Опыт с монетой


Внутренняя энергия, как и любой вид энергии, может быть передана от одних тел к другим. Внутренняя энергия может передаваться и от одной части тела к другой. Так, например, если один конец гвоздя нагреть в пламени, то другой его конец, находящийся в руке, постепенно нагреется и будет жечь руку. Явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их непосредственном контакте называется теплопроводностью.
Изучим это явление, проделав ряд опытов с твердыми телами, жидкостью и газом. Внесем в огонь конец деревянной палки. Он воспламенится. Другой конец палки, находящийся снаружи, будет холодным. Значит, дерево обладает плохой теплопроводностью. Поднесем к пламени спиртовки конец тонкой стеклянной палочки. Через некоторое время он нагреется, другой же конец останется холодным. Следовательно, и стекло имеет плохую теплопроводность. Если же мы будем нагревать в пламени конец металлического стержня, то очень скоро весь стержень сильно нагреется. Удержать его в руках мы уже не сможем. Значит, металлы хорошо проводят тепло, т. е. имеют большую теплопроводность. Наибольшей теплопроводностью обладают серебро и медь.
Рассмотрим передачу тепла от одной части твердого тела к другой на следующем опыте. Закрепим один конец толстой медной проволоки в штативе. К проволоке прикрепим воском несколько гвоздиков (рис. 6). При нагревании свободного конца проволоки в пламени спиртовки воск будет таять. Гвоздики начнут постепенно отваливаться. Сначала отпадут те, которые расположены ближе к пламени, затем по очереди все остальные. Выясним, как происходит передача энергии по проволоке. Скорость колебательного движения частиц металла увеличивается в той части проволоки, которая ближе расположена к пламени. Поскольку частицы постоянно взаимодействуют друг с другом, то увеличивается скорость движения соседних частиц. Начинает повышаться температура следующей части проволоки и т. д. Следует помнить, что при теплопроводности не происходит переноса вещества от одного конца тела к другому. Рассмотрим теперь теплопроводность жидкостей. Возьмем пробирку с водой и станем нагревать ее верхнюю часть. Вода у поверхности скоро закипит, а у дна пробирки за это время она только нагреется (рис. 7). Значит, у жидкостей теплопроводность невелика, за исключением ртути и расплавленных металлов. Это объясняется тем, что в жидкостях молекулы расположены на больших расстояниях друг от друга, чем в твердых телах. Исследуем теплопроводность газов.
Сухую пробирку наденем на палец и нагреем в пламени спиртовки донышком вверх (рис. 8). Палец при этом долго не почувствует тепла. Это связано с тем, что расстояние между молекулами газа еще больше, чем у жидкостей и твердых тел. Следовательно, теплопроводность у газов еще меньше. Итак, теплопроводность у различных веществ различна. Опыт, изображенный на рисунке 9, показывает, что теплопроводность у различных металлов неодинакова. Плохой теплопроводностью обладают шерсть, волосы, перья птиц, бумага, пробка и другие пористые тела. Это связано с тем, что между волокнами этих веществ содержится воздух. Самой низкой теплопроводностью обладает вакуум (освобожденное от воздуха пространство).

Объясняется это тем, что теплопроводность — это перенос энергии от одной части тела к другой, который происходит при взаимодействии молекул или других частиц. В пространстве, где нет частиц, теплопроводность осуществляться не может. Если возникает необходимость предохранить тело от охлаждения или нагревания, то применяют вещества с малой теплопроводностью. Так, для кастрюль, сковородок ручки изготавливают из пластмассы. Дома строят из бревен или кирпича, обладающих плохой теплопроводностью, а значит, предохраняют помещения от охлаждения.
Как понять сложные законы физики. 100 простых и увлекательных опытов для детей и их родителей Дмитриев Александр Станиславович

Теплопроводность

Для опыта нам потребуются: алюминиевая ложка или кусок толстой медной проволоки, деревянная ложка или обычный карандаш, чашка с кипятком.

Знаешь ли ты, мой уважаемый читатель, почему баню или сауну изнутри обшивают деревом? Более того, если дерево для лавки прибивают гвоздями, то шляпки гвоздей забивают так, чтобы они были ниже поверхности дерева. Зачем это делают?

Представим себе, что в парилке, где температура достигает 110 градусов (а иногда и выше!), один из гвоздей немного выскочил наружу и голой кожей вы коснулись металла. Немедленно возникнет ощущение боли, и небольшой ожог обеспечен. Но как же так, ведь температура поверхности дерева и температура поверхности гвоздя должны быть одинаковыми!

Действительно, температура поверхности и металла, и дерева в одном и том же помещении одинаковая. Дело в том, что температура – это еще не самое главное. Есть такое понятие, как теплопроводность.

Что это означает? Это означает то, как вещество, из которого состоит предмет, пропускает (проводит) через себя тепло. Тепло можно представить себе как невидимую воду, текущую через все предметы. Есть только одно правило, которому эта «вода» – или тепло – подчиняется. Тепло всегда перетекает от более теплого тела к более холодному.

Именно поэтому было время, когда ученые думали, что наш мир через много-много лет ожидает «тепловая смерть». Ведь если все теплые тела отдадут тепло более холодным, нагревая их, то настанет такой момент, когда все тела станут одинаковой температуры. И все процессы, все движение, все реакции (например, переваривание пищи в желудке) станут невозможными. Мир как бы будет остановлен. (На самом деле, во-первых, до этого еще так далеко, что и нам, и нашим прапрапрапрапраправнукам эта опасность не грозит. Во-вторых, ученые потом подумали получше и поняли, что вселенная может оказаться бесконечной и тогда «тепловая смерть» не наступит. )

Итак, разные тела проводят тепло по-разному. Очень хорошо проводят тепло металлы. Металлы для тепла – как широкие речки, по ним тепло быстро и далеко течет.

Если начать охлаждать (или нагревать) любую часть металлического предмета, то очень быстро тепло распространяется на весь предмет (или весь предмет охлаждается). Кстати, если металл охладить до невероятно низкой температуры, то у металла начинают проявляться просто фантастические свойства. Например, пущенный по металлу ток будет бежать вечно, никогда не ослабляясь. В обычных проводах ток потихонечку слабеет с расстоянием и через несколько тысяч километров может почти совсем исчезнуть. (Ток, как и тепло, лучше всего поначалу представлять в виде воды. Вода в реке быстрее течет у истока и медленнее – у устья.)

Другие материалы проводят тепло хуже и отдают тепло только с поверхности. Дерево, например, почти вообще не проводит тепло. Это уже не «речка», а плотина какая-то! Чем хуже проводит тепло материал, тем лучше им защищаться от холода (или жары). Например, обычный жир очень плохо проводит тепло (у него низкая теплопроводность, как сказали бы физики). Поэтому все теплокровные животные, живущие в холодных морях или на севере, такие жирные. Тюлень, белый медведь, каланы, морские львы и котики – посмотрите на них: жировой слой с его плохой теплопроводностью служит им скафандром, одеялом, укутывающим их с ног до головы. Проведем простой опыт. Для него нам понадобятся две ложки: деревянная и алюминиевая. Если у тебя не найдется в доме деревянной ложки, возьми деревянную палочку или обычный карандаш. Вместо алюминиевой ложки можно взять кусок толстой медной проволоки. Вскипяти чайник и налей кипятка в обычную чашку. Теперь возьми в одну руку деревянную ложку (карандаш), а в другую – алюминиевую (кусок проволоки) и опусти обе в кипяток. Некоторое время ты можешь размешивать кипяток и той и другой ложкой. Но скоро металл придется бросить – он сильно нагревается.

Теперь нам ясно, как отличаются вещества по теплопроводности. Ведь температура воды в чашке одна и та же, а тепло, бегущее по опущенным в воду предметам, передается по-разному. Еще можно представить, что если тепло – это невидимая жидкость, то металл – это удобный шланг, по которому жидкость бежит быстро. А дерево, пластмасса – это губка, которая, хоть и впитывает тепло, но медленно и отдает неохотно.

И нам становится ясно, почему в бане (сауне) гвозди забивают глубоко, чтобы не торчали шляпки наружу. Это все из-за теплопроводности!

Практический совет: никогда не дотрагивайся языком до железных предметов на морозе. Жидкость, которая содержится на языке, с такой скоростью отдает свое тепло металлу (ведь у металла хорошая теплопроводность!), что мгновенно превращается в лед, и язык прочно пристывает, примерзает к металлу. Но уж если такое произошло, надо чтобы кто-нибудь налил большую кружку теплой воды и лил на металл и язык. Когда металл в этом месте нагреется, лед растает и язык отлипнет от металла сам.

Вариант 1. Оборудование: Пробирка с водой и спиртовка.

Для демонстрации плохой теплопроводности жидкости в пробирку на ¾ объема наливают воды. Держа пробирку в руках под небольшим углом над пламенем спиртовки, нагревают воду у открытого конца (рис. 130). Показывают, что вода здесь быстро закипает, однако внизу большого нагрева не ощущается.

Рис. 130 Рис. 2.105 Рис. 131

Опыт 4. Теплопроводность газов

Вариант 1 . Оборудование: две пробирки, две пробки, два стержня, два шарика, спиртовка, штатив, подвес.

Плохую теплопроводность воздуха демонстрируют с помощью двух одинаковых пробирок, закрытых пробками, через которые пропущены короткие стержни. К концам стержней прикрепляют пластилином или парафином стальные шарики (рис. 131). Про­бирки над спиртовкой располагают так, чтобы в одной из них про­исходила конвекция, а в другой теплопроводность воздуха. Замечают, что в одной пробирке ша­рик быстро отпадает от стержня.

Вариант 2. См. рис. 2.105

Опыт 5. Конвекция жидкостей

Вариант 1. Оборудование: прибор для демонстрации конвекции жидкости, марганцовокислый калий, спиртовка, штатив.

Прибор, представляющий собой замкнутую стеклянную трубку (рис. 132), укрепляют в лапке штатива. (Лучше подвесить, чем зажимать трубку в нижней части, ибо в последнем случае больше вероятности разрушить стекло.) Через верхнее отверстие любого колена трубку наполняют водой так, чтобы по всему замкнутому пути внутри трубки не было пузырьков воздуха.

При выполнении опыта в ложечку с сеткой помещают кристаллики марганцовокислого калия и oпускают ее в колено (можно одновременно опустить две ложечки с кристалликами марганцовокислого калия в оба колена). Затем к нижней части этого колена подносят спиртовку и наблюдают конвекцию.


Рис. 132 Рис. 133

Опыт 6. Конвекция газов

Вариант 1. Оборудование: спиртовка, спички, бумажная змейка, металлическое острие.

Для демонстрации конвекции газа изготовляют бумажную змейку, которая вращается в потоке восходящего горячего воздуха, идущего от спиртовки или электроплитки (рис. 133). (При установке змейки на острие нельзя прокалывать бумагу. )

Опыт 7. Нагревание излучением

Вариант 1. Оборудование: теплоприемник, манометр открытый демонстрацион­ный, настольная лампа (или электроплитка).

Теплоприемник, соединенный трубкой с демонстрационным мано­метром (см. рис. 123), укрепляют в штативе напротив излучателя. В качестве излучающего тела можно взять электроплитку, сосуд с горячей водой и пр. К нему сбоку подносят теплоприемник темной стороной и наблюдают за показаниями манометра в тече­ние 1-2 мин.

Затем поворачивают теплоприемник блестящей по­верхностью к лампе, расположенной на том же расстоянии от теплоприемника, и в течение того же времени следят за показанием манометра. Делают вывод.

Во второй серии опытов накал лампы (или расстояние до излучателя) уменьшают и вновь наб­людают изменение показаний манометра в прежних условиях. Делают вывод.

Вариант 2. См. Рис. 2.99; 2.101.

Вопрос. В каком случае изменение показаний жидкостного манометра

происходит быстрее, если теплопередатчик и теплоприемник обращены друг к другу блестящими поверхностями или если они об­ращены друг к другу зачерненными поверхностями?



Рис. 123 Рис. 2.101 Рис. 2.99

Разделы: Физика

Целью работы является обобщение экспериментальных заданий, проведенных учащимися 8 – го класса в домашних условиях при изучении различных видов теплообмена.

Задачи:

  1. Изучить дополнительную литературу по теме «Виды теплообмена».
  2. Провести экспериментальные работы в домашних условиях.
  3. Проанализировать и обобщить результаты экспериментов. Соотнести свои результаты с выводами, предложенными в учебнике.
  4. Привести дополнительные примеры из жизни (не включая материалы из учебного материала).
  5. Разработать рекомендации «Полезные советы» с применением выводов темы «Виды теплообмена».

I. Эксперименты по теплопроводности.

  1. В стеклянный и алюминиевый стаканы одинаковой массы и одинаковой емкости одновременно налейте одинаковое количество горячей воды. Прикосновение рукой к стаканам покажет, что алюминиевый стакан прогревается быстрее, это происходит потому, что теплопроводность алюминия выше, чем теплопроводность стекла.
  2. Налейте чай в алюминиевую и фарфоровую кружки. Когда будем пить чай из алюминиевой кружки, то мы сильнее обожжем губы, чем из фарфоровой, так как, когда мы касаемся губами кружки и охлаждаем тем самым некоторый ее участок, большее количество теплоты от горячего чая передается губам через алюминиевую кружку, так как теплопроводность алюминия выше, чем у фарфора.
  3. На деревянный цилиндр или брусок накалываем ряд кнопок (можно их них изобразить какую-нибудь фигуру). Оборачиваем брусок или цилиндр одним слоем бумаги и помещаем в пламя свечи на непродолжительное время. Происходит неравномерное обугливание бумаги, меньше в тех местах, где бумага касается кнопок, из-за того, что теплопроводность металла выше, чем у дерева.
  4. Комнатный термометр заворачиваем в шубу и проверяем, меняются ли его показания через некоторое время. Это конечно не происходит, продемонстрировав этот эксперимент родителям, объясняем, почему же не греет шуба. (Шуба сама не может греть, так как сама не является источником энергии, она лишь является теплоизолятором, не давая зимой нам мёрзнуть, к тому же между телом человека и шубой находится воздушная прослойка).

Для того, чтобы лучше понять суть явления теплопроводности, нужно объяснить следующие явления:

а) почему металлические предметы кажутся холоднее, чем деревянные, при одной и той же температуре?

Ответ: Дерево имеет плохую теплопроводность, поэтому, когда мы прикасаемся к деревянному предмету, нагревается лишь небольшой участок тела под рукой. Металл же обладает хорошей теплопроводностью, поэтому при контакте с рукой нагревается гораздо больший участок. Это приводит к большему теплоотводу от руки и ее охлаждению.

б) почему ручки кранов и баков с горячей водой делают деревянными или пластмассовыми?

Ответ: дерево и пластмасса обладают плохой теплопроводностью.

в) обыкновенный или пористый кирпич обеспечивает лучшую теплоизоляцию здания?

Ответ: Пористый кирпич в своих порах содержит воздух, который обладает плохой теплопроводностью, поэтому он обеспечивает лучшую теплоизоляцию здания.

г) применяется ли воздух как строительный материал?

Ответ: Да, применяется, ведь пеноматериалы, пористый кирпич, стекловата содержат воздух, имеющий плохую теплопроводность.

е) в зависимости от того, какой объем занимают поры пенопласта, плотность его различна. Зависит ли теплопроводность пенопласта от его плотности?

Ответ: Чем меньше плотность пенопласта, тем больше пор, которые занимает воздух, обладающий плохой теплопроводностью. Следовательно, чем меньше плотность пенопласта, тем меньше его теплопроводность.

ж) зачем вставляют двойные рамы?

з) почему птицы чаще замерзают на лету?

Ответ: В мороз птицы сидят нахохлившись, что создает вокруг их тела воздушную оболочку. При полете воздух у тела птицы все время меняется, отнимая тепло.

II. Эксперименты по конвекции.

  1. Охлаждение кастрюли с горячей жидкостью проводилось двумя способами: 1 — кастрюля ставилась на лед и 2 — лед помещался на кастрюлю.
    Во втором случае охлаждение происходило быстрее. Объясняется это следующим. Когда мы кладем лед на кастрюлю, верхние слои охлаждаются и становятся тяжелее, в результате они опускаются вниз. На их место приходят более нагретые слои жидкости. Таким образом, в результате конвекции происходит охлаждение жидкости. Во втором случае конвекция не будет происходить, т.к. охлаждение будет происходить снизу, и холодные слои подняться вверх не могут, процесс охлаждения будет проходить медленно, перемешивание жидкости не происходит. Таким образом, мы можем предложить родителям охлаждать любые продукты сверху: класть их не на лед, а поверх льда, ведь они охлаждаются не столько льдом, сколько холодным воздухом, который опускается вниз.
  2. Определялась скорость естественного перемешивания воды в двух случаях: 1 — холодную воду наливают в горячую и 2 — горячую воду наливают в холодную. Для этого эксперимента необходим секундомер или часы с секундной стрелкой и термометр. Объемы холодной и горячей воды необходимо взять равными. Термометром контролируется установившаяся температура, а по секундомеру или часам — время. Скорость выравнивания температур будет выше когда будет наливать холодную воду в горячую, так как горячая вода будет подниматься вверх, а холодная — опускаться вниз. Таким образом, перемешивание будет происходить быстро и равномерно. Значит и температура выровняется быстрее.
  3. Зажженная свеча накрывается стеклянной цилиндрической трубкой, при этом пламя уменьшается и может погаснуть, т.к. горение происходит при наличии кислорода, а в данном опыте конвекционные явления происходить не могут, притока воздуха нет. Если трубку приподнять, то свеча загорит ярче. Если же трубку не поднимать, а опустить в нее бумажную перегородку, не доходящую до пламени, то оно увеличится. В этом случае вдоль бумаги будет опускаться холодный воздух, вытесняя нагретый, в котором кислорода мало, тем самым, увеличивая приток кислорода к пламени.
  4. В стихотворении А.С.Пушкина «Кавказ» есть такие строки: «Орел, с отдаленной поднявшись вершины, парит неподвижно со мной наравне». Явление, что крупные птицы могут парить в воздухе, держась на одной высоте, не взмахивая крыльями, объясняется тем, что нагретый у земли воздух поднимается на значительную высоту, эти теплые потоки и удерживают птицу с распростертыми крыльями в воздухе.

Кроме этих экспериментальных заданий были получены ответы на вопросы:

а) почему дует от плотно закрытого окна в холодное время?

Ответ: Стекло имеет более низкую температуру, чем температура в комнате. Воздух, находящийся вблизи стекла охлаждается и опускается вниз, как более плотный, затем нагревается у батареи и вновь перемещается по комнате. Это перемещение воздуха и ощущается вблизи окна.

б) где лучше предусмотреть расположение форточки?

Ответ: форточку лучше располагать в верхней части окна. Теплый воздух более легкий, он располагается в верхней части комнаты, ему на смену будет приходить более холодный воздух с улицы. При таком расположении форточки будет осуществляться более быстрое проветривание комнаты.

в) когда тяга в трубе лучше — зимой или летом?

Ответ: тяга будет лучше зимой, когда разница между температурой воздуха, нагретого в трубе и наружного — будет больше, тогда перепад давления вверху и внизу трубы будет существенней.

г) какую роль играет конвекция при нагревании воды в чайнике?

Ответ: нагретые слои воды, как более легкие, поднимаются вверх, уступая место холодным. Таким образом, за счет перемещения конвекционных потоков происходит нагрев всей воды в чайнике.

д) почему выше ламп накаливания чернеет абажур или потолок?

Ответ: От ламп накаливания поднимаются конвекционные потоки воздуха, увлекающие за собой частички пыли, которые затем оседают на абажуре или потолке.

е) почему листья осины колеблются даже в безветренную погоду?

Ответ: по сравнению с другими деревьями, у листьев осины длинные и тонкие черенки. Над землей имеются вертикальные конвекционные потоки даже в безветренную погоду. Благодаря своему строению, листья осины чувствительны к любым, даже незначительным колебаниям воздуха.

ж) можно ли с помощью вентилятора сохранить мороженое?

Ответ: Нет, нельзя, т. к. поток воздуха, идущий от вентилятора будет все время уносить холодный воздух, образующийся вокруг мороженого, тем самым, ускоряя процесс обмена воздуха, и мороженое будет таять быстрее.

з) какие природные явления происходят за счет конвекции?

Ответ: ветры, дующие в земной атмосфере; существование теплых и холодных морских течений, процессы горообразования.

III. Эксперименты по излучению.

  1. Берем стакан, имеющий грани. Грани стакана изнутри заклеиваем полосками белой и черной бумаги. В стакане устанавливаем свечку так, чтобы она стояла в центре стакана (отцентрировать можно с помощью кружков картона с отверстием в центре). К каждой полоске бумаги приклеиваем пластилином шляпки кнопок. Фитиль свечки должен немного не доходить до края стакана. После того, как свечка будет зажжена наблюдаем, что с черных полосок начнут отлетать кнопки. Опыт иллюстрирует, что белый цвет отражает падающие на него лучи, а черный их поглощает, поэтому черные грани и нагрелись быстрее и кнопки от них отклеились в первую очередь.

Для понимания этого явления были получены ответы на следующие вопросы:

а) почему снег в городе тает быстрее, чем за городом?

Ответ: снег в городе более грязный, поэтому он лучше поглощает энергию и тает

б) в каком из двух сосудов закипит быстрее вода в светлом или закопченном?

Ответ: В закопченном, т. к. эта поверхность будет лучше поглощать энергию.

в) почему колбу термоса делают зеркальной?

Ответ: чтобы исключить нагрев лучистой энергией.

IV. Полезные советы.

  1. Охлаждение продуктов происходит быстрее, если источник холода разместить вверху, а не внизу.
  2. Для быстрейшего охлаждения кофе или чая нужно наливать холодное молоко в горячий напиток.
  3. Оконные рамы нужно закрыть более плотно как изнутри, так и снаружи. Тогда потери тепла будут меньше.
  4. В сильный мороз под шубу лучше одеть не один толстый свитер, а «многослойную» одежду.
  5. Если нужно быстро растопить снег или лед, его необходимо посыпать темным порошком или золой.
  6. В жаркое время года лучше носить светлую одежду.
  7. Безопаснее использовать фарфоровые кружки, чем алюминиевые.

Заключение.

Явления, с которыми мы постоянно сталкиваемся в быту, изучались не только на уроке, но и дома, где учащиеся могли продемонстрировать их родителям. Эти эксперименты, вопросы помогли лучше усвоить тему «Виды теплопередачи». Анализ результатов позволил предложить «Полезные советы» Необходимо отметить, что все экспериментальные работы необходимо проводить очень аккуратно, с соблюдением техники безопасности.

Литература.

  1. А.А.Перышкин. Физика. учебник для 8 класса. Дрофа, М. 2004
  2. Кл. Э. Суорц. Необыкновенная физика обыкновенных явлений. Наука, М. 1986
  3. А.В. Аганов, Р.К. Сафиуллин, А.И. Скворцов, Д.А. Таюрский. Физика вокруг нас. «Дом педагогики», М. 1998
  4. Физика. Самостоятельные и контрольные работы по физике для 8 класса. «Илекса», М. 2006
  5. Ю.Г.Павленко. Начала физики. «Экзамен», М. 2005

Тема урока: Урок занимательной физики

по теме «тепловые явления»

Цели урока :

1. Обучающая: систематизировать знания учащихся по теме «Тепловые явления» и продемонстрировать учащимся занимательные эксперименты с помощью самодельного оборудования.

2. Воспитывающая:

3. Развивающая: развивать логику, четкость и краткость речи, физическую терминологию, навыки обобщения, общую эрудицию учащихся.

Оборудование:

Демонстрации:

План урока

    Организационный момент

    Постановка цели урока

    Актуализация знаний

    Демонстрация занимательных экспериментов и их объяснение на основе пройденного ранее материала

    Домашнее задание

    Итог урока

Ход урока

    Организационный момент

    Постановка цели урока

На протяжении нескольких уроков мы с вами рассматривали различные тепловые процессы и учились объяснять их на основе современных знаний по физике.

Сегодня на уроке мы с вами рассмотрим ряд занимательных экспериментов по этой теме и объясним наблюдаемое на основе имеющихся у нас знаний.

    Актуализация знаний

Но с начала давайте вспомним изученный ранее нами материал.

Вопросы:

    1. Какие явления называются тепловыми?

      Приведите примеры тепловых явлений?

      Что характеризует температура?

      Как связана температура тела со скоростью движения его молекул?

      Чем отличается движение молекул в газах, жидкостях и твердых телах?

    Демонстрация занимательных экспериментов

Физика вокруг нас! Мы встречаемся с нею повсюду. А какие опыты можно провести дома не используя дорогостоящие приборы и оборудование? Очень простые — занимательные…

Эксперимент №1

«Фокус для новогодней ночи»

Этот фокус лучше всего показывать в новогоднюю ночь в комнате, освещенной лишь елочной гирляндой. Фокусник берет со стола две свечи. Он соединяет их фитилями, произносит «магическое заклинание» — и вот… в месте контакта фитилей появляется дымок, а вслед за ним и огонь. Фокусник разводит свечи в стороны — они горят! В чем секрет фокуса?

Ответ: Кто увлекается химией, наверно, уже додумался, в чем секрет фокуса — в самовоспламеняющейся смеси. Перед демонстрацией фокуса, приготовьте реквизиты, для этого нужно посыпать фитиль одной из свеч, порошком перманганата калия (марганцовкой), а другой пропитать жидким глицерином. Помните, воспламенение происходит не сразу, требуется некоторое время. Будьте осторожны. Огонь-то настоящий.

Эксперимент №2

« КИПЯТИЛЬНИК»

Может ли кипеть вода при комнатной температуре?

Для ответа на этот вопрос проведём такой опыт: Наполнил одноразовый медицинский шприц, в котором отсутствовала игла, на 1/8 водой. Затем закроем пальцем отверстие и резко вытянем поршень до крайнего положения. Вода внутри шприца «закипела», оставаясь холодной. Почему «кипит» вода?

Ответ: Температура кипения зависит от давления. Чем меньше давление газа над поверхностью жидкости, тем ниже температура кипения этой жидкости.

Эксперимент №3

«Не может быть?»

Для опыта сварите вкрутую яйцо.
Очистите его от скорлупы. Возьмите листок бумаги размером
80 на 80 мм, сверните его гармошкой и подожгите. Затем опустите горящую бумагу в бутылку с широким горлом.
Через 1-2 сек горлышко накройте яйцом (см.рис) .Горение бумаги прекращается, и яйцо начинает втягиваться в графин. Объясните наблюдаемое явление.

Ответ: При горении бумаги воздух в нутрии бутылки нагрелся и расширился. Когда пламя потухло, воздух в бутылке охладился и соответственно, его давление уменьшилось, и атмосферное давление затолкнуло яйцо внутрь бутылки.

Замечание : Этот опыт можно сделать интереснее, если в горлышко бутылки вставить не до конца очищенный банан. Втягиваясь в бутылку, он одновременно и очистится

Эксперимент №4

«Ползущий стакан»

Возьмите чистое оконное стекло длиной около 30 — 40 см. Под один край стекла подложите два спичечных коробка, так, чтобы образовалась наклонная плоскость. Смочите водой край стакана из тонкого стекла и поставить вверх дном на стекло. Поднести к стенке стакана горящую свечу и стакан медленно поползет. Как это объяснить?

Ответ: Это объясняется тем, что при нагревании воздух внутри стакана расширяется и чуть приподнимает стакан. Вода мешает воздуху выйти из стакана наружу, в результате сила трения между стаканом и стеклом уменьшается и стакан ползет вниз.

Эксперимент №5

«Наблюдение испарения и конденсации»

Эксперимент №6

Пронаблюдайте конвекцию в холодной и горячей воде, используя в качестве красителя кристаллы марганцовки, каплю зеленки или любые другие красящие вещества. Сравните характер и скорость конвекции и сделайте выводы

Эксперимент №7

Интересно, что…

Самый длительный в истории научных исследований эксперимент проходит в одном из университетов Австралии. Первый декан физического факультета этого университета Т.Парнелл еще в 1927 г. расплавил немного битума, залил его в воронку с пробкой на конце, дал ему в течение трех лет охладиться и отстояться, а затем вынул пробку. С тех пор в среднем 1 раз в 9 лет из воронки падает капля смолы в подставленный внизу стакан. Последняя капля упала на Рождество в 1999 г. Полагают, что воронка опустеет не раньше, чем еще через 100 лет.

НАРОДНАЯ МУДРОСТЬ

Пословицы:

«Много снега — много хлеба» Почему?

Ответ: Снег, обладает плохой теплопроводностью, т.е. снег является «шубой» для земли, он сохраняет ее тепло. Шуба толстая, мороз не доберется до озимых, предохранит их от вымерзания.

«Без крышки самовар не кипит, без матери ребенок не резвиться». Почему самовар без крышки долго не закипает?

Ответ: При открытой крышке часть молекул, имеющих большую кинетическую энергию, будет улетать с поверхности воды, унося с собой энергию.

«Замерз — как на дне морском.» А почему на морском дне всегда холодно?

Ответ: Солнечные лучи не прогревают глубокие слои воды: тепловые, инфракрасные лучи — поглощаются почти все водной поверхностью. Кроме того, вода имеет сравнительно низкую теплопроводность.

Задачи – загадки

Зимой — греет, весной — тлеет, летом — умирает, осенью — летает. (Снег.)

Мир обогревает, усталости не знает. (Солнце.)

Как энергия Солнца достигает Земли?

Ответ. Излучением. (Электромагнитными волнами)

Висит груша — нельзя скушать; не бойся — тронь, хоть внутри и огонь. (Электрическая лампочка. )

Без ног бежит, без огня горит. (Электричество.)

Как Солнце горит, быстрее ветра летит, дорога в воздухе лежит, по силе себе равных не имеет. (Молния.)

Кто не учившись, говорит на всех языках? (Эхо.)

По морю идет, идет, а до берега дойдет — тут и пропадет. (Волна.)

Вокруг носа вьется, а в руки не дается. (Запах.)

Без крыльев, без тела за тысячу верст прилетела. (Радиоволна. )

Как можно пронести воду в решете? (Заморозив воду.)

    Домашнее задание

Приготовьте в морозилке лед. Сложите его в целлофановый пакет и оберните пуховым платком или обложите ватой. Можно дополнительно завернуть в шубу. Оставьте этот сверток на 5–7 ч, затем проверьте сохранность льда. Объясните наблюдаемое состояние.

Предложите дома способ сохранения замороженных продуктов при размораживании холодильника.

    Итог урока

Сегодня на уроке мы с вами вспомнили, что такое тепловые явления, пронаблюдали примеры тепловых явлений на опытах, поставленных с помощью элементарного, подручного оборудования и объяснили эти явления.

Подведение итогов урока, выставление оценок.

Теплопроводность и теплоемкость жидкостей —

Для поглощения и удаления из гидросистемы выделяющегося при ее работе тепла и его рассеивания необходимо, чтобы жидкости обладали высокими показателями теплоемкости и теплопроводности.

Теплопроводность жидкостей — это количество тепла в калориях, которое проходит в 1 сек через 1 см2 слоя толщиной 1 см. Теплопроводность обычно выражается в ккал/см∙ ч град или кал/см, сек. град.

Значение коэффициента теплопроводности определяется

ккал/см ∙сек ∙град,

где а — коэффициент, зависящий от марки жидкости; для минеральных масел а ≈ 0,00027 ÷ 0,0003

Минеральные масла являются плохим проводником тепла и уступают воде и жидкостям на водной основе, теплопроводность которых примерно в 5 раз выше теплопроводности масел.

Для большинства нефтепродуктов теплопроводность составляет примерно (4,0 — 4,8) -10-6 ккал/см- сек- град.

Значения коэффициентов теплопроводности в ккал/см • сек • град (10-4) некоторых жидкостей приведены следующие

Вода при температуре в °С:

100С ………….14,7 Минеральное масло при 150 С ………3,24

500С …………..15,4 Касторовое масло при 200 С…….……4,32

800С ……….…16,0 Глицерин при 200 С ………..…………6,8

Коэффициент теплопроводности воздуха при 0° С составляет 1,44 ∙10-6 ккал/см -сек. град

Теплопроводность жидкостей уменьшается с повышением температуры. В частности зависимость коэффициента теплопроводности минеральных масел от температуры имеет вид

ккал/см ∙ сек ∙ град

Для индустриальных масел а = 3-10-4; b = 1,25∙10-2; для машинных масел а — 2,7-10-4; b = 10-2.

Не менее важным параметром является теплоемкость жидкостей [количество тепла, необходимое для повышения температуры единицы веса на 1° С (ккал/кг)], от значения которой зависит интенсивность повышения температуры.

Коэффициент теплоемкости нефтепродуктов определяется по приближенному эмпирическому выражению

ккал/кг

где t – температура масла в 0С;

γ15 – объемный вес масла при 150 С в кг/л

Для распространенных жидкостей средняя удельная теплоемкость в ккал/кг ∙ град в интервале температур от 0 до 1000 С:

Минеральное масло……………………………0,45 – 0,50

Керосин………………….…………………………0,50

Глицерин….………………………………………..0,57

Жидкость на водной основе (при t = 250 С)………0,72

Для рабочих жидкостей минерального происхождения средняя удельная теплоемкость при температуре от 0 до 1000 С может быть принята равной 0,45 ккал/кг ∙ град.

У большинства реальных жидкостей и газов удельная теплоемкость повышается с увеличением температуры, причем эти изменения для газов существенны, а для жидкостей незначительны, поскольку модуль объемной упругости велик.

Теплоемкость смеси минеральных масел может быть приближенно определена по выражению

где Сс – теплоемкость смеси;

С1 и С2 – теплоемкость отдельных компонентов смеси;

m 1 и m2 – весовые количества компонентов.

2.3.18. Характеристики масел, применяемых в гидросистемах, представлены в таблицах 2, 3.

Таблица 2

Марка масла и ГОСТ

Вязкость при 500С

Температура в 0С

Пределы рабочих температур в 0С

Объемный вес в кГ/м3

в ccm

в 0Е

застывания

вспышки

Индустриальное 12 (веретенное 2), ГОСТ 1707-51. .

Индустриальное 20 (веретенное 3), ГОСТ 1707-51..

Индустриальное 20 (веретенное 3), ГОСТ 1707-51..

МС-22, ГОСТ 1013-49

МС-20 ГОСТ 1013-49

Индустриальное 45 (машинное С), ГОСТ 1707-51…….

Индустриальное 50 (машинное СУ), ГОСТ 1707-51…….

Турбинное 22 (турбинное Л) ГОСТ 32-53…..

Турбинное 30 (турбинное УТ) ГОСТ 32-53…..

Турбинное 46 (турбинное Т) ГОСТ 32-53…..

Турбинное 57  ГОСТ 32-53…..

Велосит Л, ГОСТ 1840-51…

 

Вазелиновое Т, ГОСТ 1642-50…

 

Веретенное АУ, ГОСТ 1642-50

 

Трансформаторное, ГОСТ 982-56……….

 

МК-8, ГОСТ 6457-66

 

 

 

10-14

 

 

 

17-23

 

 

 

27-33

 

22

 

20

 

 

 

38-52

 

 

 

42-58

 

 

20-23

 

 

28-32

 

 

44-48

 

55-59

 

4-5,1

 

 

5,1-8,5

 

12-14

 

 

 

9,6

 

 

8,6

 

 

 

1,86-2,26

 

 

 

2,6-3,31

 

 

 

3,81-4,59

 

3,1

 

2,8

 

 

 

5,74-7,07

 

 

 

5,76-7,76

 

 

2,9-3,2

 

 

3,9-4,4

 

 

6,0-6,5

 

7,5-7,9

 

1,3-1,4

 

 

1,4-1,72

 

 

2,05-2,26

 

 

 

1,8

 

 

 

 

 

-30

 

 

 

-20

 

 

 

-15

 

-14

 

-18

 

 

 

-10

 

 

 

-20

 

 

-15

 

 

-10

 

 

-10

 

 

 

-25

 

 

-20

 

 

-45

 

 

 

-45

 

 

-55

 

 

 

165

 

 

 

170

 

 

 

180

 

230

 

225

 

 

 

190

 

 

 

200

 

 

180

 

 

180

 

 

195

 

195

 

112

 

 

125

 

 

163

 

 

 

135

 

 

135

 

 

 

-30÷ +40

 

 

 

0-90

 

 

 

10-50

 

 

 

 

 

10-60

 

 

 

10-70

 

 

5-50

 

 

10-50

 

 

10-50

 

10-70

 

От -10 до +30

 

 

 

От -40 до +60

 

 

От -30 до +90

 

 

 

 

876-891

 

 

 

881-901

 

 

 

886-916

 

905

 

895

 

 

 

890-930

 

 

 

890-930

 

 

901

 

 

901

 

 

920

 

930

 

 

 

860-890

 

 

888-896

 

 

 

886

 

 

885

Таблица 3

Марка масла

Кинематическая вязкость в ccm

Температура масла в 0С

Предел рабочих температур в 0С

при +50 0С

при -50 0С

застывания

вспышки

МВП, ГОСТ 1805-51

6,3-8,5

23466

-60

120

От – 40 до + 60

АМГ-10, ГОСТ 6794-53

10

1250

-70

92

От – 60 до + 100

К морозостойким относится также масло ЦИАТИМ-1М (ТУ 327 – 50), получаемое очисткой низкозастывающей узкой дистиллярной фракции, выкипающей в пределах 320 – 340 0С с присадками. Ниже приведена характеристика этого масла.

Вязкость в ccm при температуре в 0С:

+ 50……………………………………………………..6,3

– 40………………………………………………………1900

Температура в 0С:

застывания……………………………………….Не выше – 60

кипения:

начало………………………………………………..300

конец…………………………………………………340

вспышки в открытом тигле…………………….Не ниже 130

Теплопроводность влажного воздуха

В серии Tech Data по теплопроводности газы, особенно воздух, были предметом нескольких статей. До сих пор было рассмотрено влияние двух важных параметров: температуры и давления. Однако люди регулярно спрашивают: «Что такое влияние влажности?» И мой стандартный ответ всегда был: «Не о чем беспокоиться».

Некоторое время назад один из моих коллег (Нелис Мис, Philips Lighting) подошел ко мне с тем же вопросом, и я отправил ему старый график, подтверждающий более или менее мой стандартный ответ.Однако он не был полностью удовлетворен и нашел программу, которая могла создавать желаемые графики 1 . Программное обеспечение использует кинетическую теорию, описывающую смесь двух газов; в данном случае атмосферный воздух и водяной пар. На рисунке 1 показаны некоторые интересные результаты.

Рис. 1. С увеличением влажности уменьшается теплопроводность.

Довольно удивили странные формы кривых. С увеличением влажности теплопроводность уменьшается, а — вопреки тому, что я ожидал.Здесь играют роль три эффекта: теплопроводность сухого воздуха, теплопроводность водяного пара и влажность воздуха. Оказывается, теплопроводность водяного пара на ниже, чем на , чем у воздуха.

Объяснение дает теория твердых сфер газов, утверждающая, что теплопроводность пропорциональна удельной теплоемкости (c v ) и обратно пропорциональна квадрату диаметра (d) молекулы. Хотя водяной пар имеет более высокое значение c v , чем сухой воздух, d несколько больше, что приводит к несколько меньшей теплопроводности при той же температуре (при комнатной температуре: 0. 018 по сравнению с 0,025 Вт / м · К).

С повышением температуры увеличивается мольная доля водяного пара, а также теплопроводность сухого воздуха. Три эффекта создают странные формы. К счастью для меня, мой стандартный ответ по-прежнему остается в силе: беспокоиться не о чем, кроме случаев, когда вы стремитесь к максимальной точности и все другие источники неопределенности рассматриваются одновременно.

1 @Air from Techware

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности.Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались.Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie.Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файле cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались.Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie.Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файле cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Теплопроводность и коэффициент диффузии | от Lucid Learning

Что такое теплопроводность?

Когда система нагревается, она накапливает часть своей тепловой энергии и передает оставшуюся тепловую энергию какой-либо другой системе.Способность системы передавать тепловую энергию называется теплопроводностью системы. По сути, это свойство транспорта системы.

Теплопроводность обозначается k. Единицей теплопроводности, как мы видели ранее, является Вт / м * К.

Что регулирует проводимость в твердых телах, жидкостях и газах?

Прежде чем анализировать теплопроводность для различных фаз, давайте рассмотрим явления, которые определяют теплопроводность через твердые тела, жидкости и газы.

В твердых телах тепло может передаваться через два механизма. Первый — это колебания решетки, а второй — поток свободных электронов. Повышенные колебания решетки способствуют передаче тепловой энергии через среду. Поток свободных электронов увеличивает электропроводность. Это также помогает в процессе распространения тепловой энергии через среду.

В жидкостях и газах теплопроводность происходит в основном за счет двух механизмов. Во-первых, это столкновение между атомами, молекулами или ионами, а во-вторых, молекулярная диффузия.По мере увеличения числа столкновений увеличивается обмен энергией между молекулами. Это помогает в транспортировке тепловой энергии через среду. Молекулярная диффузия — это случайное движение молекул в среде. По мере того, как беспорядочное движение молекул увеличивается, оно препятствует передаче тепловой энергии в определенном направлении.

От каких факторов зависит теплопроводность металлов, неметаллов и сплавов?

Как мы видели выше, теплопроводность через твердые тела зависит от двух эффектов, а именно колебаний решетки и потока свободных электронов. Теплопроводность достигается добавлением решетки и электронных компонентов.

где,

= теплопроводность из-за колебаний решетки

= теплопроводность из-за электронного эффекта

В чистых металлах электронный эффект играет доминирующую роль. Таким образом, они имеют относительно более высокие значения теплопроводности. Для чистых металлов k ~ ke.

В неметаллах влияние колебаний решетки играет доминирующую роль. Неметаллы обычно имеют высокое электрическое сопротивление, которое препятствует прохождению электронов.Следовательно, для неметаллов k ~ kl.

Решеточная составляющая теплопроводности сильно зависит от того, как расположены молекулы. Например, древесина, которая представляет собой аморфное твердое тело (молекулы расположены очень беспорядочно), имеет относительно более низкие значения теплопроводности и действует как теплоизолятор. Теперь рассмотрим алмаз. Это высокоупорядоченное кристаллическое твердое вещество. Таким образом, он имеет самую высокую теплопроводность при комнатной температуре. Оксид бериллия (BeO), также не являющийся металлом, имеет относительно более высокую теплопроводность из-за своей кристалличности.

Металлы являются хорошими проводниками электричества и тепла, поскольку они имеют свободные электроны, а также колебания решетки. С другой стороны, неметаллы не имеют свободных электронов, что означает, что они являются электрически непроводящими материалами. И вообще неметаллы, такие как дерево, не являются теплопроводными материалами. Однако неметаллы, такие как алмаз и оксид бериллия, являются хорошими проводниками тепла. В результате такие материалы находят широкое применение в электронной промышленности. Например. алмазные радиаторы, используемые для охлаждения электронных компонентов.

Чистые сплавы обладают высокой теплопроводностью. Можно было бы ожидать, что сплав из двух металлов с теплопроводностью k1 и k2 будет иметь проводимость k между k1 и k2. Удивительно, но это не так. Теплопроводность сплава двух металлов обычно намного ниже. Например, теплопроводность меди и алюминия составляет 401 Вт / м ° C и 237 Вт / м ° C соответственно.

От каких факторов зависит теплопроводность жидкостей и газов?

В газах преобладающую роль играет эффект столкновения молекул.Молекулярная диффузия, которая представляет случайность в среде, играет второстепенную роль. Увеличение числа столкновений молекул увеличивает обмен энергией между молекулами. Это увеличивает теплопроводность газов.

В жидкостях молекулы более плотно упакованы, чем в газах. Следовательно, теплопроводность жидкостей в основном зависит от эффекта молекулярной диффузии, то есть от беспорядочного движения молекул. Как мы видели ранее, увеличивающееся беспорядочное движение молекул препятствует прохождению тепла через жидкости.

Сравнение теплопроводности твердых тел, жидкостей и газов

Как теплопроводность зависит от температуры?

В случае чистых металлов и сплавов теплопроводность в основном зависит от электронного эффекта. С повышением температуры увеличивается как количество свободных электронов, так и колебания решетки. Таким образом, ожидается, что теплопроводность металла увеличится. Однако повышенные колебания решетки препятствуют потоку свободных электронов через среду.Комбинированный эффект этого явления в большинстве случаев приводит к снижению теплопроводности металлов и сплавов с повышением температуры. Из этого правила есть исключения. Для железа теплопроводность сначала уменьшается, а затем немного увеличивается с повышением температуры. Для платины теплопроводность увеличивается с повышением температуры.

В газах столкновения молекул усиливаются с повышением температуры. Таким образом, теплопроводность газа увеличивается с повышением температуры.

В жидкостях, как мы видели ранее, теплопроводность в основном зависит от эффекта молекулярной диффузии. С повышением температуры увеличивается хаотичность молекулярных движений. Это препятствует передаче тепла через жидкости. Таким образом, теплопроводность жидкостей уменьшается с повышением температуры. Однако есть одно исключение — чистая вода. В случае чистой воды теплопроводность сначала увеличивается с повышением температуры, а затем начинает уменьшаться.

(Источник: http: // www1.lsbu.ac.uk/water/thermodynamic_anomalies.html)

Как теплопроводность зависит от давления?

Поскольку большинство твердых тел и жидкостей по своей природе несжимаемы, теплопроводность не зависит от давления.

В случае газов кинетическая теория газов предсказывает, а эксперименты подтверждают, что теплопроводность газов пропорциональна квадратному корню из температуры T и обратно пропорциональна квадратному корню из молярной массы M. проводимость газов не зависит от давления в широком диапазоне давлений, встречающихся на практике.

Что такое температуропроводность?

Когда система нагревается, она накапливает часть тепловой энергии и передает оставшуюся тепловую энергию какой-либо другой системе. Как мы видели, способность материала передавать тепловую энергию называется теплопроводностью. Способность материала аккумулировать тепло называется теплоемкостью материала. Теплоемкость материала представлена ​​Cp.

Температуропроводность показывает, насколько быстро тепло распространяется через материал.Он определяется как

. Обратите внимание, что теплопроводность показывает, насколько хорошо материал проводит тепло, а теплоемкость Cp представляет, сколько энергии материал хранит на единицу объема. Следовательно, коэффициент температуропроводности материала можно рассматривать как отношение тепла, проводимого через материал, к теплу, накопленному на единицу объема.

Как это связано с теплопроводностью?

Материал с более высокой теплопроводностью или более низкой теплоемкостью будет иметь большой коэффициент температуропроводности.Чем больше коэффициент температуропроводности, тем быстрее распространяется тепло в среду. Небольшое значение коэффициента температуропроводности означает, что тепло в основном поглощается материалом, а небольшое количество тепла отводится дальше.

Проводимость | Физика

Цели обучения

К концу этого раздела вы сможете:

  • Рассчитать теплопроводность.
  • Наблюдать за теплопроводностью при столкновении.
  • Изучение теплопроводности обычных веществ.

Рисунок 1. Изоляция используется для ограничения теплопроводности изнутри наружу (зимой) и снаружи внутрь (летом). (кредит: Джайлз Дуглас)

Вам холодно в ногах, когда вы идете босиком по ковру в гостиной в холодном доме, а затем ступаете на плиточный пол кухни. Этот результат интригует, так как ковер и кафельный пол имеют одинаковую температуру. Различные ощущения, которые вы испытываете, объясняются разной скоростью теплопередачи: потери тепла в течение одного и того же промежутка времени больше для кожи, контактирующей с плиткой, чем с ковром, поэтому перепад температуры больше на плитке.

Некоторые материалы проводят тепловую энергию быстрее, чем другие. В целом, хорошие проводники электричества (металлы, такие как медь, алюминий, золото и серебро) также являются хорошими проводниками тепла, тогда как изоляторы электричества (дерево, пластик и резина) являются плохими проводниками тепла. На рисунке 2 показаны молекулы в двух телах при разных температурах. (Средняя) кинетическая энергия молекулы в горячем теле выше, чем в более холодном теле. Если две молекулы сталкиваются, происходит передача энергии от горячей молекулы к холодной.Кумулятивный эффект от всех столкновений приводит к чистому потоку тепла от горячего тела к более холодному телу. Таким образом, тепловой поток зависит от разности температур Δ Τ = Τ горячий T холодный . Таким образом, вы получите более сильный ожог от кипятка, чем от горячей воды из-под крана. И наоборот, если температуры одинаковы, чистая скорость теплопередачи падает до нуля и достигается равновесие. Благодаря тому, что количество столкновений увеличивается с увеличением площади, теплопроводность зависит от площади поперечного сечения.Если прикоснуться ладонью к холодной стене, рука остынет быстрее, чем при прикосновении к ней кончиком пальца.

Рис. 2. Молекулы в двух телах при разных температурах имеют разные средние кинетические энергии. Столкновения, происходящие на контактной поверхности, имеют тенденцию передавать энергию из высокотемпературных областей в низкотемпературные области. На этом рисунке молекула в области более низких температур (правая сторона) имеет низкую энергию перед столкновением, но ее энергия увеличивается после столкновения с контактной поверхностью.Напротив, молекула в области более высоких температур (слева) имеет высокую энергию до столкновения, но ее энергия уменьшается после столкновения с контактной поверхностью.

Третий фактор в механизме теплопроводности — это толщина материала, через который передается тепло. На рисунке ниже показана плита из материала с разными температурами с каждой стороны. Предположим, что T 2 больше, чем T 1 , так что тепло передается слева направо.Передача тепла с левой стороны на правую осуществляется серией столкновений молекул. Чем толще материал, тем больше времени требуется для передачи того же количества тепла. Эта модель объясняет, почему толстая одежда зимой теплее, чем тонкая, и почему арктические млекопитающие защищаются толстым салом.

Рис. 3. Теплопроводность происходит через любой материал, представленный здесь прямоугольной полосой, будь то оконное стекло или моржовый жир. Температура материала составляет T 2 слева и T 1 справа, где T 2 больше, чем T 1 .Скорость теплопередачи за счет теплопроводности прямо пропорциональна площади поверхности A, разности температур T 2 T 1 и проводимости вещества k . Скорость теплопередачи обратно пропорциональна толщине d .

Наконец, скорость теплопередачи зависит от свойств материала, описываемых коэффициентом теплопроводности. Все четыре фактора включены в простое уравнение, выведенное из экспериментов и подтвержденное экспериментами.Скорость кондуктивной теплопередачи через пластину материала, такую ​​как та, что на Рисунке 3, задается как

.

[латекс] \ displaystyle \ frac {Q} {t} = \ frac {kA \ left (T_2-T_1 \ right)} {d} \\ [/ latex],

, где [латекс] \ frac {Q} {t} \\ [/ latex] — скорость теплопередачи в ваттах или килокалориях в секунду, k — теплопроводность материала, A и d — его площадь поверхности и толщина, как показано на рисунке 3, а ( T 2 T 1 ) — разность температур на плите.В таблице 1 приведены типичные значения теплопроводности.

Пример 1. Расчет теплопроводности: скорость теплопроводности через ледяной ящик

Ледяной ящик из пенополистирола имеет общую площадь 0,950 м 2 и стенки со средней толщиной 2,50 см. В коробке есть лед, вода и напитки в банках с температурой 0 ° C. Внутренняя часть ящика охлаждается за счет таяния льда. Сколько льда тает за сутки, если хранить ледяной ящик в багажнике автомобиля при температуре 35,0ºC?

Стратегия

Этот вопрос включает как тепло для фазового перехода (таяние льда), так и передачу тепла за счет теплопроводности. {\ circ} \ text {C}; \\ t & = & 1 \ text {day} = 24 \ text {hours} = 86 400 \ text {s}. \ end {array} \\ [/ latex]

Определите неизвестные. Нам нужно найти массу льда м . Нам также нужно будет вычислить чистое тепло, передаваемое для плавления льда, Q . Определите, какие уравнения использовать. Скорость теплопередачи за счет теплопроводности определяется по формуле

.

[латекс] \ displaystyle \ frac {Q} {t} = \ frac {kA \ left (T_2-T_1 \ right)} {d} \\ [/ latex]

Тепло используется для плавления льда: Q мл f .{\ circ} \ text {C} \ right)} {0,0250 \ text {m}} = 13,3 \ text {J / s} \\ [/ latex]

Умножьте скорость теплопередачи на время (1 день = 86 400 с): Q = [латекс] \ left (\ frac {Q} {t} \ right) t \\ [/ latex] = ( 13,3 Дж / с) (86400 с) = 1,15 × 10 6 Дж

Установите равным теплу, передаваемому для растапливания льда: Q = мл f . Решим относительно массы м :

[латекс] \ displaystyle {m} = \ frac {Q} {L _ {\ text {f}}} = \ frac {1.3 \ text {Дж / кг}} = 3,44 \ text {кг} \\ [/ latex]

Обсуждение

Результат 3,44 кг, или около 7,6 фунта, кажется примерно правильным, если судить по опыту. Вы можете рассчитывать на использование мешка льда весом около 4 кг (7–10 фунтов) в день. Если вы добавляете горячую пищу или напитки, потребуется немного льда.

Проверка проводимости в таблице 1 показывает, что пенополистирол — очень плохой проводник и, следовательно, хороший изолятор. Среди других хороших изоляторов — стекловолокно, шерсть и перья из гусиного пуха. Как и пенополистирол, все они включают в себя множество маленьких карманов с воздухом, благодаря низкой теплопроводности воздуха.

Таблица 1. Теплопроводность обычных веществ
Вещество Теплопроводность k (Дж / с⋅м⋅ºC)
Серебро 420
Медь 390
Золото 318
Алюминий 220
Стальной чугун 80
Сталь (нержавеющая) 14
Лед 2. 2
Стекло (среднее) 0,84
Бетонный кирпич 0,84
Вода 0,6
Жировая ткань (без крови) 0,2
Асбест 0,16
Гипсокартон 0,16
Дерево 0,08–0,16
Снег (сухой) 0,10
Пробка 0.042
Стекловата 0,042
Шерсть 0,04
Пуховые перья 0,025
Воздух 0,023
Пенополистирол 0,010

Рис. 4. Стекловолокно используется для изоляции стен и потолков, чтобы предотвратить теплопередачу между внутренней частью здания и внешней средой.

Комбинацией материала и толщины часто манипулируют для создания хороших изоляторов — чем меньше проводимость k и чем больше толщина d , тем лучше. Соотношение [латекс] \ гидроразрыва {d} {k} \\ [/ латекс], таким образом, будет большим для хорошего изолятора. Отношение [латекс] \ frac {d} {k} \\ [/ latex] называется коэффициентом R . Скорость кондуктивной теплопередачи обратно пропорциональна R . Чем больше значение R , тем лучше изоляция. R Коэффициент чаще всего указывается для бытовой теплоизоляции, холодильников и т.п. — к сожалению, он все еще выражается в неметрических единицах футов 2 · ° F · ч / британских тепловых единиц, хотя единицы обычно не указываются (1 британский тепловая единица [BTU] — это количество энергии, необходимое для изменения температуры на 1.0 фунтов воды при температуре 1,0 ° F). Пара типичных значений: коэффициент R, , равный 11, для стекловолоконных войлоков (кусков) изоляции толщиной 3,5 дюйма и коэффициент R, , равный 19, для стекловолоконных войлоков толщиной, так и 6,5 дюймов. Стены обычно утепляются 3,5-дюймовыми ватными покрытиями, а потолки — 6,5-дюймовыми. В холодном климате для потолков и стен можно использовать более толстые войлоки.

Обратите внимание, что в таблице 1 лучшие теплопроводники — серебро, медь, золото и алюминий — также являются лучшими электрическими проводниками, что опять же связано с плотностью свободных электронов в них.Кухонная утварь обычно изготавливается из хороших проводников.

Пример 2. Расчет разницы температур, поддерживаемой теплопередачей: теплопроводность через алюминиевую сковороду

Вода кипит в алюминиевой кастрюле, поставленной на электрический элемент на плите. Дно кастрюли имеет толщину 0,800 см и диаметр 14,0 см. Кипящая вода испаряется со скоростью 1,00 г / с. Какая разница температур на дне сковороды?

Стратегия

Проводимость через алюминий является здесь основным методом теплопередачи, поэтому мы используем уравнение для скорости теплопередачи и решаем разницу температур .

[латекс] \ displaystyle {T} _2-T_1 = \ frac {Q} {t} \ left (\ frac {d} {kA} \ right) \\ [/ latex]

Решение

Определите известные значения и преобразуйте их в единицы СИ. Толщина поддона d = 0,900 см = 8,0 × 10 −3 м площадь поддона A = π (0,14 / 2) 2 м 2 = 1,54 × 10 −2 м 2 , а теплопроводность k = 220 Дж / с ⋅ м ⋅ ° C.

Рассчитайте необходимую теплоту испарения 1 г воды: Q = мл v = (1.{\ circ} \ text {C} \\ [/ latex]

Обсуждение

Значение теплопередачи [латекс] \ frac {Q} {t} \ [/ latex] = 2,26 кВт или 2256 Дж / с типично для электрической плиты. Это значение дает очень небольшую разницу температур между плитой и сковородой. Учтите, что конфорка печи раскалилась докрасна, а температура внутри сковороды почти 100ºC из-за контакта с кипящей водой. Этот контакт эффективно охлаждает дно сковороды, несмотря на его близость к очень горячей конфорке плиты.Алюминий настолько хороший проводник, что достаточно лишь этой небольшой разницы температур для передачи тепла в сковороду 2,26 кВт.

Проводимость вызывается случайным движением атомов и молекул. По сути, это неэффективный механизм переноса тепла на макроскопические расстояния и короткие временные расстояния. Возьмем, к примеру, температуру на Земле, которая была бы невыносимо холодной ночью и чрезвычайно высокой днем, если бы перенос тепла в атмосфере происходил только за счет теплопроводности.В другом примере автомобильные двигатели будут перегреваться, если не будет более эффективного способа отвода избыточного тепла от поршней.

Проверьте свое понимание

Как изменяется скорость теплопередачи за счет теплопроводности, когда все пространственные размеры удваиваются?

Решение

Поскольку площадь является произведением двух пространственных измерений, она увеличивается в четыре раза, когда каждое измерение удваивается ( A final = (2 d ) 2 = 4 d 2 = 4 А начальный ).А расстояние просто удваивается. Поскольку разница температур и коэффициент теплопроводности не зависят от пространственных размеров, скорость теплопередачи за счет теплопроводности увеличивается в четыре раза, деленные на два или два:

[латекс] \ left (\ frac {Q} {t} \ right) _ {\ text {final}} = \ frac {kA _ {\ text {final}} \ left (T_2-T_1 \ right)} {d_ {\ text {final}}} = \ frac {k \ left (4A _ {\ text {initial}} \ right) \ left (T_2-T_1 \ right)} {2d _ {\ text {initial}}} = 2 \ frac {kA _ {\ text {initial}} \ left (T_2-T_1 \ right)} {d _ {\ text {initial}}} = 2 \ left (\ frac {Q} {t} \ right) _ {\ text {initial}} \\ [/ latex]

Сводка раздела

  • Теплопроводность — это передача тепла между двумя объектами, находящимися в непосредственном контакте друг с другом.
  • Скорость теплопередачи [латекс] \ frac {Q} {t} \\ [/ latex] (энергия в единицу времени) пропорциональна разнице температур T 2 T 1 и площадь контакта A и обратно пропорциональна расстоянию d между объектами: [latex] \ frac {Q} {t} = \ frac {\ text {kA} \ left ({T} _ {2} — {T} _ {1} \ right)} {d} \\ [/ latex].

Концептуальные вопросы

  1. Некоторые электроплиты имеют плоскую керамическую поверхность со скрытыми нагревательными элементами.Кастрюля, поставленная над нагревательным элементом, будет нагрета, при этом безопасно прикасаться к поверхности всего на расстоянии нескольких сантиметров. Почему керамика с проводимостью меньше, чем у металла, но больше, чем у хорошего изолятора, является идеальным выбором для плиты?
  2. Свободная белая одежда, закрывающая большую часть тела, идеальна для обитателей пустыни как на жарком солнце, так и в холодные вечера. Объясните, чем выгодна такая одежда и днем, и ночью.

Рисунок 5.Джеллабию носят многие мужчины в Египте. (кредит: Зерида)

Задачи и упражнения

  1. (a) Рассчитайте коэффициент теплопроводности через стены дома толщиной 13,0 см, у которых средняя теплопроводность в два раза выше, чем у стекловаты. Предположим, что нет ни окон, ни дверей. Площадь стен составляет 120 м 2 2 , их внутренняя поверхность имеет температуру 18,0ºC, а внешняя поверхность — 5,00ºC. (b) Сколько комнатных обогревателей мощностью 1 кВт потребуется для уравновешивания теплопередачи за счет теплопроводности?
  2. Скорость передачи тепла из окна в зимний день достаточно высока, чтобы охладить воздух рядом с ним.Чтобы увидеть, насколько быстро окна передают тепло за счет теплопроводности, рассчитайте коэффициент теплопроводности в ваттах через окно 2 размером 3,00 м и толщиной 0,635 см (1/4 дюйма), если температура внутренней и внешней поверхностей составляет 5,00 ºC и −10,0ºC соответственно. Такая высокая скорость не будет поддерживаться — внутренняя поверхность остынет и даже может образоваться иней.
  3. Рассчитайте скорость отвода тепла от тела человека, предполагая, что внутренняя температура ядра составляет 37,0 ° C, а температура кожи равна 34.0ºC, толщина тканей в среднем составляет 1,00 см, а площадь поверхности составляет 1,40 м 2 .
  4. Предположим, вы стоите одной ногой на керамическом полу и одной ногой на шерстяном ковре, соприкасаясь каждой ногой на площади 80,0 см 2 . И керамика, и ковер имеют толщину 2,00 см и температуру на нижней стороне 10,0 ° C. С какой скоростью должна происходить теплопередача от каждой ступни, чтобы верхняя часть керамики и ковра поддерживала температуру 33,0 ° C?
  5. Человек потребляет 3000 ккал пищи за один день, превращая большую ее часть для поддержания температуры тела.Если он теряет половину этой энергии из-за испарения воды (при дыхании и потоотделении), сколько килограммов воды испаряется?
  6. (a) Огнеходящий бежит по раскаленной угли, не получив ожогов. Рассчитайте теплопроводность, передаваемую подошве одной ступни огнехожника, учитывая, что нижняя часть ступни представляет собой мозоль толщиной 3,00 мм с проводимостью в нижней части диапазона для древесины, а ее плотность составляет 300 кг / м3. 3 . Площадь контакта 25,0 см 2 , температура углей 700ºC, время контакта 1.00 с. (b) Какое повышение температуры происходит в 25,0 см 3 пораженной ткани? (c) Как вы думаете, какое влияние это окажет на ткань, учитывая, что каллус состоит из мертвых клеток?
  7. (a) Какова скорость теплопроводности через мех толщиной 3 см у крупного животного с площадью поверхности 1,40 м 2 ? Предположим, что температура кожи животного составляет 32,0 ° C, температура воздуха -5,00 ° C и мех имеет такую ​​же теплопроводность, что и воздух.(б) Какой прием пищи потребуется животному в течение одного дня, чтобы восполнить эту теплопередачу?
  8. Морж передает энергию путем теплопроводности через свой жир со скоростью 150 Вт при погружении в воду с температурой –1,00 ° C. Внутренняя температура моржа составляет 37,0ºC, а его площадь поверхности составляет 2,00 м 2 . Какова средняя толщина его подкожного жира, который имеет проводимость жировых тканей без крови?

    Рис. 6. Морж на льду. (Источник: капитан Бадд Кристман, Корпус NOAA)

  9. Сравните коэффициент теплопроводности через 13.Стена толщиной 0 см, имеющая площадь 10,0 м 2 и удвоенную теплопроводность, чем стекловата, со скоростью теплопроводности через окно толщиной 0,750 см и площадью 2,00 м 2 , предполагая одинаковую разницу температур между ними.
  10. Предположим, что человек покрыт с головы до ног шерстяной одеждой средней толщины 2,00 см и передает энергию путем теплопроводности через одежду со скоростью 50,0 Вт. Какова разница температур в одежде, учитывая, что площадь поверхности равна 1.40 м 2 ?
  11. Некоторые поверхности плит сделаны из гладкой керамики, что облегчает их очистку. Если керамика имеет толщину 0,600 см и теплопроводность происходит через ту же площадь и с той же скоростью, что и в примере 2, какова разница температур в ней? Керамика имеет такую ​​же теплопроводность, как стекло и кирпич.
  12. Один из простых способов сократить расходы на отопление (и охлаждение) — это добавить дополнительную изоляцию на чердаке дома. Предположим, что в доме уже есть 15 см стекловолоконной изоляции на чердаке и на всех внешних поверхностях.Если добавить на чердак еще 8,0 см стеклопластика, то на какой процент упадет стоимость отопления дома? Возьмем одноэтажный дом размером 10 м на 15 м на 3,0 м. Не обращайте внимания на проникновение воздуха и потерю тепла через окна и двери.
  13. (a) Рассчитайте коэффициент теплопроводности через окно с двойным остеклением, которое имеет площадь 1,50 м 2 и состоит из двух стекол толщиной 0,800 см, разделенных воздушным зазором в 1,00 см. Температура внутренней поверхности 15.0ºC, а снаружи −10,0ºC. (Подсказка: на двух стеклянных панелях наблюдаются одинаковые перепады температуры. Сначала найдите их, а затем перепад температуры в воздушном зазоре. Эта проблема игнорирует повышенную теплопередачу в воздушном зазоре из-за конвекции.) (B) Рассчитайте скорость теплопроводность через окно толщиной 1,60 см той же площади и с такими же температурами. Сравните свой ответ с ответом на часть (а).
  14. Многие решения принимаются на основе периода окупаемости: времени, которое потребуется за счет экономии, чтобы равняться капитальным затратам на инвестиции.Приемлемые сроки окупаемости зависят от бизнеса или философии. (Для некоторых отраслей период окупаемости составляет всего два года.) Предположим, вы хотите установить дополнительную изоляцию, о которой идет речь в вопросе 12. Если стоимость энергии составляет 1 доллар США за миллион джоулей, а стоимость изоляции составляет 4 доллара США за квадратный метр, тогда рассчитайте простой срок окупаемости. . Возьмем среднее значение Δ T для 120-дневного отопительного сезона равным 15,0 ° C.
  15. Для человеческого тела, какова скорость теплопередачи через ткани тела при следующих условиях: толщина ткани 3.00 см, изменение температуры 2,00ºC, а площадь кожи 1,50 м 2 . Как это соотносится со средней скоростью передачи тепла телу в результате потребления энергии около 2400 ккал в день? (Никакие упражнения не включены. )

Глоссарий

R-фактор: отношение толщины материала к проводимости

скорость кондуктивной теплопередачи: скорость теплопередачи от одного материала к другому

теплопроводность: свойство способности материала проводить тепло

Избранные решения проблем и упражнения

1.(а) 1.01 × 10 3 Вт; (б) Один

3. 84.0 Вт

5. 2,59 кг

7. (а) 39,7 Вт; (б) 820 ккал

9. 35 к 1, окно к стене

11. 1.05 × 10 3 К

13. (а) 83 Вт; (b) в 24 раза больше, чем у окна с двойным остеклением.

15. 20,0 Вт, 17,2% от 2400 ккал в день


Теплопроводность водных растворов NaCl от 20 ° C до 330 ° C (Технический отчет)

Озбек, Х., и Филлипс, С.Л. Теплопроводность водных растворов NaCl от 20 ° C до 330 ° C . США: Н. П., 1979. Интернет. DOI: 10,2172 / 6269880.

Озбек Х. и Филлипс С. Л. Теплопроводность водных растворов NaCl от 20 ° C до 330 ° C . Соединенные Штаты. https://doi.org/10.2172/6269880

Озбек, Х., и Филлипс, С.Л.Вт. «Теплопроводность водных растворов NaCl от 20 ° C до 330 ° C». Соединенные Штаты. https://doi.org/10.2172/6269880. https://www.osti.gov/servlets/purl/6269880.

@article {osti_6269880,
title = {Теплопроводность водных растворов NaCl от 20 ° C до 330 ° C},
author = {Озбек, Х. и Филлипс, С. Л.},
abstractNote = {Приведена оценка литературных данных по теплопроводности водных растворов NaCl.Литература просматривалась с 1929 по 1979 год, а оцененные данные сводились в таблицу. При необходимости данные были преобразованы в набор внутренне согласованных единиц ° C, ватт / м- ° C и моляльных концентраций. Дано эмпирическое корреляционное уравнение со средним отклонением + -2% для теплопроводности водных растворов NaCl от 20 ° C до 330 ° C при давлениях насыщения. Таблица сглаженных значений, полученных с использованием этого корреляционного уравнения, предоставляется для концентраций NaCl от 0 до 5 моль в этом диапазоне температур.},
doi = {10.2172 / 6269880},
url = {https://www.osti.gov/biblio/6269880}, journal = {},
number =,
объем =,
place = {United States},
год = {1979},
месяц = ​​{5}
}

Киберфизика — теплопроводность

Передача энергии веществом без вещества сам движущийся, называется проводимостью. Металлы — очень хорошие проводники. Неметаллы обычно являются плохими проводниками (изоляторами). Газы очень плохие проводники (воздушные карманы делают материалы хорошими изоляторами) ‘

Проводимость — это когда тепло перемещается через твердый объект или от одного объекта к другому, потому что два объекта соприкасаются друг с другом. Это только режим тепловых перемещений в твердых телах .

Теплопроводность

Возможность передачи тепло внутри объекта называется теплопроводностью ‘k’ (измеренная в Вт м -1 K -1 ).Он варьируется для разных материалов. Золото, серебро и медь обладают высокой теплопроводностью. Эти материалы также являются хорошими проводниками электричества. (Это потому, что электроны участвует как в передаче заряда, так и в передаче тепловой энергии).

Материалы, такие как стекло и минеральная вата, обладают низкой теплопроводностью. Это потому, что у них очень мало «свободных» электронов, переносящих тепловую энергию внутри твердого тела.Они есть говорят хорошие изоляторы . Скорость передачи тепла (насколько быстро тепловая энергия движется) зависит от теплопроводности, температуры разница и площадь контакта и материал, который объект или структура состоит из. (См. U-значения)

Если материал хороший проводник тепла, тогда тепло будет двигаться быстро. Металлы широко используются для теплопередачи, поскольку обладают свойствами, позволяющими для распространения (движения по линии) тепла, будучи способным противостоять перепады температур иногда связаны с нагревом.

Поэтому металлы хороши проводники как тепла, так и электричества!

Но будьте осторожны, не перепутайте их и не говорите об электрической проводимости (которая касается заряда электронов), когда вы имеете в виду теплопроводность (который связан с передачей энергии электронов), когда отвечаете на экзаменационные вопросы!

Держите металлический стержень с другой конец в пламени Бунзена, и вскоре вы сделаете замечательное открытие. …. Становится ГОРЯЧЕЕ!

Держите деревянную палку другим концом в огне и конец становится таким горячим, что он горит, а конец, который вы держите, остается относительно здорово.

Тепло не распространяется через структуру стержня, потому что его состава — из чего он сделан — его структура выделяет тепло перенос электронами внутри него сделать очень сложно.

Повседневный опыт подсказывает, что древесина плохо проводит тепло.Если вы когда-нибудь видели микроскопический вид дерева, вы знаете, что причина в том, что дерево сделано состоит из отдельных ячеек, которые действуют как изоляторы, потому что они не связаны между собой. Клетки рассыпаны камнями в ручье. Путешествовать по тепло должно «перепрыгивать» с камня на камень (простите за иллюстрацию). Этот занимает больше времени, чем с металлом, где атомы соединены вместе в трехмерная «решетка» (связанная трехмерная структура рисунка).

Итак, если тепловая энергия применяется непосредственно к одной части твердого объекта (как на иллюстрации ниже) электроны в объекте возбуждаются. Это вызывает атомные колебания решетки, которые передаются по объекту, повышая его температуру когда они проходят. Чем ближе звенья внутри твердого тела, тем быстрее теплопередача.

— это может показать эксперимент ниже:

Жара наносится по центру кольца.Он движется по металлическим полосам и плавит воск, удерживающий шарикоподшипник на месте. Они падают на скамейка с громким звуком. Они не все вместе! Тот, что на медная полоса падает первой, показывая, что медь является лучшим проводником нагревать. Алюминий — худший проводник из четырех, но они ВСЕ металлы и все они классифицируются как проводники тепла.

Если вы закрепите кубик льда на дне пробирки с водой (для этого нужно использовать груз, иначе он всплывет на поверхность, так как лед менее плотный, чем вода), а затем нагрейте воду на В верхней части трубки вы обнаружите, что вода закипит в верхней части трубки, но кубик льда останется замороженным.

Это потому, что вода плохо проводит тепло. Большая часть тепла будет перемещаться в конвекционном потоке внутри воды в верхней части пробирки, только небольшая его часть будет проходить вниз к кубику льда.

Резюме

Проводимость — это метод распространения тепла через твердое тело, в отличие от того, что происходит во время конвекции, в нем нет чистого движения вещества.

Это можно сравнить с цепочкой людей, передающих ведра с водой от источника, чтобы тушить пожар.