Теплопроводность воды высокая: У воды теплопроводность высокая или низкая

Содержание

Вода. Свойства и значение воды для живых организмов

1. Высокая удельная теплоемкость.
Вода имеет высокую теплоемкость (в 10 раз большую, чем железо, и в 3300 раз большую, чем воздух). В сочетании с высокой теплопроводностью это делает водную среду достаточно комфортной для обитания живых организмов. 
(Вспомните из курса физики, что такое удельная теплоемкость. Среди физических характеристик среды, важных для существования в ней живых организмов, существенную роль играют также выталкивающая сила и вязкость, но их роль мы пока не рассматриваем.) 
Благодаря высокой теплоемкости и теплопроводности водная среда, в отличие от воздушной, менее подвержена перепадам температур (как суточным, так и сезонным), что облегчает адаптацию животных и растений к этому абиотическому фактору.

  Вопрос 1. Каково значение этой физической характеристики для внутриклеточных процессов? (Для ответа на вопрос вспомните из курса химии понятия экзотермических и эндотермических реакций).

2. Несжимаемость.
Вода практически несжимаема. Это позволяет многим беспозвоночным животным использовать заполненные водой полости тела в качестве внутренней опоры организма при передвижении (т.н. гидростатический скелет).
  Вопрос 2. Представители каких типов животных имеют гидростатический скелет?

3. Высокая температура кипения.
Близкие по молекулярной массе вещества — метан и аммиак — при н. у. являются газами. Вода же — жидкость и остается ею при нагревании до 100оС. Аномально высокая температура кипения  — результат того, что молекулы воды связаны между собою водородными связями. (Вспомните?) Именно на разрыв этих связей и тратится большое количество энергии.
Для обитателей водной среды это также важно. Диапазон температур на планете (средняя + 7оС) практически не достигает верхней границы, точки кипения воды.

4. Высокая удельная теплота парообразования.
Эта характеристика, также как и высокая температура кипения, обусловлена наличием

водородных связей между молекулами воды. 
 (Вспомните из курса физики, что такое удельная теплота парообразования. Кстати, чтобы выпарить, к примеру, воду из чайника, тепла потребуется в 5,5 раза больше, чем для того, чтобы вскипятить его).
Благодаря высокой теплоте парообразования живые организмы (не только животные, но и растения) получили возможность избавляться от избытков тепла в организме, испаряя воду с поверхности тела или его участков. В отличие от других способов теплообмена живых организмов с окружающей средой (излучения, конвекции, теплопередачи) испарение позволяет охлаждать тело даже в том случае, когда температура окружающей среды выше, чем температура тела.
  Вопрос
3. Какие жидкости испаряются с поверхности тела разных животных? Как называется процесс испарения воды с поверхности листьев растений и какую роль в жизни растений (кроме охлаждения поверхности листа) он играет?

5. Высокая сила поверхностного натяжения.
Это свойство воды (по которому она уступает лишь ртути — см. таблицу) не только обуславливает способность воды подниматься по тонким капиллярам (что очень важно и для водного баланса почвы, и для транспорта по сосудам растений), но и возможность использования поверхностной пленки воды для передвижения. Такие животные образуют экологическую группу нейстон
, которая делится на эпинейстон (те, кто передвигаются по поверхности пленки, как изображенная на фотографии водомерка), и гипонейстон — животных, прикрепляющихся к поверхностной пленке в воде (личинки некоторых мух и комаров).
Статья Джирла Уолкера «Наблюдения за жизнью водомерок — насекомых, которые ходят (и даже бегают) по воде» («В мире науки», рубрика «Наука вокруг нас», 1984, № 1, с. 92).


Рисунок — гиперссылка на видеофрагмент vodomer. avi (314 кб)

Интересный факт. Нормальная моча имеет поверхностное натяжение около 66*10
−3
Н/м, но если в моче присутствует желчь (тест на желтуху), оно падает до 55. В тесте на желтуху (Hay’s test) молотую серу насыпают на поверхность мочи. Она будет плавать на нормальной моче, но будет тонуть, если поверхностное натяжение снижено из-за желчи (солей желчных кислот). (отсюда)

Теплопроводность воды — Энциклопедия по машиностроению XXL

Молекулярная теплопроводность воды очень невелика, например при /=17,5°С  [c.1190]

Теплопроводность воды примерно в 5 раз выше теплопроводности масла. Она увеличивается с увеличением давления, но при давлениях, имеющих место в гидродинамических передачах, ее можно принять постоянной.  [c.18]

Для капельной неметаллической жидкости X = 0,07. … .. 0,7 Вт/(м К) и, как правило, уменьшается с увеличением температуры. Коэффициент теплопроводности воды с повышением температуры возрастает до максимального значения 0,7 Вт/(м К) и падает при дальнейшем увеличении температуры.  

[c.163]


Интерполяционное уравнение для промышленных расчетов теплопроводности воды и водяного пара «к, мВт/(м>К [59, 60]  [c.85]

Влажность резко ухудшает теплоизоляционные свойства материала. Вода, проникая в материал, вытесняет воздух из пор и ячеек. Коэффициент теплопроводности воды в 2,5 раза больше коэффициента теплопроводности воздуха, поэтому даже небольшое увлажнение материала вызывает резкое увеличение коэф фициента его теплопроводности.  [c.137]

При уплотнении сред с высокой теплопроводностью (вода, растворы, эмульсии и т. д.) допускаемые нагрузки и скорость скольжения уплотнительных колец не лимитируется температурным режимом торцевого уплотнения и определяются условиями механической прочности колец.

[c.171]

Ввиду больших теплоёмкости и теплопроводности вода является весьма эффективной охлаждающей средой для понижения поверхностного натяжения (влияет на смачиваемость охлаждаемой поверхности) и устранения корродирующего действия на сталь и чугун к воде добавляют 5 —Ю /о соды или калиевого мыла. Смазывающая способность воды незначительна.  [c.236]

Коэффициент же теплопроводности воды, по данным Якоба, равняется  [c.309]

Теплопроводность жидкой дифенильной смеси меньше теплопроводности воды при тех же температурах. При равных условиях теплообмен в случае применения дифенильной смеси протекает менее интенсивно, чем в случае воды. Значения теплопроводности для температур смеси от О до 400° С можно найти из графика рис. 4.  [c.186]

Теплопроводность воды имеет положительный температурный ход, поэтому при малых концентрациях теплопроводность водных растворов многих солей, кислот и щелочей с повышением температуры растет.

[c.136]

Так, теплопроводность газов возрастает с ростом температуры (фиг. 1). То же имеет место и для теплоизоляционных твердых материалов (фиг. 2). У чистых металлов коэффициент теплопроводности уменьшается с ростом температуры (фиг. 3), а у жидкостей эта зависимость подчас имеет весьма сложный характер. Так, например, коэффициент теплопроводности воды в некотором интервале температур возрастает, а затем уменьшается (фиг. 4).  [c.14]


ТЕПЛОПРОВОДНОСТЬ ВОДЫ И ВОДЯНОГО ПАРА к  [c.16]

Первая Международная скелетная таблица теплопроводности воды и водяного пара МСТ-64 была, так же как и скелетная таблица вязкости, принята в 19W г. [51. Она охватывала область давлений от 0,1 до 50 МПа и температур от О до 700 С.  

[c.16]

В 1977 г. вместо МСТ-64 был принят новый нормативный материал по теплопроводности воды и водяного пара для давлений до 100 МПа и температур от О до 800 С [8]. Перечень экспериментальных работ, положенных в основу этого материала, приведен в табл. 2-3.  [c.16]

Международный нормативный материал о теплопроводности воды и водяного пара содержит  [c.17]

Характер изменения коэффициента теплопроводности воды и водяного пара в зависимости от параметров состояния показан на рис, 2-2.  [c.18]

В работе Л. 58] измерения теплопроводности проводились при различных значениях перепада температур в слое (1,5—3°С) и произведении GrPrустановки специально ставились контрольные измерения теплопроводности воды, толуола, бензола и ацетона до температуры кипения. Полученные опытные данные в пределах 1,5% согласовываются с наиболее надежными измерениями других авторов.  
[c.202]

Охлаждение зарубашечного пространства. Этот метод применим при использовании двухслойной оболочки с заполнением зарубашечного пространства между слоями холодной водой. При допущении, что распространение тепла происходит только посредством теплопроводности, нет оснований ожидать сколько-нибудь эффективного теплоотвода, поскольку продолжительность процесса истечения незначительна, а теплопроводность воды относительно низка. Тем не менее в исследованиях американских авторов [23] говорится, что при теплоотдаче через слой воды при определенных обстоятельствах возникают условия для естественной конвекции вода поднимается в слое воды вдоль горячей стенки и опускается вдоль холодной. При этом коэффициент теплоотдачи может достигать при определенных условиях нескольких тысяч.  [c.97]

Свойства воды и водяного пара на линии насыщения. Приведенные здесь таблицы теплофизических свойств воды и водяного пара на линии насыщения подготовлены А. А. Александровым и М. С. Трахтенгерцем по данным [1, 5, 7, 19]. Таблицы П. 1.1, П.1.2 получены расчетом по соответствующим соотношениям. Отклонения полученных значений от рекомендованных составляют температура насыщения до 0,02 К удельный объем до 0,05% энтальпия до 0,2 кДж/кг удельный объем воды до 0,08% энтальпия пара до 0,9 кДж/кг удельный объем пара до 0,1% теплоемкость воды до температуры 350 °С до 0,15% свыше 350 °С до 1—2% теплоемкость пара до температуры 360 С до 0,2% при температуре 373 °С до 10—12% динамическая вязкость воды при температуре до 330 °С — до 0,3%, при 330—370 С до 0,8%, при более высоких температурах до 6% динамическая вязкость пара при температуре до 300 °С — до 0,3%, при температурах от 300 до 350 °С до 0,5%, от 350 до 370 °С до 0,1%, свыше 370 °С до 6% теплопроводность воды до 0,6% теплопроводность пара при температурах ниже 340 °С до 0,7%, при более высоких температурах до 3% коэффициент поверхностного натяжения при температурах ниже 260 °С до 0,1%, при более высоких температурах (до 365 °С) до 4%.[c.199]

Вполне очевидно, что при охлаждении воды, т. е. доведении ее температуры до температуры кипения, основное влияние на этот процесс оказывает теплопроводность воды, а не коэффициент теплоотдачи от кипящей воды к пару, который на основании приведенных выше данных для дальнейших расчетов примем равным 40 ООО /асал1м час° С.  [c.309]

Влияние плотности орошения на коэффициент теплопередачи не может быть значительным, так как водяная пленка не является главным термическим сопротивлением. При толщине пленки 0,5 мм и коэффициенте теплопроводности воды около 0,5 ккал/м-ч-град термическое сопротивление ее составит 0,001 м -ч- град1ккал, в то время как термическое сопротивление со стороны дымовых газов при коэффициенте теплопередачи к =100 ктл1м -ч-град  [c.36]

Коэффициент теплопроводности воды и водяного пара X 103 в ккал1м час град  [c.191]

На первый взгляд может показаться, что вода в качестве материала для ядра непригодна, ибо она, подобно другим жидким телам, за исключением ртути и расплавленных металлов, — плохой проводник тепла, а поэтому температура внутри ядра не выравняется. 3 Это соображение не имеет значения, если только испытываемый материал имеет теплопроводность, сильно отличающуюся от теплопроводности воды, т. е. 0,5 ккал1м час1град, как это и имеет место при испытаниях эффективных термоизоляторов ибо при таком соотношении теплопроводностей и V — ядра и оболочки — несовершенная изотермичность ядра не отразится на виде расчетных формул. Это было нами доказано в 7 гл. VI теоретически и подтверждается опытом.  [c.354]

Мы не располагали никакой достаточно надежной жидкостью, кроме воды, и были вынуждены остановиться на ней, хотя это и было невыгодно по причине большой теплоемкости и теплопроводности воды, близкой к теплопроводности самих стеклянных стенок бикалориметра. Вода была дестиллирована и хорошо прокипячена, что позволяло считать ее в достаточной мере обезгаженной. Опыт мы вели в водяной, энергично перемешиваемой ванне при = к 20 С. При этой температуре с точностью до 2—3% Лоод = 0,5 шал1м1час1град. Опыт дал /и =33,3 час- .[c.391]

Здесь Хз — коэффициент теплопроводности воды при = = в1 + [c.198]

В книгу включены также таблицы коэффициентов переноса (динамической вязкости и теплопроводности) воды и водяного пара. Первые Международные скелетные таблицы коэффициентов переноса, утвержденные в 19 4 г. (МСТ-64) [5], охватывали более узкую область параметров состояния, чем МСТ-63 для термодинамических свойств. В результате проведения по международной программе новых исследований динамической вязкости и теплопроводности были получены многочис-ленные экспериментальные данные, на основе которых составлены и утверждены новые Международные нормативные материалы о вязкости (1975 г.) [6, 7] и теплопроводности (1977 г.) [8] воды и водяного пара. Помещенные в книге подробные таблицы коэффициентов переноса составлены на основе указанных нормативных материалов и охватывают ту же область параметров состояния, что и таблицы термодинамических свойств. На Основе этих же материалов составлена таблица чисел Прандтля. При расчете значений коэффициента поверхностного натяжения использован международный нормативный материал 1976 г. К книге прилагается удобная для многих практических расчетов К s-диаграмма водяного пара в двух системах единиц.  [c.4]

Экспериментальные работы по теплопроводности воды и водяного пара, учит1ывавшиеся при составлении Международного нормативного материала  [c.17]

Тарэиманов A. A. Экспериментальное исследование теплопроводности воды при высоких давлениях. Докл. С-8. 7-я Международная конференция по свойствам водяного пара. Токио 1968.  [c.22]


Теплопроводность (льда и снега)

Вода, лед и воздух плохо проводят тепло, поэтому в естественных водоемах передача тепла в глубины происходит чрезвычайно медленно. Обогревание же глубинных вод связано с процессами вертикального перемешивания. Для Мирового океана важную роль играет теплопроводность, связанная с турбулентностью, коэффициент которой в тысячи раз превосходит коэффициент молекул лярной теплопроводности. Для оценки скорости переноса тепла определяют температуропроводность. Она равна отношению коэффициента теплопроводности воды к ее плотности и теплоемкости при постоянном давлении. Весьма малая теплопроводность воды, льда и снега и высокая теплоемкость благоприятны для развития жизни в водоемах.[ …]

Плотность льда р очень слабо зависит от давления и температуры. За исключением верхнего слоя ледников толщиной до нескольких метров или десятков метров, в котором происходит превращение снега в фирн и затем в лед с его последующим уплотнением, р/ можно приближенно считать постоянным (около 0,9 г/см3; у чистого льда при атмосферном давлении и нулевой температуре рг- = 0,91676 г/см3). Однако поле температуры в леднике все же влияет на движение льда, но не через плотность рг, а через вязкость (17.4) и (в случае донного таяния) через краевое условие на дне. Расчет поля температуры можно осуществлять при помощи уравнения теплопроводности вида (17.2) с добавлением в его правую часть притока тепла за счет вязкой диссипации кинетической энергии — р гФ2 и с краевым условием теплового бюджета вида (9. 10) на поверхности ледника з = £, тогда как на дне ледника, по-видимому, надо учитывать геотермический поток тепла и возможность таяния льда (а на нижней поверхности шельфового ледника — поток тепла’ из воды в лед и возможность намерзания или стаивания льда). Отдельной задачей может быть расчет формирования жидкого стока на ледниках (и его вклада в теплопе-ренос).[ …]

Тот факт, что лед легче воды, играет огромную роль в природе. С наступлением морозов поверхностный слой воды в водоеме охлаждается до температуры +4° С и как более тяжелый опускается на дно, вытесняя более теплые на поверхность. В результате замерзание воды начинается с поверхности, а не со дна. Этому же способствует и малая теплопроводность льда. Хорошей защитой водоемов является и снег, покрывающий слой льда. Теплопроводность снега при пл. 0,1 г/см3 соответствует теплопроводности шерсти, и при пл. 0,2 г/см3 — теплопроводности бумаги.[ …]

Глава 4.1. Свойства воды | BookOnLime

Описание свойств воды начинают, обычно, с характеристики аномалий, присущих воде – самому распространенному и, вместе с тем, самому загадочному и необычному веществу на земле. Причем практически каждое из этих аномальных свойств имеет важное значение для обеспечения жизнедеятельности на земле. Необычные свойства воды особенно ярко выделяются на фоне свойств ее гомологов: h3S, h3Se, h3Te. Молекула воды является самым первым и легким представителем этого гомологического ряда, однако гидриды серы, селена и теллура при комнатной температуре, в отличие от воды, находятся в газообразном состоянии (рис. 23).

И вода, если бы она была обычным членом гомологического ряда, должна в соответствии со своей молекулярной массой закипать при температуре –70 оС и превращаться в лед при температуре –90 оС, а значит, не могла бы быть основой жизни на земле.

Рис. 23. Точки плавления и кипения гидридов VI группы Периодической системы элементов

Другая особенность воды – это аномальное изменение плотности в зависимости от температуры (рис. 24). В обычных жидкостях плотность всегда уменьшается с ростом температуры. Для воды характер изменения плотности в зависимости от температуры другой – после таяния льда плотность увеличивается, проходит через максимум при температуре 4 оС, а затем уменьшается с ростом температуры.

Рис. 24. Зависимость плотности воды от температуры

Жидкая вода имеет максимум плотности не в точке плавления, а при температуре 4 оС и ее плотность уменьшается, как при повышении температуры, так и при ее понижении до температуры возможного переохлаждения, равной – 40 оС (при 1 атмосфере). При этом плотность воды больше плотности льда на 10%, благодаря чему лед плавает на поверхности воды. При температуре 4 оС вода уменьшается в объеме до минимальных значений, а при дальнейшем понижении температуры от 4 оС до 0 оС расширяется (рис. 25).

Рис. 25. Зависимость молярного объема воды и льда от температуры

Минимум объема воды при температуре 4 оС обусловлен, по мнению Зацепиной Г.Н., особенностью межмолекулярного взаимодействия системы Н2О, в которой число межмолекулярных переходов протонов равно числу внутримолекулярных переходов. Вода, превращаясь в лед, благодаря увеличению объема приобретает огромную силу, способность разрушать крепчайшие породы и, вместе с тем это спасает нашу планету от оледенения. Так как максимум плотности при 4 оС предотвращает конвективное перемешивание жидкости и опускание на дно поверхностных слоев воды, остывших до температуры ниже 4 оС, что замедляет дальнейшее охлаждение и промерзание водоемов.

Морская вода, в отличие от пресной ведет себя иначе. Наличие различных солей меняет ее физико-химические свойства. Она замерзает при – 1,9 оС (переохлажденная вода) и имеет максимальную плотность при – 3,5 оС, то есть она превращается в лед, не достигая наибольшей плотности. Переохлажденная вода, то есть остающаяся в жидком состоянии ниже точки замерзания 0 оС, ведет себя странно, с одной стороны плотность воды сильно уменьшается по мере переохлаждения, но, с другой стороны она приближается к плотности льда при понижении температуры.

Другая аномалия воды – необычное поведение ее сжимаемости, то есть уменьшение объема при увеличении давления. Для обычных жидкостей сжимаемость растет с температурой – при высоких температурах жидкости более рыхлы, имеют меньшую плотность, их легче сжать. Вода так ведет себя при высоких температурах выше 50 оС. При низких температурах, от 0 оС до 45 оС сжимаемость воды меняется противоположным образом, в результате при температуре 45 оС появляется минимум. Изотермическая сжимаемость воды при температуре 0 оС в четыре раза больше, чем изотермическая сжимаемость льда (рис. 26).

Рис. 26. Зависимость сжимаемости воды от температуры

Максимальное изменение сжимаемость испытывает при плавлении. Сжимаемость воды и льда мала по сравнению со сжимаемостью других веществ (табл.4.1.1).

Таблица 4.1.1. Сжимаемость ряда веществ в интервале температур от 5 оС до 30 оС

Температура,

оС

βs ·1012, дин/см2

Вода

Метанол

Бензин

5

51,6

84,2

10

48,7

114,9

88,5

15

118,8

92,2

25

46,6

122,7

95,6

30

45,8

131,0

103,1

Указание особенности изменения сжимаемости воды и льда объясняют характером водородных связей в них. На этих примерах видно, что необычные свойства воды характеризуются появлением максимумов или минимумов на кривых зависимостей от температуры. Такие зависимости означают, что имеют место два противоположных процесса, которые и определяют эти свойства. Один процесс – это обычное тепловое движение, которое усиливается с ростом температуры и делает воду, как и любую другую жидкость, более разупорядоченной. Другой процесс необычный, присущий только воде, за счет него вода становится более упорядоченной при низких температурах. Разные свойства воды по-разному чувствительны к этим двум процессам, и поэтому положение экстремума наблюдается для каждого свойства при своей температуре.

Самая сильная аномалия воды – это температурная зависимость ее теплоемкости. Величина теплоемкости показывает, сколько нужно затратить тепла, чтобы поднять температуру вещества на один градус. При нагревании вещества теплоемкость, как правило, возрастает для всех веществ, кроме воды. Изменение теплоемкости воды с повышением температуры аномально – от 0 оС до 37 оС она падает и от 37 оС до 100 оС начинает повышаться. Теплоемкость водяного пара приближается к теплоемкости льда. Минимальное значение теплоемкость воды имеет около 37 оС. Это нормальная температура тела человека (36,6–37 оС), именно при этой температуре происходят сложные биохимические процессы в организме человека, значит энергетически это наиболее выгодные условия. Для подавляющего числа веществ теплоемкость жидкости после плавления кристалла изменяется незначительно (табл. 4.1.2).

Таблица 4.1.2. Теплоемкость веществ в трех агрегатных состояниях

Агрегатное состояние

Теплоемкость вещества (СоР, кал/моль)

Н2О

Nh4

Ch5

HCl

h3

Hg

Na

газообразное

8,75

9,9

6,7

6,9

5,0

жидкое

18,0

12,0

11,0

12,0

11,0

6,8

7,6

твердое

9,0

9,0

14,0

15,0

13,0

6,7

8,0

Вода же при плавлении льда меняет теплоемкость в два раза, такого огромного скачка при плавлении не наблюдается ни у одного вещества. Теплоемкость льда имеет очень низкое значение, она близка к теплоемкости одноатомных кристаллов и равна теплоемкости твердого аммиака. В процессе плавления металлов теплоемкость практически не изменяется, для веществ из многоатомных молекул в процессе плавления она, как правило, уменьшается, что, вероятно, связано с тем, что молекулы могут свободно вращаться в жидкости, и не могут в твердом теле. Для таких соединений как Н2О и Nh4 теплоемкость в жидком состоянии много больше, чем в твердом состоянии. Это означает, что в воде открываются какие-то новые, энергоемкие процессы, на которые тратится подводимое тепло, что и обуславливает появление избыточной теплоемкости, причем это характерно для всего диапазона температур, при которых вода находится в жидком состоянии. Эта аномалия исчезает только в паре, то есть это свойство именно жидкой воды. Для переохлажденной воды теплоемкость еще больше возрастает при сильном переохлаждении, то есть переохлажденная вода еще более аномальна, чем обычная. Высокая теплоемкость воды и высокая удельная теплота плавления среди простых веществ (лед трудно растопить, а воду заморозить) способствуют смягчению климата на земле, не происходит резкого перепада температур зимой и летом, ночью и днем, поскольку существует гигантский регулятор, своеобразный термостат – воды Мирового океана.

Другой величиной, которая определяет характер теплового движения в жидкостях, является теплопроводность. Зависимость изменения теплопроводности воды от температуры приведена на рисунке 26. Для сравнения приведено изменение теплопроводности четыреххлористого углерода, который ведет себя, как обычная жидкость, то есть с ростом температуры уменьшается теплопроводность и растет теплоемкость. Как видно из рисунка 27, теплопроводность при плавлении льда уменьшается приблизительно в четыре раза. Переохлажденная вода имеет тот же характер изменения теплопроводности, что и обычная.

Рис. 27. Зависимость теплопроводности воды и четыреххлористого углерода от температуры

Все нормальные жидкости с ростом давления изменяют знак зависимости теплопроводности от температуры. Теплопроводность воды не изменяет характера температурной зависимости под давлением. Относительная величина увеличения теплопроводности воды при давлении 1200 кг/см2 составляет около 50%, в то время как для нормальных жидкостей это увеличение при том же давлении составляет приблизительно 270%. Теплопроводность воды слабо зависит от давления, что связано с малой сжимаемостью воды по сравнению с другими жидкостями.

И, наконец, еще одно удивительное свойство воды, связанное с особенностями ее поверхностного натяжения. Вода в свободном состоянии принимает шарообразную форму (капли дождя, росы). На границе двух сред (вода-воздух) силы межмолекулярного притяжения действуют с одной стороны, стягивая поверхность жидкости. На структуру поверхностного слоя воды влияет два фактора – полярность молекул воды и сетка водородных связей. Поверхностное натяжение воды 72 мн/м (миллиньютон/метр). Это поверхностное натяжение настолько велико, что смоченные водой две пластинки из стекла удается разъединить только с помощью огромных усилий. Из всех известных жидкостей силы поверхностного натяжения воды по своей величине уступают только ртути (около 500 мн/м).

Рис. 28. Зависимость сдвиговой вязкости от температуры для воды и четыреххлористого углерода

Еще одно аномальное свойство воды – ее вязкость. Обычные жидкости с повышением давления увеличивают вязкость, а с ростом температуры уменьшают. Характер изменения вязкости у воды другой. На рисунке 28 представлена зависимость вязкости от температуры для воды и четыреххлористого углерода. Как видно из рисунка вязкость четыреххлористого углерода до температуры около 23 оС меньше, чем у воды, а для больших температур она больше, чем у воды.

Зависимость вязкости от давления для разных температур приведена на рисунке 29, из которой следует, что для низких температур с ростом давления вплоть до 2000 атм вязкость воды уменьшается, а затем начинает расти и при температуре 100 оС кривая близка по характеру зависимости для обычных жидкостей.

Рис. 29. Зависимость сдвиговой вязкости от давления для ряда температур

Увеличение вязкости для них с ростом давления связано с уменьшением длины свободного пробега молекул, так как при большем давлении они плотнее упакованы. Как видно из приведенных характеристик, вода действительно является необычной, аномальной жидкостью и природа этих аномалий кроется в особенностях ее структуры.

У каких металлов высокая теплопроводность

Содержание

  • Теплопроводность металлов в зависимости от температуры
    • Добавить комментарий Отменить ответ
    • Теплопроводность строительных материалов, их плотность и теплоемкость
    • Плотность воды, теплопроводность и физические свойства h3O
    • Физические свойства воздуха: плотность, вязкость, удельная теплоемкость
    • Теплопроводность стали и чугуна. Теплофизические свойства стали
    • Оргстекло: тепловые и механические характеристики
    • Физические свойства технической соли
    • Характеристики теплоизоляционных плит Изорок (Isoroc)
    • Удельное электрическое сопротивление стали при различных температурах
    • Удельная теплоемкость воды h3O
    • Теплофизические свойства, состав и теплопроводность алюминиевых сплавов
    • Теплопроводность, теплоемкость и плотность олова Sn
    • Удельное электрическое сопротивление стали при различных температурах
    • Характеристики масла АМГ-10: плотность, вязкость, теплоемкость, теплопроводность
    • Таблицы удельной теплоемкости веществ (газов, жидкостей и др. )
    • Плотность молока, его удельная теплоемкость и другие физические свойства
    • Свойства меди: плотность, теплоемкость, теплопроводность
    • Свойства карбида кремния SiC
  • От чего зависит показатель теплопроводности
  • Понятие коэффициента теплопроводности
  • Когда учитывается

Металлы – это вещества, имеющие кристаллическую структуру. При нагревании они способны плавиться, то есть переходить в текучее состояние. Одни из них имеют невысокую температуру плавления: их можно расплавить, поместив в обычную ложку и держа над пламенем свечи. Это свинец и олово. Другие возможно расплавить только в специальных печах. Высокой температурой плавления обладают медь и железо. Для ее понижения в металл вводят добавки. Полученные сплавы (сталь, бронза, чугун, латунь) имеют температуру плавления ниже, чем исходный металл.

От чего же зависит температура плавления металлов? Все они имеют определенные характеристики – теплоемкость и теплопроводность металлов. Теплоемкостью называют способность при нагревании поглощать теплоту. Ее численный показатель – удельная теплоемкость. Под ней подразумевается количество энергии, которое способна поглотить единица массы металла, нагреваемая на 1°С. От этого показателя зависит расход топлива на нагревание металлической заготовки до нужной температуры. Теплоемкость большинства металлов находится в пределах 300-400 Дж/(кг*К), металлических сплавов – 100-2000 Дж/(кг*К).

Теплопроводность металлов – это перенос тепла от более горячих частиц к более холодным по закону Фурье при их макроскопической неподвижности. Она зависит от структуры материала, его химического состава и типа межатомной связи. В металлах передача тепла производится электронами, в других твердых материалах – фононами. Теплопроводность металлов тем выше, чем более совершенную кристаллическую структуру они имеют. Чем больше металл имеет примесей, тем более искажена кристаллическая решетка, и тем ниже теплопроводность. Легирование вносит такие искажения в структуру металлов и понижает теплопроводность относительно основного металла.

У всех металлов хорошая теплопроводность, но у одних выше, чем у других. Пример таких металлов – золото, медь, серебро. Более низкая теплопроводность – у олова, алюминия, железа. Повышенная теплопроводность металлов является достоинством либо недостатком, в зависимости от сферы их использования. Например, она необходима металлической посуде для быстрого нагрева пищи. В то же время применение металлов с высокой теплопроводностью для изготовления ручек посуды затрудняет ее использование – ручки слишком быстро нагреваются, и до них невозможно дотронуться. Поэтому здесь используют теплоизолирующие материалы.

Еще одна характеристика металла, влияющая на его свойства – тепловое расширение. Оно выглядит как увеличение в объеме металла при его нагревании и уменьшение – при охлаждении. Это явление обязательно необходимо учитывать при изготовлении металлических изделий. Так, например, крышки кастрюль делают накладными, у чайников тоже предусмотрен зазор между крышкой и корпусом, чтобы при нагревании крышку не заклинило.

Для каждого металла вычислен коэффициент теплового расширения. Его определяют нагреванием на 1°С опытного образца, имеющего длину 1 м. Самый большой коэффициент имеют свинец, цинк, олово. Поменьше он у меди и серебра. Еще ниже – железа и золота.

По химическим свойствам металлы делятся на несколько групп. Существуют активные металлы (например, калий или натрий), способные мгновенно вступать в реакцию с воздухом или водой. Шесть самых активных металлов, составляющий первую группу периодической таблицы, называют щелочными. Они имеют маленькую температуру плавления и так мягки, что могут быть разрезаны ножом. Соединяясь с водой, они образуют щелочные растворы, отсюда и их название.

Вторую группу составляют щелочноземельные металлы – кальций, магний и пр. Они входят в состав многих минералов, более твердые и тугоплавкие. Примерами металлов следующих, третьей и четвертой групп, могут служить свинец и алюминий. Это довольно мягкие металлы и они часто используются в сплавах. Переходные металлы (железо, хром, никель, медь, золото, серебро) менее активны, более ковки и часто применяются в промышленности в виде сплавов.

Положение каждого металла в ряду активности характеризует его способность вступать в реакцию. Чем активнее металл, тем легче он забирает кислород. Их очень трудно выделить из соединений, в то время, как малоактивные виды металлов можно встретить в чистом виде. Самые активные из них – калий и натрий – хранят в керосине, вне его они сразу же окисляются. Из металлов, используемых в промышленности, наименее активным является медь. Из нее делают резервуары и трубы для горячей воды, а также электрические провода.

Теплопроводность металлов в зависимости от температуры

В таблице представлена теплопроводность металлов в зависимости от температуры при отрицательных и положительных температурах (в интервале от -200 до 2400°C).

Таблица теплопроводности металлов содержит значения теплопроводности следующих чистых металлов: алюминий Al, кадмий Cd, натрий Na, серебро Ag, калий K, никель Ni, свинец Pb, кобальт Co, бериллий Be, литий Li, сурьма Sb, висмут Bi, магний Mg, цинк Zn, вольфрам W, олово Sn, уран U, железо Fe, палладий Pd, цирконий Zr, марганец Mn, платина Pt, золото Au, медь Cu, родий Rh, таллий Tl, молибден Mo, тантал Ta, иридий Ir.

Следует отметить, что теплопроводность металлов изменяется в широких пределах и может отличаться в десятки раз в одних и тех же условиях. Например, из приведенных в таблице металлов, наибольшей теплопроводностью обладает такой металл, как серебро Ag — его коэффициент теплопроводности равен 392 Вт/(м·град) при 100°С и это самый теплопроводный металл. Наименьшее значение теплопроводности при этой же температуре соответствует металлу висмут Bi с теплопроводностью всего 7,7 Вт/(м·град).

Теплопроводность большинства металлов при нагревании снижается. Их максимальная теплопроводность достигается при низких отрицательных температурах. Например, при температуре минус 100°С серебро имеет теплопроводность 419,8, а висмут — 11,9 Вт/(м·град).

Примечание: В таблице также даны значения теплопроводности металлов сверх-высокой чистоты (до 99,999%). Значение коэффициента теплопроводности в таблице указано в размерности Вт/(м·град).

  • Теплофизические свойства и температура замерзания водных растворов NaCl и CaCl2
  • Теплофизические свойства, состав и теплопроводность алюминиевых сплавов

Читайте также

Добавить комментарий

Отменить ответ

Теплопроводность строительных материалов, их плотность и теплоемкость

Плотность, теплопроводность и удельная теплоемкость строительных и других популярных материалов. Более 400 материалов в таблице!

Плотность воды, теплопроводность и физические свойства h3O

Подробные таблицы значений плотности воды, ее теплопроводности и других теплофизических свойств в зависимости от температуры…

Физические свойства воздуха: плотность, вязкость, удельная теплоемкость

Таблицы физических свойств воздуха: плотность воздуха, его удельная теплоемкость и вязкость в зависимости от температуры…

Теплопроводность стали и чугуна. Теплофизические свойства стали

Теплопроводность стали и чугуна, физические свойства стали в таблицах при различной температуре…

Оргстекло: тепловые и механические характеристики

Рассмотрены тепловые, механические, оптические и электрические характеристики органического стекла…

Физические свойства технической соли

Насыпная плотность, удельная теплоемкость, коэффициент теплопроводности и другие физические свойства технической соли…

Характеристики теплоизоляционных плит Изорок (Isoroc)

Плотность, коэффициент теплопроводности и другие важнейшие характеристики теплоизоляционных плит Изорок различных модификаций…

Удельное электрическое сопротивление стали при различных температурах

Представлены таблицы значений удельного электрического сопротивления сталей различных типов и марок при температурах от 0 до 1350°С…

Удельная теплоемкость воды h3O

Приведены таблицы значений удельной теплоемкости воды h3O и водяного пара в зависимости от температуры и…

Теплофизические свойства, состав и теплопроводность алюминиевых сплавов

Теплофизические свойства алюминиевых сплавов АМц, АМг, Д16, АК и др. В таблице представлены состав и…

Теплопроводность, теплоемкость и плотность олова Sn

Теплопроводность, теплоемкость и плотность олова зависят от температуры и структуры этого металла. При атмосферном давлении…

Удельное электрическое сопротивление стали при различных температурах

Представлены таблицы значений удельного электрического сопротивления сталей различных типов и марок при температурах от 0 до 1350°С…

Характеристики масла АМГ-10: плотность, вязкость, теплоемкость, теплопроводность

Характеристики масла АМГ-10 при температуре от 20 до 100°С: плотность, вязкость, теплоемкость, теплопроводность. Указаны также температуры кипения и замерзания…

Таблицы удельной теплоемкости веществ (газов, жидкостей и др.)

Представлены таблицы удельной теплоемкости веществ: газов, металлов, жидкостей, строительных и теплоизоляционных материалов, а также пищевых…

Плотность молока, его удельная теплоемкость и другие физические свойства

Плотность молока в зависимости от температуры Плотность цельного молока не зависит от месяца дойки коров…

Свойства меди: плотность, теплоемкость, теплопроводность

Свойства меди Cu: теплопроводность и плотность меди В таблице представлены теплофизические свойства меди в зависимости…

Свойства карбида кремния SiC

Теплофизические свойства спеченного мелкозернистого карбида кремния В таблице даны теплофизические свойства спеченного порошка карбида кремния…

Металлы обладают большим количеством характеристик, которые определяют их эксплуатационные качества и возможность применения при изготовлении определенных изделий. Важной характеристикой всех материалов можно назвать теплопроводность. Этот показатель определяет способность материального тела к переносу тепловой энергии. Таблица теплопроводности металлов встречается в различных справочниках, может зависеть от различных их особенностей. Примером можно назвать то, что механизм переноса тепловой энергии во многом зависит от агрегатного состояния вещества.

От чего зависит показатель теплопроводности

Рассматривая теплопроводность металлов и сплавов (таблица создана не только для металлов, но и других материалов), следует учитывать, что наиболее важным показателем является коэффициент теплопроводности. Он зависит от нижеприведенных моментов:

  1. Типа материала и его химического состава. Теплопроводность железа будет существенно отличаться от соответствующего показателя алюминия, что связано с особенностями кристаллической решетки материалов и их другими свойствами.
  2. Коэффициент может изменяться при нагреве или охлаждения металла. При этом изменения могут быть существенными, так как у каждого материала есть своя точка плавления, когда молекулы начинают перестраиваться.

В таблицах для некоторых металлов и сплавов коэффициент теплопроводности указывается уже в жидкой фазе.

Сегодня на практике практически не проводят измерение рассматриваемого показателя. Это связано с тем, что коэффициент теплопроводности при несущественном изменении химического состава остается практически неизменным. Табличные данные применяются при проектировании и выполнении других расчетов.

Понятие коэффициента теплопроводности

Для обозначения рассматриваемого значения применяется символ λ – количество тепла, которое передается в единицу времени через единицу поверхности на момент повышения температуры. Это значение применяется при проведении различных расчетов.

Описание свойства теплопроводности многих металлов проводится по формуле k = 2,5·10−8σT. В этой формуле учитывается:

  1. Температура, измеряемая в Кельвинах.
  2. Показатель электропроводности.

Это соотношение больше всего подходит для определения свойств проводников на момент эксплуатации при нагреве, но в последнее время применяется и для измерения степени проводимости тепловой энергии.

Полупроводники и изоляторы обладают более низкими показателями проводимости тепла, что связано с особенностями строения их кристаллической решетки.

Когда учитывается

При рассмотрении различных свойств материалов часто уделяется внимание и теплопроводности. Этот показатель важен в нижеприведенных случаях:

  1. Когда нужно отвести тепло от объекта. Тепловая энергия может возникать из-за трения. При этом нагрев становится причиной изменения основных свойств металлов и сплавов: прочности и твердости поверхности. Примером назовем конструкцию двигателя внутреннего сгорания. В процессе хода поршня в блоке цилиндров происходит нагрев основных элементов конструкции. Из-за слишком высокого нагрева даже металлы, устойчивые к воздействию высокой температуры, начинают терять прочность и становятся более пластичными. В результате происходит изменение геометрических размеров важных элементов конструкции, и она выходит из строя. Учитывается теплопроводность и при создании режущего инструмента, обшивки самолетов или высокоскоростных поездов.
  2. Когда нужно передать тепловую энергию. Центральная система отопления основана на нагреве рабочей среды, которая после подводится к потребителю и происходит передача энергии окружающей среде. Для того чтобы повысить эффективность создаваемой системы трубы, и отопительные радиаторы изготавливаются из металлов, которые способны быстро передавать тепло.
  3. Когда нужно изолировать поверхность. Встречается ситуация, когда нужно снизить вероятность нагрева поверхности. Для этого применяются специальные материалы, которые обладают высокими изоляционными качествами. Некоторые металлы и сплавы также обладают отражающими свойствами и не нагреваются, а также не передают тепло. Примером назовем фольгу, которая часто применяется в качестве отражающего экрана. Она также изготавливается из тонкого слоя металла, обладающего низким коэффициентом проводимости.

В заключение отметим, что до развития молекулярно-кинетической теории было принято считать передачу тепловой энергии признаком перетекания гипотетического теплорода. Появление современного оборудования позволило изучить строение материалов и изучить поведение частиц при воздействии высокой температуры. Передача энергии происходит за счет быстрого движения молекул, которые начинают сталкиваться, и приводит в движение другие молекулы, находящиеся в спокойном состоянии.

Физические свойства воды

Физические свойства воды

 

Вода — самое аномальное вещество, хотя принята за эталон меры плотности и объема для других веществ.

Давайте рассмотрим какие же свойства воды существуют.

 

Плотность

Все вещества увеличивают объем при нагревании, уменьшая при этом плотность. Однако при давлении 0.1013 МПа (1 атм) у воды в интервале от 0 до 4°С при увеличении температуры объем уменьшается и максимальная плотность наблюдается при 4°С (при этой температуре 1 кубический сантиметр воды имеет массу 1 грамм). При замерзании объем воды резко возрастает на 11 % а при таянии льда при 0°С так же резко уменьшается.

 

С увеличением давления температура замерзания воды понижается через каждые 13,17 МПа (130 атм) на 1 °С. Поэтому на больших глубинах при минусовых температурах вода в океане не замерзает. С увеличением температуры до 100 °С плотность жидкой воды понижается на 4% (при 4°С плотность ее рав-

на 1).

 

Точки кипения и замерзания (плавления)

При давлении 0,1013 МПа (1 атм) точки замерзания и кипения воды находятся при 0°С и 100°С, что резко отличает Н20 от соединений водорода с элементами VI группы периодическои системы Менделеева. В ряду Н2Те. Н2Se, Н2S и т. д. с увеличением относительной молекулярной массы точки кипения и замерзания этих веществ повышаются.

При соблюдении этого правила вода должна была бы иметь точки замерзания между —90 и — 120°С, а кипения — между 75 и 100°С.

Температура кипения воды возрастает с увеличением давления, а температура замерзания (плавления) — падает.

 

Теплота плавления

Скрытая теплота плавления льда очень высока — около 335 Дж/г (для железа — 25, для серы — 40). Это свойство выражается, например, в том, что лед при нормальном давлении может иметь температуру от — 1 до — 7°С. Скрытая теплота парообразования воды (2,3 кДж/г) почти в 7 раз выше скрытой теплоты плавления.

 

Теплоемкость

Величина теплоемкости воды (т. е. количество теплоты, необходимое для повышения температуры на 1 градус Цельсия) в 5-30 раз выше, чем у других веществ. Лишь водород и аммиак обладают большей теплоемкостью. Кроме тою, лишь у жидкой воды и ртути удельная теплоемкость с повышением температуры от 0 до 35 °С падает (затем начинает возрастать).Удельная теплоемкость воды при 16°С условно принята за единицу, служа эталоном для других веществ. Поскольку теплоемкость песка в 5 раз меньше, чем у жидкой воды, то при одинаковом нагреве солнцем вода в водоеме нагревается в 5 раз слабее, чем песок на берегу, но во столько же раз дольше сохраняет теплоту. Высокая теплоемкость воды защищает растения от резкого повышения температуры при высокой температуре воздуха, а высокая теплота парообразования участвует в терморегуляции у растений.

 

Высокие температуры плавления и кипения, высокая теплоемкость свидетельствуют о сильном притяжении между соседними молекулами, вследствие чего жидкая вода обладает большим внутренним сцеплением.

 

Поверхностное натяжение и прилипание

На поверхности воды из-за нескомпенсированности сцепления (когезии) ее молекул создается поверхностное натяжение, величина которого при 18 °С равна 0,72 мН/см (выше только у ртути -5 мН/см). Вода обладает также свойством адгезии (прилипания). которое обнаруживается при ее подъеме против гравитационных сил. В капиллярах сочетаются силы сцепления молекул воды в пограничном с воздухом слое с се адгезией с материалом стенок капилляра. В результате в капилляре образуется вогнутая поверхность воды выше ее исходного уровня. У ртути, не обладающей свойством адгезии, поверхность мениска в капилляре выпуклая. То же наблюдается в капиллярах с несмачиваемыми водой стенками.

 

  • Формула средней скорости движения >>

2. Вода и её роль в жизнедеятельности клетки

Вода (h3O) — важнейшее неорганическое вещество клетки. В клетке в количественном отношении вода занимает первое место среди других химических соединений. Вода выполняет различные функции: сохранение объёма, упругости клетки, участие во всех химических реакциях. Все биохимические реакции происходят в водных растворах. Чем выше интенсивность обмена веществ в той или иной клетке, тем больше в ней содержится воды.

Обрати внимание!

Вода в клетке находится в двух формах: свободной и связанной.

Свободная вода находится в межклеточных пространствах, сосудах, вакуолях, полостях органов. Она служит для переноса веществ из окружающей среды в клетку и наоборот.
Связанная вода входит в состав некоторых клеточных структур, находясь между молекулами белка, мембранами, волокнами, и соединена с некоторыми белками.
Вода обладает рядом свойств, имеющих исключительное значение для живых организмов.

Структура молекулы воды

Уникальные свойства воды определяются структурой её молекулы.

Между отдельными молекулами воды образуются водородные связи, определяющие физические и химические свойства воды.
Характерное расположение электронов в молекуле воды придаёт ей электрическую асимметрию. Более электроотрицательный атом кислорода притягивает электроны атомов водорода сильнее, в результате молекула воды является диполем (обладает полярностью). Каждый из двух атомов водорода обладает частично положительным зарядом, а атом кислорода несёт частично отрицательный заряд.
 

Частично отрицательный заряд атома кислорода одной молекулы воды притягивается частично положительными атомами водорода других молекул. Таким образом, каждая молекула воды стремится связаться водородной связью с четырьмя  соседними молекулами воды.
 

 

Свойства воды

Так как молекулы воды полярны, то вода обладает свойством растворять полярные молекулы других веществ.
Вещества, растворимые в воде, называются гидрофильными (соли, сахара, простые спирты, аминокислоты, неорганические кислоты). Когда вещество переходит в раствор, его молекулы или ионы могут двигаться более свободно и, следовательно, реакционная способность вещества возрастает.

Вещества, нерастворимые в воде, называются гидрофобными (жиры, нуклеиновые кислоты, некоторые белки). Такие вещества могут образовывать с водой поверхности раздела, на которых протекают многие химические реакции. Следовательно, тот факт, что вода не растворяет некоторые вещества, для живых организмов также очень важен.


Вода обладает высокой удельной теплоёмкостью, т. е. способностью поглощать тепловую энергию при минимальном повышении собственной температуры. Чтобы разорвать многочисленные водородные связи, имеющиеся между молекулами воды, требуется поглотить большое количество энергии. Это свойство воды обеспечивает поддержание теплового баланса в организме. Большая теплоёмкость воды защищает ткани организма от быстрого и сильного повышения температуры.
Для испарения воды необходима довольно большая энергия. Использование значительного количества энергии на разрыв водородных связей при испарении способствует его охлаждению. Это свойство воды предохраняет организм от перегрева.

Пример:

примерами этого могут являться транспирация у растений и потоотделение у животных.

Вода обладает также высокой теплопроводностью, обеспечивая равномерное распределение тепла по всему организму.

Обрати внимание!

Высокая удельная теплоёмкость и высокая теплопроводность делает воду идеальной жидкостью для поддержания теплового равновесия клетки и организма.


Вода практически не сжимается, создавая тургорное давление, определяя объём и упругость клеток и тканей.

Пример:

гидростатический скелет поддерживает форму у круглых червей, медуз и других организмов.

Благодаря силам сцепления молекул на поверхности воды создаётся плёнка, обладающая такой характеристикой, как поверхностное натяжение.

Пример:

благодаря силе поверхностного натяжения происходит капиллярный кровоток, восходящий и нисходящий токи растворов в растениях.

К числу важных в физиологическом отношении свойств воды относится её способность растворять газы (O2, CO2 и др.).

Вода является также источником кислорода и водорода, выделяемых при фотолизе в световую фазу фотосинтеза.

Биологические функции воды

  • Вода обеспечивает передвижение веществ в клетке и организме, поглощение веществ и выведение продуктов метаболизма. В природе вода переносит продукты жизнедеятельности в почву и к водоёмам.
  • Вода — активный участник реакций обмена веществ.
  • Вода участвует в образовании смазывающих жидкостей и слизей, секретов и соков в организме (эти жидкости находятся в суставах позвоночных животных, в плевральной полости, в околосердечной сумке).
  • Вода входит в состав слизей, которые облегчают передвижение веществ по кишечнику, создают влажную среду на слизистых оболочках дыхательных путей. Водную основу имеют и секреты, выделяемые некоторыми железами и органами: слюна, слёзы, желчь, сперма и т. д.

Источники:

Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.

Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.

https://infourok.ru/prezentaciya_po_biologii_na_temu_mineralnye_veschestva_i_voda-409343.htm

https://otvet.mail.ru/question/182353364

http://www.studfiles.ru/html/2706/741/html_fBK8q_mH0r.UWHS/htmlconvd-PYhDG9_html_1c3325a2.png

Теплопроводность — Energy Education

Теплопроводность , часто обозначаемая как [math] \ kappa [/ math], — это свойство, которое связывает скорость потери тепла на единицу площади материала со скоростью его изменения температуры. [1] По сути, это значение, которое учитывает любое свойство материала, которое может изменить способ его теплопроводности. {\ circ} F} \ right) [/ math]. [3] Материалы с более высокой теплопроводностью являются хорошими проводниками тепловой энергии.

Поскольку теплопередача за счет теплопроводности включает в себя передачу энергии без движения материала, логично, что скорость передачи тепла будет зависеть только от разницы температур между двумя точками и теплопроводности материала.

Для получения дополнительной информации о теплопроводности см. Гиперфизика.

Значения для обычных материалов

Теплопроводность, [математика] \ каппа [/ математика] [4]
Материал Электропроводность при 25 o C
Акрил 0.2
Воздух 0,024
Алюминий 205
Битум 0,17
Латунь 109
Цемент 1,73
Медь 401
Алмаз 1000
Войлок 0,04
Стекло 1,05
Утюг 80
Кислород 0. 024
Бумага 0,05
Кремнеземный аэрогель 0,02
Вакуум 0
Вода 0,58


Из таблицы справа видно, что большинство материалов, которые обычно считаются хорошими проводниками, обладают высокой теплопроводностью. В основном металлы обладают очень высокой теплопроводностью, которая хорошо сопоставима с тем, что известно о металлах.Кроме того, изоляционные материалы, такие как аэрогель и изоляция, используемые в домах, имеют низкую теплопроводность, что указывает на то, что они не пропускают тепло через себя легко. Таким образом, низкая теплопроводность свидетельствует о хорошем изоляционном материале.

Промежуточные материалы не обладают значительными изолирующими или проводящими свойствами. Цемент и стекло не проводят слишком большое количество тепла и не обладают хорошей изоляцией.

Идея о том, что теплопроводность определенных материалов связана с тем, насколько хорошо они изолируют, обеспечивает связь между теплопроводностью и значениями R / U. Поскольку значения U и R отражают, насколько хорошо определенный материал сопротивляется потоку тепла, теплопроводность играет роль в формировании этих значений. Однако значения U и R также зависят от толщины материала, тогда как теплопроводность этого не учитывает.

Для дальнейшего чтения

Список литературы

  1. ↑ HyperPhysics. (12 мая 2015 г.). Теплопроводность [Онлайн]. Доступно: http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/thercond.html
  2. ↑ Р. Чабай, Б. Шервуд. (12 мая 2015 г.). Matter & Interactions , 3-е изд., Хобокен, Нью-Джерси, США: John Wiley & Sons, 2011
  3. ↑ Д. Грин, Р. Перри. (12 мая 2015 г.). Справочник инженеров-химиков Перри , 7-е изд., McGraw-Hill, 1997.
  4. ↑ The Engineering Toolbox. (12 мая 2015 г.). Теплопроводность обычных материалов и газов [Онлайн]. Доступно: http://www.engineeringtoolbox.com/thermal-conductivity-d_429.html

10 лучших теплопроводящих материалов

Теплопроводность — это мера способности материала пропускать через него тепло. Материалы с высокой теплопроводностью могут эффективно передавать тепло и легко забирать тепло из окружающей среды. Плохие теплопроводники сопротивляются тепловому потоку и медленно извлекают тепло из окружающей среды. Теплопроводность материала измеряется в ваттах на метр на градус Кельвина (Вт / м • К) в соответствии с рекомендациями S.I (Международная система).

10 лучших измеренных теплопроводящих материалов и их значения приведены ниже. Эти значения проводимости являются средними из-за различий в теплопроводности в зависимости от используемого оборудования и среды, в которой были получены измерения.

Материалы теплопроводящие

  1. Diamond — 2000 — 2200 Вт / м • K

    Алмаз является ведущим теплопроводным материалом и имеет измеренные значения проводимости в 5 раз выше, чем у меди, самого производимого металла в Соединенных Штатах. Атомы алмаза состоят из простой углеродной основы, которая представляет собой идеальную молекулярную структуру для эффективной передачи тепла. Часто материалы с простейшим химическим составом и молекулярной структурой имеют самые высокие значения теплопроводности.

    Diamond — важный компонент многих современных портативных электронных устройств. Их роль в электронике — способствовать рассеиванию тепла и защищать чувствительные части компьютера. Высокая теплопроводность алмазов также оказывается полезной при определении подлинности камней в ювелирных изделиях. Добавление небольшого количества алмаза в инструменты и технологии может сильно повлиять на свойства теплопроводности.

  2. Серебро — 429 Вт / м • K

    Серебро — относительно недорогой и распространенный теплопроводник.Серебро входит в состав многих приборов и является одним из самых универсальных металлов из-за его ковкости. 35% серебра, производимого в США, используется для изготовления электрических инструментов и электроники (US Geological Survey Mineral Community 2013). Вспомогательный продукт серебра, серебряная паста, пользуется все большим спросом из-за его использования в экологически чистых источниках энергии. Серебряная паста используется в производстве фотоэлементов, которые являются основным компонентом солнечных батарей.

  3. Медь — 398 Вт / м • K

    Медь — наиболее часто используемый металл для производства токопроводящих приборов в США.Медь имеет высокую температуру плавления и умеренную скорость коррозии. Это также очень эффективный металл для минимизации потерь энергии при передаче тепла. Металлические кастрюли, трубы для горячей воды и автомобильные радиаторы — все это приборы, в которых используются проводящие свойства меди.

  4. Золото — 315 Вт / м • K

    Золото — редкий и дорогой металл, который используется в особых проводящих целях. В отличие от серебра и меди, золото редко тускнеет и может выдерживать большие количества коррозии.

  5. Нитрид алюминия — 310 Вт / м • K

    Нитрид алюминия часто используется в качестве замены оксида бериллия. В отличие от оксида бериллия, нитрид алюминия не представляет опасности для здоровья при производстве, но по-прежнему демонстрирует химические и физические свойства, аналогичные оксиду бериллия. Нитрид алюминия — один из немногих известных материалов, предлагающих электрическую изоляцию наряду с высокой теплопроводностью. Он обладает исключительной термостойкостью и действует как электрический изолятор в механической стружке.

  6. Карбид кремния — 270 Вт / м • K

    Карбид кремния — это полупроводник, состоящий из сбалансированной смеси атомов кремния и углерода. При изготовлении и сплаве кремний и углерод соединяются, образуя чрезвычайно твердый и прочный материал. Эта смесь часто используется в качестве компонента автомобильных тормозов, турбинных машин и стальных смесей.

  7. Алюминий — 247 Вт / м • K

    Алюминий обычно используется в качестве экономичной замены меди.Хотя алюминий и не такой проводящий, как медь, его много, и с ним легко работать из-за его низкой температуры плавления. Алюминий является важнейшим компонентом светильников L.E.D (светоизлучающих диодов). Медно-алюминиевые смеси набирают популярность, поскольку они могут использовать свойства как меди, так и алюминия и могут производиться с меньшими затратами.

  8. Вольфрам — 173 Вт / м • K

    Вольфрам имеет высокую температуру плавления и низкое давление пара, что делает его идеальным материалом для приборов, которые подвергаются воздействию высоких уровней электричества.Химическая инертность вольфрама позволяет использовать его в электродах, являющихся частью электронных микроскопов, без изменения электрических токов. Он также часто используется в лампах и как компонент электронно-лучевых трубок.

  9. Графит 168 Вт / м • K

    Графит — распространенная, недорогая и легкая альтернатива другим углеродным аллотропам. Его часто используют в качестве добавки к смесям полимеров для улучшения их теплопроводных свойств. Батареи — знакомый пример устройства, использующего высокую теплопроводность графита.

  10. Цинк 116 Вт / м • K

    Цинк — один из немногих металлов, которые можно легко комбинировать с другими металлами для создания металлических сплавов (смеси двух или более металлов). 20% цинковых приборов в США состоят из цинковых сплавов. При цинковании используется 40% производимого чистого цинка. Цинкование — это процесс нанесения цинкового покрытия на сталь или железо, которое предназначено для защиты металла от атмосферных воздействий и ржавчины.

Список литературы

Мохена, Т.К., Мочане, М. Дж., Сефади, Дж. С., Мотлунг, С. В., и Андала, Д. М. (2018). Теплопроводность полимерных композитов на основе графита. Влияние теплопроводности на энергетические технологии. doi: 10,5772 / intechopen.75676
Нитрид алюминия. (нет данных). Получено с https://precision-ceramics.com/materials/aluminium-nitride/

.

База данных материалов Thermtest. https://thermtest.com/materials-database

Автор: Каллиста Уилсон, младший технический писатель Thermtest

Теплопроводность

Материал Теплопроводность
(кал / сек) / (см 2 C / см)
Теплопроводность
(Вт / м · К) *
Алмаз. .. 1000
Серебро 1.01 406.0
Медь 0.99 385.0
Золото 314
Латунь 109,0
Алюминий 0,50 205,0
Железо 0,163 79,5
Сталь 50.2
Свинец 0,083 34,7
Ртуть 8,3
Лед 0,005 1,6
Стекло обычное 0,0025 0,8
Бетон 0,002 0,8
Вода при 20 ° C 0,0014 0,6
Асбест 0,0004 0.08
Снег (сухой) 0,00026
Стекловолокно 0,00015 0,04
Кирпич изоляционный . .. 0,15
Кирпич красный 0,6
Пробковая плита 0,00011 0,04
Войлок 0,0001 0,04
Минеральная вата 0,04
Полистирол (пенополистирол) 0,033
Полиуретан 0,02
Дерево 0,0001 0,12-0,04
Воздух при 0 ° C 0,000057 0,024
Гелий (20 ° C) 0,138
Водород (20 ° C) 0,172
Азот (20 ° C) 0,0234
Кислород (20 ° C) 0,0238
Аэрогель кремнезема 0,003

* Большинство из Янга, Хью Д., Университетская физика, 7-е изд. Таблица 15-5. Значения для аэрогеля алмаза и кремнезема из Справочника по химии и физике CRC.

Обратите внимание, что 1 (кал / сек) / (см 2 C / см) = 419 Вт / м K. С учетом этого два приведенных выше столбца не всегда совпадают.Все значения взяты из опубликованных таблиц, но не могут считаться достоверными.

Значение 0,02 Вт / мК для полиуретана может быть принято как номинальное значение, которое делает пенополиуретан одним из лучших изоляторов. NIST опубликовал процедуру численного приближения для расчета теплопроводности полиуретана на http://cryogenics.nist.gov/NewFiles/Polyurethane.html. Их расчет для полиуретана, наполненного фреоном, с плотностью 1,99 фунт / фут 3 при 20 ° C дает теплопроводность 0.022 Вт / мК. Расчет для полиуретана с наполнителем CO 2 плотностью 2,00 фунт / фут 3 дает 0,035 Вт / мК.

Индекс

Таблицы

Каталожный номер
Young
Ch 15.

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно.Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом.Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или уточнить у системного администратора.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файле cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно.Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом.Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или уточнить у системного администратора.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файле cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта.Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Какие металлы лучше всего проводят тепло? | Металл Супермаркеты

Теплопроводность измеряет способность металла проводить тепло. Это свойство различается в зависимости от типа металла, и его важно учитывать в приложениях, где часто встречаются высокие рабочие температуры.

В чистых металлах теплопроводность остается примерно такой же при повышении температуры. Однако в сплавах теплопроводность увеличивается с температурой.

Какие металлы лучше всего проводят тепло?

Обычные металлы, ранжированные по теплопроводности
Рейтинг Металл Теплопроводность [БТЕ / (ч · фут⋅ ° F)]
1 Медь 223
2 Алюминий 118
3 Латунь 64
4 Сталь 17
5 бронза 15

Как видите, из наиболее распространенных металлов медь и алюминий обладают самой высокой теплопроводностью, а сталь и бронза — самой низкой.Теплопроводность — очень важное свойство при выборе металла для конкретного применения. Поскольку медь является отличным проводником тепла, она хороша для теплообменников, радиаторов и даже днища кастрюль. Поскольку сталь плохо проводит тепло, она подходит для использования в высокотемпературных средах, таких как двигатели самолетов.

Вот некоторые важные области применения, в которых требуются металлы, хорошо проводящие тепло:

  • Теплообменники
  • Радиаторы
  • Посуда

Теплообменники

Теплообменник — это обычное применение, где важна хорошая теплопроводность.Теплообменники выполняют свою работу, передавая тепло для достижения нагрева или охлаждения.

Медь — популярный выбор для теплообменников в промышленных объектах, систем кондиционирования воздуха, охлаждения, резервуаров для горячей воды и систем подогрева полов. Его высокая теплопроводность позволяет теплу быстро проходить через него. Медь обладает дополнительными свойствами, желательными для теплообменников, включая устойчивость к коррозии, биологическому обрастанию, нагрузкам и тепловому расширению.

Алюминий также может использоваться в некоторых теплообменниках как более экономичная альтернатива.

Теплообменники обычно используются в следующих ситуациях:

Промышленные объекты

Теплообменники на промышленных объектах включают ископаемые и атомные электростанции, химические предприятия, опреснительные установки и морские службы.

В промышленных объектах медно-никелевый сплав используется для изготовления трубок теплообменника. Сплав обладает хорошей коррозионной стойкостью, что защищает от коррозии в морской среде. Он также обладает хорошей устойчивостью к биологическому обрастанию, чтобы избежать образования водорослей и морского мха.Алюминиево-латунный сплав обладает аналогичными свойствами и может использоваться как альтернатива.

Солнечные системы термального водоснабжения

Солнечные водонагреватели — это экономичный способ нагрева воды, в котором медная трубка используется для передачи солнечной тепловой энергии воде. Медь используется из-за ее высокой теплопроводности, устойчивости к воздушной и водной коррозии и механической прочности.

Газовые водонагреватели

Газо-водяные теплообменники передают тепло, выделяемое газовым топливом, воде.Они распространены в жилых и коммерческих котлах. Для газовых водонагревателей предпочтительным материалом является медь из-за ее высокой теплопроводности и простоты изготовления.

Принудительное воздушное отопление и охлаждение

Тепловые насосы, использующие воздух, давно используются для отопления жилых и коммерческих помещений. Они работают за счет теплообмена воздух-воздух через испарители. Их можно использовать в дровяных печах, котлах и печах. Опять же, медь обычно используется из-за ее высокой теплопроводности.

Радиаторы

Радиаторы — это тип теплообменника, который передает тепло, выделяемое электронным или механическим устройством, в движущуюся охлаждающую жидкость. Жидкость отводит тепло от устройства, позволяя ему остыть до желаемой температуры. Используются металлы с высокой теплопроводностью.

В компьютерах

радиаторы используются для охлаждения центральных процессоров или графических процессоров. Радиаторы также используются в мощных устройствах, таких как силовые транзисторы, лазеры и светоизлучающие диоды (светодиоды).

Радиаторы предназначены для увеличения площади поверхности, контактирующей с охлаждающей жидкостью.

Алюминиевые сплавы являются наиболее распространенным материалом для теплоотвода. Это потому, что алюминий стоит меньше меди. Однако медь используется там, где требуется более высокий уровень теплопроводности. В некоторых радиаторах используются комбинированные алюминиевые ребра с медным основанием.

Посуда

Металл с хорошей теплопроводностью чаще используется в быту в посуде. Когда вы разогреваете еду, вы не хотите ждать весь день.Вот почему медь используется для изготовления дна высококачественной посуды, потому что металл быстро проводит тепло и равномерно распределяет его по своей поверхности.

Однако, если у вас ограниченный бюджет, вы можете использовать алюминиевую посуду в качестве альтернативы. Для разогрева еды может потребоваться немного больше времени, но ваш кошелек будет вам благодарен!

Metal Supermarkets — крупнейший в мире поставщик мелкосерийного металла с более чем 85 обычными магазинами в США, Канаде и Великобритании.Мы эксперты по металлу и обеспечиваем качественное обслуживание клиентов и продукцию с 1985 года.

В Metal Supermarkets мы поставляем широкий ассортимент металлов для различных областей применения. В нашем ассортименте: нержавеющая сталь, легированная сталь, оцинкованная сталь, инструментальная сталь, алюминий, латунь, бронза и медь.

Наша горячекатаная и холоднокатаная сталь доступна в широком диапазоне форм, включая пруток, трубы, листы и листы. Мы можем разрезать металл в точном соответствии с вашими требованиями.

Посетите одно из наших 80+ офисов в Северной Америке сегодня.

Теплопроводность | TORELINA ™ | ТОРЕЙ ПЛАСТИК

Техническая информация | Тепловые свойства | Теплопроводность

Явления теплопередачи, которые заставляют объекты, подверженные разнице температур, принимать однородную температуру, в основном подразделяются на теплопроводность, конвекцию и излучение, в зависимости от состояния пути потока, по которому течет тепло, и других факторов. Теплопроводность — это явление, при котором тепло перемещается через твердый или неподвижный газ (или жидкость).Теплопроводность — это свойство, указывающее на легкость, с которой тепло может проходить через твердое тело, такое как формованное изделие. Носители (среды) для переноса тепла включают свободные электроны, колебания решетки и колебания молекул. Эффект теплопередачи свободных электронов очень высок, поэтому металлы, такие как алюминий и медь, обладают высокой теплопроводностью. С другой стороны, пластмассовые материалы, такие как TORELINA, являются изоляционными материалами, которые не имеют свободных электронов, поэтому имеют более низкую теплопроводность, чем металлы, и превосходят их по своим теплоизоляционным свойствам.

Ⅰ. Измерение теплопроводности

Существуют различные методы измерения теплопроводности твердого тела. Их можно разделить на стационарные методы, в которых температура образца находится в установившемся состоянии, а теплопроводность определяется по количеству (тепловой поток, Вт / м 2 ), которое проходит через единицу поперечного сечения. площадь в единицу времени и нестационарные методы, в которых теплопроводность определяется по скорости распространения тепла через образец (коэффициент температуропроводности, м 2 S -1 ).В последнее время чаще всего используются нестационарные методы, с помощью которых можно быстро получить измерения. Эти методы включают метод лазерной вспышки и метод горячего диска. Теплопроводность можно определить, используя плотность образца и удельную теплоемкость при температуре измерения, в дополнение к температуропроводности, определенной нестационарным методом, в соответствии с формулой 6.1. Обычно для измерения теплопроводности используется плоская пластина, поэтому с помощью стационарного метода и метода лазерной вспышки можно определить теплопроводность в направлении толщины, а с помощью метода горячего диска можно определить теплопроводность в плоском направлении. в дополнение к этому по толщине.Существует еще один метод, с помощью которого теплопередачу фактического формованного продукта проверяют визуально с помощью термографии, которая анализирует инфракрасные лучи, испускаемые формованным продуктом, и затем выражает это на диаграмме распределения температуры.

Ⅱ. Теплопроводность TORELINA

Теплопроводность TORELINA в направлении толщины, определенная стационарным методом, приведена в таблице. 6.3. Армированный ППС имеет более высокую теплопроводность, чем неармированный ППС.Армирование из стекловолокна и минерального наполнителя имеет более высокую теплопроводность, чем полимер PPS, поэтому теплопроводность различается в зависимости от типа и содержания добавленного армирования.

Таблица. 6.3 Теплопроводность TORELINA (устойчивый метод, 80 ℃)

Арт. Квартир Армированный стекловолокном Стекло + наполнитель армированное Улучшение эластомера Неармированный
A504X90 A604 A310MX04 A610MX03 A673M A575W20 A495MA1 A900 A670T05
Теплопроводность
(направление толщины)
Вт / м ・ K 0. 3 0,3 0,5 0,5 0,3 0,3 0,4 0,2 0,2

Ⅲ. PPS

с высокой теплопроводностью

PPS с высокой теплопроводностью подходит для продления срока службы электрических и электронных компонентов, таких как системы светодиодного освещения, и для проектирования теплового излучения в таких целях, как снижение потерь энергии в обмотках, используемых в автомобильных двигателях.TORELINA предлагает линейку TORELINA H501B, электропроводящего типа, теплопроводность которого значительно улучшена по сравнению с обычным PPS, и H718LB, который сохраняет свои изоляционные свойства. (Таблица 6.4)

Таблица. 6.4 PPS с высокой теплопроводностью (23 ℃)

Арт. Направление измерения шт. Армированный стекловолокном Высоконаполненная PPS с высокой теплопроводностью Метод измерения
Тип изоляции Электропроводящий тип
A504X90 A310MX04 H718LB H501B
Теплопроводность Плоское направление Вт / м ・ K 0. 4 0,7 1,0 10,0 Метод горячего диска
Объемное сопротивление Ом ・ м 2 × 10 14 1 × 10 14 5 × 10 13 5 × 10 0

Рис. 6.7 Термографический анализ

При термическом анализе с использованием термографии (рис.6.7) источник тепла (3,4 Вт) помещается в центре плоской пластины (80 × 80 × 3 мм t), а наблюдение ведется с противоположной стороны. На рис. 6.8 сравниваются графики распределения температуры, полученные при нагревании обычных марок PPS, армированных стекловолокном (A504X90), и марок PPS с высокой теплопроводностью (H501B и H718LB) в течение пяти минут. Можно видеть, что для марки PPS, армированной стекловолокном, которая имеет низкую теплопроводность, трудно рассеивать тепло от источника тепла, образуя тем самым горячую точку, тогда как для марок PPS с высокой теплопроводностью тепло распространяется в окружающую среду, тем самым ограничивая размер горячей точки.