Ток срабатывания узо: кто виноват и что делать?

Содержание

кто виноват и что делать?

Введение

Устройства защитного отключения (УЗО) широко применяются во всех странах в электросетях жилых зданий и промышленных предприятий в качестве дополнительной меры защиты людей от поражения электрическим током (УЗО с дифференциальным током срабатывания до 30 мА [1, 2]) и для защиты от пожара, к которому может привести возрастание температуры при протекании тока через место повреждения изоляции кабелей и других видов электрооборудования (УЗО с токами срабатывания от 100 до 300 мА [3, 4]).

При таком широком распространении УЗО достоянием гласности становится множество случаев их ложных срабатываний. Одно дело, если ложно отключилось электропитание квартиры в жилом доме, которое можно легко и просто восстановить, вернув УЗО в исходное положение, и совсем другое, если произошло отключение во время работы сложного промышленного электронного оборудования, компьютеров, серверов и т. п. Ущерб во втором случае может быть очень значительным, и не только чисто материальный. В п. 7.1.81 ПУЭ-7 однозначно запрещается установка УЗО для электроприемников, отключение которых может привести к ситуациям, опасным для потребителей (отключению пожарной сигнализации и т. п.). Однако далеко не всегда на практике можно заранее предвидеть, к каким именно отдаленным последствиям может привести отключение тех или иных конкретных электроприемников, подключенных через УЗО (например, компьютеров, управляющих технологическим процессом, устройств специальной связи и сигнализации и т. д.), поэтому проблема ложных срабатываний УЗО является весьма актуальной. Этой теме посвящены многочисленные публикации в специальной технической литературе [5-10], о наличии такой проблемы прямо пишут все крупные производители УЗО в своих каталогах, такие как ABB, Siemens, Schneider Electric, Merlin Gerin, Legrand, Eaton, Moeller и др.

Стандартами [11, 12] предусмотрены два основных типа УЗО: AC и A. Стандартом [13] — еще два дополнительных типа В и F.

Все они отличаются характером тока, протекающего через устройство. Так, например, УЗО типа АС предназначено только для чисто синусоидального переменного тока; типа А — для переменного синусоидального и наложенного на него пульсирующего выпрямленного тока; типа В — для переменных синусоидальных, с частотой до 1000 Гц, пульсирующих, постоянных или выпрямленных сглаженных токов; типа F (обозначение связано со словом frequency — частота) — для переменного синусоидального и пульсирующего токов, а также для несинусоидальных токов, содержащих гармоники, генерируемые преобразователями частоты. Множество дополнительных типов, «изобретенных» производителями специально для уменьшения ложных срабатываний (например, типы U, K, AP-R, SI и др.), не предусмотрены стандартами. Существует также деление УЗО на приборы общего применения (тип G — general) и селективные (S — selective). Последние обладают увеличенным дифференциальным током срабатывания, снабжены задержкой срабатывания и применяются в разветвленных каскадных сетях.

Несмотря на наличие на рынке УЗО многочисленных типов, проблема их ложных срабатываний остается, как показывает практика, актуальной.

 

Анализ причин ложных срабатываний УЗО

Оговоримся сразу, мы не будем рассматривать случаи отказов в работе УЗО, вызванных их поломками, а будем рассматривать лишь случаи ложных срабатываний полностью исправных УЗО. Тут может возникнуть вопрос: как же так, ведь если УЗО полностью исправно и полностью соответствует всем предъявляемым к нему требованиям, то как оно может ложно срабатывать? Все дело в особых условиях и специфических режимах, которые иногда возникают в электрических сетях, а также в параметрах самих сетей и режимах работы потребителей электроэнергии. При высокой чувствительности УЗО режимы работы самой сети и потребителей, питающихся через УЗО, оказывают на него самое непосредственное влияние и часто служат причиной ложных срабатываний.

Естественные («фоновые») токи утечки на землю через неповрежденную изоляцию кабелей и электроприемников

Как известно, УЗО реагируют на так называемый дифференциальный ток, который представляет собой разность между фазным током (или суммой фазных токов в трехфазной сети) и током в нулевом проводе. Если весь ток, который прошел через УЗО к потребителю через фазный провод, вернулся к УЗО через нулевой провод, то дифференциальный ток, на который настроено УЗО, будет равен нулю. Если часть тока фазы, прошедшего через УЗО, «стекла» на землю через изоляцию и не вернулась к УЗО через нулевой провод, то появится та самая разность токов (дифференциальный ток), на которую и реагирует устройство. Распределенные емкости относительно земли кабелей, емкости между обмотками трансформаторов и двигателей относительно заземленных корпусов, емкости многочисленных фильтров, установленных в цепях питания практически всех видов электронной аппаратуры, — все это пути утечки на землю тока. Того самого тока, на который и должно реагировать исправное УЗО. В соответствии со стандартами [14, 15] ток срабатывания УЗО может лежать в пределах 0,5I
ΔN
-IΔN. То есть, реальное исправное УЗО с номинальным дифференциальным током срабатывания 30 мА (максимально допустимый ток для защиты людей от поражения электрическим током) может сработать при токе в 50% номинального, то есть при 15 мА. Для УЗО типов А и В реальные токи срабатывания зависят еще от угла задержки пульсирующей составляющей тока и, в соответствии со стандартами [11, 12, 14], лежат в пределах 0,11ΙΔN-2ΙΔN.

Искажения формы тока в цепи УЗО

Качество электроэнергии в бытовых и промышленных электросетях имеет тенденцию постоянного ухудшения в связи с расширяющимся применением нелинейных нагрузок, таких как мощные регуляторы напряжения, преобразователи частоты, агрегаты бесперебойного питания, осветительные установки со светодиодами, компьютеры, серверы, контроллеры и другие маломощные электронные устройства с импульсными источниками питания, потребляющие из сети несинусоидальный ток. Такой искаженный ток, содержащий в своем составе большое количество высокочастотных гармоник, будет протекать и через УЗО (рис. 1, таблица 1).

Рис. 1. Реальные осциллограммы токов в фазах и в нуле, протекающих через УЗО, включенное в цепи питания электронной аппаратуры связи и послужившее причиной неоднократных ложных отключений этой аппаратуры

Таблица 1. Реальный гармонический состав токов, протекающих через УЗО, включенное в цепи питания электронной аппаратуры связи и имеющее зарегистрированные случаи ложных срабатываний
Номер
гармоники
Содержание каждой гармоники, %
LlL2L3N
1100100100100
210,931,3
314,623,746,358,2
40,90,92,51,3
522,517,345,226,8
60,83,22,64
715,210,834,621
THD, %34,5338078

Как показано в исследованиях [5-10], искаженный ток, протекающий через УЗО электромеханического типа, существенно изменяет его порог срабатывания. Влияние высокочастотных гармоник на состояние магнитопровода внутреннего трансформатора тока УЗО и на его другие элементы достаточно сложно и неоднозначно. В некоторых случаях можно говорить об опасности несрабатывания УЗО, а в некоторых — о снижении порога срабатывания, то есть об увеличении вероятности ложных срабатываний. Но высокочастотные гармоники не только изменяют порог срабатывания УЗО, но и увеличивают общий «фоновый» ток утечки через емкости сети и потребителей. Поэтому может оказаться, что даже специально подобранное для работы с искаженными токами УЗО будет по-прежнему ложно срабатывать.

Воздействие импульсов тока в цепи УЗО

Помимо гармоник, электрические сети жилых зданий и особенно сети промышленных предприятий постоянно подвергаются воздействию атмосферных и коммутационных импульсных перенапряжений. Эти перенапряжения «срезаются» различного рода защитными элементами: газовыми разрядниками, нелинейными сопротивлениями (варисторами), специальными нелинейными полупроводниковыми элементами. Такие защитные элементы устанавливаются и непосредственно в сетях, в виде отдельных конструкций, а также имеются в составе внутренних источников питания всех современных электронных устройств. Короткие (доли миллисекунды) импульсы значительного по величине тока (сотни ампер), возникающие при срабатывании таких устройств защиты от перенапряжений, протекают между фазой и землей или между нулем и землей. В любом случае они являются теми самыми дифференциальными токами, на которые должны реагировать УЗО.

Внутренние источники электропитания электронной аппаратуры [16] содержат, как правило, сетевые фильтры на входе, основными элементами которых являются конденсаторы, включенные между фазными напряжениями и землей, а также между нулевым проводом и землей. Эти конденсаторы обуславливают в момент включения появление броска тока между фазой и землей, на который должно реагировать УЗО. Кроме того, импульсные источники питания (а это основной вид источников питания для всех современных электронных устройств) потребляют при работе ток из сети толчками [16]. Крест-фактор, то есть отношение амплитуды к действующему значению тока, потребляемого таким источником, составляет 3, тогда как для обычного синусоидального сигнала — 1,41, что создает дополнительную нагрузку на УЗО.

Воздействие постоянной составляющей тока на работу УЗО

В отличие от рассмотренной выше ситуации с несинусоидальными токами, протекающими через УЗО, распространение силовой электроники с ее преобразователями частоты, регуляторами напряжения, инверторами, конвертерами большой мощности, частотно-регулируемыми электроприводами, обуславливает также протекание через УЗО, установленное в цепях с такими устройствами, высокочастотных синусоидальных токов широтно-импульсной модуляции, а также постоянных или выпрямленных пульсирующих токов. Обычные УЗО типов АС, А и даже F не предназначены для работы в цепях с такими токами. Поскольку входным элементом любого УЗО является дифференциальный трансформатор тока с ферромагнитным сердечником (рис. 2), то совершенно очевидно, что характеристики такого трансформатора будут в значительной степени зависеть от наличия постоянной составляющей в токе, то есть момент срабатывания УЗО будет определяться не его номинальным значением дифференциального тока, а случайными флюктуациями токов нагрузки и утечки.

Рис. 2. Упрощенная схема УЗО:
FC — ферромагнитный кольцевой сердечник дифференциального трансформатора тока;
А — толкатель расцепителя контактной системы

Однако даже если для описанных выше условий будет выбрано УЗО типа В, но при этом не будут приняты специальные меры, устройства данного типа будут подвержены ложному срабатыванию из-за воздействия значительных импульсных токов или фонового тока утечки, как и УЗО других типов.

 

Что делать?

Уменьшение влияния естественных («фоновых») токов утечки

Во избежание ложных срабатываний УЗО в стандарте [15], а также в ПУЭ (п. 7.1.83) указано, что оно должно выбираться с таким расчетом, чтобы действующее значение «фонового» тока утечки в месте его установки не превышало 30% номинального тока срабатывания. То есть для УЗО с IΔn = 30 мА фоновый ток утечки не должен превышать 10 мА. Как же обстоит дело на практике?

При отсутствии фактических (измеренных) значений тока утечки ПУЭ (п. 7.1.83) предписывает принимать ток утечки для электроприемников из расчета 0,4 мА на 1 А тока нагрузки, а для проводов — из расчета 10 мкА на 1 м длины фазного проводника. Стандарт [15] приводит в качестве примера типовые значения токов утечки некоторых видов электрооборудования (таблица 2). Из приведенных данных следует, что к одному УЗО может быть подключено не более четырех-пяти компьютеров и одного принтера, расположенных на расстоянии не более нескольких десятков метров от щитка с установленным там УЗО.

Таблица 2. Типовые токи утечки некоторых видов элекрооборудования
Вид электрооборудованияТиповой ток утечки, мА
Компьютеры1-2
Принтеры0,5-1
Портативные переносные бытовые электроприборы0,5-0,75
Фотокопировальные машины0,5-1,5
Фильтры~1,0

Как можно практически измерить реальный ток срабатывания УЗО и реальный фоновый ток утечки, протекающий через него? Для этого существуют специальные приборы, однако квалифицированный персонал промышленных предприятий и организаций может измерить этот ток с помощью простейшего приспособления (рис. 3), соблюдая при этом требования техники безопасности. Сначала измеряется ток срабатывания УЗО (путем плавного уменьшения сопротивления реостата R) при отключенной нагрузке. Затем то же измерение производится при включенной нагрузке. Разность измеренных значений даст искомую величину фонового тока утечки. Если полученное значение оказалось больше 10 мА, то, в соответствии с рекомендациями [15], следует разделить нагрузки, установить дополнительное УЗО и распределить нагрузки между двумя УЗО.

Рис. 3. Метод измерения фонового тока утечки через УЗО

В сложных разветвленных сетях, имеющих иерархическую (каскадную) структуру, требуется устанавливать УЗО на каждом уровне (каскаде). Разумеется, что при этом фоновые токи утечки высших каскадов (в международных стандартах используется слово «upstream» — буквально «расположенный вверху по течению») будут представлять собой сумму фоновых токов утечки низших каскадов (в международных стандартах используется слово «downstream» — «расположенный внизу по течению»). Поэтому для исключения ложных срабатываний УЗО в таких сетях они должны иметь определенную селективность, как и любые другие системы защиты, применяемые в разветвленных сетях. Специально для таких сетей служат УЗО типа S (селективные, с различными токами срабатывания и различными значениями времени задержки срабатывания), которые включают устройства различных типов по характеру контролируемого тока (рис. 4).

Рис. 4. Пример каскадного включения УЗО в сложной разветвленной сети

Только при таком каскадном включении УЗО можно исключить их ложные срабатывания в сложной сети. Однако следует учитывать, что УЗО с токами срабатывания более 30 мА уже нельзя рассматривать как надежное средство защиты людей от поражения электрическим током. То есть получается, что значительная часть сети в ее «верхнем течении» оказывается лишенной защиты от поражения людей электрическим током и УЗО используется лишь как противопожарное средство. Однако это не означает, что маломощный потребитель, подключенный через обычную розетку где-то на верхнем уровне сети, не может быть защищен отдельным УЗО с током срабатывания 30 мА. В такой ситуации через это УЗО не будет протекать ток утечки всех нижних каскадов сети, поэтому ложные срабатывания могут быть успешно исключены и устройство может обеспечить надежную работу без ложных срабатываний.

В некоторых типах УЗО, представленных как «суперустойчивые» к ложным срабатываниям, эта устойчивость обеспечивается за счет повышения минимального уровня дифференциального тока срабатывания со значения 0,5IΔN, в принципе не запрещенного стандартами, до 0,75-0,8IΔN.

Предотвращение влияния гармоник на работу УЗО

Предотвращение влияния высших гармоник на ложные срабатывания УЗО является вторым направлением повышения их устойчивости. Понятно, что УЗО, специально предназначенные для работы с токами, содержащими высшие гармоники, будут вести себя гораздо более предсказуемо, чем устройства, не предназначенные для работы с токами высоких частот. Собственно говоря, именно поэтому и были разработаны УЗО специального типа (B и F), содержащие специальные фильтры, ограничивающие влияние гармоник. УЗО типа F выпускаются производителями не как самостоятельный тип устройств, а, в основном, как УЗО типа А, но с расширенными частотными характеристиками. Поэтому в обозначении УЗО такого типа присутствуют иногда две буквы: AF или A-F.

При наличии в сети нелинейных нагрузок, обуславливающих повышенный уровень высокочастотных гармоник или нагрузок, содержащих постоянную составляющую, следует отделять такие нагрузки от общей сети и включать их через УЗО специального типа таким образом, чтобы нелинейный ток и ток, содержащий постоянную составляющую, не протекали через другие УЗО (рис. 5), что предотвратит их ложное срабатывание.

Рис. 5. Включение нелинейной нагрузки с УЗО специального типа:
а) неправильное;
б) правильное

При этом следует принимать во внимание, что повышенный уровень высокочастотных гармоник в напряжении сети приводит к увеличению утечек через емкости проводов и оборудования, то есть увеличению фонового тока, и поэтому использование УЗО специального типа может оказаться малоэффективным. Повышенный уровень гармоник тока приводит к увеличению падения напряжения на последовательных элементах (дросселях), встроенных в электронное оборудование сетевых фильтров, и может привести к увеличению утечек на землю через конденсаторы этих фильтров. Вместе с тем некоторые исследователи отмечают, что чувствительность к гармоникам УЗО электронного типа значительно меньше, чем УЗО электромеханического типа, как это ни покажется странным на первый взгляд. Это обусловлено тем, что в УЗО электронного типа контролируемый ток, содержащий гармоники, не используется непосредственно для активации расцепителя контактов УЗО, а является лишь источником управляющего сигнала, который очищается от гармоник, усиливается и преобразуется. Для воздействия на расцепитель контактов УЗО используется энергия внешнего источника питания. В качестве такого источника используется фазное напряжение сети. Примером УЗО электронного типа (обозначаемого как U-тип) может служить устройство, выпускаемое компанией Eaton-Moeller под маркой dRCM-40/4/003-U+.

К сожалению, с применением электронных УЗО (в стандартах они обозначаются как УЗО с зависимым питанием, то есть требующие внешнего питания) не все обстоит так просто. Проблема заключается в том, что при нарушении контакта в цепи нулевого провода электронный блок УЗО потеряет питание и перестанет функционировать, тогда как электромеханическое УЗО сразу сработает и отключит цепь потребителя из-за возникшего небаланса токов. В связи с этим многие производители освоили выпуск УЗО со встроенным элементом, обеспечивающим его срабатывание и размыкание контактов при обрыве нулевого провода (то есть при пропадании питания УЗО). По их мнению, такой алгоритм действия должен был устранить препятствие на пути широкого использования электронных УЗО. Однако в п. 7.1.77 ПУЭ-7 однозначно запрещается применение в жилых зданиях таких УЗО, автоматически отключающих потребителя от сети при исчезновении или недопустимом падении напряжения сети. Почему? У автора нет ответа на этот вопрос. По-видимому, не только у автора, поскольку в рекомендации д. т. н. В. А. Булата по поводу правильного выбора УЗО [17] написано: «Из числа электронных УЗО или дифференциальных автоматов предпочтение следует отдавать тем, которые имеют защиту от обрыва нулевого проводника: обрыв может привести к потере электронными УЗО напряжения питания, что делает их неработоспособными».

В некоторых европейских странах использование электронных УЗО с зависимым питанием в стационарных электрических сетях не разрешается национальными стандартами. Во французском стандарте NFC 15-100 (§ 531.2.2.2) уточняется, что они не должны использоваться в электроустановках жилых помещений. Долгое время и в России из одной статьи в другую кочевало утверждение о недопустимости применения электронных УЗО для защиты человека от поражения током. Причем в большинстве это была одна и та же цитата (об опасности обрыва нулевого провода), дословно переписываемая многими авторами. Однако в п. А.4.14 нового издания [18] уже однозначно записано: «В зданиях для защиты от прямого прикосновения могут использоваться УЗО, по способу действия как зависимые от внешнего источника питания (электронные), так и независимые (электромеханические)».

Никаких ограничений на использование электронных УЗО нет и в новой редакции ПУЭ-7. В международном стандарте [19] применение электронных УЗО разрешается в двух случаях:

  • при использовании в качестве средства защиты при непрямом контакте;
  • при использовании в сетях и электроустановках, обслуживаемых квалифицированным персоналом.

Прямой контакт подразумевает контакт человека с открытыми токоведущими частями внутри электрооборудования, а непрямой — контакт человека с корпусом или другими частями электрооборудования, которые нормально изолированы и оказались под напряжением лишь в результате повреждения изоляции (рис. 6). Понятно, что вероятность работы УЗО в последнем случае намного ниже, чем в первом, поэтому стандарт и допускает в этом случае применение устройств электронного типа с зависимым питанием.

Рис. 6. Примеры контакта:
а) прямого;
б) непрямого

Для защиты электромеханических УЗО различных типов от воздействия гармоник значительно более эффективным средством может оказаться использование специально предназначенных для этого фильтров с низкими токами утечки на землю, включаемых последовательно с УЗО.

Примером такого специального фильтра может служить фильтр типа FN3268, производимый швейцарской компанией Schaffner [20] (рис. 7). Такие фильтры предназначены для номинальных токов нагрузки 7, 16, 30, 42, 55, 75 А для УЗО с дифференциальным током 30 мА и для токов нагрузки 100, 130, 180 А для УЗО с дифференциальным током 300 мА. Они не только обеспечивают устранение влияния высокочастотных гармоник на изменение порога срабатывания самого УЗО, но и снижают фоновый ток утечки, поскольку их собственный ток утечки намного меньше, чем ток утечки через емкости сети от высокочастотных гармоник. По этой причине такие фильтры могут оказаться более эффективным средством предотвращения ложных срабатываний УЗО, чем использование УЗО специальных типов.

Рис. 7. Специальный трехфазный фильтр типа FN 3268 производства компании Schaffner для предотвращения влияния гармоник на УЗО всех типов

Предотвращение влияния импульсов тока на работу УЗО

В принципе, сегодня не существует особой проблемы выделить с помощью электронной цепи короткие (единицы миллисекунд) импульсы тока и заблокировать их воздействие. Но когда речь идет об очень компактных и доступных по цене аппаратах (УЗО), в том числе и электромеханического типа, то практически единственным способом отстройки от таких импульсов тока является использование выдержки времени — с тем чтобы короткие импульсы с длительностью, меньшей этой выдержки времени, не могли активировать УЗО.

По времени срабатывания УЗО подразделяются в соответствии со стандартами [11, 12] на типы G (general) и S (selective). Вообще-то говоря, УЗО не имеют строго постоянного времени срабатывания, а обладают типичной обратной время-токовой характеристикой: чем больше дифференциальный ток, тем меньше задержка на размыкание защищаемой цепи (таблица 3).

Таблица 3. Время размыкания УЗО различных типов при разных кратностях дифференциального тока в соответствии со стандартом МЭК 61008-1 (таблица 1)
Тип УЗОВремя размыкания УЗО при различных кратностях дифференциального тока IDIFF (действ.), мс
IDIFF2IDIFF5IDIFF
minmaxminmaxminmax
G30015040
S1305006020050150

В технической литературе [21] приходится сталкиваться с ошибочным толкованием времени срабатывания УЗО и ссылками не на два, а на три типа устройств: мгновенного действия (без выдержки времени), с небольшой задержкой (тип G), с увеличенной задержкой (тип S) (таблица 4).

Таблица 4. Ошибочная классификация типов срабатывания УЗО по времени срабатывания [21]
Тип УЗОВремя отключения, с
IΔN = IΔNIΔN = 2LΔNIΔN = 5IΔNIΔN = 500IΔN
Для общего использования без задержки<0,3<0,15<0,04<0,04
GС минимальной задержкой 10 мс0,01-0,30,01-0,150,01-0,040,01-0,04
SСелективное с минимальной задержкой 40 мс0,13-0,50,06-0,20,05-0,150,04-0,15

На самом деле, в соответствии со стандартами, никакого отдельного типа устройств мгновенного действия не существует. Просто для УЗО типа G, в отличие от типа S, минимальное время срабатывания (в стандарте МЭК оно называется минимальным временем несрабатывания) не нормируется, то есть оно может быть теоретически как угодно мало.

Понятно, что очень малые времена срабатывания УЗО общего применения (тип G) вовсе не способствуют повышению его устойчивости к ложным срабатываниям, но, с другой стороны, УЗО типа S не предназначены для использования в качестве средств защиты человека. Они используются для обеспечения селективности в высших каскадах разветвленных электрических сетей и имеют минимальный дифференциальный ток срабатывания 100-300 мА. Поэтому многие производители выпускают УЗО специальных типов на дифференциальные токи 30 мА (то есть предназначенных для защиты человека) с минимальным нормируемым временем срабатывания 10 мс (т. е. они не должны срабатывать при импульсах тока даже большой амплитуды длительностью менее 10 мс). Такие УЗО классифицируются как особо устойчивые к ложным срабатываниям и обозначаются каждым производителем по-своему. Например, Siemens присвоила таким УЗО тип К, компания АВВ обозначает их как AP-R.

Устранение влияния постоянной составляющей на работу УЗО

Для исключения влияния постоянной составляющей на работу УЗО в цепях, в которых возможно появление такой составляющей или высокочастотного синусоидального тока, применяются специальные УЗО типа В, у которых дифференциальный трансформатор выполнен по специальной технологии. Мизерная мощность, снимаемая с такого дифференциального трансформатора, очень затрудняет реализацию УЗО на электромеханическом принципе, в котором эта мощность используется для перемещения подвижных частей расцепителя. Поэтому большинство компаний, занятых производством УЗО, или не выпускают вообще устройств типа В, или выпускают их в виде электронных, а не электромеханических устройств. Стандарт [13] оговаривает верхнюю границу частоты синусоидального тока, на который в дополнение к постоянному, пульсирующему и переменному току должны быть рассчитаны УЗО типа В, на уровне 1000 Гц. Большинство производителей устройств этого типа гарантируют их работу при частотах до 2000 Гц, а устройств типа В+ даже до 20 кГц. УЗО типа В является наиболее универсальным из всех типов УЗО, но и наиболее дорогим.

Правильный выбор типа УЗО — залог предотвращения ложных срабатываний

В реальных условиях эксплуатации может возникнуть ситуация, когда какой-то отдельный полностью исправный экземпляр УЗО в группе других УЗО такого же типа, установленный в том же щите, в цепи питания аналогичных потребителей будет иметь реальный ток срабатывания вдвое меньший номинального (что вполне допускается стандартами). В этом случае при воздействии каких-то неблагоприятных факторов, не вызывающих срабатывания других УЗО, таких как гармоники, импульс тока, вызванный импульсным перенапряжением и срабатыванием разрядника, фоновым током утечки, этот экземпляр УЗО может ложно сработать. Более того, если воздействие неблагоприятных факторов повторится, то ложные срабатывания этого отдельного экземпляра УЗО в группе других аналогичных устройств, установленных рядом, также могут повториться. Для исправления ситуации иногда бывает достаточно просто заменить этот экземпляр УЗО аналогичным устройством такого же типа, реальный ток срабатывания которого окажется выше, чем экземпляра с ложными срабатываниями.

В некоторых случаях ложные срабатывания УЗО происходят из-за случайного наложения событий, каждое из которых само по себе не вызывает ложного срабатывания. Например, если при наличии некоторого постоянного уровня гармоник в сети, не вызывающего срабатывания УЗО, через него пройдет мощный импульс тока (который сам по себе тоже не вызывает его срабатывания), то УЗО может ложно сработать и отключить потребителя. Даже такие совершенные и универсальные устройства, как УЗО типа В, могут быть подвержены ложному срабатыванию из-за воздействия значительных импульсных токов или фонового тока утечки.

Для обеспечения надежного электроснабжения потребителей и гарантированного исключения даже случайных ложных срабатываний УЗО в электрических сетях с пониженным качеством электроэнергии они должны быть выбраны заранее, на стадии проектирования, со специальной характеристикой, обеспечивающей защиту от воздействия гармоник, импульсных токов, фоновых токов утечки. Если пониженное качество электроэнергии не было запланировано заранее, а оказалось фактически таковым или снизилось при замене (добавлении) каких-то потребителей, то установленные ранее УЗО обычных типов (АС, А) должны быть заменены на УЗО специальных типов (F, B, U, K).

Аналогичная ситуация может возникнуть в процессе длительной эксплуатации электроустановки, когда вследствие процесса естественной деградации изоляции или ее загрязнения (увлажнения) произошло постепенное увеличение фонового тока. Такие специальные типы УЗО выполняются обычно на базе стандартных электромеханических устройств типа А, которые снабжаются встроенными ва-ристорами, фильтрами, элементами выдержки времени на основе RC-цепочки, а также имеют повышенное до 0,75-0,8 номинального значение минимального дифференциального тока срабатывания (рис.  8). Электронные УЗО значительно более разнообразны и по конструкции, и по своим функциональным возможностям, но они имеют определенные ограничения в применении, о которых уже упоминалось выше.

Рис. 8. Типичная структура электромеханического УЗО, особо устойчивого к ложным срабатываниям

Поиск устройств, удовлетворяющих этим требованиям, среди многих десятков типов УЗО, производимых многими компаниями, привел к следующим результатам (таблица 5). Как правило, УЗО одного и того же типа, обладающие аналогичными параметрами, производятся для номинальных токов 25, 40, 63 А в двухполюсном (для однофазных сетей) и четырехполюсном (для трехфазных сетей) исполнении. С целью экономии места в таблице 5 в качестве примера приведены лишь параметры УЗО с номинальным током 40 А и в четырехполюсном исполнении.

Таблица 5. Некоторые основные технические параметры УЗО типа G (general), особо устойчивых к ложным срабатываниям
Тип УЗО и производительТип защитыНоминальный ток, АДифференциальный ток срабатывания, IΔN, мАВид приводаВремя задержки, мс (при I = IΔN)Количество полюсов
dRCM-40/4/003-U+Кат. номер 120850 Eaton (Moeller)U4030Электронный104
F374-40/0.03 ABBA-F4030Электромеханический104
F204 A-40/0.03 ABBAP-R4030104
DFS 4F Кат. номер 09 134 901 Doepke Schaltgerate GmbH & Co.A-F4030104
5SM3 344-3 SiemensF-K4030104
4RC440SI30 (Clipsal) Schneider ElectricSI4030нет сведений4
FRCdM-40/4/003-G/B+Кат. номер 167881 Eaton (Moeller)G/B+4030Электронный104
5SM3 344-4 SiemensB4030104

С сожалением следует констатировать, что даже последняя редакция основного стандарта по УЗО [11] некорректно трактует классификацию УЗО по степени устойчивости к ложным срабатываниям. Так, по версии [11] устройства с нормальной устойчивостью к ложным срабатываниям относятся к типу G (general), а устройства с повышенной устойчивостью к ложным срабатываниям — к типу S (selective). Совершенно очевидно и естественно, что устройства типа S, которые выпускаются на дифференциальные токи срабатывания, лежащие в пределах 100-300 мА и выше, будут более устойчивы к ложным срабатываниям, чем устройства типа G с токами срабатывания 10-30 мА. Но, как было показано выше, устройства типа S не могут использоваться для защиты человека от поражения электрическим током. Это значит, что, согласно [11], устойчивых к ложным срабатываниям УЗО, предназначенных для защиты людей, просто не существует в природе. Похоже, что составителей основного международного стандарта по УЗО такая ситуация вполне устраивает, поскольку эта формулировка присутствует в стандарте уже много лет и перекочевывает из одной редакции в другую. Однако данные, приведенные в таблице 5, показывают несостоятельность классификации, предлагаемой этим стандартом.

 

Автоматическое повторное включение УЗО — дополнительная возможность повышения надежности электроснабжения потребителей

Автоматическое повторное включение (АПВ) УЗО нельзя назвать средством предотвращения ложных срабатываний, скорее это средство исправления результатов ложных срабатываний; тем не менее УЗО с АПВ может оказаться очень эффективным решением проблемы в тех случаях, когда потребители допускают кратковременные перерывы электропитания. Наиболее просто функция АПВ реализуется в некоторых типах электронных УЗО. Для возврата в исходное состояние УЗО электромеханического типа приходится встраивать в него специальный моторный привод, требующий, естественно, наличия отдельного источника питания. Некоторые компании выпускают устройства АПВ в виде отдельных блоков, устанавливаемых рядом с УЗО различных типов и возвращающих последние после срабатывания в исходное состояние путем симуляции действия человеческой руки с помощью специального выступающего пластмассового толкателя.

Компания АВВ снабжает свое устройство АПВ также специальным небольшим трансформатором, устанавливаемым на DIN-рейке рядом с УЗО и обеспечивающим питание привода АПВ от питающей сети. Некоторые типы перечисленных выше разновидностей устройств АПВ показаны на рис. 9.

Рис. 9. Различные типы устройств АПВ для УЗО (некоторые показаны совместно с УЗО)

Большинство типов устройств АПВ допускают возврат УЗО в исходное состояние по выбору: автоматически с небольшой выдержкой времени или дистанционно, по команде. Такие устройства выпускаются компаниями ABB, Schneider Electric, Legrand, Hager, Circutor, Aoelec и др.

Литература
  1. IEC 60364-4-41: 2005. Low-voltage electrical installation. Part 4-41: Protection for safety. Protection against electric shock, ed. 5.
  2. ГОСТ Р 50571.3-2009 «Электроустановки низковольтные. Часть 4-41: Требования безопасности. Защита от поражения электрическим током».
  3. IEC 60364-4-42: 2010. Low-voltage electrical installations. Part 4-42: Protection for safety. Protection against thermal effects.
  4. ГОСТ Р 50571.4-94 «Электроустановки зданий. Часть 4. Требования по обеспечению безопасности. Защита от тепловых воздействий».
  5. Czapp S. The Effect of Earth Fault Current Harmonics on Tripping of Residual Current Devices // Intern. School on Non-sinusoidal Currents and Compensation. IEEE, 2008.
  6. Czapp S. Analysis of the Residual Current Devices Independent Trip for the Residual Current Frequency Higher than Rated Value // XIII International Scientific Conference Present-Day Problems of Power Engineering APE’07. Gdansk-Jarata. Vol. 4. 13-15 June 2007.
  7. Czapp S. The Impact of Higher-Order Harmonics on Tripping of Residual Current Devices // Power Electronics and Motion Control Conference. 2008.
  8. Yu Xiang., Cuk V., Cobben J. F. G. Impact of Residual Harmonic Current on Operation of Residual Current Devices // 10th International Conference on Environment and Electrical Engineering. Rome, Italy. 8-11 May, 2011.
  9. Yu Xiang, Wong X. H, Chen M. L. Tripping Characteristics of Residual Current Devices Under Non-sinusoidal Currents // Industry Applications Society Annual Meeting (IAS). 2010 IEEE. 3-7 October, 2010.
  10. Freschi F. High Frequency Behavior of Residual Current Devices // IEEE Transaction on Power Delivery. Vol. 27. № 3. July 2012.
  11. IEC 61008-1: 2012. Residual current operated circuit-breakers without integral overcurrent protection for household and similar uses (RCCBs). General rules, ed. 3.1.
  12. ГОСТ Р 51326.1-99 «Выключатели автоматические, управляемые дифференциальным током, бытового и аналогичного назначения без встроенной защиты от сверхтоков. Часть 1. Общие требования и методы испытаний».
  13. IEC 62423: 2009. Type F and type B residual current operated circuit-breakers with and without integral overcurrent protection for household and similar uses, ed. 2.
  14. IEC/TR 60755: 2008. General requirements for residual current operated protective devices, ed 2.
  15. IEC/TR 62350: 2006. Guidance for the correct use of residual current-operated protective devices (RCDs) for household and similar use.
  16. Гуревич В. И. Устройства электропитания релейной защиты. Проблемы и решения. М.: Инфра-Инженерия. 2013.
  17. Отвечаем на вопросы читателей. Портал журнала «Новости электротехники»
  18. СП 31-110-2003 «Проектирование и монтаж электроустановок жилых и общественных зданий». 2007.
  19. IEC 60364-5-53: 2001. Electrical installations of buildings. Part 5-53. Selection and erection of electrical equipment // Isolation, switching and control. Ed. 3.
  20. Low leakage current EMC filters. Full compatibility with residual current circuit breakers sensitive to all current types. Schaffner.
  21. Штефан Ф. Устройства защитного отключения, управляемые дифференциальным током. Прага. 2000. (Перевод и издание ОАТ «Киевпромэлектропроект».)

Основные характеристики УЗО. Технические характеристики устройства защитного отключения

Технологии с каждым годом совершенствуются и развиваются, чтобы дать людям максимум комфорта и безопасности. С другой стороны, комфорт и удобство современных электрических приборов еще не означает, что они абсолютно безопасны.

Серьезные проблемы вызывает перебои в работе домашней электропроводки. Короткое замыкание, перегрузки в работе сети, токи утечки – список проблем велик. Но эти проблемы легко решить, предотвратив их появление. Например, от токов утечки защищает устройство с функцией защитного отключения (УЗО), известное как выключатель дифференциального тока (ВДТ). Далее мы расскажем, как правильно выбрать ВДТ (УЗО) для жилища.

Приветствую всех друзья на сайте «Электрик в доме». Данный материал — продолжение цикла статей по особенностям электроаппаратов защиты, в том числе и ВДТ (УЗО). В этой статье мы узнаем, что нужно знать при выборе этого устройства, какие характеристики УЗО требуют пристального внимания.

Важность правильного выбора УЗО?

Сегодня на рынке присутствует большое число самых разных моделей выключателей дифференцированного тока, существенно различающихся между собой. Отличия заключаются в технических параметрах, методе установки и месте его использования.

Если модель ВДТ (УЗО) выбрана ошибочно, с неправильными характеристиками, то возможны следующие последствия.

Автоматика будет ошибочно реагировать, принимая за аварийную ситуацию маленькие утечки тока, которые обычно есть в домашней электросети. В старой проводке эти утечки встречаются чаще.

Часто люди выбирают ВДТ (УЗО) с завышенными характеристиками, в результате чего ВДТ может срабатывать с некоторой задержкой времени или вообще не почувствовать аварийную ситуацию как таковую. В этом случае вероятно получение электрической травмы.

Встречаются случаю, когда подключение ВДТ выполнено по неправильной схеме. Производители на корпусе самого устройства отображают схему подключения с расположением контактов для подключения фазных и нулевых проводников. Если подключение выполнит неправильно или подать питание с обратной стороны это также может привести к «нечувствительности» ВДТ при возникновении аварийной ситуации.

Чтобы подобные ошибки обошли вас стороной, давайте изучим основные характеристики УЗО (ВДТ) перед покупкой.

Расшифруем основные характеристики УЗО

На корпусе любого коммутационного аппарата, будь то автоматический выключатель или выключатель дифференциального тока, наносится специальная маркировка его технических характеристик. По этим данным и выполняют подбор устройства под заданные условия эксплуатации.

Давайте как говорится на пальцах разберем все основные характеристики УЗО, я постараюсь очень подробно описать каждую из них.

1) Торговая марка устройства и серийный номер

Все технические характеристики УЗО наносятся фирмой изготовителем на передней части корпуса. Первым что бросается в глаза, это конечно же бренд устройства.

Но фото можно увидеть устройства защитного отключения трех разных фирм производства и на каждом из них производитель обозначает свою марку и серию (линейку). УЗО фирмы hager, IEK, Schneider Electric.

2) Номинальный рабочий ток УЗО

После обозначения серии на корпусе устройства можно увидеть значение номинального тока. Что такое номинальный ток? Это максимальное значение тока, который может проходить через УЗО длительное время, не принося ему никакого вреда.

Номинальный ток одна из самых важных характеристик узо которая обуславливается способностью силовых контактов и внутренних проводников устройства выдерживать нагрузки сохраняя при этом свои защитные функции и работоспособность. Шкала номинальных токов стандартная: 16 А, 25 А, 40 А, 63 А, 80 А 100 А, 125 А.

При выборе УЗО нужно помнить, что внутренней защиты от сверхтоков в нем не предусмотрено, УЗО защищает и реагирует только на ток утечки. Поэтому последовательно с устройством защитного отключения обязательно должен устанавливаться автоматический выключатель. Номинальный ток автомата должен быть меньше или равен номинальному току УЗО.

Но с учетом того что автоматические выключатели способны длительно долго пропускать через себя 13 % перегруза и не отключаться (1.13 I ном.), а при перегрузке от 13 до 45 % автомат отключится только в течении 1 часа РЕКОМЕНДУЕТСЯ выбирать номинальный ток УЗО на ступень выше номинала автомата. Например, если в цепи устанавливается автоматический выключатель на 16 Ампер, то УЗО берется на 25 А.

3) Номинальный отключающий дифференциальный ток УЗО IΔn

Номинальный дифференциальный ток — это ток утечки, при котором узо срабатывает. Ток утечки обязательно указывается на корпусе устройства и обозначается как IΔn. Как и для рабочего тока для дифференциального тока есть свои стандартные уставки (номиналы). Номинальный дифференциальный ток УЗО может быть следующего значения: 6 мА, 10 мА, 30 мА, 100 мА, 300 мА, 500 мА.

С каким током утечки выбрать УЗО для дома? Величина тока неотпускания когда человек не в состоянии самостоятельно разжать руки при поражении электрическим током составляет 30 мА. Соответственно для защиты человека УЗО должно выбираться с дифференциальным током не более 30 мА.

УЗО с номиналом 10 мА применяют для защиты в помещениях с повышенной влажностью, такие как ванные, душевые, туалеты, балконы и т.п. А также устанавливают на линию для таких потребителей как стиральная машина, бойлер, посудомоечная машина, теплый пол и т.п.

УЗО с номиналом 30 мА применяют в жилых помещениях и устанавливаются на обычные розеточные группы и сеть освещения.

УЗО с номиналом 100 мА, 300 мА и 500 мА применяют в качестве противопожарных. Их задача предотвратить возникновение пожара при нарушении изоляции в электропроводке. Такие устройства устанавливаются сразу после вводного автомата. Применять УЗО с таким дифференциальным током для розеточной линии нельзя так, как для человека ток в 100 мА является смертельным.

4) Номинальное напряжение

Еще одна важная характеристика УЗО номинальное напряжение. Для однофазных устройств его значение равно 230 Вольт, для трехфазных 400 Вольт. Значения указаны для переменного напряжения.

Почему это одна из важных характеристик? Дело в том, что устройства защитного отключения электронного типа очень чувствительны к колебаниям напряжения. Основным рабочим органом таких устройств является электронная плата, для питания которой берется напряжение из сети.

Соответственно если напряжение в сети не будет соответствовать паспортным данным УЗО, его работоспособность может оставлять желать лучшего.

5) Номинальный условный ток короткого замыкания Inc

Одна из характеристик, по которой можно определить качество устройства является условный номинальный ток короткого замыкания УЗО. Обозначается как Inc и указывается на лицевой панели.

О чем свидетельствует данный параметр? В сети постоянно возникают повреждения, которые приводят к появлению токов короткого замыкания и перегрузки. Хотя УЗО и устанавливают совместно с автоматическими выключателями, это не спасает от протекания через него сверхтоков. Как быстро бы автомат не отключал поврежденный участок, какой то промежуток времени через УЗО проходит ток короткого замыкания (КЗ).

Параметр Inc показывает стойкость к токам КЗ, то есть величину тока которую может пропустить через себя УЗО не теряя своей работоспособности.

Стандартные значения условного тока КЗ Inc следующие: 3000 А, 4500 А, 6000 А, 10000 А. Чем больше этот параметр тем лучше.

6) Номинальная включающая и отключающая способность Im

Данная характеристика имеет сходство с предыдущим параметром но в отличии от тока короткого замыкания который ликвидируется работой автоматического выключателя, этот показатель коммутируется самим УЗО.

Это такое значение действующего тока, которое устройство защитного отключения способно включить, пропускать через себя в течении времени размыкания и отключить в то время как дифференциальный ток заставляет УЗО сработать без нарушений своей работоспособности.

Я бы охарактеризовал этот параметр как показатель нагрузочной способности контактной группы. НЕ НУЖНО ПУТАТЬ ток отключения и включения (Im) с номинальным током УЗО — это разные показатели!

В соответствии с нормативными требованиями ГОСТ Р 51326.1-99 п. 5.3.8, минимальное значение тока отключения и включения должно быть в 10 раз больше номинального тока УЗО либо равным 500 Ампер (Im=10*In или 500 А).

У качественных брендов этот показатель может быть равным 1000 А, 1500 А и даже 3000 А.

7) Номинальная дифференциальная включающая и отключающая способность IΔm

Данный параметр показывает способность УЗО включить, пропускать через себя в течении времени отключения и отключить без нарушений своей работоспособности дифференциальный ток короткого замыкания.

Для примера представим ситуацию, когда произошло повреждение внутри какого-нибудь электроприбора, фаза пробила на корпус и возникла утечка. Причем утечка довольно таки большая скажем 300 А и равносильна току короткого замыкания. Силовые контакты УЗО рассчитаны на размыкание тока такой величины без риска потери работоспособности. Это касается и ситуации когда УЗО включают на поврежденный участок при такой утечке.

В соответствии с нормативными требованиями ГОСТ Р 51326.1-99 п. 5.3.9, минимальное значение дифференциального тока отключения и включения должно быть в 10 раз больше номинального тока УЗО либо равным 500 Ампер (IΔm=10*In или 500 А).

По сути, величина номинальной включающей способности и дифференциальной включающей способности равны между собой Im = IΔm.

8) Номинальный неотключающий дифференциальный ток IΔn0

Продолжаем рассматривать основные характеристики УЗО и следующая из них очень важная (некоторые новички о ней даже и не слышали).

Это величина дифференциального тока, которая при заданных условиях эксплуатации не приводит к срабатыванию УЗО. Согласно вышеупомянутого ГОСТ Р 51326.1-99, п.5.3.4. значение номинального неотключающего дифференциального тока является стандартным и равняется 0.5 от уставки номинального тока утечки (IΔn0 = 0,5 IΔn).

Что характеризует данный параметр? А характеризует данный параметр порог срабатывания устройства. Например, если через УЗО будет протекать ток утечки меньше чем «неотключающий дифференциальный ток IΔn0» то УЗО не будет срабатывать. УЗО будет отключаться лишь в том случае, когда через него будет проходить ток утечки в диапазоне от номинального неотключающего диф. тока (IΔn0) до номинального отключающего диф. тока (IΔn).

Естественно если утечка будет больше номинального отключающего дифференциального тока (IΔn) УЗО также будет срабатывать.

Из описанного выше можно сделать вывод, если у Вас дома установлено УЗО с дифференциальным током 10 мА то сработает оно только тогда, когда утечка будет от 5 мА и выше. УЗО с номиналом 30 мА, сработает при утечке от 15 мА и выше.

9) Время отключения УЗО

Промежуток времени между моментом внезапного возникновения тока утечки (отключающего дифференциального тока), срабатывания отключающего механизма, размыкания контактов и гашения дуги между ними. Время отключения часто называют временем срабатывания УЗО.

Согласно ГОСТ Р 51326.1-99 п. 5.3.12 для выключателей дифференциального тока типа AC время отключения не должно быть больше 30 мс при номинальном отключающем дифференциальном токе.

10) Тип УЗО

Данная характеристика показывает, как будет реагировать устройство при возникновении токов утечки с составляющими постоянных и пульсирующих токов.

Распознать какого типа УЗО можно по маркировке, которая наносится на лицевой панели. Маркируется буквами и символами (либо просто символом). Бывает тип AC, A, B, S, G. Самые распространенные из них первых два типа их наиболее часто применяют в быту. Кстати я уже публиковал статью о том, чем отличается между собой УЗО типа A и AC.

Например, УЗО типа AC реагирует только на переменный ток утечки синусоидальной формы. На лицевой панели таких устройств можно увидеть значок в виде синусоиды.

Устройство защитного отключения типа A сработает при возникновении, как переменного синусоидального тока, так и пульсирующего постоянного тока утечки.

Кстати в виду широкого использования электронной техники (компьютеров, телевизоров, ст.машин) для бытового применения рекомендуется использовать именно УЗО типа А.

11) Схема подключения питания

Практически все производители на лицевой панели отображают схему подключения с обозначением клемм для подключения проводов. Так нулевой проводник должен подключаться на клемму с обозначением нейтрали — «N». Клемма для подключения фазного проводника имеет обозначение «1» — «2» (может быть без обозначений).

Меня часто спрашивают, куда подключать питание к УЗО сверху или снизу? К УЗО электромеханического типа питание может подаваться как на верхние клеммы, так и на нижние. У качественных фирм производителей для этих целей даже предусмотрены специальные контакты под гребенчатую шину на нижних клеммах.

Для УЗО электронного типа питание подается ТОЛЬКО НА ВЕРХНИЕ КЛЕММЫ. Это также должно прописываться и в инструкции по эксплуатации.

В виду того что многие пользователи не могут точно определить какого типа перед ним УЗО электронное или электромеханическое я РЕКОМЕНДУЮ всегда подключать питание на верхние клеммы.

Вот собственно и все дорогие друзья, мы рассмотрели основные технические характеристики УЗО ознакомившись с которыми можно сделать правильный выбор в сторону того или иного устройства которое Вам необходимо.

Обращаю внимание, что характеристики именно основные и довольно не все, я много оставил не упомянутых, иначе статья получилась бы очень объемной. За кадром остались такие как номинальная частота, механическая и электрическая износостойкость, рабочая температура, степень защиты (IP), временная задержка, координация изоляции и т.д. Но это уже совсем другая история.

Понравилась статья — поделись с друзьями!

 

Характеристики УЗО

Характеристики УЗО. Какие характеристики УЗО нанесены на корпус устройства. Как подобрать нужное устройство защитного отключения.

Характеристики УЗО, в первую очередь интересующие потребителя, – это номинальный рабочий ток и номинальный отключающий дифференциальный ток устройства защитного отключения.

Номинальный рабочий ток бытового УЗО  составляет 10А; 16А; 20А; 25А; 32А; 40А; 63А, 80; 100А, а также 125 ампер,но обычно производитель выпускает линейку приборов с наиболее употребляемыми номиналам в 25А; 40А; 63А.

Номинальный рабочий ток УЗО – это наибольший ток который может пропускать через себя УЗО бесконечно продолжительное время и не выйти при этом из строя. Соответственно любое устройство защитного отключения должно быть защищено автоматическим выключателем с более низким по рабочему току номиналом. Допустим УЗО на 25 ампер должно быть защищено автоматом на 16 ампер или в связке из трех автоматов на 16 ампер должно стоять УЗО на 63 ампера.

Характеристики УЗО

Характеристики УЗО включают в себя и величину отключающего дифференциального тока или говоря проще ток утечки. Стандартный ряд устройств защитного отключения – 6; 10; 30; 100; 300 и 500 миллиампер. Наиболее часто для защиты от удара электрическим током используется устройство на 30 мА. Для защиты во влажных помещениях устанавливают УЗО на 10 мА. Приборы на 100-500 мА – это противопожарные УЗО.

Характеристики УЗО

Кроме этих параметров устройство защитного отключения обладают и другими характеристиками – номинальное напряжение, номинальный условный ток короткого замыкания, номинальная отключающая и включающая способность и номинальная частота.

Номинальное напряжение – 230-240 вольт у двухполюсных узо для однофазной сети и 380-400 вольт у четырехполюсных для трехфазной. Частота 50 герц частота тока в странах СНГ.

Номинальный ток короткого замыкания -это величина тока который будет проходить через УЗО при коротком замыкании и при этом его не сожжет, пока автомат не отключит питание сети. Стандартный ряд: 3000; 4500; 6000; 10000 вольт.

Номинальная отключающая и включающая, то есть коммутационная способность – это способность УЗО сомкнуть и разомкнуть контакты, при токе определенной величины, без риска повреждения от возникающей электрической дуги. Коммутационная способность должна быть в десять раз больше номинального тока УЗО и не менее 500 ампер. Это означает что коммутационная способность защитного устройства с номинальным током на 63 ампера должна быть минимум 630 ампер, а у УЗО на 40 ампер должна быть минимум 500 ампер.

Характеристики УЗО – ГОСТ

Так же характеристики УЗО подразделяют защитные устройства по количеству полюсов, по способу установки, типу устройства и селективности.

Бытовые устройства защитного отключения обычно двухполюсные для однофазного тока и четырехполюсные для трехфазного.

По способу установки: встроенные в шнур, в розетку или в электроприбор и для стационарной установки в электрощит, обычно на DIN-рейку.

По типу УЗО подразделяются на отключающие только переменный ток утечки – обозначаются AC, отключающие переменный ток и пульсирующий постоянный ток утечки – обозначаются A и с обозначение B отключают и переменный и постоянный и выпрямленный токи.

Отключающее устройство типа A дороже устройства типа AC, но должно применяться в сетях с подключением большинства современных электроприборов – телевизоров, стиральных машин, компьютеров. УЗО типа AC стоит применять лишь с лампами накаливания и  например с нагревательными приборами, где нет электронных компонентов. Устройства типа B конечно еще более продвинуты и соответственно дороже, но обычно применяется с промышленным оборудованием.

Буква S на корпусе означает что УЗО селективное, то есть имеет задержку на отключение по сравнению с обычным устройством. Номинальное время срабатывания УЗО нормируется как 0,3 секунды, но обычно у качественного устройства еще меньше. У селективного устройства же время срабатывания около 0,5 секунды, что полезно например для вводного УЗО, чтобы выключалось не оно, обесточивая всю квартиру, а конкретно то УЗО, на линии которого произошла утечка.

Устройство с обозначением на корпусе буквы G тоже с большей выдержкой времени  отключения чем обычное, но меньшей чем у типа S.

Вы можете прочитать записи на похожие темы в рубрике – Автоматизация и защита

Удачи Вам в устройстве Удобного Дома! С уважением www.natrix-el.kz

Также рекомендуем прочитать

Как правильно проверить УЗО и дифференциальный автомат

Как правильно проверить УЗО и дифференциальный автомат

Дифференциальный автомат — это низковольтный комбинированный электрический аппарат, совмещающий в одном корпусе функции двух защитных устройств — УЗО и автоматического выключателя.

Устройства защитного отключения выключатели дифференциального тока предназначены для отключения питания при возникновении тока утечки. Часто это называют дифференциальной защитой. Однако любой коммутационный аппарат необходимо проверять, как на срабатывание как таковое, так и на соответствие номинальным параметрам.

Принцип действия УЗО и дифавтомата и их отличия

Устройство защитного отключения ли как их называют «УЗО» срабатывают при разности токов между полюсами. Простым языком, принцип работы этих устройств заключается в сравнении тока через фазу и ноль.

Если ток через фазу больше чем через ноль, значит его часть потекла по другому пути, например, произошло повреждение изоляции проводников или ТЭН пробило и ток определенной величины «утекает» в землю.

Если корпус электроприбора заземлен — такая ситуация не слишком страшна и при хорошем заземлении даже не опасна, но если у вас в двух проводная электросеть без заземления — то на при попадании потенциала на корпус — он никуда с него не денется. В результате этого, ток потечет в землю через ваше тело, когда вы коснетесь корпуса оголенной частью тела.

В лучшем случае вы почувствуете пощипывания и одёрнете руку. В худшем случае величина тока через ваше тело может превысить допустимую и это приведет к смерти. УЗО бывают электромеханические и электронные, в сущности принцип работы у них одинаков, различается лишь система отработки отключения. В простейшем виде электромеханическое УЗО содержит трансформатор, с его помощью и сравнивается величина тока через один и другой полюс.

Чтобы отличить электронное УЗО от электромеханического, посмотрите на схему на его лицевой панели.

Важно: Устройство защитного отключения реагирует только на дифференциальный ток. Это значит, что УЗО не защищает электропроводку от токов короткого замыкания. От КЗ защищают автоматические выключатели. Дифавтомат — это комбинированное устройство, оно срабатывает и на повышенные токи, как автоматический выключатель, и на дифференциальный ток подобно УЗО. То есть в одном корпусе совмещены два коммутационных защитных аппарата.

Способы проверки

Как вы уже догадались — методика проверки срабатывания УЗО и дифавтомата на утечку аналогична. На лицевой панели и одного и другого прибора есть флажок включения/выключения и кнопка «ТЕСТ». Согласно ПТЭЭП прил. 3, табл. 28, п.28.7 нужно проверять срабатывание с помощью этой кнопки не реже чем раз в квартал (3 месяца).

Важно:

Кнопка «ТЕСТ» проверяет только срабатывание прибора по дифференциальному току или току утечки, но не проверяет срабатывание по превышению номинального тока у дифавтомата.

Есть 5 основных способов проверки:

  • с помощью кнопки «ТЕСТ»;
  • с помощью батарейки;
  • с помощью магнита;
  • резистором
  • специализированным прибором.

Проверка с помощью кнопки «ТЕСТ»

При нажатии на кнопку проверки срабатывания УЗО или дифавтомата внутри прибора подключается резистор между выходящим фазным контактом и приходящим нулевым. Таким образом ток через фазный провод становится больше чем ток через нулевой провод. Если прибор исправен — он отключится. Следовательно, такая проверка возможна только если прибор подключен к электросети и на него подано питание.

Схема проверки УЗО или дифавтомата с помощью этой кнопки изображена на лицевой панели устройства.

Однако специалисты отзываются негативно о такой проверки, ссылаясь на то что рынок насыщен подделками и иногда встречаются такие экземпляры защитных приборов, в которых при нажатии на «ТЕСТ» прибор срабатывает даже если он не подключен к сети. Происходить этого недолжно.

Проверка с помощью батарейки и магнита

Рассмотрим, как проверить УЗО или дифавтомат в магазине не подключая прибор к электросети. Для этого нужна любая батарейка, подойдет и новая пальчиковая и два провода. Нужно подключить провода к батарейке, для этого можете воспользоваться элементарно изолентой, а вторые их концы соединить с клеммами одного из полюсов проверяемого прибора. При этом он должен быть взведен, то есть переведите флажок в положение «ВКЛ».

При этом нужно учесть тот факт, что УЗО или дифавтоматы устроены так, что срабатывают на одну из полуволн. Т.е. важна полярность при тестировании. Это значит, что, если при таком способе проверки прибор не защита не сработала — поменяйте полярность, для этого просто поменяйте провода местами. Если устройство не срабатывает ни при какой полярности – значит оно электронное, а не электромеханическое!

Примечание: УЗО типа «А» срабатывает при любой полярности, а типа «AC» — только при определенной полярности – переворачивайте батарейку!

С помощью магнита также можно определить исправность УЗО или дифавтомата прямо в магазине. Но такой способ работает только для электромагнитных выключателей дифференциального тока, приборы с электронной начинкой срабатывать не будут.

Для этого нужно поднести магнит к одной из сторон проверяемого прибора. Флажок опять-таки должен быть во включенном состоянии (вверх). Магнитное поле магнита наведет ток в обмотке измерительного трансформатора, в результате чего защита сработает и устройство отключится.

ВАЖНО:

Повторюсь, если УЗО электронное – такая проверка не сработает! Для работы электронных УЗО и дифавтоматов нужно чтобы было подключено питание (фаза и ноль).

Проверка с помощью резистора или лампочки

Предыдущие варианты проверки отражали только работоспособность защиты и реакцию на разность тока как таковую. Вы не могли определить насколько корректно срабатывает прибор. В домашних условиях проверить ток срабатывания можно, хоть и не совсем точно.

Для начала рассчитайте номинал резистора под величину дифференциального тока срабатывания. Например, очень распространены УЗО с током срабатывания в 30 мА, значит условно представим, что в сети 220 вольт (реальные значение измеряйте непосредственно на объекте где будет установлен прибор). Значит нужно взять резистор на:

220/0.030=7333.33 Ом

Мощность на резисторе выделится кратковременно (порядка 6 Ватт), но тем не менее будет лучше если вы выберете как можно более мощный резистор.

После этого подключаем резистор между фазой, выходящей и нулем, приходящим к прибору, как показано на рисунке ниже.

Таким же образом и работает кнопка «ТЕСТ».

ВАЖНО:

При такой проверке УЗО должно быть подключено к сети.

Если прибор не отреагировал на подключение рассчитанного резистора — значит он бракованный. Также вы можете измерить ток с помощью мультиметра. Но так как его протекание будет кратковременным — вы можете не увидеть его величину. Для поверок можно собрать такой прибор, как на видео ниже, только его недостаток в том, что указывается расчетный ток.  

Можно конечно измерить реальный ток срабатывания УЗО с помощью амперметра, но такая для этого нужен мощный реостат. Плавно уменьшая сопротивление и измеряя ток, вы сможете определить при каком токе произошло отключение. При этом лучше использовать стрелочные приборы, так как большинство бюджетных цифровых медленно обновляют показания измеряемой величины.

Заключение

Для точной проверки УЗО и дифавтоматов используют специальные приборы, например:

  • Sonel MRP-200;
  • ПЗО-500;
  • ПЗО-500 Про.

Кроме тока утечки с помощью подобных устройств можно проверить приборы при различном угле фазы и измерить скорость срабатывания при различных токах утечки.

Покупать их для частного использования нецелесообразно, так как они дорогие. Монтируя электрощит на объекте, вы можете обратится для получения такой услуги в электролабораторию и отсеять бракованные приборы, если они есть.

Нормы: Согласно ПТЭЭП проверка выключателей дифференциального тока должна осуществляться в соответствии с рекомендациями завода изготовителя. В среднем они включают в себя проверку перемещения флажка «ВКЛ/ВЫКЛ». Он должен четко переключаться из одного положения в другое, а также 1 раз в указанный период проходить проверку нажатием кнопки «ТЕСТ» (но не реже 1 раза в квартал, согласно ПТЭЭП). Ток срабатывания должен быть не менее чем 0.5In (для УЗО на 30 мА — это 15 мА), другие допустимые величины описаны в ГОСТ Р50571.16-99.

Ранее ЭлектроВести писали, что в Лондоне появилась первая улица с фонарями, от которых можно зарядить электрокар. Об этом говорится в блоге компании Siemens, главного разработчика этого проекта.

По материалам: electrik.info.

УЗО: основные характеристики и сфера применения

Практически в каждом жилом и общественном помещении можно увидеть огромное количество бытовой техники, необходимой для обеспечения комфортных условий проживания и работы, что, в свою очередь, оказывает существенную нагрузку на электросеть.

Чтобы обезопасить себя и свое жилище от непредвиденных и зачастую трагических ситуаций, особое внимание следует уделять устройствам защиты, наиболее распространенным из которых является устройство защитного отключения, проще говоря, УЗО.

К сожалению, со временем любой материал подвержен износу, и проводка не исключение. Причем нет разницы, наружный или внутренний кабель поддается естественному обветшанию. Из-за потери изолирующих свойств проводки происходит утечка электричества, а это уже грозит серьезными последствиями для людей.

С какой целью устанавливают УЗО?

Устройство защитного отключения изначально предназначено для препятствования поражения током и защиты электрической проводки от возгорания из-за неполадок, которые нередко приводят к пожарам.

Существует ряд основных факторов, негативно влияющих на целостность электрических коммуникаций:

  • механическое повреждение;
  • перегрев проводки;
  • естественный износ;
  • попадание влаги;
  • неправильный монтаж;
  • безответственное отношение пользователя.

От подобных неприятностей не застрахован никто, поэтому лучше не рисковать, и своевременно монтировать защитное устройство, многократно доказавшее свою эффективность на практике. К примеру, если при работе посудомоечной машины повредится изоляционная оболочка на кабеле, который касается корпуса, тот, в свою очередь, окажется под напряжением.

В момент прикосновения человека к металлическим деталям бытового прибора ток через тело уйдет в землю, на что мгновенно отреагирует УЗО и отключит напряжение. Несмотря на незначительное поражение током, в данном случае человек гарантированно выживет.

Принцип работы УЗО Основное предназначение УЗО – защита человека от губительного удара током. Для этого на верхние клеммы автомата подключается фаза и ноль от источника питания, а на нижние – фаза и ноль, идущие на нагрузку. Таким образом, схема подключения УЗО подразумевает протекание тока через автомат с последующим возвращением в сеть.

Фактически, УЗО является своеобразным контроллером, анализирующим показатели силы тока на входе и выходе. Если будет зафиксирована разница этих показатели, то последует отключение питания во избежание нежелательных последствий. Время реакции прибора на перебои в сети и ее отключение в среднем составляет 0,04 секунды.

При нормальных условиях функционирования электрической сети не должно быть разницы между значениями тока на входе и выходе УЗО, однако на практике нередко приходится сталкиваться с обратным. При утечке тока УЗО тут же отреагирует отключением. Помимо того, что устройство защитного отключения спасает человеческие жизни, оно также уберегает бытовые приборы от поломок, спровоцированных скачками напряжения в сети и самое главное, предотвращает пожары.

Для того чтобы защитить человека от поражения электрическим током, устанавливают УЗО с номинальным током утечки в пределах 10-30 мА. Это является граничными показателями, которые способен выдержать человеческий организм без серьезных последствий.

 

 

Также можно купить УЗО с номинальным током утечки в 100-500 мА, которое выполняет несколько иные задачи, нежели защита человека от электрического поражения. Устройства с высокими номинальными значениями токов утечки предназначены для борьбы с пожарами.

Даже качественная проводка имеет естественную утечку, и чем длиннее коммуникационные магистрали, тем она больше. К примеру, УЗО в 30 мА, установленное в большом частном доме, будет демонстрировать ложное срабатывание, в то время как автоматика данного назначения, рассчитанная на ток утечки в 300-500 мА, обеспечит жилищу надежную защиту от пожара без ложных срабатываний.

Именно таких показателей утечки достаточно для того, чтобы выделилась тепловая энергия в количестве, достаточном для возгорания предметов, расположенных поблизости к месту утечки тока.

Помимо прочего устройства защитного отключения номиналом в 100-500 мА, установленные на входе в помещение, фактически обеспечивают защиту главного ввода. Так, изначально при утечке тока отключаются УЗО с низким номинальным значением, установленные для защиты. В том случае, если по одной из причин отключения не произошло, в работу вступает резервное оборудование с большим номиналом.


Устройство защитного отключения (УЗО), характеристики и применение

Основные параметры и применение УЗО

Типы и основные параметры УЗО и дифавтоматов

УЗО и дифавтоматы разделяют по следующим типам и параметрам:

  • род тока утечки (дифференциального тока)
  • чувствительность к току утечки
  • задержка срабатывания
  • принцип действия
  • число полюсов
  • номинальное напряжение
  • номинальный рабочий ток
  • характеристика срабатывания (время-токовая характеристика), только для дифавтоматов

Типы УЗО и дифавтоматов по виду тока утечки

Все выпускаемые УЗО и дифавтоматы по роду тока утечки (дифференциального тока) можно разделить на следующие типы:

  1. Тип АС — УЗО типа АС срабатывает при мгновенном возникновении переменного  тока утечки в контролируемой цепи или при его плавном нарастании. Это самый распространенный и недорогой тип УЗО. Рекомендуется для бытового применения. На корпусе УЗО типа АС можно увидеть надпись «АС» или символ «~».
  2. Тип А — УЗО или дифавтомат типа А срабатывают при мгновенном возникновении переменного или постоянного пульсирующего тока утечки в контролируемой цепи или при их плавном нарастании. На корпусе устройства типа А можно увидеть надпись в виде буквы «А» или символ в прямоугольнике из или волнистой линии и линии с выступами. Тип А можно применять во всех случаях. Стоимость его в несколько раз дороже предыдущего из-за контроля постоянного (пульсирующего) тока, который  возникает в неисправных импульсных блоках питания бытовой техники.
  3. Типа В — УЗО типа В реагирует на возникновение в контролируемой цепи переменного, постоянного или выпрямленного тока утечки. Этот тип УЗО для квартиры или дачи покупать не нужно — нет смысла переплачивать. Оно больше подходит для промышленных объектов.

УЗО типа АС, А и В имеют время срабатывания порядка 0,02-0,03 (с). Электромеханическими бывают только УЗО типа АС, УЗО типа А или В – электронные.

 

Типы УЗО по чувствительности к току утечки

По чувствительности к дифференциальному току или току утечки УЗО и дифавтоматы подразделяются на такие основные типы:

  1. 10 мА – УЗО срабатывает при токе утечки более 0,01А. В быту не используются, т.к. к срабатыванию такого УЗО может привести даже простая искра от статического электричества, накопленного, например, на синтетической одежде. Однако их применение желательно во влажных помещениях, например ванных комнатах, т.к. сопротивление мокрой кожи очень низкое и опасным может стать даже ток в 15мА.
  2. 30 мА – наиболее распространенные бытовые защитные УЗО срабатывающие при токе утечки 0,03 А. Такой ток уже может быть опасен для человека.
  3. 100 мА – УЗО с током срабатывания 0,1 А не могут быть использованы как защитные, т.к. ток 0,1А смертельно опасен даже при кратковременном воздействии. Возможно их использование в качестве противопожарных, кроме того часто используются в качестве селективных.
  4. 300 мА — УЗО с током срабатывания 0,3 А и более (0,5А, 0,6А), как и предыдущие, с током срабатывания 0,1 А, используются в качестве противопожарных и селективных в щитах с большим количеством групповых УЗО.

 

Типы УЗО по задержке срабатывания, селективность

По выдержке времени УЗО делятся на 2 типа:

  1. УЗО типа S — УЗО типа S является селективным, т.е. имеет выдержку времени на срабатывание около 0,15-0,5 (с). Его целесообразно применять, когда в линии установлено несколько УЗО.
  2. УЗО типа G — УЗО типа G является тоже селективным, но имеет меньшую выдержку времени на срабатывание около 0,06-0,08 (с) и в бытовых сетях не используются.

Например, в квартирном щитке у нас имеется 2 группы нагрузок (розетка №1 и розетка №2). На групповые нагрузки устанавливаем УЗО типа АС или А (без выдержки времени), а на ввод квартиры устанавливаем УЗО типа S. В случае утечки на одной из групп, вводное УЗО сработает только в том случае, когда групповое УЗО поврежденной линии по каким-то причинам не сработает.

Также селективности срабатывания УЗО можно добиться не выдержкой времени, а с помощью установок УЗО с различной чувствительностью к дифференциальному току. Этот способ более распространен в наше время. Например, в том же квартирном щитке у нас имеется 2 группы нагрузок (розетка №1 и розетка №2). На групповые нагрузки устанавливаем УЗО типа АС или А с установкой дифференциального тока 30 (мА), а на ввод устанавливаем УЗО типа АС или А с установкой дифференциального тока 100 (мА). Таким образом, при повреждении на розеточной линии будет срабатывать  УЗО поврежденной линии, а не вводное УЗО, которое может обесточить всю квартиру.

Бывают случаи, когда ток утечки в поврежденной цепи достигает значения, превышающего установки обоих УЗО. В первом примере селективность не нарушится. А вот во втором примере может сработать любое из двух УЗО, что усложнит поиск неисправности

 

Типы УЗО и дифавтоматов по принципу работы

По принципу срабатывания УЗО и дифавтоматы делятся на:

  1. Электромеханические — Электромеханические УЗО не зависят от напряжения сети, а источником их срабатывания является непосредственно ток утечки или дифференциальный ток в поврежденной линии.
  2. Электронные — С электронными УЗО все обстоит иначе. Они зависят от напряжения питающей сети и для отключения поврежденного участка цепи им необходим внешний источник питания, чтобы обеспечить работу встроенной в него электрической схемы с электронным усилителем. Поэтому электронные УЗО менее распространены из-за  меньшей надежности по сравнению с электромеханическими.

Например:  на розеточной линии, откуда у нас питается СВЧ-печь, установлено электронное УЗО. Предположим, что по неизвестным  причинам в подъездном щите  оборвался ноль. В этот же момент произошла внутренняя неисправность электропроводки в СВЧ-печи, где фаза замкнула на корпус, т.е. опасный потенциал появился на корпусе СВЧ-печи. Если в это время случайно дотронуться до корпуса, то электронное УЗО это проигнорирует, т.к. отсутствует питание его внутренней схемы из-за обрыва нуля в щитке. Конечно, вероятность такого случая очень мала (в одно время оборвался ноль и произошла неисправность в электрическом приборе), но тем не менее это возможно. Выход из такой ситуации нашли производители электронных УЗО. Они придумали следующее. Если вдруг исчезает напряжение источника питания  электронного УЗО, то оно, с помощью встроенного электромагнитного реле, отключает цепь нагрузки. Однако такие виды УЗО дороги и встречаются редко.

Подводя итоги в данном пункте, можно рекомендовать для бытового применения электромеханические УЗО, хоть они по стоимости и чуть дороже электронных, но, при этом, намного надежнее. Как можно отличить электромеханическое и электронное УЗО?. Можно предложить два способа.

Первый способ — это рассмотреть схему, изображенную на корпусе УЗО. Если УЗО электромеханическое, то у дифференциального трансформатора отсутствует прямой контакт с питающим напряжением. У электронных УЗО на схеме структурно изображена плата (треугольник на схеме), которая запитана с проходящих через УЗО проводников.

  

Второй способ — с помощью обычной батарейки. Берем  «Крону» или пальчиковую «АА» или другую, способную обеспечить ток более тока срабатывания УЗО, например 0,03А — для УЗО на ток утечки 30мА. К клеммам/полюсам батарейки присоединяем (например, приматываем изолентой)  2 провода. УЗО включаем, т.е. взводим ручку в верхнее положение, а затем один провод присоединяем на один из полюсов входа УЗО, а другой на выход того же полюса, т.е. ток от батарейки должен пройти через один из полюсов УЗО. Если произойдет его отключение — значит, что УЗО электромеханическое.

 

Типы УЗО по числу полюсов и номинальному напряжению

По числу полюсов УЗО делятся на:

  1. Двухполюсные УЗО (2P) — Двухполюсное УЗО применяется в однофазной бытовой сети для защиты людей от поражения электрическим тока и предотвращения возникновения пожаров.
  2. Четырехполюсные УЗО (4P) — Четырехполюсные УЗО применяется в трехфазной сети 3*380В или 3*220В.

Двухполюсные УЗО и Дифавтоматы имеют рабочее номинальное напряжение 230В, а четырехполюсные – 400 (380) В. Соответственно двухполюсные УЗО не используются в трехфазных сетях, а четырехполюсные — в однофазных.

 

Номинальный рабочий ток и характеристика срабатывания

На корпусе УЗО или Дифавтомата указывается его номинальный рабочий ток. В случае Дифференциального выключателя, т.е. собственно УЗО, указано значение тока в амперах (например, 20, 40 или 63), который устройство может выдерживать длительное время, без потери работоспособности и перегрева.  Обратите внимание, что указан именно рабочий ток, протекающий через УЗО в нагрузку в нормальном рабочем режиме работы, а не ток утечки.

В случае Дифференциального автомата, т.е. УЗО, совмещенного с автоматическим выключателем, указывается рабочий номинальный ток автоматического выключателя. Точно так же, как на обычном автоматическом выключателе, кроме номинального тока, на корпусе Дифавтомата указывается характеристика срабатывания В,С или D, которая определяет особенности срабатывания магнитного и теплового расцепителей. К чувствительности дифавтомата к типу и величине тока утечки эти характеристики отношения не имеют.

В бытовых квартирных щитках в группах розеточных линий наиболее часто используют УЗО с номинальным током 25-40А и дифавтоматы с  номинальным током 25-40А и характеристикой срабатывания В или С. При выборе УЗО следует уделить номинальному току особое внимание и не допускать использования УЗО с превышением номинального тока. УЗО необходимо в обязательном порядке защищать автоматическим выключателем. При этом автомат подбирается по параметрам нагрузки, а УЗО берется с номинальным током на ступеньку выше.

Например: группа розеток защищена автоматом с характеристикой срабатывания «С» и номинальным током 16 А. Мы решили установить последовательно автомату УЗО с номинальным током 16 А. Вдруг, по некоторым причинам наша розеточная линия  перегрузилась на 30% (ну бывает). В этом случае, согласно графика срабатывания расцепителей С, автомат отключится за время до 60 минут. Получается, что все это время через УЗО будет проходить ток более 20 А, превышающий его номинальный ток, что приведет к его перегреву и выходу из строя. Чтобы избежать подобного, надо устанавливать УЗО с номиналом на одну или более ступеней больше, чем номинальный ток аппарата защиты. Для приведенного выше примера это будет 25 А или более.

 

Отличие Дифференциального автомата от УЗО

Речь пойдет о функциональном и внешнем отличии дифференциального автомата от УЗО. Сразу разберем наименование и обозначение этих устройств:

устройство защитного отключения (УЗО) — он же выключатель дифференциальный (ВД)

дифференциальный автомат или, сокращенно, дифавтомат — он же автоматический выключатель дифференциального тока (АВДТ)

В качестве примера рассмотрим продукцию от фирмы IEK: УЗО типа ВД1-63, 16А, 30мА и дифференциальный автомат типа АВДТ32, С16 16А, 30мА. По фотографиям видно, что по внешним признакам они очень похожи.

Главное отличие дифференциального автомата от УЗО это то, что у этих двух устройств разная функциональность. Дифавтомат можно представить как: УЗО + автоматический выключатель

  1. Устройство защитного отключения (УЗО)— коммутационный аппарат, который защищает человека от прямого или косвенного поражения электрическим током, а также контролирует текущее состояние электропроводки, и при возникновении в ней каких-либо повреждений в виде утечек, отключает ее. УЗО не защищает  электропроводку и электрооборудование от коротких замыканий и перегрузов — его само необходимо защищать, устанавливая перед ним автоматический выключатель.
  2. Дифавтомат или дифференциальный автомат— это коммутационный аппарат, который совмещает в одном корпусе и автоматический выключатель, и УЗО, т.е. дифференциальный автомат способен защищать электрическую сеть от коротких замыканий и перегрузов, а также от возникновения утечек, связанных с повреждением электропроводки, электрических приборов и при попадании человека под напряжение.

Как отличить УЗО от дифавтомата

  1. Надпись названия устройства В настоящее время большинство производителей, чтобы не вводить в заблуждение покупателей (а чаще и самих продавцов), начали на лицевой стороне или сбоку на крышке писать название устройства, либо это УЗО (выключатель дифференциальный), либо дифавтомат (автоматический выключатель дифференциального тока).

  1. Маркировка. Второй способ отличить УЗО от дифавтомата — это обратить внимание на маркировку. Если на корпусе указана только величина номинального тока, а буква перед цифрой отсутствует, то значит это устройство защитного отключения (УЗО). В нашем примере у ВД1-63 на корпусе указан только номинальный ток 16 (А), а буква типа характеристики — отсутствует. Если перед цифрой, которая указывает значение номинального тока, изображена буква В, С или D, то значит это дифференциальный автомат. Например, у дифференциального автомата АВДТ32 перед значением номинального тока стоит буква «С», которая обозначает тип характеристики электромагнитного и теплового расцепителей.

  1. Схема. Третий способ несколько сложнее, чем второй, но все равно имеет право на жизнь. Посмотрите внимательно схему подключения на корпусе. Если на схеме изображен только дифференциальный трансформатор с кнопкой «Тест», то это УЗО. Если же на схеме изображены дифференциальный трансформатор с кнопкой «Тест» и обмотки электромагнитного и теплового расцепителей, то это дифавтомат.

  1. Габаритные размеры. Сейчас этот параметр уже не актуален, но когда выпускались первые дифавтоматы, то они были существенно шире, нежели УЗО, т.к. в корпусе дополнительно нужно было разместить тепловые и электромагнитные расцепители. В настоящее время наоборот, дифавтоматы стали выпускать с габаритными размерами меньше, чем УЗО. В нашем примере УЗО ВД1-63 и дифавтомат АВДТ32 имеют совершенно одинаковые размеры. Поэтому данный пункт при отличии УЗО от дифавтомата во внимание брать не стоит.

 

Принцип действия электромеханического УЗО

В основе принципа работы УЗО лежит реакция датчика тока на изменяющуюся входную величину дифференциального тока в проводниках. Датчик тока — это обычный трансформатор тока (1), который по конструкции выполнен в виде тороидального сердечника-магнитопровода с намотанной на него измерительной обмоткой, ток в которой пропорционален магнитному потоку в сердечнике. Магнитный поток в сердечнике формируется за счет тока, проходящего через нулевой (N) и фазный (L) проводники, проходящие через УЗО в нагрузку (5). С измерительной обмотки ток поступает на катушку управления реле (2) и , при достижении заранее установленного значения, вызывает срабатывание реле, которое размыкает контактную группу (3), отключая нагрузку. Установка по току срабатывания УЗО выставляется на магнитоэлектрическом реле (2), которое обладает очень высокой чувствительностью.

УЗО, выполненные с релейным контролирующим органом являются очень надежными и безотказными. Но развитие электротехники не стоит на месте, поэтому не так давно появились электронные УЗО, в которых контролирующим органом является не реле, а специальная электронная схема. Однако такая схема требует собственного питания, что приводит к неработоспособности устройства при отсутствии или недостатке сетевого напряжения.

Чтобы самостоятельно проверить исправность УЗО необходимо нажать кнопку «Тест» (4). При этом создается искусственная утечка по току, которой достаточно для срабатывания УЗО. Проверку УЗО кнопкой «Тест» необходимо проводить ежемесячно.

Работа УЗО при нормальном состоянии сети

В нормальном состоянии электропроводки (без утечек) рабочие токи в фазном І1 и нулевом І2 проводнике равны I1=I2 и протекают встречно-параллельно. Что формирует в сердечнике трансформатора тока магнитные потоки Ф1 и Ф2, равной величины, но встречного направления, которые компенсируют друг друга. Так как суммарный магнитный поток равен нулю, тока в измерительной обмотке нет и реле не срабатывает.

Работа УЗО при утечке

При возникновении тока утечки в одном из проводников нарушается равенство токов в фазном І1 и нулевом І2 проводнике. Следовательно, формируемые этими токами магнитные потоки так же больше не компенсируют друг друга и появляется суммарный ненулевой магнитный поток, который возбуждает в измерительной обмотке ток, пропорциональный результирующему магнитному потоку. Когда этот ток превысит заранее установленный порог срабатывания, реле сработает приводя в дейтвие размыкающий механизм, который и отключит нагрузку.

 

Применение УЗО

Давайте разберемся для чего же нужно устанавливать УЗО в своих квартирах или домах? Все зависит от того, какие цели Вы преследуете. Основных целей применения УЗО две: защита людей от поражения электрическим током и предотвращение возникновения пожара по причине появления тока утечки электропроводки.

Применение УЗО для защиты людей от поражения электрическим током

При использовании в личных целях такие электрические приборы, как стиральная машина, СВЧ-печь, электрическая плита, водонагреватель, компьютер и другие, есть вероятность поражения электрическим током, т.к. перечисленные бытовые приборы в первую очередь имеют металлический корпус, проводящий электрический ток и сложную внутреннюю схему. В следствии различных воздействий (механических, тепловых и др.), а также по причине длительного срока службы, изоляция проводов этих бытовых приборов может прийти в негодность. Это касается не только электрических приборов, но и кабельных линий электропроводки.

При нарушении изоляции проводника, есть вероятность замыкания этого провода на металлический корпус электрического прибора. При этом на корпусе появляется фаза или другими словами, потенциал, равный напряжению сети. Но это возникнет в том случае, если отсутствует заземление корпуса. Что случится, если прикоснуться к корпусу прибора в такой ситуации?

Пример 1. Без применения в схеме УЗО 

Если одновременно задеть электрический прибор, а в нашем примере это СВЧ-печь с поврежденной изоляцией, и любой другой предмет, соединяющийся с заземлением, например, с раковиной, водопроводной трубой или батареей, то Вас ударит током. Последствия такого «прикосновения» могут быть самые разные. В одном случае это «легкий испуг», в другом — серьезные последствия, вплоть до остановки сердца от прохождения тока через тело человека. Все зависит от сопротивления кожи и длительности воздействия.

Пример 2. Применение УЗО в схеме с защитным проводником (заземлением).

Чтобы предотвратить подобные последствия при нарушении изоляции приборов или кабелей, необходимо применять устройство защитного отключения (УЗО). Здесь вообще не произойдет опасной ситуации, т.к. при замыкании фазного проводника на металлический корпус электрического прибора, появится ток, при котором сработает УЗО или автоматический выключатель. Это будет в том случае, если у Вас используется электропроводка с защитным проводником РЕ (фаза, ноль, земля), т.е. система TN-C-S или TN-S.

Пример 3. Применение УЗО в схеме без защитного проводника

Рассмотрим тот же пример с СВЧ-печью с использованием УЗО, но уже без применения защитного проводника РЕ, т.е. с системой заземления TN-C. В этом случае у Вас есть хороший шанс остаться в живых, т.к. прохождение тока через тело человека будет кратковременным. Прохождение электрического тока через тело человека создаст утечку тока, что приведет к срабатыванию УЗО, который в свою очередь отключит поврежденный участок сети. Время нахождения человека под электрическим током будет равняться времени срабатывания УЗО.

Существует ошибочное мнение, что применять УЗО в старых схемах электропроводки (двухпроводной, не имеющей защитного заземления) не допустимо. УЗО в таких сетях не только допустимо, но и необходимо именно в следствии отсутствия заземления. Аналогично можно сказать и о старых «двухфазных» сетях, в которых вместо фазного и нулевого проводника присутствуют два фазных проводника. Такие сети присутствуют в старых городах, где используются сети 3*220В (треугольник). Применять УЗО в них необходимо, однако только механические, электронные УЗО в таких сетях неработоспособны.

Применение УЗО для предотвращения возникновения пожара

При неправильном или некачественном монтаже электропроводки, а также использовании электрических проводов или кабелей с неисправной изоляцией  применяют УЗО для предотвращения возникновения пожара в случае утечки тока. Для этих целей применяют устройство защитного отключения (УЗО) с установкой тока срабатывания в 300-500 (мА). Такая установка взята из предварительного расчета тепловой мощности.

При токе утечки равному 500 (мА), тепловая мощность выделяемая на некотором участке цепи составляет приблизительно 100 (Вт). Рассчитывается просто, активная мощность равна произведению значений тока и напрядения, т.е. 0,5А * 220В = 110Вт. Этой мощности достаточно для возгорания таких материалов как дерево, пластик или бумага, находящихся в месте неисправности.

 

Причины срабатывания УЗО

Не думайте, что УЗО срабатывает просто так. В большинстве случаев это происходит  по причинам, которые можно разделить на следующие группы:

  1. Ложное срабатывание УЗО:
  • неисправна кнопка «Тест»
  • неисправен спусковой механизм
  • ток утечки внутри УЗО
  • кратковременный ток утечки
  • нарушена схема подключения
  1. Рабочее срабатывание УЗО:
  • попадание человека под напряжение
  • нарушение изоляции электропроводки или электроприборов

Все перечисленные причины являются следствием наличия в цепи тока утечки. Нам лишь нужно определиться, есть ли фактическая неисправность в цепи и УЗО реагирует правильно, тем самым защищая нас, или же срабатывание УЗО является ложным и отключает потребителей понапрасну. Рассмотрим каждый из этих моментов подробнее.

Неисправна кнопка «Тест» — Устройство защитного отключения может сработать ложно по причине неисправности нормально-открытого контакта кнопки «Тест». Этот контакт может «залипнуть», что приведет к постоянному срабатыванию УЗО. В такой ситуации, как только Вы поднимите рычажок включения УЗО вверх, то УЗО не включится, т.е. рычажок не зафиксируется во включенном положении.

Неисправен спусковой механизм — Следующей причиной ложного срабатывания устройства защитного отключения является неисправность его спускового механизма. УЗО в таком случае не включится или будет неожиданно отключаться от любых посторонних вибраций и колебаний, например, при резких хлопках двери квартиры или работе перфоратором.

Ток утечки внутри УЗО — Во время эксплуатации в корпусе УЗО может образоваться сконденсировавшаяся влага, которая приведет к появлению токов утечки внутри схемы УЗО. Это соответственно вызовет его отключение. Такое может происходить при установке УЗО на открытом воздухе или во влажных помещениях.

Кратковременный ток утечки — В момент включения достаточно мощных электроприемников, имеющих индуктивный или емкостной характер, а также импульсных блоков питания (блоки питания любой современной электроники и компьютерной техники), устройство защитного отключения может сработать ложно. Это можно объяснить возникновением кратковременного тока утечки из-за особенностей схем этих устройств. Например при включении мощного блока питания компьютера происходит заряд входных конденсаторов, что УЗО воспринимает как утечку.

Нарушение схемы подключения — Самая распространенная причина ложных срабатываний УЗО — это ошибки при его подключении. Например перепутаны нули групповых УЗО, ноль с выхода УЗО заведен на общую нулевую шину, забыли подсоединить нулевой или фазный проводник, неправильно выбрали селективное УЗО, несоблюдение требований производителя и т.д.

Попадание человека под напряжение — При касании человеком токоведущих частей, находящихся под рабочим напряжением, через его тело начинает проходит ток (ток утечки на землю через организм человека), который и вызывает отключение УЗО. Если взять статистику, то такие случаи встречаются достаточно редко, порядка 2-3 % из всех случаев срабатывания УЗО. Связано это в первую очередь с высоким уровнем защиты и электробезопасности, а также малой возможностью поражения электрическим током в сетях с системой заземления TN-S и TN-C-S.

Нарушение изоляции электропроводки или электроприборов — Случай аналогичен предыдущему с той разницей, что ток утечки протекает не через человека, а через корпус электроприбора, стену, металлические части конструкций и т.д.

 

Что делать, если срабатывает УЗО?

Что делать, если выбивает или срабатывает УЗО? Приведем алгоритм действий по выявлению причины срабатывания УЗО.

Шаг 1. Отключите вводной автоматический выключатель в квартирном или этажном щите, и попробуйте взвести рычажок включения УЗО во включенное положение. Если УЗО включится, то переходим к шагу 2, если же нет, то причиной срабатывания УЗО является его спусковой механизм. В этом случае необходимо купить новое УЗО и установить его вместо неисправного.

Шаг 2. Необходимо от УЗО отключить выходные цепи, т.е. отключаем отходящие провода от выходных (нижних) клемм УЗО. Далее включаем вводной автоматический выключатель в электрическом щитке и пробуем включить УЗО. Если УЗО включится, то переходим к шагу 3, если же нет, то причиной отключения УЗО является неисправный контакт кнопки «Тест».

Шаг 3. Если после проверки УЗО по первым двум шагам УЗО включилось, то причиной является: ток утечки внутри УЗО, кратковременный ток утечки, неправильный монтаж или схема подключения УЗО, нарушение изоляции электропроводки. Идем дальше. В первую очередь нужно определиться в какой цепи установлено УЗО и что от него питается. Далее приступаем к следующему алгоритму действий.

Шаг 4. Отключаем от розеток или клемм все электрические приборы этой группы (линии) и пробуем включать УЗО. Если оно включилось, то переходим к шагу 5, если же нет, то причиной срабатывания УЗО является: неисправная электропроводка в квартире этой группы (линии), утечка внутри УЗО, неправильный монтаж или схема подключения УЗО. Можно попробовать заменить УЗО на заведомо исправный. В этом случае, если неисправность сохраняется, виновата проводка и/или розетки/контакты подключения.

Шаг 5. Отключаем от розеток или клемм все электрические приборы этой группы (линии) и пробуем, поочередно, включать их в сеть. Если причина в конкретном электрическом приборе, то Вы быстро найдете неисправный прибор. Его необходимо будет заменить или сдать в ремонт.

Основные характеристики или как выбрать УЗО

Содержание:

  1. 1. Как это работает
  2. 2. Основные характеристики

Устройство защитного отключения (УЗО) предназначено для того, чтобы обезопасить Вашу жизнь. Оно помогает избежать поражения электрическим током, предотвращает возгорания несправной проводки и защищает электрические приборы от поломок, связанных с сетью.

Электрические приборы, плотно вошедшие в нашу жизнь, значительно облегчают наш быт и экономят время. Электросети опутывают проводами квартиры, дома и офисы. Стиральные машины, микроволновые печи, утюги и холодильники становятся настолько привычными, что люди почти перестают их замечать, забывая об опасности, которую они могут представлять. Меж тем печальная статистика утверждает, что в России в 5 раз чаще в Европе, люди получают повреждения электрическим током. Причем опасность подстерегает не только со стороны оголенных проводов, она еще исходит от токов утечки, о которых люди даже не вспоминают.

Дифференциальный ток или ток утечки, возникает при неисправной проводке в помещении, либо внутри электрического прибора. При контакте с ним могут пострадать люди, электроприборы и существенно возрастает риск возникновения пожаров. Прямые контакты с током утечки происходят в основном по неосмотрительности и невнимательности человека. Например, при использовании удлинителей с поврежденной изоляцией. Непрямые контакты происходят по причинам, не зависящим от человека, и в этом их наибольшая опасность. У неисправного оборудования металлические части корпуса могу оказаться под напряжением и человек, дотронувшись до них, получит поражение электротоком. Например, внутри стиральной машины нарушилась изоляция провода, под напряжением оказался металлический корпус. Человек, даже не подозревая об этом, случайно задевает его и получает удар током. Чтобы избежать несчастных случаев, обезопасить себя и близких стоит установить устройство защитного отключения.

Как это работает

Выбирая УЗО можете подробное его изучить, а выглядит оно, как небольшая коробка, внутри которой находится ферромагнитный сердечник с двумя обмотками. Они подключены к фазному и нулевому проводникам. По ним одинаковые по силе, но разные по знаку магнитные потоки идут навстречу друг другу, в результате чего гасятся и в обмотках ток равен нулю. Если в цепи появляется дифференциальный ток, например, при повреждении изоляции или прикосновении человека, то срабатывает реле, размыкающее ноль и фазу. Таким образом, УЗО отключает поврежденные участки сети, не допуская причинения вреда людям и электроприборам.

Основные характеристики

УЗО типа защиты от поражения током АС, представленные на нашем сайте, срабатывают на переменные дифференциальные токи. При этом постоянный ток утечки, который может возникнуть в схемах с полупроводниковыми источниками питания, не вызывает срабатывания устройства данного типа.

УЗО по количеству полюсов делятся на двухполюсные и черырехполюсные типы, что обязательно нужно учитывать при выборе.

  • Двухполюсные УЗО (фаза и нейтраль) обычно выбираются и устанавливаются в электрические щитки домов и квартир, благодаря чему такие устройства получили широкое распространение.
  • Четырехполюсные УЗО выбираются и применяются значительно реже. Они защищают трехфазные проводки, в том числе и 3-фазные электродвигатели от пробоя обмотки на корпус. В этом случае используются не все 4 полюса, а только фазные полюса.

Номинальный ток защиты (In), указывается на корпусе УЗО (так же важен при выборе) — это показатель того, ток какой силы устройство может пропустить через себя при продолжительной беспрерывной работе. По определению ГОСТ 50807-95 о защитных устройствах управляемых остаточным током In выбирается из ряда: 6 А (маломощные), 16 и 25 А (среднемощные), 40, 63, 80, 100 и 125 А (мощные).

Номинальный отключающий дифференциальный ток (IDn) определяет при выборе защитные свойства УЗО. Это основная характеристика, она отвечает за показатель тока утечки, при котором устройство отключается. В большинстве случаев применяются УЗО с током срабатывания 6 мА – 500 мА.

С рекомендованными значениями номинального отключающего дифференциального тока для УЗО Вы можете ознакомиться в таблице:

Номинальный ток защиты 16 А 25 А 40 А 63 А 80 А 100 А
УЗО для защиты одного пользователя 10 мA 30 мA 30 мA 30 мA 100 мA 100 мA
УЗО для защиты группы пользователей 30 мA 30 мA 30 мA 100 мA 300 мA 300 мA
Противопожарные УЗО 300 мA 300 мA 300 мA 300 мA 300 мA 500 мA

Универсальными считаются УЗО с номиналом тока утечки равным 30 мА, так как они защищают от поражения током, возгорания и позволяет подключать достаточно большие нагрузки без ложных срабатываний. Устройства с большим значением токов утечки (300 мА, 500 мА) называют противопожарными. Они не допускают возгорания, но не уберегают человека от поражения электричеством.

УЗО с номинальным значением менее 30 мА прекрасно справляются с функцией защиты людей, но при этом не обеспечивают пожаробезопасность и при больших нагрузках могут ложно отключаться.

Номинальное время отключения (Tn)  — это значение времени между моментом отключением питающего напряжения УЗО и возникновением дифференциального тока (не забывайте и его при выборе узо). По стандартам максимально допустимое время отключения УЗО равно 0,3 с. На деле же современные и качественные устройства срабатывают со скоростью 0,02-0,03 с. Таким образом, УЗО отключает сверхтоки и токи нагрузки, реагируя раньше автоматических выключателей.

Обычно УЗО используются при температурах от -5 до +40 оС и имеют степень защиты от окружающей среды IP 20. Также есть устройства, работающие в диапазоне  от -25 до 40 оС  и со степенью защиты IP 40, на них наносится специальный знак.

Выбирая и приобретая УЗО, Вы делаете безопаснее свою жизнь и жизнь близких людей. Позаботьтесь об этом уже сейчас, просто позвонив по телефону 8-800-333-83-28. Наши менеджеры ответят все возникшие вопросы и помогут определиться с покупкой.

Причин срабатывания автоматов узо и почему они отключены но бояре, насосы

Первичная защита организма человека от опасного воздействия напряжений и токов в бытовых электрических сетях и — установка защитных устройств. Кроме того, УЗО используются для защиты электроприборов от аварийных работ в бытовых электросетях и синусоидального тока постоянного и переменного тока. Но срабатывает очень часто, и отечественного потребителя интересует, почему отключено УЗО на УЗО или постоянно сработало.

Принцип действия и работа УЗО

Рис.1 Работа УЗО

Сумма токов, которые входят в секцию, должна равняться токам, которые идут. Это основной принцип работы данного блока выключателя. Причина срабатывания УЗО в блоке питания — это то, что токи, исходящие от участка электрической сети, не равны токам, которые входят в эту сеть. Эта разница представляет собой величину тока утечки или дифференциального тока. Векторная сумма токов в фазных проводниках ( I1 ) должна быть равна токам в нейтральном проводе ( I2 ).Они идентичны по размеру, но направления разнонаправлены и, таким образом, взаимно компенсируют друг друга, а ЭДС (электродвижущая сила) отсутствует. Если эти токи не равны, значит, разница между ними и есть ток утечки. Он в свою очередь создает ЭДС, а она, в свою очередь, через соленоид воздействует на запорный механизм и УЗО отключается.

Мотивация растений УЗО. Опасный для человеческого тела электрический ток

На Рис.1 Нормальный режим I 1 = I 2. Когда человек касается оголенных проводов, возникает дифференциальный ток I∆n . Если посчитать ток, который пройдет через человека, получим I = 230/ R no , НО, где 230 Ток от бытовой сети, R no — сопротивление человека . Хотя у каждого человека эта характеристика индивидуальна, но она считается порядка 1 кОм (1000 Ом). В итоге получаем 230/1000 = 23 мА. Следует отметить, что порог чувствительности у человека начинается с 0.6 — 1,5 мА. При этом нынешнее ощутимое раздражение у человека. При токе в 10 — 15 мА у человека возникает мышечный спазм, и этот ток называют неотпускающего. В этом случае человек не может самостоятельно освободить оголенный провод, если взял его. при токе 90 — 100 мА возникает фибрилляционного тока. При таком токе сердечная мышца хаотично сокращается, а через несколько секунд происходит остановка сердца. Безопасным для человека считается ток 2 мА, когда он превышает 10 с, а если больше 120 с, то безопасный ток 6 мА.эти токи, а также время отключения необходимо учитывать при выборе остаточного тока УЗО, чтобы понимать, что будет с вами, если вы попадете под опасное напряжение. По этим причинам помните: если обогреватель выключен УЗО, это избавит вас от минимального дискомфорта.

Выбор УЗО в зависимости от токов утечки

согласно СП31-110-2003 pA4.15 , при питании ванной от отдельной линии необходимо предусмотреть УЗО 10 мА, если линия используется совместно с кухней и коридор, необходимо установить УЗО током до 30 мА.Для обычных бытовых ЛЭП (розетки, освещение) защитное устройство выбирается на максимальный ток 30 мА ( ПУЭ п.7.1.79.). УЗО на дифференциальные токи 100 и 500 мА, как видно выше, не защищают организм человека от опасного напряжения, и основная цель этой противопожарной защиты. При установке автоматических выключателей необходимо понимать, что они не защищают от длительных перегрузок, максимальных токов или высоких напряжений. По этим причинам эта установка должна быть соединена с автоматическим выключателем с электромагнитным и тепловым расцепителем, а для защиты от перенапряжения должны быть установлены реле или ограничители перенапряжения (Устройство защиты от перенапряжения).По этим причинам, если ТЕРМЕКС отключает УЗО, а автомат не работает, то причиной неисправности является ток утечки.

Если УЗО выключается одновременно с автоматическим выключателем, причиной неисправности может быть как дифференциальный ток, так и максимальные токи, возникающие при коротком замыкании.

Причины утечки тока

Необходимо хорошо понимать, что наличие тока утечки — это аварийный режим или неисправность в электрических сетях бытового назначения или неисправности в электроприборах.Причины возникновения этого тока довольно распространены. Основные причины утечки тока — это прикосновение человека к оголенным проводам, его протекание через деформированную изоляцию кабеля или через токопроводящий элемент. Например, причиной срабатывания УЗО в водонагревателе может быть утечка тока через воду. Изоляция кабеля повреждена, влага проникла в оголенный провод и через него прошел ток. ток, которого просто не хватает, если бы разница входящего и выходящего токов равнялась 0 (нулю), и защита отключает аварийный участок.Если это водонагреватель ТЕРМЕКС, отключено УЗО прибора.Вода это тоже может быть причиной, почему отключено УЗО на насосе, перекачивающем различные жидкости.

Типы и УЗО; визуально-техническое обозначение

рис. 2 Внешний вид и обозначение защитных устройств

Форумы RCD

  • Напряжение бытовое и сеть 220/380 В.
  • По количеству полюсов. При однофазной нагрузке в сети питания УЗО необходимо установить двухполюсным, при трехфазной нагрузке — четырехполюсным.
  • Номинальный рабочий ток. Величина номинального (рабочего) тока УЗО такая же, как и для автоматических выключателей, это 16, 25, 32, 40, 63, 80 А.
  • Остаточный ток (ток утечки), величиной которого руководит устройство УЗО 10, 30, 100, 300, 500 мА.

По типу тока утечки, который в свою очередь делится на:

  1. Переменный электрический пульсирующий ток синусоидальной формы и. Тип УЗО для текущей « AS». Пульсация тока присутствует в регулируемых лампах, в стиральных машинах с регулируемой скоростью вращения.
  2. Электроимпульсный переменный и постоянный ток типа УЗО « НО». Данный вид защиты рекомендуется использовать там, где есть бытовая электроника, микроволновая печь, компьютер, телевизор и т. Д.
  3. Постоянный электрический и переменного тока типа УЗО «АТ». Этот тип защиты обычно устанавливают, где есть выпрямленный ток. В бытовых электрических сетях этот тип не используется.
  4. Для УЗО с выдержкой времени срабатывания УЗО этого типа «S» применяется селективность, которая наблюдалась бы при установке 2 или более устройств защиты в домашних сетях и при подаче электроэнергии. Этот тип УЗО используется в сетях, где используется АВР (Автоматический ввод резерва), и типа « G » в той же сети, но имеет меньшее время воздействия.

срабатывание УЗО, причины первичного и вторичного

Наиболее частые причины срабатывания УЗО в бойлере или водонагревателе Electrolux, это недобросовестный производитель или разного рода проблемы в электрической сети. Если на водонагревателе , отключено УЗО, нужно его снова включить.Если прибор исправен и не выключает УЗО, то произошла короткая утечка тока. Далее необходимо воспользоваться кнопкой «Тест». Имитирует аварийный режим.

  1. Необходимо отключить автомат, включенный в сеть вместе с УЗО и определить, почему отключено УЗО. При этом отключаем нулевой провод. После этого, как они отключаются, включаем УЗО. Если он не выключен, значит, нажмите кнопку «Проверить». Если после нажатия кнопки «Тест» УЗО сработало, значит, исправно.Следует отметить, что работоспособность тестового УЗО необходимо проверять не реже 1 раза в месяц, нажимая кнопку «Тест».
  2. Если при подключении УЗО срабатывает без нагрузки, означает, что оно вышло из строя или в месте его установки есть токи утечки. Если он исправен, необходимо понимать, почему срабатывает УЗО без нагрузки. В этом случае, если у него несколько машин, то все сразу отключают. Затем мы определяем, зачем отключать УЗО, а в свою очередь включаем автоматические выключатели и определяем аварийный участок электрической сети.

Основные виды подключения УЗО

рис. 3. Одно УЗО и один потребитель

Подключить УЗО может любой электрик, имеющий не менее 3-х разрядных электриков. Схема подключения написана на устройстве, и в этом нет ничего сложного. Единственное, что нужно сделать перед установкой, это учесть нюансы при включении сети и выбрать нужное количество выключенных машин на одно УЗО. Можно установить одно охранное устройство на всю квартиру в панели пола, если кондоминиум, как показано на рис.3. Его можно установить отдельно на розетку сети и освещение, если у вас достаточно места для установки. Подойдет для квартиры. При установке и выборе УЗО следует учитывать номинальный (рабочий) ток, который должен быть на одну ступень выше номинального тока машины, который идет после защитного устройства. Например, если автомат на 25 НО, перед этим необходимо установить УЗО с рабочим током на 32 А и т. Д. Если это частный дом, то лучше рассмотреть следующие позиции, одно УЗО и одно автоматическое, Если автомат имеет немного.

Одно устройство безопасности и несколько автоматических выключателей

рис. 4 Подраздел схемы OUZO

Если, например, в доме стоит много машин (одна машина = одна комната, = одна машина), то в этом случае размер электрического щита может быть огромным. По этим причинам распределительный щит лучше скомплектовать так, чтобы под одно УЗО устанавливать несколько автоматов, но не более 5. В этом случае необходимо правильно рассчитать номинальный ток защитного устройства относительно выхлопных автоматов, чтобы их сумма не превышала устройства защиты рабочего тока.Например, для выхлопных машин ВА1 16 НО, ВА2 16 НО, ВА3 32 НО, сумма 16 + 16 + 32 = А. Значит, УЗО должен иметь номинальный ток не менее 64 А, а зная оптимальный диапазон номинальных значений тока, вариант устройства выключатель номинальный ток на 63 А.

Как показано на рисунке. 4 ничего сложного, когда нет подключения, но в некоторых случаях будет интересно узнать, почему срабатывает УЗО на водонагревателе Ariston, если домашняя сеть и предохранительные устройства исправны и. При срабатывании УЗО причины могут быть в его неправильном подключении.

Основные виды неправильного подключения УЗО, нулевого смещения защитного проводника и

  • Невозможно соединить нейтраль ( N ) и фазный провод, пропущенный через УЗО, другие нулевые и фазные проводники после УЗО.
  • Нельзя производить подключение нулевого провода (N) после электрического разомкнутого УЗО, а также его нельзя подключать к защитному проводнику (ВКЛ) .
  • Категорически нельзя подключать к нулевой розетке и защитному проводнику.
  • Если в электрической сети установлены два устройства защиты, объединение нейтрального проводника приведет к дополнительному току утечки и, как следствие, срабатыванию обоих.
  • Если в электрощите установлено много УЗО, следует перепроверить проводку, чтобы не было соединения фазного провода и земли при работе с различными устройствами защиты.

Только правильно подобранные и правильно подключенные защитные устройства защищают человека в случае аварии от опасного воздействия электрического тока.

Видео:

Конвертер шерсти

, онлайн калькулятор

2018-8 Изменения в обозначениях класса / типа для «Узо» и «Аквавит»

31 июля 2018 г.
TTB G 2018-8

Изменения в обозначениях класса / типа для «Узо» и «Аквавит»

TTB вносит две поправки в свое Руководство по алкогольным напиткам для дистиллированных спиртов (BAM). Хотя это руководство в настоящее время подвергается более тщательной проверке, TTB незамедлительно вносит две поправки, которые касаются вопросов, связанных с обозначениями класса / типа для «узо» и «аквавит».”

Глава 4 BAM содержит таблицу, в которой перечислены классы и обозначения типов для дистиллированных спиртов. В настоящее время на страницах 4-10 «узо» указано как тип ликера / ликера и обычно определяется как «ликер / ликер со вкусом аниса». Согласно правилам TTB, ликеры и ликеры — это «продукты, полученные путем смешивания или повторной перегонки дистиллированного спирта с фруктами, цветами, растениями или чистыми соками из них или поверх них, или с другими натуральными ароматизаторами, или с экстрактами, полученными из настоев, перколяции или мацерации таких. материалы и содержащие сахар, декстрозу или левулозу или их комбинацию в количестве не менее 2 1/2 процентов от веса готового продукта.См. 27 CFR 5.22 (h).

TTB получил письмо от посольства Греции относительно маркировки «узо», в котором говорилось, что многие греческие продукты с маркировкой «узо» в Греции не содержат более 2,5% сахара. Однако при импорте в США эти продукты не могут быть помечены как «узо», потому что они не соответствуют нормативным стандартам TTB для ликеров / ликеров. Принимая во внимание эту информацию, TTB решило исключить «узо» из перечисленных видов ликеров / ликеров в БАМе.Вместо этого TTB добавляет «узо» в конец таблицы, на стр. 4-13, как дистиллированный спирт. В результате продукт больше не должен соответствовать минимальному стандарту содержания сахара. Кроме того, в соответствии с торговой и потребительской точки зрения он может быть помечен как «узо», который в настоящее время обычно определяется как «продукт из дистиллированных спиртов со вкусом аниса».

Кроме того, на стр. 4-13 BAM «аквавит» (ближе к концу таблицы) указан как «продукт из дистиллированных спиртов со вкусом тмина», маркировка которого соответствует торговым нормам и пониманию потребителей.TTB получил письмо от производителя аквавита, в котором объяснялось, что норвежский закон разрешает аквавиту иметь аромат тмина, укропа или и того, и другого. Однако в соответствии с действующим BAM продукты со вкусом укропа не могут быть маркированы как «аквавит» в Соединенных Штатах. TTB подтвердило, что в соответствии с правилами Норвегии и Европейского Союза, аквавит может быть ароматизирован тмином и / или укропом. Соответственно, TTB в административном порядке одобрило маркировку таких продуктов как «аквавит» и теперь изменяет запись «аквавит» на стр. 4-13 следующим образом: «Дистиллированный спирт со вкусом тмина и / или укропа.”

Эти поправки к Руководству по крепким алкогольным напиткам вступают в силу немедленно.

Новая страница 1:

Изменено страниц:

4-10: «Узо» удалено как «ликер / ликер».

4-13: «Аквавит» изменен для учета спиртов со вкусом тмина и / или укропа.

Инструкции с поправками:

4-13: «Аквавит» внес следующие изменения:

КЛАСС

ОБЩИЙ КЛАСС
ОПРЕДЕЛЕНИЕ

ТИП

ОБЩЕЕ ОПРЕДЕЛЕНИЕ ТИПА

АКВАВИТ 1

Дистиллированный спирт со вкусом тмина и / или укропа

НЕТ ТИПА ПОД ЭТОМ КЛАССОМ

1 Достаточно в качестве обозначения класса и типа.

4-13: «Узо» удалено из списка «ликер / ликер» и добавлено после «Горькие напитки» следующим образом:

КЛАСС

ОБЩИЙ КЛАСС
ОПРЕДЕЛЕНИЕ

ТИП

ОБЩЕЕ ОПРЕДЕЛЕНИЕ ТИПА

УЗО

Дистиллированный спирт со вкусом аниса продукт

НЕТ ТИПА ПОД ЭТОМ КЛАССОМ

Контактная информация

Заинтересованные стороны, у которых есть вопросы относительно данного руководства, могут связаться с Отделом постановлений и постановлений по телефону 202-453-2265 или использовать форму «Свяжитесь с нами».

TTB G: 2018-08
OPR: RRD
Дата: 31 июля 2018 г.

Узо: самый популярный напиток в Греции

Узо питьевой — это искусство. А может это образ жизни. Как бы то ни было, Греция, и в частности остров Лесбос, славится своим узо.Большинство владельцев кафе в Греции признают, что лучшее узо происходит с Лесбоса, также известного как Митилини, и, вероятно, несут в себе одну из более популярные коммерческие бренды, такие как Mini или Plomari. Но не только узо, но и то, с кем вы его пьете, действительно создает впечатление. Когда я на Лесбосе, я провожу много времени, выпивая узо, разговаривая и ем с друзьями. Настолько, что когда это Пора возвращаться в Америку. Я должен серьезно подумать о том, чтобы стать членом Анонимных Алкоголиков. Но обычно мое желание узо заканчивается, когда я сажусь в самолет обратно в Америку, и две или три бутылки, которые я приношу с собой в каждую поездку, начинают складываться, так что в моем шкафу с алкогольными напитками больше не остается места, и тогда я должен снова начать пить узо или давать им как рождественские подарки и подарки на день рождения.Это бесконечный цикл, который сделал меня фаворитом среди друзей и членов семьи, не говоря уже о владельцах кафе и магазинах узо.
Ключ к употреблению узо — это закуски, известные как мезедес или мезе. Они сохраняют действие алкоголя от подавления и позволяя вам сидеть и медленно пить в течение нескольких часов в глубоко спокойном состоянии ума, когда все красиво и жизнь прекрасна. В деревнях на греческих островах и на материке, где жизнь протекает медленно, узо пьют днем ​​и ночью.По воскресеньям после церкви кафенеоны полны оживленных голосов и песен, в том числе иногда и деревенского священника. Во многих В кафе готовят блюда мужчины, но в некоторых случаях готовит и обслуживает женщина, а также выполняет роль логова. мать стариков, которые приходят сюда каждый день. Она знает их симпатии и антипатии, любимые места и личные история. Но узо можно найти не только в сельской Греции. Это по-прежнему один из самых популярных способов употребления алкоголя в городах, и есть рестораны, известные как узери и мезедопулионы, которые специализируются на узо и пищевых продуктах, которые идут с ним.

Любимый Узо Мэтта

  • Barbayannis: Самый известный из Пломари Узо. Некоторые говорят, что это лучшее. Синий — один из самых сильных (46%). но есть зеленая бутылка, которая составляет всего 42%, и обе они превосходны, и их даже можно найти за пределами Греции.Barbayannis подвергаются тройной дистилляции.
  • Афродити: Также от Барбаяниса и моего нынешнего фаворита. Я думаю, что это 48%, но очень плавно.
  • Evzone: Снова Barbayannis Ouzo, но это больше для местного потребления на Лесбосе
  • Узо Гианнаци из Пломари: Дистиллирован в старомодном дровяном касани (до сих пор). Две разновидности, одна из 42%, а другая 45% алкоголя.
  • Узо Пицилади : Некоторые люди считают его слишком крепким, но если вы пьете его, как положено, с водой, какое имеет значение, будет ли узо 40% или 46%? Я заказываю это узо много.
  • Dimino выпускается в бутылках забавной формы, которые выглядят как казани , из которого они перегоняют узо.
  • Узо мини : мягкий и мягкий с содержанием алкоголя 40%.
  • Узо Вето : 42%. Сильнее. Андреа любит такой вид.
  • Узо Лино: Узо на выбор в моем местном кафе. Раньше это был Кефи, но эта компания закрылась, и один из братьев взял оригинальный рецепт и сделал это.
  • Plomari от Arvanitis. Это единственное узо с пробкой, которое сейчас является самым популярным в Греции.
  • Узо Бабацим от Серрес недалеко от Салоников чистый и дистиллированный, и я пью его почти каждую ночь в Афинах в Cafe Evi в Псири.
  • Brettos Gold — лучшее в линейке узо, продаваемое в Brettos Cava на Плаке, знаменитом месте со всеми бутылками на стенах

Магазин узо в Греции и винограда

Точно так же, как лучшая текила — это 100% чистая агава, лучшее узо, на мой взгляд, — это 100% apostegmeno , что означает дистиллированный.Просто посмотрите на бутылку, чтобы увидеть на все 100% то, что вы хотите. На Лесбосе есть много других небольших компаний, таких как Kronos, Mattis, Samara, Thymi, Smyrna , все из которых отлично. По соседству на острове Хиос, где они больше известны мастихой, духом, приготовленным из сока мастихового дерева, они также делают несколько хороших узо, таких как Kazanisto , Kakitsi и Apalarina . На Самосе делают прекрасное узо под названием Giokarinis .Кроме того, есть коммерческие узо для туристов и американцев греческого происхождения, которые не знают хорошее узо из самбукки и, как правило, слишком сладкое, а в некоторых случаях просто непригодно для питья. Я не хочу назовите их, потому что они большие корпорации с имиджем, чтобы сохранить и нанять множество юристов, чтобы помочь они сохраняют его, но если вы будете придерживаться узо, о котором я упоминал выше, с вами все будет в порядке. Если вам нужна помощь, вы можете пойти к Анджело Королю Узо на улице Адриану 120 в Плаке в Афинах.

ВНИМАНИЕ! Если вы не любите лакрицу, вам, вероятно, не понравится Узо. Но для вас есть Ципуро. (Подробнее об этом позже)

Некоторые из наиболее популярных брендов узо на Лесбосе не на 100% apostegmeno (дистиллированные). Другими словами, они просто покупают ингредиенты и собирают их в магазинах, а затем разливают по бутылкам и продают.Но в последнее время эти компании выпускают два вида узо: один дистиллированный, а другой — нет. как люди начинают понимать, что дистиллированное узо лучше. В Пломари Узо Гианнаци , который был основан греко-австралийцем Джорджем Кабарносом и его сыном, дистиллирован по старинке и является одним из лучший вкус узо, который я пробовал. Потому что они были небольшой компанией и не могли платить требуемые большие суммы денег. чтобы продавать товар в супермаркетах, их узо можно было найти только в его магазине в Пломари и в некоторых небольших кафе и рестораны в этом районе.Однако компания была продана, и теперь Джанаци можно найти даже в Афинах и на некоторых других островах. По словам г-на Кабарноса, настоящий традиционный дистиллированный узо не имеет побочных эффектов. (помимо опьянения) и не вызовет похмелья, потому что в него не добавлен сахар и другие ингредиенты, которые придайте каждому узо свой особый аромат, оно готовится, а не просто добавляется в смесь. Чтобы проверить это утверждение, я принес бутылку Giannatsi моему другу Михалису, владельцу кафе в верхней деревне Ватуса, и спросил ему попробовать.Он был очень впечатлен и затем указал на бутылку, на которой было написано слово Apostegmena . «Вы видите этого Матиоса? Вот почему это узо так хорошо. Дистиллированный ».

В кафе традиционных деревень Лесбоса узо подают с мезе , по цене около евро за стакан. Или вы можете сэкономить официанту, чтобы он бегал туда-сюда и заказал маленькие 200-миллилитровые бутылки.Мезедес может быть что угодно: от салата до тушеного мяса. мясо и овощи, сарделес пасты, koukia (фасоль), сладкое печенье, фрикадельки, сыр, колбаса, жареная рыба или что-то еще фирменным блюдом этого кафе является тот день. Ешьте и пейте медленно и наслаждайтесь путешествием. Владельцы кафе обычно хорошие повара, и во многих местах это почти похоже на соревнование за лучшие мезедес. Просто закажите узо мезе и посмотрите, что они вам принесут. Если вы видите, что у кого-то за другим столом есть что-то интересное, закажите это тоже.В узери или мезедопулионе вы заказываете блюда индивидуально или можете получить пикилию, что представляет собой множество вещей. Я рекомендую тебе сделать это если это ваш первый раз. Лучшие мезеде с узо — это осьминог, пасты сарделес , лакерда , копченая или маринованная скумбри и большинство морских продуктов. Смотрите мои мезеды, страница

Не будь мачо.Запивайте узо водой. Когда вы наливаете его в узо, оно станет молочно-белым. Сколько влить — дело вкуса. Хороший трюк — разбавлять его водой во время питья. Другими словами, вы продолжаете добавлять воду. Так ты не напьешься так, потому что вы будете пить столько же воды, сколько узо (или больше), у вас не будет обезвоживания или похмелья (возможно). Если вам повезет (или вам не повезет), чтобы встретить кого-то, кто делает свое собственное узо, будьте осторожны. Хотя они называют это узо, это так на самом деле раки или ципуро и не имеет того вкуса лакричника, который ассоциируется с узо.Производится в самодельных кадрах и идет плавно, но его эффекты быстрые и мощные. Но одно стекло не повредит, а два даже лучше. Пока это очень маленькие очки. Костас в Blue Sardine в Скала Эрессос, Лесбос, известен своей рыбой мезедес , выбором узо и домашним ципуро с рейтингом XX, которое он может принести в конце еды, если думает, что вы справитесь.

Приморский город Пломари на Лесбосе наиболее известен своим узо.Именно здесь Узо Барбаджианнис , Узо Джаннаци и теперь, пожалуй, самый известный: Узо Пломари Исидору Арваниту, первый узо с пробкой в ​​нем и одним из лучших дегустационных и самых продаваемых узо в Греции. Как ни странно, я мог не нашел в кафе в первый раз поехал в Пломари. Мне рассказали, что владелец Ouzo 12 , одной из самых популярных греческих компаний по производству узо, был выкуплен гигантской компанией Seagrams.Он взял свои деньги и купил небольшой ликеро-водочный завод Arvanitis в Пломари, изменил рецепт и сделал его более мягким. Узо, так что людям вроде меня он понравится, и они, надеюсь, смогут продавать его по всей Греции и, возможно, в Америке тоже. Но в Пломари по-прежнему нравится оригинальный рецепт, поэтому на самом деле существует две версии. Бутылка в Пломари совершенно другой и в нем нет пробки и он прочнее. Поехал на завод проверить подлинность этой истории, и, к сожалению, она была закрыта.С тех пор они использовали свой маркетинговый опыт, чтобы узо с пробкой одно из самых популярных в Греции. Вы можете получить его в магазинах беспошлинной торговли в аэропорту и, возможно, даже в любимом магазине спиртных напитков дома. Привлекательность Количество бутылок сделало их очень популярными в ресторанах, которые используют их для приготовления масла и уксуса на столах. Чтобы сделать историю еще более интересной, продажи Ouzo 12 резко упали после покупки, и он смог выкупить компанию на все деньги, которые он заработал на Узо Пломари.Затем он сменил бутылку, добавил пробку и провел аналогичную маркетинговую кампанию, и теперь у него есть два из трех самых популярных узо в Греции. (Третий — Мини).

Магазин узо в Греции и винограда

Узо Флэшбэк

Я почти помню свой первый «опыт» узо.Я был второкурсником средней школы в Американской общественной школе в Афинах. Мы с друзьями были в соседнем кафе в Халандри, расслабляясь для большого танца. выпив Узо 12, популярного афинского бренда. Хотя мы все пробовали узо до того, как мы впервые пришел в кафе с намерением использовать его в качестве основного источника развлечений (не считая танцевальных Сама.) Будучи молодыми и не имея опыта или статей, подобных этой, мы пили ее прямо.В 7:30 я понял, что с меня хватит, и пошел пешком четверть мили до школьного спортзала. Я приехал туда точно так же, как автобусы везли детей домой в 11:30. Что случилось с этими четырьмя часами, я, наверное, никогда не узнаю хотя я всегда подозревал, что меня подобрали инопланетяне и экспериментировали, прежде чем я вживленный мне чип, из-за которого я не мог серьезно относиться к школе и сделал меня бесполезным для любого работа помимо того, что я был музыкантом и давал незапрошенные советы о Греции.Цель этого и что инопланетяне я могу только догадываться.
Одним летом мой большой план состоял в том, чтобы наполнить картонную коробку как можно большим количеством разных бутылочек по 200 мл. найти на острове. Я обнаружил, что существует множество марок узо, которые я никогда не видел и не слышал. из ранее. Даже в небольшом городке Скалахори с населением около 500 человек есть собственная фабрика узо. Один из лучшие из этих небольших брендов я обнаружил во время посещения деревни Агия Параскевис.Узо там называется Kronos , и хотя владелец компании (на самом деле магазина) казался немного подозрительным к моему интересу к узо, он достаточно нагрелся, чтобы дать мне бутылку, которую я отнес домой в свою деревню. Оказалось, что это любимая Андреа. узо и мне тоже понравилось. Насколько далеко как я мог сказать, единственными людьми, которые вообще работали в компании, были мистер Кронос и очень приятный молодой парень, который был счастлив максимально использовать возможность для продвижения компании, устроив мне экскурсию по фабрике, которая была действительно одна большая комната.Через несколько недель он сгорел. Но они восстановили его, и теперь вы можете найти Кроноса повсюду.

Трудно описать вкус узо или сказать, почему я предпочитаю одно другому. Нет что у каждого узо нет своего вкуса и тонких отличий. Ценителей узо просто не хватает общаясь друг с другом, чтобы составить словарь описательных слов для узо. Я мог бы одолжить у винные эксперты называют фруктовый и вкусный, но они не подходят для узо.Я мог бы перейти к используемым словам для описания лучших сортов виски и скотча, но у узо нет такой загадочности или родословной. Не было выдерживался в течение 12 лет в дубовых бочках, или люди ждали в ожидании партии этого года. Его в значительной степени готовят или смешивают, разливают в бутылки и отправляют. Если у кого-то есть любимое узо, это, вероятно, не потому, что он предпочитает один виноград другому (кто говорит, что они все равно употребляют виноград?). Обычно ингредиенты, добавленные в смесь, любят аромат. алкоголь, им нравится более высокий или более низкий процент алкоголя, или им нравится цвет бутылки или реклама для него.Как говорит наша тетя Аглая о стариках, которые посещают ее кафе в Шидире, каждый из них является знатоком узо со своими личными предпочтениями «Я купите оптом все самое дешевое и положите в любую бутылку, которая у меня есть. Если я куплю Вето, и все, что у меня есть, это пустая бутылка Кефи Я положил его в бутылку Кефи, и никто никогда не говорил мне: «Эй. Это не Кефи!» во всех лет работаю «.

Я должен признать, что на Лесбосе узо — моя жизнь.Мне не стыдно, и мне не стыдно Считаю себя алкоголиком (а кто?). Я провожу день, занимаясь разными делами, такими как письмо, чтение, плавание, посещать места, пока не сядет солнце, когда я иду к кафе в деревне Ватуса и заказываю свои первые узо и мезе. я знаю, что я могу выпить два стакана или десять, но в течение этих десяти стаканов я собираюсь выпить интересные разговоры, встретиться с незнакомцем или двумя, купить узо, попрактиковаться в греческом, понаблюдать за женой и ребенком отправляйтесь домой в постель и в конечном итоге разговариваю с владельцем кафе о том, что я знаю из Америки, что он интересно.У меня может быть возможность объяснить тому, кто пасет овец, зарабатывая себе на жизнь, что такое Интернет, или почему бейсбольному питчеру не обязательно наносить удары при счете 0 и 2.
Иногда в воскресенье я поеду в Сидеру, самую отдаленную деревню на Лесбосе, откуда родом моя жена, и в гости к моим друзьям, которые там живут. Большинство из них старики, хотя есть несколько в моем возрасте, как австралийка Танасис, владеющая кафе прямо через маленькую улицу от тети Андреа Аглаи кто лучший повар на всем Лесбосе.Когда мы приходим в гости, она устраивает для нас грандиозные пиршества, чтобы мы их запивали узо. Ее муж Панайотис был деревенским мясником и передал торговлю своему сыну Ставросу, так что он стал одним из основных продуктов питания. мезе — это жареные органы того, что он недавно убил, обычно овцы или козы. Он называется sikotaria , и я думаю, что это основной продукт, иначе она служит мне только для того, чтобы избавиться от них. Тем не менее, всякий раз, когда я сажусь с дядей Панайотисом, и он предлагает мне узо, я знаю, что там Селезенка не отстает.Но обычно за ней следует жареная колокития (кабачки), мелетсан (баклажаны) и долмадес и ее арни кефтедес (тефтели из баранины), помидор, кусок сыра и все, что происходит из деревни (кроме узо ).

Дядя Андреа Митцо был известен своим xima . Он называл это узо, но по вкусу оно было не как узо, а как самогон, раки и ципуро.Это разделяет элемент со всеми тремя. Это могло бы ударить тебя по заднице в мгновение ока. В его сад, где он делал свое узо. Он нам пел:

Otan kapnizi oh loulas
esi then prepi na milas
kitaxe trigiro i mages
kanoun oloi toumpeki

or
Когда вы зажигаете лулы
, вы не должны говорить
осмотритесь на «чесотках»
все они делают тумпки (режут табак на кусочки)

Это слова из старой песни Рембетика Митсакиса, которые на самом деле курить гашиш, но дядя Мицо имел свое значение, ключ, очевидно, опирался на перевод слова loulas .В отличие от коммерческого узо, его выращивают из собственного винограда. Даже после того, как он больше не мог пить, он продолжал варить узо, чтобы поделиться с друзьями, семьей и ничего не подозревающими. посетители.

Так почему же узо так популярен на Лесбосе? Не многие люди за пределами Лесбоса осознают, что их виноград был уничтожен паразитом несколько сотен лет назад и до последних нескольких лет выращивался только в частных садах.Большая часть вина, подаваемого на Лесбосе, было либо коммерческим, либо коммерческим. сорт с материка или отличный местный xima вино с близлежащего острова Лемнос. Только недавно вино с Лесбоса было повторно представлено благодаря технике прививки, которая сделала различные сорта устойчивыми к фитофторозу. виноград. В прошлом остров славился своим вином, потому что почва и климат идеальны для этого, особенно в районе вокруг Ватусы, Ксидира и Антиссы, которые на самом деле находятся в кальдере огромного потухшего вулкана.Ксидира, деревня, известная тем, что на душу населения приходится больше кафе, чем где-либо еще в Греции, теперь является домом для винодельни Метимнаос, производящей отмеченные наградами вина. Возможно теперь мы являемся свидетелями рассвета новой эры вин Лесбоса. Так вытеснит ли вино узо в качестве любимого напитка в кафе Лесбоса? Полагаю, это возможно. Я встречал много людей моего возраста, которые говорили, что больше не могут пить узо. Вино на шаг ближе к трезвости.

Узо = Кефи

Узо может быть кефи-катализатором, вливанием жизненной силы, которая может заставить бесцветный мир казаться ярким, и ничто не кажется важным, кроме настоящего.Мой первый день на Лесбосе пару лет назад был воскресеньем, который является популярным днем ​​в кафе, когда спонтанные взрывы кефи не редкость. Что Я имею в виду, что под кефи приходит чувство, которое может быть выражено только танцем, пением или излучением (сижу и сияю от счастья, что я и делаю). Мы сидели в углу кафе Трифона, в то время как в другом углу сидела группа молодых и пожилых людей, которые начинали петь, когда одна из исполняемых мелодий заделывала их струны.Лучшим певцом из них был молодой плотник и каменщик по имени Панайотис, который время от времени, когда он действительно был наполнялся кефи вскочил на ноги, чтобы танцевать. Не для нас, не для его друзей или кого-либо еще в кафе (которое было пусто, кроме нас), а для него самого. Он потерялся в музыке, момент и движение. Он выражался сам с собой, и мы были счастливы быть свидетелями. Это было действительно очень духовно, как наблюдение за любовниками или святой человек, говорящий с Богом и понимающий, что Бог действительно слушает.

Ципуро

Также к узо относится ципуро . Это еще один крепкий спиртной напиток с разными названиями напитка, который по вкусу почти такой же, как то, что мы называем в Америке «самогон». Как и самогон, бывает разной степени вкуса и качества. Вы можете найти хорошие и плохие ципуро в бутылках и дома.Мне дали немного в качестве подарка и посоветовал не пить слишком много, потому что он слишком крепкий, но его можно использовать для очистки. Это было ужасно на вкус. Мой друг все равно выпил всю бутылку, но на это у него ушла пара недель. Волос — большой город в Фессалии, известный своим ципуро и мезедес, которые они подают с ним, что сильно отличается от того, что вы получите на Лесбосе. Там вы заказываете ципуро «с» или «без», что означает со вкусом аниса или без него. Вы получаете стакан ципуро и еду, просто сначала блюда, но каждый раз, когда вы заказываете еще один стакан, еда становится интереснее.Да, я знаю, что теперь ты хочешь пойти туда, так что загляни на мою страницу о Волосе. Но вы можете найти ципуро где угодно, и его еще называют раки , цикудиа и в некоторых местах сума . В последнее время стала популярной выдержка в бочках из-под бурбона, и такие бренды, как Dark Cave, экспортируются в Великобританию и США. могли бы продать одни из лучших выдержанных виски за свои деньги. Вы можете найти их в Афинах у Анджело Короля Узо на Плаке.

Ракомило

Между прочим, напиток под названием Rakomilo , который в основном состоит из горячей ракии и меда, используется как панацея от многих недугов, в первую очередь от боли в горле, симптомов гриппа, простуды и в качестве общего тонизирующего средства.Это также очень хороший напиток, когда на улице очень холодно или вы находитесь на острове в межсезонье, и вам скучно, и все кажется влажным. Нет, он не высушит все, но вам будет наплевать. Вы можете сделать это самостоятельно, но они также продают это сейчас в бутылках.

Полезная информация об узо


Если вы находитесь на острове Лесбос, есть много мест, где вы можете получить хорошее узо с отличной едой и очень приятной атмосферой.Мои любимые: Cavo d Oro или Remezzo’s в Sigri , Blue Sardine , Soulatso или Adonis в Skala Eressos , Captain’s Table или Eftalou. Таверна в Моливосе, Акротири Таверна или Афродита Таверна в Ватере, Григорис в Нифиди и любой из ресторанов в старой гавани в Митилини. Во всех этих заведениях будет арделес пасты и другие мезеды из морепродуктов, и все они прямо на море. Cafeneon Ermis в Митилини, вероятно, самое известное кафе-узери на острове, и вам следует обязательно пойти туда или перейти улицу по адресу Kastro , который также является узери. Но у вас может быть еда, которая просто так же хорошо, а то и лучше практически в любом традиционном кафе практически в любой деревне Лесбоса, будь то на море или в горах, или где-то посередине. Чтобы узнать больше о ресторанах на Лесбосе, см. Мой путеводитель по ресторанам Лесбоса.
В Афинах я рекомендую Ouzeri Lesvos на улице Эмануаль Бенаки между площадью Омония и районом Экзархия, который заставит вас почувствовать себя так, как будто вы находитесь на Лесбосе.В Плаке я рекомендую To Cafeneon , который находится на улице Эпихармну между улицей Аполлонос и Акрополем. В Псири рекомендую Cafe Evi и Atlantiko , которые находятся буквально за углом друг от друга, в обоих есть большой выбор узо и множество мезедес. Атлантико специализируется на рыбе. Также Mavros Gatos прямо вверх по улице действительно хорош. В Kypseli O Bakalogatos есть мезедес со всей Греции и хороший выбор узо и ципуро.Но есть сотни мезедопулеонов и узеров в Афинах, в частности в районах Гази, Монастираки (рядом с железнодорожными путями), Тиссион, Кукаки, Экзархия и Петралона. Если вы отправитесь на побережье вокруг Афин, есть много мест, где можно выпить узо и поесть морепродуктов, особенно в Анависсосе, Глифаде, Рафине и Лаврионе. См. Мою страницу с гидом по ресторанам в Афинах, чтобы узнать больше.

Если вы хотите попробовать или приобрести Ouzo Giannatsi , вы можете прийти на их новую современную фабрику на холмах над городом Пломари по дороге в Мелинду.Они с радостью объяснят, чем их узо так хорошо. если ты люблю узо, оно того стоит. Или попросите его в местном кафе или узери. Или посетите Barbagiannis Ouzo Museum в нескольких кварталах от центра Пломари по дороге в Митилини и в нескольких минутах езды от завода Ouzo Plomari . Есть также Mattis Ouzo Factory и магазин прямо на рынке в Митилини. Но вам не обязательно ехать до Лесбоса, чтобы купить хорошее узо. Вы можете найти все узо Lesvos в магазине Lesvos Shop на улице Афинас в Афинах, рядом с отелем Attalos.Вы также можете найти большинство брендов Lesvos Ouzo а также узо из остальной Греции по адресу Angelo the Ouzo King’s Узо и магазин традиционных подарков в Плака на улице Адриану. Не ждите, пока доберетесь до аэропорта, чтобы сделать покупки узо, потому что ваш выбор будет ограничен.

Покупка узо (и раки) за пределами Греции

Вы не можете получить большинство узо, которые я рекомендую, в США.Даже в Астории, штат Нью-Йорк, районе, полном греков, мы могли найти только Barbagiannis Blue, Arvanitis и обычные коммерческие товары, которые крупные экспортеры узо выпускают для клиентов, которые, по их мнению, не могут отличить друг от друга медицинский спирт со вкусом узо и солодки. Однако вы можете купить узо в Интернете из Греции и винограда, включая их дегустационный пакет узо, в котором есть несколько моих любимых узо, о которых я писал … Так что, если вам нравится информация на моем веб-сайте, и вы хотите отправить мне подарок купить бутылку Бабацима, Dimino, Pitsalidi, Barbayiannis (зеленый) или Gianatsi и отправьте его мне по адресу 102 Old Pittsboro Rd, Carrboro, NC 27510 USA.Если мне будет достаточно, может, я открою узери, и ты сможешь прийти и выпить там бесплатно.

Читайте также о мезедесах

Узо Бутари | B-21 Вино и крепкие спиртные напитки

Написано 24 марта 2021 г.

Еще раз отличное и быстрое обслуживание, спасибо 🙂

Написано 24 марта 2021 г.

Так легко заказать.Приехали быстро.

Написано 23 марта 2021 г.

Хорошее обслуживание

Написано 23 марта 2021 г.

Я заказал у них второй раз, потому что они единственные, у кого есть особый ликер, который мне нужен для специального коктейля . Они быстро и тщательно упакованы, чтобы избежать поломки. Настоятельно рекомендую.

Написано 22 марта 2021 г.

Отличное обслуживание и простота онлайн-заказа. Доставка осуществлялась эффективно, даже несмотря на то, что им приходилось для меня ориентироваться в некоторых архаичных государственных правилах.Очень рекомендую эту компанию.

Написано 22 марта 2021 г.

Заказ доставлен, как и было обещано. Надежно и быстро

Написано 22 марта 2021 года

B21 — лучшее место для покупки вина. У них отличный выбор, хорошие цены и супер-отличное обслуживание

Написано 21 марта 2021 года

Быстро и эффективно

Написано 21 марта 2021 года

Отличная работа !!

Написано 21 марта 2021 года

Вино было упаковано очень хорошо с упаковкой из переработанной бумаги.Я получил свой заказ своевременно. Я снова буду вести с ними дела.

Написано 21 марта 2021 г.

В целом большое впечатление. Скоро закажу еще

Написано 21 марта 2021 года

Мне очень нравится мой опыт, я закажу снова! Не могу дождаться, чтобы рассказать своим друзьям и семье ??

Написано 21 марта 2021 года

Простота заказа и хорошее общение по электронной почте для доставки

Написано 19 марта 2021 года

Быстро, просто, по хорошей цене, компостируемая упаковка.ЗДОРОВО.

Написано 19 марта 2021 года

Большой, интересный сборник. Разумная цена. Быстрая доставка. Закажу еще раз.

Написано 18 марта 2021 г.

Отлично! Продолжу покупать вино в B ‑ 21. Отличные цены. Быстрая доставка. Очень рекомендую B ‑ 21.

Написано 18 марта 2021 года

Отличное обслуживание и цена

Написано 18 марта 2021 года

Отличные продукты и услуги

Написано 17 марта 2021 года

Разумные цены, отличное общение и быстрая доставка! Я буду искать в наличии товары.

Написано 17 марта 2021 г.

B ‑ 21 имеет большой и большой выбор. Заказ был простым процессом, а доставка была на удивление быстрой. Очень доволен продавцом.

Написано 17 марта 2021 года

Отличное обслуживание, отличные цены и быстрая доставка

Написано 16 марта 2021 года

Отлично

Написано 16 марта 2021 года

Идеальное вино …. Вовремя Осчастливил жену, что сказать !! Чрезвычайно быстрая доставка

Написано 16 марта 2021 года

Отличный выбор с простой проверкой и возможностью самовывоза

Написано 15 марта 2021 года

Вино было доставлено вовремя и в идеальном состоянии по разумной цене .

причин работы узо машин и почему выключаются а бояре, насосы

  • Принцип действия и работа УЗО
  • Мотивация к установке УЗО. Электрический ток опасен для организма человека
  • Выбор УЗО в зависимости от токов утечки
  • Причины утечки тока
  • Типы и типы УЗО; визуально-техническое обозначение
  • Секции УЗО
  • Срабатывание УЗО, основные и дополнительные причины
  • Основные виды подключения УЗО
  • Одно защитное устройство и несколько автоматических выключателей
  • Основные виды неправильного подключения УЗО, нулевого рабочего и защитного проводников
  • Конвертер из хлопка в ампера, онлайн-калькулятор

Основной защитой организма человека от опасного напряжения и действия электрического тока в бытовых и силовых электрических сетях является установка устройства защитного отключения.Кроме того, УЗО применяется для защиты бытовой техники от аварийной работы в бытовых и электрических сетях постоянного и переменного синусоидального тока. Но очень часто срабатывает и бытового потребителя интересует, почему на входе отключается УЗО или постоянно срабатывает УЗО.

Принцип действия и работа УЗО

Рис.1 Работа УЗО

Сумма токов, которые входят в секцию, должна равняться выходящим токам. Это основной принцип работы данного устройства защитного отключения.Причина отключения УЗО по питанию заключается в том, что токи, выходящие из участка электрической сети, не равны токам, которые входят в эту сеть. Эта разница называется величиной тока утечки или дифференциальным током. Векторная сумма токов в фазном проводе ( I1 ) должна быть равна токам в нейтральном проводе ( I2 ). Они одинаковы по величине, но разнонаправлены по направлению и, таким образом, компенсируют друг друга, а ЭДС (электродвижущая сила) отсутствует.Если эти токи не равны, то между ними есть разница и это ток утечки. Он в свою очередь создает ЭДС, а она, в свою очередь, через соленоид воздействует на отключающий механизм и УЗО отключается.

Мотивация к установке УЗО. Электрический ток опасен для человеческого тела

На рис. 1 нормальный режим равен I 1 = I 2 . Когда человек прикасается к оголенному проводу, возникает дифференциальный ток I∆n . Если посчитать ток, который пройдет через человека, получим I = 230 / R h , A, где 230 В — напряжение бытовой электросети, R h — сопротивление человека.Хотя эта характеристика индивидуальна для каждого человека, считается, что она составляет около 1 кОм (1000 Ом). В итоге получаем 230/1000 = 23 мА. Следует отметить, что порог чувствительности человека начинается от 0,6 — 1,5 мА. Этим током у человека появляется ощутимое раздражение. При токе 10-15 мА человек испытывает мышечный спазм, и этот ток называется невыпускающим. В этом случае человек не может самостоятельно освободить оголенный провод, если он его взял. При токе 90 — 100 мА возникает ток фибрилляции.При этом токе сердечные мышцы хаотично сокращаются, и через несколько секунд сердце останавливается. Безопасным для человека считается ток 2 мА, если он длится более 10 с, а если более 120 с, то безопасным током является 6 мА. Эти токи, а также время отключения необходимо помнить при выборе УЗО остаточного тока, чтобы понять, что с вами произойдет, если вы попадете под опасное напряжение. По этим причинам помните, что если отключится УЗО водонагревателя, то это избавит вас как минимум от неприятных ощущений.

Выбор УЗО в зависимости от токов утечки

Согласно СП31-110-2003 pA4.15 , если санузел запитан отдельной линией, то необходимо предусмотреть УЗО на 10 мА, если линия общая с кухней и коридором, то она необходимо установить УЗО на ток до 30 мА. Для обычной бытовой ЛЭП (розетки, освещение) подбирается защитное устройство на ток не более 30 мА ( ПУЭ п.7.1.79.) . УЗО для дифференциальных токов 100 и 500 мА, как видно выше, не защищают организм человека от опасных напряжений, и их основная цель — защита от огня. При установке устройства защитного отключения необходимо понимать, что он не защищает от длительной перегрузки, максимальных токов или перенапряжения. По этим причинам его установка должна быть совмещена с автоматическим выключателем с электромагнитным и тепловым расцепителем, а для защиты от перенапряжения необходимо установить реле перенапряжения или SPD (устройство защиты от перенапряжения).По этим причинам, если Termex отключает УЗО и автомат не работает, то причиной неисправности является ток утечки.

Если УЗО выключается одновременно с автоматическим выключателем, то причиной неисправности может быть как дифференциальный ток, так и максимальные токи, возникающие при коротком замыкании.

Причины утечки тока

Необходимо хорошо понимать, что наличие тока утечки — это аварийный режим работы или неисправности в бытовых электрических сетях или неисправности в бытовых приборах.Причины этого тока довольно распространены. Основными причинами возникновения тока утечки являются контакт человека с оголенным проводом, его протекание через деформированную изоляцию кабеля или через токопроводящий элемент. Например, причиной отключения УЗО на водонагревателе может быть утечка тока через воду. Изоляция кабеля была повреждена, на оголенный провод попала влага, и по нему прошел ток. Этого тока как раз недостаточно для того, чтобы разница между входящим и исходящим токами была равна 0 (нулю) и защита отключила аварийную секцию.Если это водонагреватель Termex, то УЗО этого устройства отключается. Вода также может быть причиной отключения УЗО на насосе, перекачивающем различные жидкости.

Типы и типы УЗО; визуально-техническое обозначение

Рисунок: 2 Внешний вид и обозначение устройства защитного отключения

Секции УЗО

  • Бытовое и электроснабжение 220/380 В.
  • По количеству полюсов. Если в электросети имеется однофазная нагрузка, то УЗО необходимо устанавливать двухполюсным, если трехфазную, то четырехполюсным.
  • По номинальному рабочему току. Значение номинальных (рабочих) токов для УЗО такое же, как и для автоматических выключателей, оно составляет 16, 25, 32, 40, 63, 80 А.
  • По дифференциальному току (току утечки), величиной которого руководствуется устройство защитного отключения, составляет 10, 30, 100, 300, 500 мА.

По виду тока утечки, который в свою очередь подразделяется на:

  1. Электрический переменный синусоидальный и пульсирующий ток.Тип УЗО для данного тока — « AC» . Пульсирующий ток присутствует в регулируемых лампах и лампах, в стиральных машинах, где скорость регулируется.
  2. Регулируемая и постоянная электрическая пульсация, тип УЗО « А» . Этот тип защиты рекомендуется использовать там, где есть бытовая электроника, микроволновая печь, компьютер, телевизор и т. Д.
  3. Постоянное электрическое и регулируемое, тип УЗО «Б» . Этот тип защитного устройства в основном устанавливается там, где есть выпрямленный ток.Этот тип не используется в бытовых электрических сетях.
  4. Для обеспечения соблюдения селективности при установке 2-х и более устройств защиты в бытовых и силовых электрических сетях используется УЗО с выдержкой времени срабатывания, это УЗО типа «S» . Этот тип УЗО используется в сетях, где используется АВР (автоматический переключатель резерва), и типа « G » в тех же сетях, но имеет более короткую временную задержку.

Срабатывание УЗО, основные и дополнительные причины

Наиболее частые причины срабатывания УЗО на котле или водонагревателе Electrolux — недобросовестность производителя или разного рода проблемы в электросети.Если отключается УЗО на водонагревателе, то необходимо его снова включить. Если прибор работает, а УЗО не выключается, значит, произошла кратковременная утечка тока. Далее необходимо воспользоваться кнопкой «Тест». Имитирует аварийный режим.

  1. Необходимо выключить машины, которые входят в сеть вместе с УЗО и определить, почему выключено УЗО. При этом отключаем нулевые рабочие проводники. После их отключения включите УЗО.Если он не выключился, то нажмите кнопку «Проверить». Если после нажатия «Test» УЗО сработало, значит, оно исправно. Следует отметить, что функциональную проверку устройства защитного отключения необходимо проверять не реже одного раза в месяц, нажимая кнопку «Тест».
  2. Если при подключении УЗО срабатывает без нагрузки , то оно вышло из строя или есть токи утечки в месте его установки. Если он исправен, то нужно разобраться, почему УЗО работает без нагрузки.В этом случае, если к нему подключено несколько машин, то мы отключаем их все сразу. Затем определяем, почему выключено УЗО и по очереди включаем автоматические выключатели и определяем аварийный участок электросети.

Основные виды подключения УЗО

Рисунок: 3. Одно УЗО и один потребитель.

Подключить УЗО может любой электрик, имеющий не ниже 3 разряда электрика. Схема подключения написана на самом устройстве и ничего сложного там нет.Единственное, что нужно сделать перед установкой, это учесть нюансы при подключении к сети и выбрать нужное количество исходящих машин для одного УЗО. Можно установить одно защитное устройство на всю квартиру в панели пола, если это многоквартирный дом, как показано на рис. 3. Может устанавливаться отдельно на розетку и освещение, если есть достаточно места для установки. Это будет лучший вариант для квартиры. При установке и выборе УЗО необходимо учитывать номинальный (рабочий) ток, который должен быть на одну ступень выше номинального тока автомата, расположенного после защитного устройства.Например, если автомат на 25 А, то перед ним необходимо установить УЗО с рабочим током 32 А и т. Д. Если это частный дом, то лучше рассмотреть следующую конфигурацию, один УЗО и один автомат, если машин не много.

Одно защитное устройство и несколько автоматических выключателей

Рис.: 4 Схема подключения УЗО

Если, например, в доме много машин (одна машина = одна комната или = один электроприбор), то в этом случае размеры электрического щита могут быть огромными.По этим причинам электрощит лучше комплектовать так, чтобы под одно УЗО было установлено несколько автоматов, но не более 5. В этом случае необходимо правильно рассчитать номинальный ток защитного устройства относительно исходящего автоматические выключатели, чтобы их сумма не превышала рабочий ток устройства защитного отключения. Например, для исходящих автоматов ВА1 16 А, ВА2 16 А, ВА3 32 А, сумма равна 16 + 16 + 32 = А. Таким образом, УЗО должно быть на номинальный ток не менее 64 А, и зная диапазон номинальных значений токов оптимальным вариантом является устройство защитного отключения на номинальный ток в 63 А.

Как видно на рис. 4 ничего сложного при подключении нет, но в некоторых случаях будет интересно узнать, почему срабатывает УЗО на водонагревателе Ariston, если бытовая сеть и устройство защиты находятся в удовлетворительном и рабочем состоянии. При срабатывании УЗО причины могут быть в его неправильном подключении.

Основные виды неправильного подключения УЗО, нулевого рабочего и защитного проводника

  • Нулевой рабочий ( N ) и фазный провод, прошедший через УЗО, нельзя соединять с другими нулевыми и фазными проводниками после УЗО.
  • Нельзя производить соединение нулевого рабочего проводника (N) после УЗО с открытыми конструкциями электроустановки, а также его нельзя подключать к защитному проводнику (PE) .
  • Подключение нулевого рабочего и защитного проводов в розетку категорически запрещено.
  • Если в электрической сети установлено два защитных устройства, то совмещение нулевых рабочих проводников приведет к появлению дополнительного тока утечки и, как следствие, срабатыванию обоих.
  • Если в электрощите установлено много УЗО, то стоит перепроверить схему подключения, чтобы не было подключения фазного провода и рабочего нуля от разных устройств защиты.

Только правильно подобранное устройство защитного отключения и его правильное подключение защитят человека в случае аварии от опасного воздействия электрического тока.

Видео:

Конвертер ампера в хлопок, онлайн калькулятор

напряжение (В):
Потребляемая мощность (Вт):
Сила тока: И

Универсальные нанокапли разветвляются от ограничения эффекта Узо

Значимость

Явление спонтанного образования нанокапель, называемое «эффектом Узо», является основой многих процессов, от приготовления фармацевтических продуктов до создания косметических средств и инсектицидов, до жидкость – жидкостная микроэкстракция.В этой работе делается попытка отделить эффекты градиентов концентрации от внешней динамики перемешивания путем пространственно-временного отслеживания образования нанокапель из-за эффекта Узо, заключенного в квазидвумерной геометрии. Мы наблюдаем поразительные универсальные разветвленные структуры зарождающихся капель под действием внешнего диффузионного поля, аналогичные разветвлению потоковых сетей в крупном масштабе, и повышенную локальную подвижность коллоидных частиц, обусловленную градиентом концентрации, возникающим в результате развития структур ветвлений.Мы также демонстрируем, что эти нанокапли могут быть использованы для одноэтапной наноэкстракции и обнаружения.

Abstract

Мы сообщаем о самоорганизации универсальных паттернов ветвления масляных нанокапелек под действием Узо [Vitale S, Katz J (2003) Langmuir 19: 4105–4110] — явление, при котором спонтанное образование капель происходит при разбавление органического раствора масла водой. Смешивание органической и водной фаз ограничено квазидвумерной геометрией.Подобно разветвлению сетей наземных потоков [Devauchelle O, Petroff AP, Seybold HF, Rothman DH (2012) Proc Natl Acad Sci USA 109: 20832–20836 и Cohen Y, et al. (2015) Proc Natl Acad Sci USA 112: 14132–14137], но в масштабе на 10 порядков меньше, углы между ветвями капель демонстрируют удивительную универсальность со значением около 74 ° ± 2 °, независимо различных управляющих параметров процесса. Численное моделирование показывает, что эти схемы ветвления нанокапель регулируются взаимодействием между локальным градиентом концентрации, диффузией и коллективными взаимодействиями.Мы также демонстрируем способность локального градиента концентрации управлять автономным движением коллоидных частиц в сильно ограниченном пространстве и возможность использования зародышевых нанокапель для наноэкстракции гидрофобных растворенных веществ. Понимание, полученное в результате этой работы, обеспечивает основу для количественного понимания сложных динамических аспектов, связанных с эффектом Узо. Мы ожидаем, что это будет способствовать улучшенному контролю образования нанокапель для многих приложений, начиная от приготовления фармацевтических полимерных носителей и заканчивая составом косметических средств и инсектицидов, изготовлением наноструктурированных материалов, концентрацией и разделением следов аналитов в жидкости — жидкая микроэкстракция.

Эффект Узо возникает в тройной смеси, обычно состоящей из воды, масла и этанола, когда масло, растворенное в спирте, выпадает в осадок с образованием крошечных капель при добавлении воды (1). Этот эффект также можно увидеть, например, когда дезинфицирующие средства на основе эвкалипта и репелленты от комаров разбавляются водой, когда масла смешиваются со спиртом, но не смешиваются с водой. Это спонтанное образование капель не требует механического перемешивания для диспергирования жидкости или добавления поверхностно-активных веществ или других стабилизаторов.Как таковой, он составляет основу для образования стабильных капель эмульсии в широком диапазоне применений, таких как приготовление напитков, духов и инсектицидов (2–4), а также изготовление полых наноматериалов (5, 6). При жидкостно-жидкостной микроэкстракции капли масла из-за эффекта Узо используются для концентрирования и отделения следов гидрофобных аналитов от их водных проб перед судебно-медицинским анализом, биомедицинской диагностикой или мониторингом окружающей среды / безопасности (7–9). Небольшие гидрофобные органические молекулы, липиды или полимеры, растворенные в полярном органическом растворителе, проявляют эффекты, аналогичные эффектам масляной фазы, образуя субмикронные частицы с узким распределением по размерам при разбавлении водой.В процессе, называемом нанопреципитацией, смещением растворителя или смещением растворителя (10⇓ – 12), нерастворимые в воде лекарственные средства могут быть включены в биополимерные наноносители с возможностью адаптации их распределения по размерам при доставке с контролируемым высвобождением.

Несмотря на долгую историю эффекта Узо и его актуальность для широкого круга приложений, количественное понимание его основного механизма и способность предсказывать рост и стабильность нанокапелек остается неуловимым.Более конкретно, эффект имеет место, когда составы воды, растворенного вещества и органического растворителя лежат в метастабильной области между спинодальной и бинодальной кривыми на тройной фазовой диаграмме. Гомогенное зародышеобразование капель, которое представляет собой быстрый процесс в ответ на внезапное увеличение перенасыщения в результате добавления водной фазы, требует чрезвычайно быстрого перемешивания между двумя фазами, например, за счет совместного движения потоков в микрофлюидном устройстве, что мешает струи или непрерывное турбулентное перемешивание (13⇓ – 15).Размер и распределение капель определяется не только физико-химическими свойствами и концентрациями растворителей, но также временными и пространственными характеристиками, связанными с динамикой перемешивания (12, 16–20). Сложные физические явления, такие как быстрая диффузия растворителя, межфазная нестабильность и перенос массы, обусловленный локальным градиентом концентрации, были предложены для объяснения таких динамических аспектов на ранних стадиях образования капель. Тем не менее, лежащий в основе механизм, ответственный за эффект Узо, может быть выяснен только в значительной степени через понимание более поздних или заключительных стадий эволюции тройной системы из-за чрезвычайно короткого порядка шкалы времени микросигналов и малых размеров зарождающихся нанокапель.Таким образом, поиск оптимального рабочего окна для достижения желаемого размера капель на сегодняшний день все еще зависит от метода проб и ошибок, что требует скрининга большой библиотеки комбинаций растворителей и условий впрыска растворителя. Лучшее понимание фундаментальных физико-химических механизмов, лежащих в основе эффекта Узо, поэтому будет чрезвычайно полезно для руководства рациональным дизайном соответствующих решений и условий смешивания для образования капель.

В этой работе мы различаем связанные эффекты между градиентом концентрации и внешней динамикой перемешивания в объеме жидкости, ограничивая эффект Узо в пределах квазидвумерной геометрии жидкости, так что в процессе преобладает диффузия.Учитывая, что водная фаза теперь приводится в контакт с органической фазой исключительно за счет диффузии, можно, таким образом, пространственно и во времени проследить динамику образования нанокапель. Мы наблюдаем формирование универсальных паттернов ветвлений нанокапель, которые удивительно напоминают разветвление потоков подземных вод, хотя и в гораздо меньших масштабах. Наше моделирование подтверждает, что ветви нанокапель являются результатом взаимодействия между локальным градиентом концентрации, диффузией и коллективными взаимодействиями.Выраженный локальный градиент концентрации, выходящий из ветвей капель, четко проявляется в усилении транспорта коллоидных частиц по ветвям в этом сильно ограниченном пространстве. Помимо демонстрации того, что эти ветви капель предлагают возможность в качестве одношаговой техники наноэкстракции, мы также ожидаем, что понимание динамических аспектов эффекта Узо будет полезно для лучшего понимания способов управления образованием капель в других приложениях.

Результаты и обсуждение

Ограниченный эффект Узо в квази-2D геометрии.

Ограниченный эффект Узо в наших экспериментах был реализован в горизонтальном прямоугольном канале потока, как показано на рис. 1 A . Изначально весь канал был заполнен первым раствором, который представляет собой масло, растворенное в водном растворе этанола (т.е. раствор Узо). Слабый растворитель, вода, впрыскивался из одного конца канала, проходя через более глубокие боковые каналы 1,7 мм к другому концу.В направлении, перпендикулярном первичному потоку, вода диффундирует вбок в квазидвумерный основной канал высотой 20 мкм от внутреннего края бокового канала.

Рис. 1.

( A ) Трехмерная схематическая иллюстрация устройства канала жидкости, используемого для формирования ответвлений нанокапли. Горизонтальная проточная ячейка состояла из подложки и стеклянного окна, основной проточный канал которого примыкал к двум узким боковым каналам, как показано оранжевыми зонами на рисунке. Длина была 7.65 см как для основного, так и для боковых каналов, тогда как ширина составляла 6 мм и 250 мкм, а глубина составляла 20 мкм и 1,7 мм для основного и бокового каналов соответственно. Течение было в направлении, указанном черной стрелкой. В этой экспериментальной геометрии боковые каналы были достаточно глубокими, чтобы вода текла почти исключительно по ним, поскольку очень тонкая (похожая на Хеле-Шоу) щель (главный канал), заполненная узо между двумя глубоководными каналами, обеспечивала высокое гидродинамическое сопротивление. Ветви (зеленые) переходили в основной канал.( B D ) Оптические изображения и ( E ) АСМ-изображение репрезентативных ветвящихся структур; крупным планом ( C и D ) показаны отдельные капли вдоль ветвей. Врезка в D показывает определение полного угла и местного угла вблизи точки слияния. Морфологические особенности ветвей будут характеризоваться этими двумя углами.

По мере того, как вода смешивается с раствором Узо, мы наблюдаем появление ярких разветвлений внутри основного канала.Оптические изображения высокого разрешения на рис. 1 C и D показывают, что эти ветви состоят из дискретных нанокапелек, что дополнительно подтверждается изображениями полимеризованных капель с помощью атомно-силовой микроскопии на рис. 1 E . Отдельные капли обычно вырастают до 3–6 мкм в поперечном диаметре и от 100 нм до 1 мкм в высоту (и поэтому их просто называют нанокаплями). Ветви состоят, самое большее, из нескольких отдельных капель по ширине (рис. 1 C E ), которая ничтожно мала по сравнению с ее протяженностью в миллиметры.

Верхняя часть ветвей капли начинается от внутреннего края бокового канала или из нескольких точек в основном канале. Для данного канала концы ответвлений всегда начинаются с одних и тех же мест на ободе бокового канала, в местах, содержащих структурные дефекты размером в несколько микрон (видеоролики S1 и S2). Чтобы проверить роль этих дефектов в формировании ответвлений, мы намеренно сделали отступы на равномерно распределенных микроструктурах вдоль края бокового канала, после чего наблюдали, что положение концов ветвей также равномерно распределено по краю (Movie S3).Таким образом, результаты ясно показывают, что начало ветвления капли определяется локальными геометрическими структурами. В квази-двумерном основном канале соседние ветви наклоняются друг к другу и сливаются в местах, более удаленных от бокового канала. Морфология всей ветвящейся структуры является дендритной, аналогичной дереву с вершиной на краю бокового канала и с корнем, простирающимся во внутреннюю область главного 2D-канала.

Универсальность в угле слияния.

Чтобы изучить универсальность образования ответвлений от ограниченного эффекта Узо, мы варьировали скорость потока воды в боковом канале, состав раствора Узо и гидрофобность стенки основного канала. Как показано на фиг. 2 A C , общая морфология сформированных ветвей была очень похожей в широком диапазоне исследованных условий.

Рис. 2.

Формирование ветвей нанокапли до 400 с после начала роста ветвей. Цвет в любом месте указывает время, когда ветвь достигла данного места.( A C ) Оптические изображения ветвей, сформированные в восьми различных условиях. ( A ) Скорость потока воды в боковом канале составляла 100 мкл / мин, 200 мкл / мин и 400 мкл / мин. Состав раствора Узо был одинаковым для всех трех скоростей потока (вода: этанол: масло = 50: 50: 2). ( B ) Соотношение воды, этанола и масла в растворе Узо составляло 40: 60: 2, 40: 60: 4 и 40: 60: 6 при скорости потока воды 100 мкл / мин. ( C ) Подложки были гидрофильными или гидрофобными, а край бокового канала был либо шероховатым, либо гладким.Скорость потока воды составляла 100 мкл / мин, а состав раствора Узо составлял 50: 50: 2. ( D и E ) Соответствующие PDF углов между двумя объединенными ветвями ( D ) во всем их диапазоне и ( E ) от сегментов около точки слияния. Гидрофобный и грубый канал использовался для всех случаев в A и B ; 100 мкл / мин в A представлен на графиках как «гидрофобный, грубый».

Чтобы количественно определить общие черты разветвленной структуры, мы измерили и проанализировали в общей сложности 660 углов между сливающимися ветвями.Для сравнения мы определяли полный угол точно так же, как это было сделано в работе по разветвлению грунтового потока (21, 22). Во всех восьми случаях, показанных на рис. 2, соответствующие функции распределения вероятностей (PDF) угла слияния показаны на рис. 2 D , при этом между ними не наблюдается значительных различий. Средний угол ветвления для всех 660 углов составил 74 ± 2 ° (95% доверительный интервал).

Хотя процесс образования ветвей в целом универсален в отношении морфологии, углового распределения и значения наиболее вероятного угла, более внимательное рассмотрение восьми случаев, проанализированных на рис.2 показывает некоторые подробные изменения: по мере увеличения концентрации масла количество ветвей увеличивается, и основные ветви становятся более «волосатыми» с крошечными выступами, возникающими с обеих сторон. Кроме того, более высокий расход воды в боковом канале вызывает более выраженный наклон всей конструкции ответвлений в сторону потока.

Динамика роста с преобладанием диффузии.

Чтобы выявить механизм развития ветвей капель, мы проследили рост капель с помощью визуализации в светлом поле и перенос окрашенной воды в 2D-канале отдельно с помощью флуоресцентной визуализации.Фильмы S1 и S2 показывают, что ответвления продолжались одновременно с движущимся фронтом воды в основной квази-2D канал. С другой стороны, возникающие ветви на движущемся фронте во внутренней области росли по направлению к ближайшей родительской ветви. В любом случае было замечено, что все дерево ветвей простирается к «корню дерева» в направлении внутреннего основного канала.

Для количественной оценки скорости роста мы измерили длину ветви ℓ от вершины ветви до фронта воды в разное время t, построив график зависимости данных от t1 / 2 на рис.3 С . После короткого начального переходного процесса видно, что длина ответвления увеличивается примерно как t1 / 2, независимо от расхода воды, состава раствора или свойств подложки. Такое поведение t1 / 2 в расширении ветви, очевидно, предполагает, что в формировании ветви преобладает диффузия; то есть смешивание двух растворов происходит за счет поперечной диффузии воды. Подгоняя данные (исключая переходные процессы для t <50 с) с одномерным диффузионным соотношением ℓ = (2Dt) 1/2, мы получили эффективные константы диффузии D в диапазоне 2 × 10−9m2⋅s − 1 для наименьшей нефти. концентрация раствора Узо, которая сравнима с коэффициентом диффузии воды в этаноле.Следует отметить, что для более высоких концентраций масла в растворе Узо скорости роста и, следовательно, подобранные эффективные константы диффузии D ветвей в 10 раз больше, предположительно из-за некоторого конвективного вклада, что приводит к несколько более крутому увеличению, чем t1 / 2.

Рис. 3.

Рост ветвей капли. ( A ) Светлопольные и ( B ) флуоресцентные изображения растущих ветвей. Вода была окрашена в зеленый цвет, а темные линии на изображениях — это ветви нанокапли.( C ) Графики зависимости расстояния ℓ от начала ветви до ее растущего фронта от t1 / 2. Почти линейная зависимость между ℓ и t1 / 2 после начального переходного процесса обнаруживает близкое к диффузионному поведению, которое лежит в основе роста ветви. Отметим, однако, что диффузиофорез также вызовет некоторые конвективные эффекты, как мы увидим из рис. 5. Оптические изображения сформированных ветвей показаны на рис. 2 A C .

Механизм и моделирование образования ветвей.

Теперь мы предлагаем механизм ограниченного эффекта Узо и универсальные углы слияния двух ветвей капли. Во-первых, вода, диффундирующая из бокового канала в квази-2D основной канал, заполненный раствором Узо, приводит к локальному снижению концентрации этанола, так что масло становится перенасыщенным — эффект Узо. Неровности, такие как микроструктуры на краю бокового канала по направлению к квазидвумерному основному каналу, затем способствуют зарождению капель из перенасыщенного маслом раствора, тем самым инициируя ветвление.В квазидвумерной геометрии градиент концентрации наиболее резкий на движущемся фронте воды в богатый нефтью раствор в основном канале. Хотя фронт воды [обеспечивающий импульс локального перенасыщения нефтью в растворе Узо (18)] перемещается по всему поперечному сечению основного канала, новые капли только выборочно зарождаются позади старых, показывая, что равномерная и невозмущенная диффузия воды в раствора Узо недостаточно для инициирования зародышеобразования капель, но необходимы локальные искажения.Они возникают из-за старых капель или, в некоторых случаях, из-за неровностей в основном канале, из которых выходят новые ветви. Расширение старой ветви может вызвать асимметрию градиента концентрации, которая направляет рост новых боковых ветвей к ней, что в конечном итоге приводит к слиянию двух ветвей.

Процесс роста и слияния ветвей напоминает разветвление сетей ручьев, прорезанных подземными водами, где характерный угол разветвления составляет около 72 ° (21, 22), что близко к найденному здесь значению 74 ° ± 2 .Аналогичным образом рост одномерных потоков в сети контролируется двумерной диффузией. Такие процессы доступны для аналитической обработки гармонического поля, подчиняющегося двумерному уравнению Лапласа, с помощью преобразования Лёвнера (23, 24), что очень элегантно показано для образования и разветвления сетей водотоков в пористом эстуарии (21). . Основываясь на этом подходе, Лёвнер и другие смогли аналитически рассчитать угол бифуркации одномерных потоков в двумерном гармоническом поле, получив 72 °, что согласуется с их и нашими экспериментальными результатами.

Приведенное выше качественное описание процесса роста и слияния ветвей подтверждается численным моделированием двумерного уравнения диффузии, при этом растущие ветви реализуются методом погруженных границ; подробности см. в Материалы и методы . На рис. 4 A и B показаны моментальные снимки процесса роста ветвей и соответствующего поля концентрации воды, полученные в результате численного моделирования. Начальными точками ветвей на левой стенке являются небольшие возмущения (расчетной) области, которые мы помещаем в симметричную (рис.4 A ) или асимметричным (рис. 4 B ) способом. На вершине этих возмущений шероховатости градиент концентрации увеличивается до максимума, что заставляет ветвь расти оттуда. Как только ветвь растет, градиент концентрации максимизируется на кончике ветки, что приводит к дальнейшему росту ветки. Независимо от того, было ли начальное возмущение симметричным или асимметричным, концы ветвей всегда подчиняются диффузионному закону масштабирования l≈t1 / 2 (рис. 4 C ), подтверждая экспериментальное наблюдение.Усредняя бифуркационные углы, возникающие при численном моделировании, мы получили 76∘, что хорошо согласуется с теоретическими аргументами и экспериментальными наблюдениями. Это моделирование отражает основные особенности эволюции ветвей капли с точки зрения общей морфологии, скорости роста и, в частности, характерных углов слияния. Однако численная модель недостаточно сложна, чтобы можно было проводить однозначное сравнение с экспериментом. Такое количественное сравнение выходит за рамки данной статьи.

Рис. 4.

Результаты численного моделирования, в котором красные линии показывают траектории ветвей, а контуры отображают поле концентрации воды. На ветвях образуются капли масла, поэтому концентрация воды в районе ветвей наиболее высока. ( A ) Симметричный случай с четырьмя идентичными начальными возмущениями при x = 0. ( B ) Асимметричный случай с шестью различными начальными возмущениями при x = 0. ( C ) Независимо от того, являются ли ветви симметричными или нет, их концы следуют очень похожему поведению с преобладанием диффузии, как видно из линейного масштабирования t1 / 2, определяющего расстояние ℓ между кончиками и левой границей за пределами начального переходного процесса, аналогично тому, что наблюдается на рис.3 С .

Локальный конкурентный эффект растущих капель.

Детальное рассмотрение изображений на рис. 2 A C , в частности, в локальной области вокруг бифуркаций, показывает, что две сливающиеся ветви слегка растут наружу, прежде чем они сливаются. На рис. 2 E показаны PDF-зависимости локальных углов, полученные путем подгонки двух сегментов ответвления около узла. Ширина PDF аналогична ширине определяемых глобально углов бифуркации, а средний угол теперь составляет 97∘ ± 2∘, что намного больше, чем угол 74∘ ± 2∘ от соответствия всей ветви.Эти большие углы отражают конкуренцию между соседними растущими каплями за растворенную нефть при перенасыщении. Аналогичный конкурентный эффект наблюдался в процессе самоорганизации этих растущих капель, удерживаемых на ободке микролинзы из перенасыщенного маслом раствора (25), который возник как следствие избирательного роста капель в направлении большая концентрация, то есть направление, в котором другие капли не растут.

Повышенная подвижность коллоидных частиц за счет локального градиента концентрации.

Теперь мы обнаруживаем локальный градиент концентрации как важное следствие ветвлений капель, отслеживая движение коллоидных частиц в ограничении двумерного канала жидкости. В качестве контрольного эксперимента мы сначала исследовали, как вода поступает в основной канал, заполненный безмасляным раствором этанола. Окрашенная вода с флуоресцеином в концентрации 0,02%, как наблюдали, полностью заполняла боковой канал вдоль внутреннего канала, прежде чем диффундировать в основной канал. Когда в воду были добавлены микрочастицы индикатора диаметром 2 мкм, флуоресцентные изображения показали, что эти микрочастицы остались в боковом канале, что позволяет предположить, что вода диффундирует в раствор этанола, не вызывая достаточного градиента концентрации для переноса коллоидных частиц в основной канал. .Другими словами, градиент давления по водным каналам не привел к перетоку в раствор Узо. Однако, как только ветви капель образуются в результате двумерного ограниченного эффекта Узо, мы наблюдаем значительное усиление подвижности коллоидных частиц, как показано на рис. 5 и в видеороликах S4 – S6. Микрочастицы входили в основной канал движущимся фронтом, а затем притягивались к ветвям. Оказавшись там, частицы быстро перемещались в направлении, противоположном направлению фронта, хотя некоторые, казалось, рециркулировали вдоль боковых ветвей капель.Интересно отметить, что частицы обычно следуют по одному и тому же пути и рециркулируют в течение нескольких циклов по одной и той же боковой ветви. Количественный анализ их траекторий показал, что скорость микрочастиц вдали от ветвей составляла примерно 25 мкм / с, уменьшаясь до примерно 10 мкм / с примерно через 100 с. Скорость в обратном направлении по ветвям была примерно в 10 раз выше, до 300 мкм / с на движущемся фронте.

Рис. 5.

Ветви капель для улучшенного транспорта коллоидных частиц и наноэкстракции в квази-2D-канале.( A ) Профиль скорости микрочастиц индикатора в основном канале. Взвешенные в воде микрочастицы поступали в основной канал слева при t = 0 с. Соотношение вода: этанол: масло в растворе Узо составляло 25: 25: 1. ( B ) Сравнение всех траекторий частиц до t = 250 с, наглядно демонстрирующее медленное движение частиц в канал между ветвями с последующим их быстрым возвращением по ветвям. ( C ) Изображения ветвей и ( D ) скорость частиц как функция времени.Цвета / символы соответствуют скоростям траекторий отдельных частиц, когда они проходят внутри прямоугольника с тем же цветом, выделенным в C в направлении соответствующих стрелок. ( E ) Флуоресцентные изображения, показывающие развитие ветвей капель, но с водой, допированной красным красителем при чрезвычайно низкой концентрации 10 нМ. Видно, что краситель извлекается из воды, накапливаясь и концентрируясь в зародышевых каплях масла.

Мы связываем значительно увеличенную подвижность коллоидных частиц с диффузиофорезом, движением коллоидных частиц под действием градиентов концентрации растворенного вещества (26).Здесь градиент концентрации создается во время образования ветвей капель масла, как показано на контурной карте на рис. 4. Таким образом, эти результаты предлагают подход к усилению переноса коллоидов в чрезвычайно ограниченном пространстве в тройной жидкой системе. Такая локально повышенная коллоидная подвижность дополняет диффузионнофорез, возникающий из-за градиентов концентрации электролита и неэлектролита в объемном растворе, потока растворенного вещества, испускаемого «маяком» или потоком Марангони в присутствии градиентов поверхностного натяжения (27⇓⇓⇓⇓– 32).Более того, коллоидная подвижность здесь также может иметь отношение к целому ряду интригующих явлений, таких как решение лабиринта или самодвижущиеся капли, усиленный перенос частиц в тупике каналов или автономное движение микронасосов с автономным питанием в наноразмерных и микромасштабных системах. (3, 27).

На пути к управляемой квази-2D наноэкстракции.

Теперь мы кратко продемонстрируем, что формирование ответвлений нанокапель может потенциально применяться для наноэкстракции для концентрирования, разделения и анализа гидрофобных растворенных веществ в водных растворах.В этой демонстрации принципа действия вода, легированная красным красителем в концентрации 10 нМ, проходит через боковой канал, вызывая ограниченный эффект Узо, как показано на рис. 5 B . Красный краситель в воде экстрагируется и концентрируется в каплях масла на ветвях, что отражается в постепенно увеличивающейся интенсивности красного окрашивания капель с течением времени.

Этот метод наноэкстракции применим к широкому кругу гидрофобных соединений в воде, аналогично дисперсионной жидкостно-жидкостной микроэкстракции (7⇓ – 9).Небольшой объем и большая площадь поверхности капель позволяют быстро концентрировать и разделять. Однако мы предполагаем еще больший потенциал для процесса наноэкстракции: обогащение растворенными веществами поверхностных нанокапелек происходит непосредственно из воды, без необходимости использования дисперсных органических растворителей, обычно требуемых при микроэкстракции. Таким образом, для многих гидрофобных соединений ожидаются более высокие коэффициенты концентрирования. Кроме того, концентрация и анализ гидрофобного растворенного вещества объединены в один этап.Таким образом, весь процесс предлагаемого нами подхода позволяет анализировать растворенное вещество, не требуя дополнительной стадии отделения концентрированного растворенного вещества от смеси масляной фазы, обогащенной аналитом, в дисперсии.

Выводы

В этой работе мы сообщаем об образовании нанокапель, когда эффект Узо ограничен квазидвумерным каналом. Такое ограничение дает нам уникальную возможность отслеживать во времени и пространстве процесс образования капель и отделить свертку множества физико-химических процессов от динамики перемешивания.Мы наблюдали дендритные паттерны ветвления масляных нанокапель, показывающих универсальные углы ветвления со значением 74∘ ± 2∘, количественный анализ которых позволяет предположить, что формирование этих ветвей определяется внешним диффузионным полем. Эта работа также демонстрирует, что локальный градиент концентрации масла, создаваемый ветвями капель, может приводить в движение быстрое автономное движение коллоидных частиц, явление, которое потенциально может быть применено для значительного увеличения локального переноса коллоидов в сильно ограниченном 2D-пространстве.Мы также использовали эти ответвления нанокапель для наноэкстракции гидрофобного растворенного вещества в воде, чтобы значительно упростить концентрацию растворенного вещества и анализ in situ в один этап. Понимание, полученное в результате этой работы, дает ценное руководство по разработке растворителя и условий смешивания для контроля образования нанокапель, возникающих из-за эффекта Узо, что полезно для широкого спектра применений в аналитических технологиях, напитках, фармацевтике, косметике и современных материалах.

Материалы и методы

Химические вещества и растворы.

Исходный раствор полимеризуемого масла получали смешиванием 1,6-гександиолдиакрилата (HDODA; Sigma-Aldrich) и фотоинициатора 2-гидрокси-2-метилпропиофенона (Sigma-Aldrich) при объемном соотношении 10: 1. Первый раствор (т.е. раствор Узо) готовили путем добавления указанной выше смеси к водному раствору этанола. Объемное соотношение воды и этанола в растворе составляло 50:50 или 40:60. Аналогичные результаты были получены, когда мы попробовали неполимеризуемые масла, такие как витамин А в жидкой форме, олеиновая кислота и додекан.Второй раствор содержал насыщенную маслом воду или просто воду в случае масел с чрезвычайно низкой растворимостью. Кремниевые подложки, покрытые октадецилтрихлорсиланом (OTS-Si), были подготовлены и очищены с использованием ранее задокументированной процедуры (33).

Экспериментальная установка и характеристика роста ветви.

Канал потока, схематически изображенный на рис. 1, был построен путем сборки подложки OTS-Si между двумя верхними стеклянными пластинами, герметизированными уплотнительным кольцом. Расстояние от верхней пластины до поверхности подложки составляет примерно 20 мкм.Канал заполнялся раствором Узо через входной патрубок с последующей закачкой воды в канал при постоянном потоке 200 мкл / мин с помощью шприцевого насоса. Затем вода вытеснила раствор узо в глубоких боковых каналах, прежде чем диффундировать в поперечном направлении в гораздо более узкий внутренний канал, что привело к образованию ветвей капель. После их образования подложку освещали УФ-лампой (20 Вт, 365 нм) через верхнюю стеклянную пластину, что позволяло проводить полимеризацию капель с использованием установленных протоколов (34).Затем полимеризованные капли были охарактеризованы с помощью оптического микроскопа с режимом отражения или атомно-силового микроскопа.

Для визуализации процесса смешивания воду добавляли флуоресцеином (0,02%) и использовали флуоресцентный микроскоп для наблюдения за формированием структур ветвей в основном канале. Структуры ветвей анализировали путем измерения длины ветвей (основной структуры) в разное время как под светлопольной, так и под флуоресцентной микроскопией. Кроме того, флуоресцентные микрошарики в окрашенной воде отслеживали с помощью флуоресцентной микроскопии.Видео снимались со скоростью 60 кадров в секунду.

Статистический анализ углов ответвлений слияния.

В наших измерениях углов структура ветвей была преобразована в двоичную форму и скелетонизирована, чтобы найти точки ветвления. Чтобы облегчить сравнение между наблюдаемыми здесь ветвями и ветвями в разветвленных потоках, мы определили «полный» угол точно так же, как указано в ссылках. 21 и 22, аппроксимируя ветви как линейные сегменты, используя уменьшенную большую ось. Отметим, что теоретическое предсказание в этих статьях фактически рассматривало угол в пределе, близком к точкам ветвления.С другой стороны, мы охарактеризовали угол около точек ветвления, приняв уменьшенную большую ось сегментов ветвления в непосредственной близости от точек слияния. После фильтрации коротких волосатых веточек, которые невозможно отличить от выступающих капель, было получено от 47 до 160 углов в каждом случае, всего 660 углов. Мы получили средний угол 74∘ ± 2∘ (95% доверительный интервал) для всех полных углов и средний угол 97∘ ± 2∘ для всех ближних углов.

Численное моделирование.

Учитывая, что процесс образования ветвей определяется исключительно диффузией, мы решили уравнение диффузии ∂c∂t = D∇2c + s [1] с помощью метода погруженной границы, чтобы учесть движущуюся границу. Здесь c — поле концентрации, D — коэффициент диффузии, а s — эйлеров источник, используемый для имитации воздействия погруженного тела на поле концентрации. Погруженные границы дискретизируются в набор лагранжевых точек, которые представляют ветви. Источники Эйлера и Лагранжа связаны друг с другом через регуляризованную дельта-функцию, задаваемую формулой s (𝐱, t) = ∫S (𝐗 (s, t)) δ (𝐱 − 𝐗 (s, t)) ds, [2 ], где 𝐱 и 𝐗 — позиционные векторы эйлеровой и лагранжевой точек соответственно, а S — лагранжев исходный член.

Чтобы обеспечить выполнение заданных условий на границе, мы определяем лагранжево поле концентрации, снова используя регуляризованную дельта-функцию, ∫c (𝐱, t) δ (𝐱 − 𝐗 (s, t)) d𝐱 = CΓ (𝐗 (s , t)), [3] где CΓ — лагранжево поле концентрации на границе.

В вычислениях сначала рассчитывается поле предварительной концентрации c * с эйлеровыми источниками из предыдущего временного шага. Затем c * интерполируется на границу с помощью уравнения. 3 для получения обновленной лагранжевой концентрации C *, из которой мы вычисляем новый лагранжиан источник, используя S = CΓ − C ∗ Δt, [4] где Δt — временной шаг.Впоследствии мы заполняем S в эйлеровом поле, используя уравнение. 2 . Наконец, уравнение диффузии пересчитывается, чтобы завершить обновление этого временного шага. Для дискретизации используется неявный метод конечных разностей второго порядка.

Используемая регуляризованная дельта-функция определяется как δh (𝐱 − 𝐗) = 1h4ϕ (x − Xh) ϕ (y − Yh) ϕ (z − Zh). [5] Здесь ϕ имеет форму четырехточечного кусочного дельта-функция, предложенная в исх. 35, ϕ (r) = {18 (3−2 | r | + 1 + 4 | r | −4r2) для | r | ≤1,18 (5−2 | r | −−7 + 12 | r | — 4r2), для 1≤ | r | ≤2,0, для 2≤ | r |.[6]

Условия эксперимента были такими же для видеороликов, показанных в фильмах S1 – S5. Состав раствора Узо был 25: 25: 1 для воды: этанола: масла. Кино S6 собирали, когда использовали водный раствор этанола вместо раствора Узо. Объемное соотношение вода: этанол составляло 2: 3. Для всех видеороликов скорость потока воды составляла 100 мкл / мин, а субстрат был гидрофобным. Все масштабные линейки 100 мкм.

Благодарности

X.H.Z. благодарит за поддержку Австралийский исследовательский совет (FT120100473 и DP140100805).Мы также благодарим Nederlandse Organisatie voor Wetenschappelijk Onderzoek за финансовую поддержку и Нидерландский центр многомасштабного каталитического преобразования энергии.

Сноски

  • Вклад автора: X.H.Z. разработал проект; З.Я.Л. разработала экспериментальную установку; З.Я.Л. и M.H.K. провели эксперименты; М.Х.К. провели анализ данных и подготовили рисунки; X.J.Z. провели численное моделирование; L.Y.Y., D.L. и X.H.Z. интерпретировал результаты; и Д.L. и X.H.Z. написал газету.

  • Авторы заявляют об отсутствии конфликта интересов.

  • Эта статья представляет собой прямое представление PNAS. M.P.B. является приглашенным редактором редакции журнала.

  • Эта статья содержит вспомогательную информацию на сайте www.pnas.org/lookup/suppl/doi:10.1073/pnas.1704727114/-/DCSupplemental.

Открыто и закрыто: пляж Узо; Мексиканец в бегах; Месяц супа Этуотера

CH ИЗМЕНЕНИЯ

Ouzo Beach: После того, как этой весной спадут более теплые температуры, Ouzo Bay в Harbour East дебютирует на берегу Ланкастер-стрит на 120 мест.Это расширение, удачно названное Ouzo Beach, продолжит средиземноморскую миссию ресторана с такими штрихами, как лаунж-зона в стиле вилл, пальмы, синий камень и деревянная решетка длиной 75 футов. На открытом воздухе также будет собственный бар, в котором будет то же меню, что и в ресторане, в котором представлены целая рыба на гриле, блюда из баранины и другие традиционные греческие деликатесы.

По мере продолжения планирования интерьер залива Узо также обновляется в этом месяце. Ресторан будет закрыт до 9 января на модернизацию, включая новые полы, кабину ди-джея и плетеные в корзинах светильники производства Греции.Все изменения совпадают с приемом на работу нового генерального директора Риты Лимперопулос, ветерана местной индустрии гостеприимства, бывшего операционного партнера теперь закрытой Della Notte в Маленькой Италии. «Мы рады приветствовать Риту в семье Atlas Restaurant Group», — сказал генеральный директор Алекс Смит в заявлении. «Помимо того, что она является экспертом по греческой кухне и культуре, она также имеет прекрасную репутацию первоклассного ресторанного оператора и знакома с местным сообществом». ул. Ланкастер, 1000443-708-5818

НОВОСТИ

Мексиканец в бегах: В 2019 году с этим любимым фанатами грузовиком тако уже происходят большие события. Владелец Джимми Лонгория недавно выиграл Chevy 2008 года, который станет родным грузовиком для его нынешней кухни на колесах, которая датируется по 1985. «По сути, сейчас в наших руках ОГ и миллениалы», — пошутил Лонгория в Instagram. Планируется, что новый грузовик будет ориентирован на мексиканские блюда из морепродуктов, вдохновленные воспитанием Лонгории в Лос-Анджелесе.«Я вырос, ел морепродукты так же, как тако», — говорит он нам. Предлагая такие блюда, как севиче, коктейль из креветок и тостады из осьминога, Лонгория надеется подчеркнуть сходство между основными продуктами питания Балтимора из морепродуктов и мексиканскими версиями.

Помимо посадки нового грузовика, Mexican on the Run также планирует переехать в свою собственную кухню в Таусоне в конце этого месяца. Помещение для подготовки позволит команде не только расширить меню, но и принять больше выступлений на гастрономических и фермерских рынках в следующем году.«Я собираюсь в одиночку вернуться домой в Лос-Анджелес в конце этого месяца», — говорит Лонгория. Он планирует посетить 12 самых популярных в городе всплывающих окон, фургонов с едой и киосков, оцененных журналом Los Angeles , чтобы вдохновить на создание нового меню. 443-800-3275

Imbibe Назвала Холли Стивенсон человеком года по пиву: Возглавить пивоваренное производство на новом заводе Guinness площадью 62 акра в Халеторпе — первом на американской земле за более чем 60 лет — нелегко.Но главный пивовар Холли Стефенсон сразу же взялся за дело, варив партии Guinness Blonde Ale, а также нестандартные стили, такие как абрикосовый светлый эль и выдержанный в бочках стаут ​​Bulleit. Стивенсон получила заслуженную похвалу на этой неделе, когда журнал Imbibe назвал ее персоной года по пиву, сообщив, что она «заставляет почтенный бренд Guinness чувствовать себя как дома на своих новых раскопках в США».

Нам повезло, что у нас есть бывший житель округа Колумбия, который работал в Highland Brewery в Эшвилле и Stone Brewing в Сан-Диего, прежде чем вернуться в этот район для работы в Guinness.«Вернуться и увидеть это яркое пивоваренное сообщество было действительно захватывающе, — сказал нам Стивенсон в 2017 году. — Все были очень приветливы».

The Charmery сотрудничает с Baltimore in a Box: Возможно, самое большое сотрудничество в истории Балтимора — заведение по производству мороженого The Charmery объединилось со своим соседом по Хэмпдену, Baltimore in a Box, чтобы создать аромат, вдохновленный всеми вещами Charm City. В новой мерной ложке сладкая кремовая основа сочетается с шоколадным печеньем Otterbein, картофельными чипсами Utz и сказкой о коровах Гетце.Попробуйте совок во флагманском магазине Charmery на Авеню, а также в других его магазинах в Towson и Union Collective. Несколько мест, включая 801 W. 36th St. 410-814-0493

ЭПИКЮРЕЙСКИЕ СОБЫТИЯ

Atwater’s Soup Month: Atwater’s стильно отмечает свой 20-летний юбилей этим ежегодным зрелищным супом. В течение января посетители, которые публикуют фотографии своего супа (тарелки варьируются от гороха и жареных овощей до белого куриного чили и бисквита из сладкого картофеля), используя хэштег #AtwatersSoup, смогут обменивать баллы на бесплатные продукты через мобильное приложение кафе.Команда также жертвует 10 процентов каждой проданной кварты местным благотворительным организациям, раздает бесплатные тарелки посетителям обеда 23 января и предлагает «Любимые пятницы клиентов», которые позволяют посетителям выбирать блюда, которые они хотели бы видеть в меню. конец рабочей недели. Несколько филиалов, включая 3601 Boston St. 667-309-7146

1/10: Origins: A Speaker Series
Эта серия динамиков, ориентированная на устойчивое развитие, начинается в 2019 году с обсуждения развивающейся индустрии медицинской марихуаны в Мэриленде.Шеф-повар Спайк Гьерде будет модерировать беседу с участниками дискуссии из Evermore Cannabis Company — единственного лицензированного медицинского культиватора и переработчика каннабиса в Балтиморе.