Транзистор вта16 600в как проверить: Вта16 600в как проверить

Как проверить симистор мультиметром на исправность? 2 простых способа

В электрических приборах присутствует огромное количество полупроводниковых устройств, имеющих самый различный функционал и назначение. В большинстве схем роль электронного ключа выполняет симистор, который можно устанавливать в открытое или закрытое положение. В случае поломки какого-либо блока или прибора проверке подлежат все детали, поэтому далее мы рассмотрим, как проверить симистор мультиметром, не привлекая на помощь профессионалов.

Способы проверки

На практике симисторы могут быть представлены как силовыми агрегатами в распределительных устройствах или высоковольтных линиях, так и слаботочными элементами плат. Существует несколько способов проверки работоспособности, среди которых наиболее популярными являются:

  • при помощи мультиметра;
  • установив на специальный стенд;
  • посредством батарейки и лампочки;
  • транзистор-тестером.

Чаще всего используется первый метод, поскольку практически у каждого дома имеется мультиметр, тестер или цешка. Да и собирать целый испытательный стенд ради нескольких проверок смысла не имеет, в равной мере, как и конструировать контрольку с блоком питания.

Перед рассмотрением процедуры следует разобраться в конструктивных особенностях симистора. В электрическом смысле это полупроводниковый элемент, который как и тиристор может открываться и закрываться для протекания тока, но, в отличии от тиристора, симистор пропускает ток в двух направлениях. Поэтому его конструкция содержит два встречно направленных кристалла, которые открываются и закрываются управляющим электродом, за счет такой особенности его иногда считают разновидностью тиристора.

Рис. 1. Принципиальная схема симистора

Посмотрите на рисунок 1, в работе устройства может произойти либо обрыв линии с нарушением целостности цепи, либо пробой p-n перехода, характеризующийся коротким замыканием. Чтобы проверить симистор  мультиметром, применяются два метода – с выпаиванием полупроводникового прибора и на плате. Второй вариант является более удобным, так как проверить можно без лишних манипуляций с радиодеталями, однако на измерения будет влиять и общая  работоспособность схемы.

Поэтому для повышения точности симистор выпаивают с платы и проверяют, иначе короткое замыкание в параллельно включенной ветке будет показывать  неисправность на мультиметре при фактически годном испытуемом объекте.

Если выпаять симистор

Рассмотрим вариант с полным отделением симистора от платы, в результате вы должны получить абсолютно обособленную независимую деталь.

Рис. 2. Выпаять симистор

Основной вопрос, с которым вы должны определиться – расположение выводов или цоколевка ножек детали. Ниже приведены несколько типовых моделей, но следует отметить, что на практике может встречаться и другой порядок чередования, поэтому место нахождения управляющего контакта по отношению к двум рабочим вы должны определить заранее по модели или паспорту симистора.

Рис. 3. Расположение выводов симистора

Как видите на рисунке 3, в любой модели будут присутствовать три вывода – два силовые, которые имеют маркировку A1 и A2, в некоторых вариантах они обозначают тиристоры и маркируются как T1 и T2. Третья ножка – это управляющий вывод, он маркируется как G, от английского gate – ворота. После того, как разберетесь с конструкцией конкретного симистора и распиновкой выводов, переходите к настройке измерительного прибора. Большинство цифровых мультиметров имеют отдельное положение для «прозвонки», на панели его обозначают как полупроводниковый диод.

Рис. 4. Выбрать режим прозвонки

Однако это не единственный вариант, некоторые варианты цифрового тестера имеют совмещенную функцию, которая на панели выражается одной отметкой, совмещающей и прозвонку и функцию омметра:

Рис. 5. Совмещенный омметр с прозвонкой

После переключения установите щупы мультиметра в соответствующие гнезда, как правило, чтобы проверить симистор, вам понадобится разъем COM – это общий вывод и разъем для измерения сопротивления или со значком прозвонки. В таком режиме между щупами возникнет разность потенциалов, поскольку на них искусственно подается испытательное напряжение, соответственно, через симистор будет протекать какой-то ток.

 Подготовив мультиметр и разобравшись с устройством симистора, можете переходить к самой проверке на исправность.

Процедура будет включать в себя несколько этапов:

  • Чтобы проверить, не пробит ли переход, сначала нужно приложить щупы тестера к силовым выводам. Во время процедуры на табло может появиться значение 0 или 1, где 0 – обозначает пробитый полупроводник, а единица полностью исправный. В некоторых моделях измерительных приборов вместо единицы может отображаться значение OL, и то и другое свидетельствует о большом сопротивлении.
Рис. 6. Прозвоните силовые контакты
  • Затем переместите один из выводов на управляющий контакт, это приведет к замеру сопротивления между ними. Как правило,  значение падения напряжения между A1 и  G будет колебаться от 100 до 200, но могут быть и некоторые отличия, в зависимости от модели. Переместите щуп с одного силового вывода симистора на другой, значение в исправном состоянии должно быть равным 1.
  • Чтобы проверить, открывается ли переход симистора, кратковременно коснитесь управляющего электрода при подаче напряжения на силовые контакты. Показания на табло тут же изменятся, что и укажет на исправность прибора. Однако работа в открытом состоянии, скорее всего, продлиться недолго, поскольку приложенного напряжения будет недостаточно для получения тока удержания. Для подключения вывода щупа сразу на две ножки можно воспользоваться как дополнительным проводом, так и коснуться их самим щупом по диагонали.

Если выпаянный симистор показал исправные результаты во всех положениях, то проблема заключается в другом элементе или узле схемы.

Не выпаивая

Несмотря не преимущества предыдущего варианта проверки, далеко не всегда предоставляется возможность впаять деталь из общего блока или платы. Иногда это обусловлено конструкционным расположением ближайших элементов, иногда вся плата залита, а в некоторых ситуациях под рукой попросту может не оказаться паяльника. В этом случае максимально удалите все возможные подключения, которые так или иначе могли бы повлиять на результаты проверки симистора.

В первую очередь, обратите внимание на саму нагрузку, так как симистор – это ключ, возможно контакты к отключаемой нагрузке представлены клеммами или другими разъемными соединениями. Далее изучите схему, возможно, кроме симистора, в цепи присутствуют какие-либо коммутаторы или предохранители, которые смогут обеспечить разрыв  в цепи.

Так как ранее мы рассматривали вариант прозвонки, теперь произведем замер сопротивление в режиме омметра. Для этого переместите ручку переключателя мультиметра в соответствующее положение и подключите выводы щупов. Заметьте, из-за установки на плате далеко не всегда представляется возможным рассмотреть маркировку симистора или цоколевку его ножек, поэтому нередко приходится руководствоваться схемой или опираться на данные измерений. Если вы столкнулись именно с такой ситуацией, то следует опираться на данные замеров сопротивления между контактами попарно.

Результаты проверки омметром

Некоторые показатели сопротивления могут свидетельствовать о следующих состояниях симистора:

  • 0 Ом – говорит о том, что переход пробит или возникло короткое замыкание;
  • от 50 до 200 Ом – свидетельствует, что переход нормально открыт;
  • от 1 до 10 кОм – указывает на появление тока утечки без управляющего тока, скорее всего, что кристалл неисправен;
  • от 1 МОм и более – говорит о нормально запертом переходе или об обрыве в электрической цепи.

Измерение сопротивления является не единственным методом, которым можно проверить исправность симистора. Вы можете прозвонить его мультиметром, как было описано в предыдущем методе.

Видео инструкции

Как проверить симистор мультиметром на исправность

У каждого уважающего себя мастера, да и просто увлекающегося электроникой человека в хозяйстве есть мультиметр, который позволяет довольно часто экономить на покупке новых деталей.

Симистор, так же его называют триак — это особая вариация симметричного тиристора. Одним из основных отличий — возможность проводить ток в обоих направлениях, что позволяет использовать эксплуатировать радиоэлемент в системах, где присутствует переменное напряжение. В работе с электроприборами и схемами просто невозможно обойтись без таких электрических деталей.

По функциям работы и конструкции он ни чем не отличается от других тиристеров. Симисторы хорошо себя зарекомендовали как регуляторы для систем освещения, так же для приборов которые используются в бытовых условиях Еще его используют в огромном количестве отраслей производства.

Концепция этих компонентов чем-то напоминает работу транзистеров, но данные детали не будут взаимозаменяемы.

Как прозвонить тиристор мультиметром?

Когда подается ток (достаточно простой батарейки АА) — лампочка будет сиять. Из этого следует, что сама цепь не подвержена повреждениям. Затем следует отделить батарейку, но при этом не отключить подачу тока. Если лампочка не гаснет, а продолжает гореть, то p-n переход не поврежден и работает исправно.

Но бывает и такое, что в самый нужный момент под рукой не окажется нужной лампочки или батарейки. Остается проверить его мультиметром.

  1. Нужно установить переключатель на нашем приборе в режим прозвона. На щупах появится достаточно тока, для проверки работоспособности. На экране высветилась цифра 1, в таком случае мы понимаем, что переход не пробит и не поврежден.
  2. Нужно проверить открывается ли переход. Для этого нужно соединить управляющий вывод с анодом. Мультиметр даст достаточное количество тока для этого. На экране должны появится цифры, которые будут отличаться от первоначальной единицы. Так мы проверим работоспособность управляющего элемента.
  3. Разъединяем контакт управления. На экране увидим цифру «один», так как сопротивление будет склоняться к бесконечности.

Почему тиристор не остался в открытом состоянии?

Ситуация заключается в следующем — мультиметр не вырабатывает достаточное количество тока для того, что бы сработал тиристор. Исходя из этого, провести проверку данного элемента не выйдет. Но сама проверка показала, что остальные детали у нас в рабочем состоянии. Если же поменять полярность — проверка закончится провалом. В данной ситуации мы уверены,что отсутствует обратный пробой.

Так же при помощи аппарата, можно легко проверить чувствительность тиристора. Для этого нужно поставить переключатель в режим омметра. Все измерения проходят так же, как описывалось выше.

Тиристоры которые более чувствительны выдерживают открытое состояние при отключении управляющего тока, все данные мы фиксируем на мультиметре. Затем повышаем предел до 10х. В этой ситуации ток на щупах будет уменьшен.

Если управляющий ток при закрытии, отказывает, нужно постепенно увеличить предел измерения, до тех пор, пока не сработает тиристор.

Если проверка проходит элементов из одной партии или со схожими техническими характеристиками, нужно выбирать те элементы, которые более чувствительны. Такие тиристоры более функциональны и имеют больше возможностей, из этого следует что область применения в разы увеличивается.

Когда вы освоите проверку тиристора, то решение проверки симистора придет само. Главное вникнуть в суть проверки, и четко следовать инструкциям.

Проверка симистора мультиметром

Делаем все тоже, о чем говорилось выше. Можем применять лампу накаливания, включив мультиметр в режиме омметра.

Если симистор исправен и функционирует, то результаты проверки должны быть схожими между собой. Необходимо проверить открытие и удержание p-n перехода в обоих направлениях по всей шкале пределов измерения мультиметра.

Если проверяемая деталь располагается на монтажной плате, то нет явной необходимости выпаивать ее, для того, чтобы провести проверку. Нужно всего лишь освободить управляющий вывод. Одно из главных правил! Перед проверкой обязательно обесточьте проверяемый прибор, так как результат проверки, может оказаться неверным.

Заключение

Как мы видим, проблем в проверке у любого мастера быть не должно. Относительно проверки, можно добавить, то что проверять лучше всего симистор с обеих сторон, так как он работает как с одной, так и с другой стороны. Нужно все лишь изменить полярность на противоположную сторону. Если деталь исправна, то соответственно она будет работать с двух противоположных сторон.

Регулятор мощности на симисторе BTA12-600

Сегодня я вам расскажу об очень полезной схеме, которая пригодится как в лаборатории, так и в хозяйстве. Устройство, о котором пойдет речь,  называется симисторный регулятор мощности. Регулятор можно применить для плавной регулировки яркостью освещения, температуры паяльника, оборотами электродвигателя (переменного тока). Мой вариант применения регулятора интересней, я плавно регулирую температуру нагрева тэна мощностью  1кВт в самогонном аппарате. Да-да, я занимаюсь этим благородным делом.

Схема имеет минимум элементов и заводится сразу. Мощность нагрузки для симисторного регулятора  определяется током симистора. Симистор BTA12-600 рассчитан  на ток 12 Ампер и напряжение 600 Вольт. Симистор нужно выбирать с запасом по току, я выбрал двукратный запас. Например, симистор BTA12-600 с оптимальным охлаждением может в штатном режиме пропускать через себя ток 8 Ампер. Если нужен регулятор мощнее, используйте симистор BTA16-600 или BTA24-600.

Работа схемы описана в статье «Диммер своими руками».

Рабочая температура кристалла симистора от -40 до +125 градусов Цельсия. Необходимо сделать хорошее охлаждение. У меня нагрузка 1кВт, соответственно ток нагрузки около 5А, радиатор   площадью 200см кв. греется от 85 до90 градусов  Цельсия при длительной работе (до 6ч). Планирую увеличить рабочую площадь радиатора, чтобы повысить надежность  устройства.

Симистор имеет управляющий вывод и два вывода, через которые проходит ток нагрузки. Эти два вывода можно менять местами ничего страшного не случиться.

Для безопасности (чтобы не щелкнуло током), симистор необходимо устанавливать на радиатор через диэлектрическую прокладку (полимерную или слюдяную) и диэлектрическую втулку.

Компоненты.

Резистор 4.7кОм мощностью 0,25Вт. Динистор с маркировкой DB3 , полярности не имеет, впаивать любой стороной. Конденсатор пленочный на 100нФ 400В полярности не имеет.

Светодиод любого цвета диаметром 3мм, обратное напряжение 5В, ток 25мА. Короче любой светодиод 3мм. Светодиод дает индикацию нагрузки, не пугайтесь, если при первом включении (естественно без нагрузки) он светиться не будет.

Первое включение необходимо производить кратковременно без нагрузки. Если все нормально, никакие элементы не греются, ничего не щелкнуло, тогда включаем  без нагрузки на 15 секунд. Далее цепляем лампу напряжением 220В и мощностью 60-200Вт, крутим ручку переменного резистора и наслаждаемся работой.

Для защиты я установил в разрыв сетевого провода (220В) предохранитель на 12А.

Собранный нами регулятор мощности на симисторе BTA12-600 можно применить для регулировки температуры паяльника (регулируя мощность), тем самым получив паяльную станцию для вашей мастерской.

Печатная плата регулятора мощности на симисторе BTA12-600 СКАЧАТЬ

Даташит на BTA12-600 СКАЧАТЬ

Управление мощной нагрузкой переменного тока

Тиристор
Иногда нужно слабым сигналом с микроконтроллера включить мощную нагрузку, например лампу в комнате. Особенно эта проблема актуальна перед разработчиками умного дома. Первое что приходит на ум — реле. Но не спешите, есть способ лучше 🙂

В самом деле, реле это же сплошной гемор. Во первых они дорогие, во вторых, чтобы запитать обмотку реле нужен усиливающий транзистор, так как слабая ножка микроконтроллера не способна на такой подвиг. Ну, а в третьих, любое реле это весьма громоздкая конструкция, особенно если это силовое реле, расчитанное на большой ток.

Если речь идет о переменном токе, то лучше использовать симисторы или тиристоры. Что это такое? А сейчас расскажу.

Симистор BT139
Схема включения из даташита на MOC3041

Если на пальцах, то тиристор похож на диод, даже обозначение сходное. Пропускает ток в одну сторону и не пускает в другую. Но есть у него одна особенность, отличающая его от диода кардинально — управляющий вход.
Если на управляющий вход не подать ток открытия, то тиристор не пропустит ток даже в прямом направлении. Но стоит подать хоть краткий импульс, как он тотчас открывается и остается открытым до тех пор, пока есть прямое напряжение. Если напряжение снять или поменять полярность, то тиристор закроется. Полярность управляющего напряжения предпочтительно должна совпадать с полярностью напряжения на аноде.

Если соединить встречно параллельно два тиристора, то получится симистор — отличная штука для коммутации нагрузки на переменном токе.

На положительной полуволне синусоиды пропускает один, на отрицательной другой. Причем пропускают только при наличии управляющего сигнала. Если сигнал управления снять, то на следующем же периоде оба тиристора заткнутся и цепь оборвется. Крастота да и только. Вот ее и надо использовать для управления бытовой нагрузкой.

Но тут есть одна тонкость — коммутируем мы силовую высоковольтную цепь, 220 вольт. А контроллер у нас низковольтный, работает на пять вольт. Поэтому во избежание эксцессов нужно произвести потенциальную развязку. То есть сделать так, чтобы между высоковольтной и низковольтной частью не было прямого электрического соединения. Например, сделать оптическое разделение. Для этого существует специальная сборка — симисторный оптодрайвер MOC3041. Замечательная вещь!
Смотри на схему подключения — всего несколько дополнительных деталек и у тебя силовая и управляющая часть разделены между собой. Главное, чтобы напряжение на которое расчитан конденсатор было раза в полтора два выше напряжения в розетке. Можно не боятся помех по питанию при включении и выключении симистора. В самом оптодрайвере сигнал подается светодиодом, а значит можно смело зажигать его от ножки микроконтроллера без всяких дополнительных ухищрений.

Вообще, можно и без развязки и тоже будет работать, но за хороший тон считается всегда делать потенциальную развязку между силовой и управляющей частью. Это и надежность и безопасность всей системы. Промышленные решения так просто набиты оптопарами или всякими изолирующими усилителями.

Ну, а в качестве симистора рекомендую BT139 — с хорошим радиатором данная фиговина легко протащит через себя ток в 16А

Написано Эли в четверг, 4 мая 2017 г.

Спросите любого полевого техника или специалиста по стендовым испытаниям, какое у них наиболее часто используемое испытательное оборудование, и они, вероятно, ответят, что это цифровой мультиметр (цифровой мультиметр). Эти универсальные устройства могут использоваться для тестирования и диагностики широкого спектра цепей и компонентов. В крайнем случае, цифровой мультиметр может даже заменить дорогое специализированное испытательное оборудование. Один особенно полезный навык — это знание того, как проверить транзистор с помощью цифрового мультиметра. Для решения этой задачи существуют специализированные анализаторы компонентов, но для обычного хобби может быть трудно оправдать расходы.

Распиновка транзисторов

К счастью, использование цифрового мультиметра для получения базовых показаний «годен / не годен» от подозреваемого неисправного двухполюсного транзистора NPN или PNP — это простая и быстрая задача. Некоторые мультиметры имеют встроенную функцию тестирования транзисторов, если она у вас есть, вы можете пропустить этот пост в блоге — просто вставьте свой транзистор в гнездо на мультиметре и установите измеритель в правильный режим. Вы, вероятно, получите такую ​​информацию, как коэффициент усиления (hFE), который можно будет проверить по таблице данных, а также результаты проверки пройден / не пройден.Если в вашем измерителе нет функции тестирования транзисторов, не бойтесь — транзисторы можно легко проверить с помощью настройки тестирования «Диод». (Некоторые счетчики имеют функцию проверки диодов в сочетании с проверкой целостности цепи — это нормально).

Тестирование транзистора

Удалите транзистор из схемы для получения точных результатов.

Шаг 1: (от базы к эмиттеру)

Подсоедините плюсовой провод мультиметра к BASE (B) транзистора. Подсоедините отрицательный вывод измерителя к ЭМИТТЕРУ (E) транзистора.Для исправного NPN-транзистора измеритель должен показывать падение напряжения от 0,45 до 0,9 В. Если вы тестируете транзистор PNP, вы должны увидеть «OL» (Превышение предела).

Шаг 2: (от базы к коллектору)

Держите положительный провод на ОСНОВАНИИ (B) и вставьте отрицательный провод в КОЛЛЕКТОР (С).

Для исправного NPN-транзистора измеритель должен показывать падение напряжения от 0,45 до 0,9 В. Если вы тестируете транзистор PNP, вы должны увидеть «OL» (Over Limit).

Шаг 3: (от эмиттера к базе)

Подсоедините плюсовой провод мультиметра к ЭМИТТЕРУ (E) транзистора.Подсоедините отрицательный вывод измерителя к BASE (B) транзистора.

Для исправного транзистора NPN вы должны увидеть «OL» (Превышение предела). Если вы проверяете транзистор PNP, измеритель должен показать падение напряжения между 0,45 и 0,9 В.

Шаг 4: (от коллектора к базе)

Подсоедините плюсовой провод мультиметра к КОЛЛЕКТОРУ (С) транзистора. Подсоедините отрицательный вывод измерителя к BASE (B) транзистора.

Для исправного транзистора NPN вы должны увидеть «OL» (Превышение предела).Если вы проверяете транзистор PNP, прибор должен показать падение напряжения от 0,45 до 0,9 В.

Шаг 5: (от коллектора к эмиттеру)

Подсоедините положительный провод измерителя к КОЛЛЕКТОРУ (C), а отрицательный провод измерителя к ЭМИТТЕРУ (E) — исправный транзистор NPN или PNP покажет на измерителе «OL» / превышение предела. Поменяйте местами выводы (положительный на эмиттер и отрицательный на коллектор). Еще раз, хороший транзистор NPN или PNP должен показывать «OL».

Если размеры вашего биполярного транзистора противоречат этим шагам, считайте это плохим.

Вы также можете использовать падение напряжения, чтобы определить, какой вывод является эмиттером на немаркированном транзисторе, поскольку переход эмиттер-база обычно имеет немного большее падение напряжения, чем переход коллектор-база.

Помните: этот тест проверяет только то, что транзистор не закорочен или не открыт, он не гарантирует, что транзистор работает в пределах своих проектных параметров. Его следует использовать только для того, чтобы решить, нужно ли вам «заменить» или «перейти к следующему компоненту».Этот тест работает только с биполярными транзисторами — вам нужно использовать другой метод для тестирования полевых транзисторов.

В качестве особой благодарности нашим клиентам и читателям блогов мы хотели бы предложить 10% скидку на весь ваш заказ, используя КОД: «BLOG1000»

Чтобы получить месяц признательности нашим клиентам, все, что вам нужно сделать, это использовать код «BLOG1000» при оформлении заказа в вашей карте покупок.

И когда появится окошко, введите соответствующий текущий активный промокод.В данном случае это: BLOG1000

И продолжаем проверять!

Спасибо, что являетесь клиентом Vetco!

GaN HEMT — Транзистор из нитрида галлия

Транзисторы из нитрида галлия (GaN)

обладают фундаментальными преимуществами по сравнению с кремнием. В частности, более высокое критическое электрическое поле делает его очень привлекательным для силовых полупроводниковых устройств с выдающимся удельным динамическим сопротивлением в открытом состоянии и меньшей емкостью по сравнению с кремниевыми полевыми МОП-транзисторами, что делает GaN HEMT идеальным вариантом для приложений с высокоскоростной коммутацией.В этом случае транзисторы из нитрида галлия могут работать с уменьшенным временем простоя, что приводит к повышению эффективности и пассивному охлаждению. Работа на высоких частотах переключения позволяет уменьшить объем пассивных компонентов, что повышает надежность GaN HEMT и общую плотность мощности.

Наиболее важной особенностью силового транзистора на основе GaN является его способность к обратному восстановлению. Поскольку транзисторы Infineon CoolGaN ™ не имеют неосновных носителей заряда и внутреннего диода, они не демонстрируют обратного восстановления.Следовательно, топологии с жестким переключением, такие как тотемно-полюсный PFC, могут использоваться для достижения более высокой эффективности, например, в источниках питания центров обработки данных и серверов, с целью экономии энергии и сокращения OPEX.

CoolGaN ™ от

Infineon — это высокоэффективная технология транзисторов на основе GaN (нитрида галлия) для преобразования энергии в диапазоне напряжений до 600 В. Благодаря обширному опыту работы на рынке полупроводников, технология GaN от Infineon довела концепцию электронного режима до зрелости и обеспечила непрерывное производство в больших объемах.Новаторское качество гарантирует высочайшие стандарты и предлагает самое надежное и производительное решение среди всех GaN HEMT на рынке.

Импульсные силовые цепи, использующие CoolGaN ™, могут выиграть от улучшенной энергоэффективности и улучшенной плотности мощности, что невозможно с современными кремниевыми устройствами. В высокочастотных операциях, выше 200–250 кГц, скорость переключения является ключевым фактором для определения того, как происходит передача энергии. Сверхбыстрая скорость переключения CoolGaN ™ от Infineon обеспечивает очень короткое мертвое время.При прогнозируемом сроке службы более 15 лет и частоте отказов менее 1 FIT заказчики могут рассчитывать на его надежность и качество.

Карманный цифровой мультиметр

Neoteck с ручным управлением с двумя измерительными проводами, ЖК-дисплеем с подсветкой, вольт-ампер-ом, hFE (усиление постоянного тока) Тестер транзисторных диодов NPN PNP со звуковым сигналом — оранжевый корпус —

5,0 из 5 звезд Работает чертовски хорошо, красиво и точно (С ВИДЕО ДЛЯ ТЕСТИРОВАНИЯ)
Отзыв написан в Канаде 17 января 2020 г.

Это долгосрочный обзор, я купил его в сентябре 2018 года.

Я искал мультиметр меньшего размера, но все же имел большинство типичных функций, введите этот пункт! Хотя я также использовал это для своих нужд, я купил это как инструмент обучения для своего сына. Я учил его основам электричества — не бояться, а уважать электричество.

Я был членом Prime какое-то время, и мне снова понравился этот товар, доставка на следующий день всегда отличная вещь.

Некоторые общие мысли:

Общий размер этого счетчика идеально подходит для наших нужд — чуть менее 15 см в длину и менее 8 см в ширину с надетым защитным футляром.Он также не весит тонну, как некоторые старые модели, это всего 189 граммов. Этот вес также включает аккумулятор и прочный оранжевый пластиковый защитный чехол!

Дисплей красивый, большой, читаемый. Никаких номеров не сгорело.

При использовании он имеет 10-секундный дисплей с подсветкой при нажатии кнопки. Мы обнаружили, что этого достаточно, чтобы читать, если мы находимся в темной комнате. У этого устройства также есть типичная кнопка удержания.

Батарея на 9 В входит в комплект, чтобы вы сразу могли приступить к работе, как только она появится.

Включенные датчики, с которыми у нас не было проблем. Они прочные, и защитные наконечники зонда легко снять. Включенные в комплект зажимы типа «крокодил» снова у нас не было проблем, они надежно удерживают ваш объект. Оба набора плотно прижимаются к мультиметру и снимаются так же легко.

Мне нравится, что в него входит толстый защитный футляр, как будто его уронят (случайно уронили) повреждений не будет.

В этот мультиметр также входит подставка.Он прикреплен к задней части, поэтому это не отдельная деталь, которую нужно прикрепить к мультиметру. Я никогда не был поклонником этого дизайна отдельных частей.

Наш мультиметр тоже оказался точным. Мы сняли короткое видео об использовании этого на настольном блоке питания для проверки. Мы измерили вольты, и они были синхронизированы между источником питания и мультиметром.

Еще я люблю динамик, он достаточно громкий, чтобы слышно. Когда я проверяю целостность цепи, я действительно слышу этот измеритель.

Наконец, цена, которая мне очень понравилась. По сути, за 20-долларовую купюру у вас может быть надежный и точный мультиметр.

На данный момент в основном прошло 1,5 года, и у нас не было проблем с нашей машиной.

Полезно, надеюсь, вы найдете мой отзыв

Метр проверки транзистора (BJT) | Биполярные переходные транзисторы

Биполярные транзисторы построены из трехслойного полупроводникового «сэндвича» PNP или NPN.Таким образом, транзисторы регистрируются как два диода, подключенных друг к другу при тестировании с помощью функции «сопротивления» или «проверки диода» мультиметра, как показано на рисунке ниже. Показания низкого сопротивления на базе с черными отрицательными (-) выводами соответствуют материалу N-типа в базе транзистора PNP. На символе на материал N-типа «указывает» стрелка перехода база-эмиттер, которая является базой для этого примера. Эмиттер P-типа соответствует другому концу стрелки перехода база-эмиттер, эмиттеру.Коллектор очень похож на эмиттер и также является материалом P-типа PN перехода.

Проверка счетчика транзисторов PNP: (а) прямой B-E, B-C, сопротивление низкое; (б) обратные B-E, B-C, сопротивление ∞.

Здесь я предполагаю использовать мультиметр с функцией только одного диапазона (сопротивления) для проверки PN-переходов. Некоторые мультиметры оснащены двумя отдельными функциями проверки целостности цепи: сопротивлением и «проверкой диодов», каждая из которых имеет собственное назначение.Если ваш измеритель имеет назначенную функцию «проверки диодов», используйте ее, а не диапазон «сопротивления», и измеритель будет отображать фактическое прямое напряжение PN-перехода, а не только то, проводит ли он ток.

Показания счетчика, конечно, будут прямо противоположными для NPN-транзистора, с обоими PN-переходами, обращенными в другую сторону. Показания низкого сопротивления с красным (+) выводом на базе являются «противоположным» состоянием для NPN-транзистора.

Если в этом тесте используется мультиметр с функцией «проверки диодов», будет обнаружено, что переход эмиттер-база имеет немного большее прямое падение напряжения, чем переход коллектор-база.Эта прямая разница напряжений возникает из-за несоответствия в концентрации легирования между эмиттерной и коллекторной областями транзистора: эмиттер представляет собой гораздо более легированный кусок полупроводникового материала, чем коллектор, в результате чего его соединение с базой создает более высокое прямое напряжение. уронить.

Зная это, становится возможным определить, какой провод какой на немаркированном транзисторе. Это важно, потому что упаковка транзисторов, к сожалению, не стандартизирована.Конечно, все биполярные транзисторы имеют три провода, но расположение этих трех проводов на физическом корпусе не организовано в каком-либо универсальном стандартизированном порядке.

Предположим, технический специалист находит биполярный транзистор и приступает к измерению целостности цепи с помощью мультиметра, установленного в режиме «проверки диодов». Измеряя между парами проводов и записывая значения, отображаемые измерителем, технический специалист получает данные, показанные на рисунке ниже.

  • Касательный провод счетчика 1 (+) и 2 (-): «OL»
  • Касательный провод счетчика 1 (-) и 2 (+): «OL»
  • Касательный провод измерителя 1 (+) и 3 (-): 0.655 В
  • Касательный провод счетчика 1 (-) и 3 (+): «OL»
  • Касательный провод измерителя 2 (+) и 3 (-): 0,621 В <
  • Касательный провод счетчика 2 (-) и 3 (+): «OL»

Неизвестный биполярный транзистор. Какие терминалы являются эмиттерным, базовым и коллекторным? Показания омметра между клеммами.

Единственными комбинациями контрольных точек, дающими показания измерителя, являются провода 1 и 3 (красный измерительный провод на 1 и черный измерительный провод на 3) и провода 2 и 3 (красный измерительный провод на 2 и черный измерительный провод на 3).Эти два показания должны указывать на прямое смещение перехода эмиттер-база (0,655 В) и перехода коллектор-база (0,621 В).

Теперь мы ищем один провод, общий для обоих наборов показаний проводимости. Это должно быть базовое соединение транзистора, потому что база является единственным слоем трехслойного устройства, общим для обоих наборов PN-переходов (эмиттер-база и коллектор-база). В этом примере этот провод имеет номер 3 и является общим для комбинаций контрольных точек 1-3 и 2-3.В обоих этих наборах показаний измерителя тестовый провод черный (-) касался провода 3, что говорит нам о том, что база этого транзистора сделана из полупроводникового материала N-типа (черный = отрицательный). Таким образом, транзистор представляет собой PNP с базой на проводе 3, эмиттером на проводе 1 и коллектором на проводе 2, как показано на рисунке ниже.

  • E и C высокий R: 1 (+) и 2 (-): «OL»
  • C и E высокий R: 1 (-) и 2 (+): «OL»
  • E и B нападающие: 1 (+) и 3 (-): 0.655 В
  • E и B реверс: 1 (-) и 3 (+): «OL»
  • C и B вперед: 2 (+) и 3 (-): 0,621 В
  • C и B реверс: 2 (-) и 3 (+): «OL»

Клеммы BJT, идентифицированные омметром.

Обратите внимание, что базовый провод в этом примере — это , а не — средний вывод транзистора, как можно было бы ожидать от трехслойной «сэндвич-модели» биполярного транзистора. Это довольно частый случай, который сбивает с толку новичков, изучающих электронику.Единственный способ узнать, какой именно провод — это проверить счетчик или обратиться к документации производителя на этот конкретный номер детали транзистора.

Знание того, что биполярный транзистор ведет себя как два встречных диода при тестировании с помощью измерителя проводимости, полезно для идентификации неизвестного транзистора исключительно по показаниям измерителя. Это также полезно для быстрой функциональной проверки транзистора. Если бы техник должен был измерить непрерывность в более чем двух или любых менее чем двух из шести комбинаций испытательных проводов, он или она немедленно узнал бы, что транзистор неисправен (или что это не биполярный транзистор, а скорее что-то еще — отличная возможность, если для точной идентификации нельзя сослаться на номера деталей!).Однако модель транзистора «два диода» не может объяснить, как и почему он действует как усилительное устройство.

Чтобы лучше проиллюстрировать это, давайте рассмотрим одну из схем транзисторного переключателя, используя физическую схему на рисунке ниже, а не схематический символ, представляющий транзистор. Так будет легче увидеть два PN-перехода.

Небольшой ток базы, протекающий в переходе база-эмиттер с прямым смещением, позволяет протекать большому току через переход база-коллектор с обратным смещением.

Диагональная стрелка серого цвета показывает направление тока через переход эмиттер-база. Эта часть имеет смысл, поскольку ток течет от базы P-типа к эмиттеру N-типа: переход явно смещен в прямом направлении. А вот переход база-коллектор — совсем другое дело. Обратите внимание, как толстая стрелка серого цвета указывает в направлении потока тока (вниз) от коллектора к базе. С основанием из материала P-типа и коллектором из материала N-типа.База и коллектор имеют обратное смещение, которое препятствует прохождению тока. Однако насыщенный транзистор очень мало противодействует току на всем пути от коллектора до эмиттера, о чем свидетельствует свечение лампы!

Очевидно, что здесь происходит что-то, что противоречит простой объяснительной модели биполярного транзистора с «двумя диодами». Когда я впервые узнал о работе транзисторов, я попытался построить свой собственный транзистор из двух последовательно включенных диодов, как показано на рисунке ниже.

Пара встречных диодов не работает как транзистор, и ток не может протекать через лампу!

В транзисторе обратное смещение перехода база-коллектор предотвращает ток коллектора, когда транзистор находится в режиме отсечки (то есть, когда ток базы отсутствует). Если соединение база-эмиттер смещено в прямом направлении управляющим сигналом, обычно блокирующее действие перехода база-коллектор отменяется, и ток разрешается через коллектор, несмотря на тот факт, что ток идет «неправильным путем» через этот PN соединение.Это действие зависит от квантовой физики полупроводниковых переходов и может иметь место только тогда, когда два перехода должным образом разнесены и концентрации легирования трех слоев правильно пропорциональны. Два диода, соединенные последовательно, не соответствуют этим критериям; верхний диод никогда не может «включиться» при обратном смещении, независимо от того, сколько тока проходит через нижний диод в контуре базового провода. См. Биполярные переходные транзисторы, Раздел 2 для получения более подробной информации.

То, что концентрации легирования играют решающую роль в особых возможностях транзистора, еще раз подтверждается тем фактом, что коллектор и эмиттер не взаимозаменяемы.Если рассматривать транзистор просто как два соединенных друг с другом PN перехода или просто как простой сэндвич из материалов N-P-N или P-N-P, может показаться, что любой конец транзистора может служить коллектором или эмиттером. Однако это не так. При подключении «в обратном направлении» в цепи ток база-коллектор не сможет управлять током между коллектором и эмиттером. Несмотря на то, что эмиттерный и коллекторный слои биполярного транзистора имеют одно и то же легирование типа (N или P), коллектор и эмиттер определенно не идентичны!

Переход база-эмиттер допускает ток, поскольку он смещен в прямом направлении, а переход база-коллектор имеет обратное смещение.Действие базового тока можно представить как «открытие затвора» для тока через коллектор. Более конкретно, любая заданная величина тока база-эмиттер допускает ограниченную величину тока база-коллектор.

В следующем разделе это ограничение тока транзистора будет исследовано более подробно.

ОБЗОР:

  • При тестировании мультиметром в режимах «сопротивление» или «проверка диодов» транзистор ведет себя как два соединенных друг с другом PN (диодных) перехода.
  • PN-переход эмиттер-база имеет немного большее прямое падение напряжения, чем PN-переход коллектор-база, из-за более сильного легирования полупроводникового слоя эмиттера.