Высота воздушной прослойки между утеплителем и чистовым покрытием: Системы теплоизоляции зданий с воздушной прослойкой

Содержание

Высота воздушной прослойки между утеплителем и чистовым покрытием — Про стройку и не только

6 Янв by admin

При проектировании и строительстве жилых зданий необходимо обеспечить надлежащую теплозащитную способность их наружных ограждающих конструкций. С учётом вышесказанного конструктивные решения наружных ограждений (однородных и неоднородных) и толщины их слоёв определяют с учётом температурного перепада между наружным и внутренним воздухом и теплозащитных характеристик материала слоёв ограждения. Вопросы расчёта ограждающих конструкций на теплопередачу, теплоустойчивость, образование конденсата, воздухо- и паропроницаемость изучаются в дисциплине «Строительная физика», а ниже будут рассмотрены некоторые варианты конструктивных решений ограждающих конструкций с позиций обеспечения их теплозащитных свойств и паропроницания.

 

30.2. Приёмы обеспечения теплозащиты и влажностного режима наружных ограждающих конструкций

 

Основными наружными ограждающими конструкциями, обеспечивающими теплозащиту зданий, являются стены и покрытия. Повышение теплозащиты стен достигается или увеличением их толщины или введением в конструкцию стен утепляющих слоёв из теплоизоляционных материалов. Увеличение толщины однородных стен из плотных материалов неэффективно из-за необходимой большой их толщины и соответственно массы. Слоистые несущие и самонесущие стены более экономичны и могут быть кирпично-бетонными, кирпичными с термовкладышами, с воздушной прослойкой, с утепляющей гипсовой или легкобетонной плитой (см. п. 18.3), а также могут состоять из внутреннего несущего слоя из прочных материалов, утепляющего слоя их эффективных теплоизоляционных материалов, воздушной прослойки, наружного слоя для защиты от внешних атмосферных воздействий и отделки фасада. Примером такого конструктивного решения является стена, состоящая из внутреннего кирпичного слоя толщиной 250 или 380 мм, утепляющего слоя из пенополистирола толщиной 100 мм, воздушной прослойки в 40 мм и наружного защитно-декоративного слоя толщиной 120 мм из лицевого кирпича (рис. 30.1). Вместо пенополистирола в качестве утеплителя могут применяться минераловатные или стекловолокнистые плиты, хотя стоимость этих материалов значительно выше стоимости пенополистирола.

 

 

Рис. 30.1. Трёхслойная кирпичная стена с воздуш-ной прослойкой; 1 – венти-лируемая воздушная прослойка; 2 – утеплитель; 3 – ветрозащита;4 – обли-цовка лицевым кирпичом; 5 – гибкие связи с фиксато-рами; 6 – штукатурка; 7 – несущий кирпичный слой

 

 

В домах высотой до 3-х этажей несущие и самонесущие стены могут устраивать однослойными из легкобетонных (ячеистобетонных или газосиликатных) блоков при толщине стен 400–500 мм (рис. 30.2) или многослойными с эффективным утеплителем и защитно-декоративным слоем (рис. 30.3.1 и рис. 30.3.2).


 

Рис. 30.2. Стена из

легкобетонных блоков

с утеплением

 

 

 

Рис. 30.3.1. Трёхслойная стена из блоков и облицовкой коло-тым кирпичом:1 – вентили-руемая воздушная прослойка; 2 – утеплитель; 3 – облицовка колотым кирпичом; 4 – гиб-кие связи с фиксаторами;5 – кладка из блоков; 6 – штукатурка

 

 

 

 

Рис. 30.3.2. Вариант трёхслой-ной стены из легкобетонных блоков с утеплителем, ветро-защитой и облицовкой коло-тым кирпичом:1 – вентили-руемая воздушная прослойка; 2 – утеплитель;3 – ветрозащита; 4 – облицовка колотым кирпи-чом; 5 – гибкие связи с фиксато-ром; 6 – кладка из блоков; 7 – штукатурка

 

В процессе эксплуатации жилых домов в результате диффузии водяных паров через наружные ограждающие конструкции в холодное время года возможно образование конденсата в толще последних. При этом в однородном ограждении плоскость возможной конденсации располагается примерно в 1/3 толщины ограждения от наружной поверхности, а в слоистых ограждениях – за утепляющим слоем или в утеплителе, т.е. в слоистых ограждениях утеплитель целесообразно размещать ближе к наружной поверхности.

При увлажнении ограждающей конструкции, в том числе и за счёт диффузии водяного пара, снижается её теплозащитная способность, а при низкой наружной температуре возможно образование и замерзание конденсата в толще ограждения перед наружным защитно-отдельным слоем и отслаивание этого слоя от стены. Сказанное выше в первую очередь касается ограждений, примыкающих к влажным помещениям, к которым в жилых домах относятся кухни и санитарно-технические помещения.

В жилых помещениях квартир в отопительный период относительная влажность воздуха не превышает нормальную (φ

в=50–60%) и в наружных однослойных и многослойных ограждающих конструкциях, примыкающих к этим помещениям, не требуется устройства дополнительной пароизоляции. В ограждениях, примыкающих к помещениям с повышенной влажностью (φв> 60%), рекомендуется устраивать дополнительную пароизоляцию, например, ограждения с внутренней стороны можно покрыть пароизоляцией в виде масляных или эмалевых красок, лаков либо облицевать керамической плиткой.А в конструкции чердачных, надподвальных и нижних перекрытий необходимо ввести пароизоляцию, защищающую утеплитель от увлажнения (см. п. 21.8).

К тому же в помещениях с повышенной влажностью внутреннего воздуха предусматривается вытяжная вентиляция с помощью внутристенных или приставных вентиляционных каналов, вентиляционных блоков, панелей или шахт (см. п. 28.2). В совмещённых покрытиях для защиты утеплителя от увлажнения устраивают в утеплителе вентиляционные каналы, сообщающиеся с наружным воздухом (см. п. 22.6) или устанавливают аэраторы (см. п. 22.8).

Если внутренние слои наружных ограждающих конструкций не обеспечивают требуемое сопротивление паропроницанию для защиты утеплителя от увлажнения, то кроме перечисленных выше приёмов пароизоляции возможно устройство вентилируемых фасадов и крыш. Для этого между утеплителем и наружным защитно-отделочным слоем устраивают вентилируемую воздушную прослойку, в которой воздух движется снизу вверх вследствие естественной тяги (гравитационного подсоса) и в результате воздухообмена происходит удаление влаги из утеплителя. В вентилируемую прослойку воздух поступает снизу из приточных отверстий, располагаемых на уровне цоколя (для стен и крыши) или на уровне карниза (для крыши).Водяные пары выходят через вытяжные устройства, располагаемые в верхней части вентилируемой конструкции: на уровне карниза для стены и в коньке или фронтоне крыши – для совместно вентилируемых стены и крыши или одной крыши (см. рис. 22.18.2;28.3; 28.4; 28.5; 30.3.1; 30.3.2; 30.4; 30.5 и 30.6).

В качестве утеплителя в вентилируемых конструкциях могут применяться пенополистирольные, минераловатные или стекловолокнистые плиты, которые крепят к несущему слою стен с помощью специальных приспособлений (анкеров-дюбелей, металлических столиков, клея и др.), а в качестве защитно-отдельных слоёв (облицовки) могут применяться кладка толщиной 120 мм из лицевого камня, полимербетонные или цементно-волокнистые плиты размером 600х600; 600х1200; 1200х2700 и 1200х3000 мм и толщиной 6–12 мм, а также керамическая плитка, размером 600х600 мм и толщиной 10–12 мм и другие элементы, например, полимерметаллические плиты.

 

Рис. 30.4. Вариант соединения вентилируемой скатной крыши с вентилируемой трёхслойной кирпичной стеной (мансардный этаж)

 

Рис. 30.5. Вариант соединения вентилируемых скатной крыши и блочной слоистой стены (мансардный этаж)

 

 

Рис. 30.6. Вариант верха двускатной вентилируемой «тёплой» крыши с черепичной кровлей (мансардный этаж)

Отделочный слой из кирпичной кладки опирают на специальные поэтажные плиты с отверстиями для вентиляции, а облицовочные плиты крепят с помощью винтов-саморезов или специальных зацепных приспособлений к металлическим элементам в виде уголков или швеллеров, устанавливаемых вертикально и в свою очередь прикрепляемых к несущему слою стены (рис. 30.7).

 

Рис. 30.7. Вариант устройства вентилируемой системы фасада:1 – облицовка; 2 – вентили-руемая прослойка; 3 – теплоизоляционный слой; 4 – стена здания; 5 – анкерные устройства; 6 – самонарезающийся винт; 7 – шпилька крепёжная;8 – опорный столик; 9 – профиль металлический; 10 – силиконовая мастика; 11 –ветрозащитная плёнка

 

Кроме минеральных материалов в качестве облицовки могут применяться металлические листы-панели, толщиной 1–6 мм с защитным покрытием.

Дома с вентилируемыми фасадами имеют привлекательный внешний вид, но устройство вентилируемых фасадов существенно удорожает строительство, к тому же оно трудоёмко и особенно металлоёмко. Надёжность и долговечность таких конструктивных решений утепления и влагоудаления в условиях Беларуси пока недостаточно изучена. По предварительным данным её долговечность составляет 15–25 лет, что не соответствует принципу, согласно которому основные несущие и ограждающие конструкции зданий должны иметь приблизительно одинаковые сроки технической службы для сокращения капитальных и текущих ремонтов.

 

 

ЛИТЕРАТУРА

 

1. Архитектура гражданских и промышленных зданий; Том II; Основы проектирования; Под редакцией Предтеченского В.М.; – М: Стройиздат, 1976.

2. Архитектура гражданских ипромышленных зданий; Том III; Жилые здания; Под редакцией Шевцова К.К.; – М: Стройиздат, 1983.

3. Великовский Л.Б. Архитектура гражданских и промышленных зданий; Том IV; Общественные здания; – М: Стройиздат, 1977.

4. Тосунова М.И., Гаврилова М.М., Полещук И.В. Архитектурное проектирование; – М: Высшая школа, 1988.

5. Сербинович П.П. Архитектура гражданских и промышленных зданий. Гражданские здания массового строительства; – М: Высшая школа, 1975.

6. Скоров Б.М. Гражданские и промышленные здания. – М: Высшая школа, 1978.

7. Архитектурные конструкции; Под редакцией Казбек-Казиева З.А. – М: Высшая школа, 1989.

8. Буга П.Г. Гражданские, промышленные и сельскохозяйственные здания. – М: Высшая школа, 1987.

9. Конструкции гражданских зданий; Под редакцией Туполева М.С. – М: Стройиздат, 1973.

10. Черкасов Н.А. Архитектура. – Киев: Будiвельник, 1968.

11. Маклакова Т.Г. Архитектура гражданских и промышленных зданий. – М: Стройиздат, 1981.

12. Маклакова Т.Г., Нанасова С.М., Бородай Е.Д., Житков В.П. Конструкции гражданских зданий. – М: Стройиздат, 1986.

13. Воробьева С.А., Камейко В.А. и др. Каменные конструкции и их возведение. Справочник строителя. – М: Стройиздат, 1989.

14. Неелов В.А. Гражданские здания. – М: Стройиздат, 1988.

15. Дехтяр С.Б., Армановский Л.И., Диденко В.С., Кузнецов Д.В. Архитектурные конструкции гражданских зданий. – Киев: Будiвельник, 1987.

16. Волга В.С., Армановский Л.И., Дехтяр С.Б. и др. Архитектурные конструкции гражданских зданий. – Киев: Будiвельник, 1988.

17. Шерешевский И.А. Конструкции гражданских зданий. – Л: Стройиздат, 1981.

18. Миловидов Н.Н., Орловский Б.Я., Белкин А.Н. Гражданские здания. – М: Высшая школа, 1987.

19. Ким Н.Н., Маклакова Т.Г. Архитектура гражданских и промышленных зданий. – М: Стройиздат, 1987.

20. Благовещенский Ф.А., Букина Е.Ф. Архитектурные конструкции. – М: Высшая школа, 1985.

21. СТБ 1154-99. Жилище. – Минск, 1999.

22. СНБ 3.02.04-03. Жилые здания. – Минск, 2003.

23. СНБ 3.01.04-02. Градостроительство. Планировка и застройка населённых пунктов. – Минск, 2003.

24. Проектирование и устройство кровель. П1-03 к СНБ 5.08.01-2000. – Минск, 2004.

25. Пецольд Т.М., Абрамович С.С., Зубарев В.Я. Новое в индустриальном домостроении. «Архитектура и строительство», № 01, 2002.

26. Мордич А.И. Эффективные системы зданий и пути их совершенствования. «Архитектура и строительство», № 03, 2003.

27. Зизов В.В., Кузьмичев Р.В. Вентилируемые системы утепления стен. «Архитектура и строительство», № 03, 2006.



Source: studopedia.su

Устройство стены с вентилируемой воздушной прослойкой

Содержание:

Сухой утеплитель — залог 100% защиты от утечки тепла. В силу естественной диффузии от стен дома движутся пары влаги, которые в норме испаряются с поверхности. А если дом утеплён и теплоизоляция закрыта плотными материалами, движение потоков нарушается. В следствии этого теплоизоляция может намокнуть и потерять изолирующие свойства. Как сделать, чтобы испаряемая влага свободно уходила из утепления, давайте разбираться вместе!

Какие бывают виды наружного утепления с вентилируемым зазором?

Теплоизоляционные материалы всегда покрывают декоративной отделкой или наружной облицовкой из панелей и плит. Отделочный слой выполняет не только декоративную функцию, но также защищает утеплитель от намокания, выветривания и повреждения. Чаще всего встречаются две системы наружной теплоизоляции, для которых конструктивно обязательно устройство воздушной прослойки:

  • Вентилируемые фасадные системы;
  • Облицовка кирпичом.

Обе системы отличны друг от друга способом устройства, составом конструкции и наружной отделкой, потому подход к устройству вентиляции разный.
Для устройства навесного вентилируемого фасада наши специалисты рекомендуют:

Rockwool
ЛАЙТ БАТТС СКАНДИК

baswool

Басвул
ВентФасад

Роквул Венти Баттс

Rockwool
Венти БАТТС

Как обеспечить вентилирование в прослойке под облицовкой?

При облицовке стены из пено- или газобетонных блоков лицевым кирпичом снаружи образуется стенка, пропускающая водяные пары значительно хуже блоков из ячеистого бетона. В этих случаях в стенах устраивают вентилируемую воздушную прослойку, расположенную ближе к наружной части стены между обшивкой или защитной стенкой и холодной поверхностью утеплителя.

  • Вентиляция воздушной прослойки осуществляется через специальные продухи, сделанные в нижней и верхней частях стены, через которые парообразная влага удаляется наружу. Рекомендуемая площадь вентиляционных отверстий — 75 см2 на 20 м2 поверхности стены.
  • Верхние вентиляционные продухи располагают у карнизов, нижние — у цоколей. При этом нижние отверстия предназначаются не только для вентиляции, но и для отвода воды.
  • Для осуществления вентиляции прослойки в нижней части стены устанавливают щелевой кирпич, положенный на ребро, или в нижней части стены укладывают кирпич или блоки не вплотную друг к другу, а не некотором расстоянии друг от друга, и образовавшийся зазор не заполняют кладочным раствором.

Таблица: Сравнение свойств популярных утеплителей для вентфасада

ПараметрВЕНТИ БАТТСВЕНТИ БАТТС ДЗначение
Плотность90 кг/м3Верхний слой 90 кг/м3

Нижний слой 45 кг/м3

37 кг/м3
Теплопроводностьλ10 = 0.034 Вт/(м·К)
λ25 = 0.036 Вт/(м·К)
λА = 0.042 Вт/(м·К)
λБ = 0.045 Вт/(м·К)
λ10 = 0.035 Вт/(м·К)
λ25 = 0.037 Вт/(м·К)
λА = 0.038 Вт/(м·К)
λБ = 0.040 Вт/(м·К)
λ10 = 0.036 Вт/(м·К)
λ25 = 0.037 Вт/(м·К)
λА = 0.039 Вт/(м·К)
λБ = 0.041 Вт/(м·К)
Группа горючести венти баттсНГНГНГ
Предел прочности на отрыв слоев, не менее4 кПа4 кПа6 кПа
Водопоглощение при полном погружении, не более1.5 % по объему1.0 % по объему1.0 кг/м2
Паропроницаемость, не менееμ = 0.30 мг/(м·ч·Па)КМ0КМ0

Как обустроить вентилируемую прослойку в фасадной теплоизоляции?

Если наружная обшивка выполняется из плотных паронепроницаемых листов, то в стене устраивают вентилируемую воздушную прослойку. Толщина зазора для проветривания составляет 60 мм, это расстояние между наружной обшивкой и плитами утеплителя. Паропроницаемую минвату необходимо закрывать ветрозащитной паровыводящей мембраной.jekspertnoe-zakljuchenie

Одним из вариантов отделки стен малоэтажных домов является устройство защитного экрана из сайдинга. Эти тонкие профилированные «доски» изготавливаются из металла (металлический сайдинг) или поливинилхлорида (виниловый сайдинг, пластиковая вагонка).

Декоративные панели сайдинга могут имитировать деревянные доски, каменную кладку и др. Между и декоративным экраном из сайдинга предусматривается вентилируемая воздушная прослойка.

  • При монтаже сайдинга к существующему каркасу или стене крепятся вертикальные направляющие с шагом 600 мм: из деревянных реек 4х6 см, 5х5 см, специальных профилированных планок из ПВХ или оцинкованной стали.
  • Направляющие устанавливают строго вертикально. При неровностях стены их выравнивают с помощью прокладок из дерева, фанеры или уменьшают размер реек.
  • Пространство между направляющими заполняется теплоизоляционными плитами rockwool ЛАЙТ БАТТС® или Венти Баттс. Если требуемая толщина слоя утеплителя больше толщины реек, то их устанавливают в 2 ряда — горизонтально и вертикально.
  • Рейки и утеплитель должны быть установлены так, чтобы между поверхностями утеплителя и сайдинга оставалась воздушная прослойка.

jekspertnoe-zakljuchenie

Для вентиляции воздушной прослойки и удаления диффузионной влаги в нижних кромках панелей сайдинга находятся специальные отверстия для вентиляции, через которые парообразная влага удаляется наружу.

Обратите внимание! С наружной стороны утеплитель из каменной ваты лайт баттс должен быть защищен ветрозащитным паропроницаемым материалом.  Панели сайдинга устанавливаются с учетом возможных температурных деформаций. Поэтому при монтаже сайдинга, укрепляя панели к фаскам и кромкам, оставляют зазор в зимнее время — 10 мм, в летнее время — 6 мм.

Видео: Монтаж вентфасада с плитами Роквул

Остались вопросы по утеплению и устройству вентилируемых зазоров? Смелее набирайте номер на сайте! Наши менеджеры помогают выбрать материал, рассчитают бесплатно количество и подскажут, как купить утеплитель по самой выгодной цене со скидкой! Спешите, выгодные условия ждут Вас!

Рекомендации Рекомендации по проектированию и применению для строительства и реконструкции зданий в г. Москве фасадной системы с вентилируемым воздушным зазором Стоун-Строй

На главную | База 1 | База 2 | База 3
Поиск по реквизитамПоиск по номеру документаПоиск по названию документаПоиск по тексту документа
Искать все виды документовДокументы неопределённого видаISOАвиационные правилаАльбомАпелляционное определениеАТКАТК-РЭАТПЭАТРВИВМРВМУВНВНиРВНКРВНМДВНПВНПБВНТМ/МЧМ СССРВНТПВНТП/МПСВНЭВОМВПНРМВППБВРДВРДСВременное положениеВременное руководствоВременные методические рекомендацииВременные нормативыВременные рекомендацииВременные указанияВременный порядокВрТЕРВрТЕРрВрТЭСНВрТЭСНрВСНВСН АСВСН ВКВСН-АПКВСПВСТПВТУВТУ МММПВТУ НКММПВУП СНЭВУППВУТПВыпускГКИНПГКИНП (ОНТА)ГНГОСТГОСТ CEN/TRГОСТ CISPRГОСТ ENГОСТ EN ISOГОСТ EN/TSГОСТ IECГОСТ IEC/PASГОСТ IEC/TRГОСТ IEC/TSГОСТ ISOГОСТ ISO GuideГОСТ ISO/DISГОСТ ISO/HL7ГОСТ ISO/IECГОСТ ISO/IEC GuideГОСТ ISO/TRГОСТ ISO/TSГОСТ OIML RГОСТ ЕНГОСТ ИСОГОСТ ИСО/МЭКГОСТ ИСО/ТОГОСТ ИСО/ТСГОСТ МЭКГОСТ РГОСТ Р ЕНГОСТ Р ЕН ИСОГОСТ Р ИСОГОСТ Р ИСО/HL7ГОСТ Р ИСО/АСТМГОСТ Р ИСО/МЭКГОСТ Р ИСО/МЭК МФСГОСТ Р ИСО/МЭК ТОГОСТ Р ИСО/ТОГОСТ Р ИСО/ТСГОСТ Р ИСО/ТУГОСТ Р МЭКГОСТ Р МЭК/ТОГОСТ Р МЭК/ТСГОСТ ЭД1ГСНГСНрГСССДГЭСНГЭСНмГЭСНмрГЭСНмтГЭСНпГЭСНПиТЕРГЭСНПиТЕРрГЭСНрГЭСНсДИДиОРДирективное письмоДоговорДополнение к ВСНДополнение к РНиПДСЕКЕНВиРЕНВиР-ПЕНиРЕСДЗемЕТКСЖНМЗаключениеЗаконЗаконопроектЗональный типовой проектИИБТВИДИКИМИНИнструктивное письмоИнструкцияИнструкция НСАМИнформационно-методическое письмоИнформационно-технический сборникИнформационное письмоИнформацияИОТИРИСОИСО/TRИТНИТОсИТПИТСИЭСНИЭСНиЕР Республика КарелияККарта трудового процессаКарта-нарядКаталогКаталог-справочникККТКОКодексКОТКПОКСИКТКТПММ-МВИМВИМВНМВРМГСНМДМДКМДСМеждународные стандартыМетодикаМетодика НСАММетодические рекомендацииМетодические рекомендации к СПМетодические указанияМетодический документМетодическое пособиеМетодическое руководствоМИМИ БГЕИМИ УЯВИМИГКМММНМОДНМонтажные чертежиМос МУМосМРМосСанПинМППБМРМРДСМРОМРРМРТУМСанПиНМСНМСПМТМУМУ ОТ РММУКМЭКННАС ГАНБ ЖТНВННГЭАНДНДПНиТУНКНормыНормы времениНПНПБНПРМНРНРБНСПНТПНТП АПКНТП ЭППНТПДНТПСНТСНЦКРНЦСОДМОДНОЕРЖОЕРЖкрОЕРЖмОЕРЖмрОЕРЖпОЕРЖрОКОМТРМОНОНДОНКОНТПОПВОПКП АЭСОПНРМСОРДОСГиСППиНОСНОСН-АПКОСПОССПЖОССЦЖОСТОСТ 1ОСТ 2ОСТ 34ОСТ 4ОСТ 5ОСТ ВКСОСТ КЗ СНКОСТ НКЗагОСТ НКЛесОСТ НКМОСТ НКММПОСТ НКППОСТ НКПП и НКВТОСТ НКСМОСТ НКТПОСТ5ОСТНОСЭМЖОТРОТТПП ССФЖТПБПБПРВПБЭ НППБЯПВ НППВКМПВСРПГВУПереченьПиН АЭПисьмоПМГПНАЭПНД ФПНД Ф СБПНД Ф ТПНСТПОПоложениеПорядокПособиеПособие в развитие СНиППособие к ВНТППособие к ВСНПособие к МГСНПособие к МРПособие к РДПособие к РТМПособие к СНПособие к СНиППособие к СППособие к СТОПособие по применению СППостановлениеПОТ РПОЭСНрППБППБ-АСППБ-СППБВППБОППРПРПР РСКПР СМНПравилаПрактическое пособие к СППРБ АСПрейскурантПриказПротоколПСРр Калининградской областиПТБПТЭПУГПУЭПЦСНПЭУРР ГазпромР НОПРИЗР НОСТРОЙР НОСТРОЙ/НОПР РСКР СМНР-НП СРО ССКРазъяснениеРаспоряжениеРАФРБРГРДРД БГЕИРД БТРД ГМРД НИИКраностроенияРД РОСЭКРД РСКРД РТМРД СМАРД СМНРД ЭОРД-АПКРДИРДМРДМУРДПРДСРДТПРегламентРекомендацииРекомендацияРешениеРешение коллегииРКРМРМГРМДРМКРНДРНиПРПРРТОП ТЭРС ГАРСНРСТ РСФСРРСТ РСФСР ЭД1РТРТМРТПРУРуководствоРУЭСТОП ГАРЭГА РФРЭСНрСАСанитарные нормыСанитарные правилаСанПиНСборникСборник НТД к СНиПСборники ПВРСборники РСН МОСборники РСН ПНРСборники РСН ССРСборники ценСБЦПСДАСДАЭСДОССерияСЗКСНСН-РФСНиПСНиРСНККСНОРСНПСОСоглашениеСПСП АССП АЭССправочникСправочное пособие к ВСНСправочное пособие к СНиПСправочное пособие к СПСправочное пособие к ТЕРСправочное пособие к ТЕРрСРПССНССЦСТ ССФЖТСТ СЭВСТ ЦКБАСТ-НП СРОСТАСТКСТМСТНСТН ЦЭСТОСТО 030 НОСТРОЙСТО АСЧМСТО БДПСТО ВНИИСТСТО ГазпромСТО Газпром РДСТО ГГИСТО ГУ ГГИСТО ДД ХМАОСТО ДОКТОР БЕТОНСТО МАДИСТО МВИСТО МИСТО НААГСТО НАКССТО НКССТО НОПСТО НОСТРОЙСТО НОСТРОЙ/НОПСТО РЖДСТО РосГеоСТО РОСТЕХЭКСПЕРТИЗАСТО САСТО СМКСТО ФЦССТО ЦКТИСТО-ГК «Трансстрой»СТО-НСОПБСТПСТП ВНИИГСТП НИИЭССтП РМПСУПСССУРСУСНСЦНПРТВТЕТелеграммаТелетайпограммаТематическая подборкаТЕРТЕР Алтайский крайТЕР Белгородская областьТЕР Калининградской областиТЕР Карачаево-Черкесская РеспубликаТЕР Краснодарского краяТЕР Мурманская областьТЕР Новосибирской областиТЕР Орловской областиТЕР Республика ДагестанТЕР Республика КарелияТЕР Ростовской областиТЕР Самарской областиТЕР Смоленской обл.ТЕР Ямало-Ненецкий автономный округТЕР Ярославской областиТЕРмТЕРм Алтайский крайТЕРм Белгородская областьТЕРм Воронежской областиТЕРм Калининградской областиТЕРм Карачаево-Черкесская РеспубликаТЕРм Мурманская областьТЕРм Республика ДагестанТЕРм Республика КарелияТЕРм Ямало-Ненецкий автономный округТЕРмрТЕРмр Алтайский крайТЕРмр Белгородская областьТЕРмр Карачаево-Черкесская РеспубликаТЕРмр Краснодарского краяТЕРмр Республика ДагестанТЕРмр Республика КарелияТЕРмр Ямало-Ненецкий автономный округТЕРпТЕРп Алтайский крайТЕРп Белгородская областьТЕРп Калининградской областиТЕРп Карачаево-Черкесская РеспубликаТЕРп Краснодарского краяТЕРп Республика КарелияТЕРп Ямало-Ненецкий автономный округТЕРп Ярославской областиТЕРрТЕРр Алтайский крайТЕРр Белгородская областьТЕРр Калининградской областиТЕРр Карачаево-Черкесская РеспубликаТЕРр Краснодарского краяТЕРр Новосибирской областиТЕРр Омской областиТЕРр Орловской областиТЕРр Республика ДагестанТЕРр Республика КарелияТЕРр Ростовской областиТЕРр Рязанской областиТЕРр Самарской областиТЕРр Смоленской областиТЕРр Удмуртской РеспубликиТЕРр Ульяновской областиТЕРр Ямало-Ненецкий автономный округТЕРррТЕРрр Ямало-Ненецкий автономный округТЕРс Ямало-Ненецкий автономный округТЕРтр Ямало-Ненецкий автономный округТехнический каталогТехнический регламентТехнический регламент Таможенного союзаТехнический циркулярТехнологическая инструкцияТехнологическая картаТехнологические картыТехнологический регламентТИТИ РТИ РОТиповая инструкцияТиповая технологическая инструкцияТиповое положениеТиповой проектТиповые конструкцииТиповые материалы для проектированияТиповые проектные решенияТКТКБЯТМД Санкт-ПетербургТНПБТОИТОИ-РДТПТПРТРТР АВОКТР ЕАЭСТР ТСТРДТСНТСН МУТСН ПМСТСН РКТСН ЭКТСН ЭОТСНэ и ТЕРэТССЦТССЦ Алтайский крайТССЦ Белгородская областьТССЦ Воронежской областиТССЦ Карачаево-Черкесская РеспубликаТССЦ Ямало-Ненецкий автономный округТССЦпгТССЦпг Белгородская областьТСЦТСЦ Белгородская областьТСЦ Краснодарского краяТСЦ Орловской областиТСЦ Республика ДагестанТСЦ Республика КарелияТСЦ Ростовской областиТСЦ Ульяновской областиТСЦмТСЦО Ямало-Ненецкий автономный округТСЦп Калининградской областиТСЦПГ Ямало-Ненецкий автономный округТСЦэ Калининградской областиТСЭМТСЭМ Алтайский крайТСЭМ Белгородская областьТСЭМ Карачаево-Черкесская РеспубликаТСЭМ Ямало-Ненецкий автономный округТТТТКТТПТУТУ-газТУКТЭСНиЕР Воронежской областиТЭСНиЕРм Воронежской областиТЭСНиЕРрТЭСНиТЕРэУУ-СТУказУказаниеУказанияУКНУНУОУРврУРкрУРррУРСНУСНУТП БГЕИФАПФедеральный законФедеральный стандарт оценкиФЕРФЕРмФЕРмрФЕРпФЕРрФормаФорма ИГАСНФРФСНФССЦФССЦпгФСЭМФТС ЖТЦВЦенникЦИРВЦиркулярЦПИШифрЭксплуатационный циркулярЭРД
Показать все найденныеПоказать действующиеПоказать частично действующиеПоказать не действующиеПоказать проектыПоказать документы с неизвестным статусом
Упорядочить по номеру документаУпорядочить по дате введения

Ограждения с воздушными прослойками


⇐ ПредыдущаяСтр 8 из 13Следующая ⇒

 

Одним из приемов, повышающих теплоизоляционные качества ограждений, является устройство воздушной прослойки. Ее используют в конструкциях наружных стен, перекрытий, окон, витражей. В стенах и перекрытиях ее применяют и для предупреждения переувлажнения конструкций.

Воздушная прослойка может быть герметичной или вентилируемой.

Рассмотрим теплопередачу герметичной воздушной прослойки.

Термическое сопротивление воздушной прослойки Ral нельзя определять как сопротивление теплопроводности слоя воздуха, так как перенос тепла через прослойку при разности температур на поверхностях происходит, в основном, путем конвекции и излучения (рис.3.14). Количество тепла,

 

передаваемого путем теплопроводности, мало, так как мал коэффициент теплопроводности воздуха (0,026 Вт/(м·ºС)).

В прослойках, в общем случае, воздух находится в движении. В вертикальных — он перемещается вверх вдоль теплой поверхности и вниз – вдоль холодной. Имеет место конвективный теплообмен, и его интенсивность возрастает с увеличением толщины прослойки, поскольку уменьшается трение воздушных струй о стенки. При передаче тепла конвекцией преодолевается сопротивление пограничных слоев воздуха у двух поверхностей, поэтому для расчета этого количества тепла коэффициент теплоотдачи αк следует уменьшить вдвое.

Для описания теплопереноса совместно конвекцией и теплопроводностью обычно вводят коэффициент конвективного теплообмена α’к, равный

α’к = 0,5 αк + λaal , (3.23)

где λa и δal – коэффициент теплопроводности воздуха и толщина воздушной прослойки, соответственно.

Этот коэффициент зависит от геометрической формы и размеров воздушных прослоек, направления потока тепла. Путем обобщения большого количества экспериментальных данных на основе теории подобия М.А.Михеев установил определенные закономерности для α’к . В таблице 3.5 в качестве примера приведены значения коэффициентов α’к , рассчитанные им при средней температуре воздуха в вертикальной прослойке t = + 10º С.

 

 

Таблица 3.5

Коэффициенты конвективного теплообмена в вертикальной воздушной прослойке

Толщина вертикальной прослойки, м 0,01 0,02 0.03 0,05 0,10
Коэффициент конвективного теплообмена, Вт/(м2·ºС) 2,0 1,7 1,5 1,3 1,1

 

Коэффициент конвективного теплообмена в горизонтальных воздушных прослойках зависит от направления теплового потока. Если верхняя поверхность нагрета больше, чем нижняя, движения воздуха почти не будет, так как теплый воздух сосредоточен вверху, а холодный – внизу. Поэтому достаточно точно будет выполняться равенство

α’к = λaal .

 

Следовательно, конвективный теплообмен существенно уменьшается, а термическое сопротивление прослойки увеличивается. Горизонтальные воздушные прослойки эффективны, например, при их использовании в утепленных цокольных перекрытиях над холодными подпольями, где тепловой поток направлен сверху вниз.

Если поток тепла направлен снизу вверх, то возникают восходящие и нисходящие потоки воздуха. Передача тепла конвекцией играет существенную роль, и значение α’к возрастает.

Для учета действия теплового излучения вводится коэффициент лучистого теплообмена αл (Глава 2, п.2.5).

Пользуясь формулами (2.13), (2.17), (2.18) определим коэффициент теплообмена излучением αл в воздушной прослойке между конструктивными слоями кирпичной кладки. Температуры поверхностей: t1 = + 15 ºС, t2 = + 5 ºС; степень черноты кирпича: ε1= ε2= 0,9.

По формуле (2.13) найдем, что ε = 0,82. Температурный коэффициент θ = 0,91. Тогда αл = 0,82∙5,7∙0,91 = 4,25 Вт/(м2·ºС).

Величина αл намного больше α’к (см табл.3.5), следовательно, основное количество тепла через прослойку переносится излучением. Для того, чтобы уменьшить этот тепловой поток и увеличить сопротивление теплопередаче воздушной прослойки, рекомендуют использовать отражательную изоляцию, то есть покрытие одной или обеих поверхностей, например, алюминиевой фольгой (так называемое «армирование»). Такое покрытие обычно устраивают на теплой поверхности, чтобы избежать конденсации влаги, ухудшающей отражательные свойства фольги. «Армирование» поверхности уменьшает лучистый поток примерно в 10 раз.

Рекомендуется располагать воздушные прослойки ближе к наружной стороне ограждения, так как при этом понижается температура, а значит, θ и αл .

Термическое сопротивление герметичной воздушной прослойки при постоянной разности температур на ее поверхностях определяется по формуле

. (3.24)

 

 

Таблица 3.6

Термическое сопротивление замкнутых воздушных прослоек

Толщина воздушной прослойки, м Ral, м2·ºС/Вт
для горизонтальных прослоек при потоке тепла снизу вверх и для вертикальных прослоек для горизонтальных прослоек при потоке тепла сверху вниз
лето зима лето зима
0,01 0,13 0,15 0,14 0,15
0,02 0,14 0,15 0,15 0,19
0,03 0,14 0,16 0,16 0,21
0,05 0,14 0,17 0,17 0,22
0,1 0,15 0,18 0,18 0,23
0,15 0,15 0,18 0,19 0,24
0,2-0.3 0,15 0,19 0,19 0,24

 

 

Значения Ral для замкнутых плоских воздушных прослоек приведены в таблице 3.6. К ним можно отнести, например, прослойки между слоями из плотного бетона, который практически не пропускает воздух. Экспериментально показано, что в кирпичной кладке при недостаточном заполнении швов между кирпичами раствором имеет место нарушение герметичности, то есть проникновение наружного воздуха в прослойку и резкое снижение ее сопротивления теплопередаче.

Согласно СП 23-101-2004 рекомендуется применять невентилируемые воздушные прослойки в стенах — толщиной не менее 40 мм (при устройстве отражательной теплоизоляции – 10 мм).

При покрытии одной или обеих поверхностей прослойки алюминиевой фольгой ее термическое сопротивление следует увеличивать в два раза.

В настоящее время широкое распространение получили стены с вентилируемой воздушной прослойкой (стены с вентилируемым фасадом). Навесной вентилируемый фасад – это конструкция, состоящая из материалов облицовки и подоблицовочной конструкции, которая крепится к стене таким образом, чтобы между защитно-декоративной облицовкой и стеной оставался воздушный промежуток. Для дополнительного утепления наружных конструкций между стеной и облицовкой устанавливается теплоизоляционный слой, так что вентиляционный зазор оставляется между облицовкой и теплоизоляцией.

Схема конструкции вентилируемого фасада показана на рис.3.15. Согласно СП 23-101 толщина воздушной прослойки должна быть в пределах от 60 до 150 мм.

Слои конструкции, расположенные между воздушной прослойкой и наружной поверхностью, в теплотехническом расчете не учитываются. Следовательно, термическое сопротивление наружной облицовки не входит в сопротивление теплопередаче стены, определяемое по формуле (3.6). Как отмечалось в п.2.5, коэффициент теплоотдачи наружной поверхности ограждающей конструкции с вентилируемыми воздушными прослойками αext для холодного периода составляет 10,8 Вт/(м2· ºС).

Конструкция вентилируемого фасада обладает рядом существенных преимуществ. В п.3.2 сравнивались распределения температур в холодный период в двухслойных стенах с внутренним и наружным расположением утеплителя (рис.3.4). Стена с наружным утеплением является более

«теплой», так как основной перепад температур происходит в теплоизоляционном слое. Не происходит образования конденсата внутри стены, не ухудшаются ее теплозащитные свойства, не требуется дополнительной пароизоляции (глава 5).

Воздушный поток, возникающей в прослойке из-за перепада давления, способствует испарению влаги с поверхности утеплителя. Следует отметить, что значительной ошибкой является применение пароизоляции на наружной поверхности теплоизоляционного слоя, так как она препятствует свободному отводу водяного пара наружу.

 

 


Рекомендуемые страницы:

air gap between — перевод на французский — примеры английский

Эти примеры могут содержать грубые слова на основании вашего поиска.

Эти примеры могут содержать разговорные слова, основанные на вашем поиске.

С этой целью часто используется контактная жидкость, которая обеспечивает отсутствие воздушного зазора между образцом и измерительной призмой.

À cet effet, un liquid de contact est souvent utilisé, ce qui permet d’assurer l’absence d ‘ entrefer entre l’échantillon et le prisme de mesure.

С этой целью часто используется контактная жидкость, которая обеспечивает отсутствие воздушного зазора между образцом и измерительной призмой.

Это реальный сувенир для контакта с жидкостью и гарантией отсутствия на входе l’échantillon et le prisme de mesure.

Канал (20) образован вдоль, по меньшей мере, части несущего кабеля воздушным зазором между теплоизолирующей трубкой и натяжным устройством.

Канал (20) образовал длинную часть конструкции кабеля на , а воздух на входе — изолятор термосмеси трубки и устройство натяжения.

Устройство магнитного привода может дополнительно содержать множество свободно вращающихся промежуточных элементов, расположенных внутри воздушного зазора между статором и ротором.

Le dispositif de disque magnétique peut également comprendre une pluralité d’éléments inter-pôles à patinage libre, имеет espace d’air entre le stator et le rotor.

P407 — Поддерживать воздушный зазор между штабелями / поддонами.

для создания воздушного зазора между узором на прозрачной смоле

Испытательный стенд был модифицирован для создания воздушного зазора между двумя слоями изоляции Insulfab350.

На обновленном банке для напитков espace d’air entre deux couches d’isolant Insulfab350.

Материал подкладки определяет воздушный зазор между подложкой и материалом верхнего слоя.

Определенный материал защиты на Entrefer Entre le substrat et le matériau de couche supérieure.

Часть, образующая воздушный зазор, устанавливает воздушный зазор между внутренним и внешним корпусом.

перегородка имеет на своей внешней стороне два извилистых ребра, которые увеличивают воздушный зазор между соседними выходами дуги

l’âme comporte, sur son côté extérieur, deux nervures sinueuses qui augmentent l ‘ entrefer entre des orifices de sortie d’arc électrique adjacents

так что между указанным концом и указанной стенкой имеется воздушный зазор

Расположение имеет цилиндрическую симметрию, а обмотки статора максимально тонкие, чтобы минимизировать воздушный зазор между цилиндрическими полюсными поверхностями кольцевых магнитов и задней частью.

Предусмотренное устройство симметрии цилиндров и все элементы статора, которые не могут быть востребованы, возможно, после восстановления не менее между входом и полями цилиндрических поверхностей, предназначенными для кольцевых и кольцевых поверхностей.

Стойка или распорка могут обеспечить воздушный зазор между источником света светового узла и краем волновода.

Элемент управления или элемент пространства для производства espace d’air Entre источника люмьерного ансамбля люмьерного и пограничного гидов.

Обеспечивая поворотное соединение соседних секций ротора в периферийном направлении ротора, можно поддерживать очень маленький воздушный зазор между статором и ротором.

Частично соединение поворотных секций ротора, прилегающих к ротору, является возможным для обслуживания малого статора и ротора.

Воздушный зазор между двумя полюсными наконечниками (10, 11) электромагнита (12) содержит постоянный магнит (17).

L ‘ entrefer entre les deux pièces polaires (10, 11) d’un électro-aimant (12) comporte un targetant постоянный (17).

Сердечник размещается внутри петли, образуя по меньшей мере один воздушный зазор между торцевыми поверхностями а сердечника и конструкцией.

Le noyau est placé dans un intérieur de la boucle formant au moins un entre entre les surface d’extrémité de noyau et la structure.

может использоваться для создания воздушного зазора между блокирующей сеткой

Способ создания однородного магнитного поля в воздушном зазоре между двумя полюсными наконечниками посредством катушек, компенсирующих подушкообразные и градиентные искажения поля.

Процесс производства шампанского, магнетического гомогена на , начиная с двойных фигур на бобинах, служащих для исправления искажений и градиентов.

Трехмерная сеть предназначена для создания воздушного зазора между внешней тканью и телом, что обеспечивает лучшую циркуляцию воздуха.

Трехмерное пространство, созданное для создания воздушного пространства, внешней ткани и корпуса, обеспечивающее лучшую циркуляцию воздуха.

Воздушный зазор между образцом и стенкой трубки должен быть как можно меньше.

,

Изоляционные полы: какая изоляция мне нужна?

Изоляция полов зачастую сложнее, чем изоляция других частей вашего дома. Первый этаж под домом обычно теплее, чем воздух вокруг него, поэтому он, возможно, будет третьим в вашем списке приоритетов (за стенами и крышами). Однако имеет смысл подумать о модернизации, особенно если у вас подвесной деревянный пол.

Вы также можете установить изоляцию пола поверх твердого бетонного основания, но это повлияет на увеличение высоты пола.А выкапывать пол стоит только в том случае, если вы проводите капитальный ремонт.

( БОЛЬШЕ: Полное руководство по ремонту дома)

Важность теплоизоляции полов

Предельное значение U (максимальное значение U, которое не может быть превышено), требуемое в соответствии с действующими строительными нормами, составляет:

  • Крыша : 0,20 Вт / м²
  • Первый этаж : 0,25 Вт / м²
  • Стены : 0,30 Вт / м²

Тепло поднимается по мере того, как более плотный холодный воздух падает и выталкивает более теплый воздух вверх, и вероятность его выхода выше через крышу.А земля под первым этажом будет теплее (зимой), чем наружный воздух, так почему же у пола показатель теплопроводности должен быть лучше, чем у стен?

Чтобы соответствовать новому целевому показателю энергоэффективности (TFEE) и строительным нормам 2014 г., значения U должны быть не хуже 0,13 Вт / м² как для крыши, так и для пола. Это означает, что единый конверт — хорошая идея.

( БОЛЬШЕ : Что такое грант на зеленые дома?)

Изоляция сплошного пола

Большинство современных домов имеют сплошной пол, например:

  • бетонная плита
  • бетонные доски
  • блоки и балки

Утеплитель укладывается на бетон и покрывается стяжкой.Под изоляцией будет влагонепроницаемая мембрана и, возможно, вторая мембрана сверху, в зависимости от типа стяжки.

В этом сценарии обычно используется изоляция из жесткого пенопласта , и, поскольку вам нужно такое же значение U в крыше, нам потребуется такая же толщина изоляции (180 мм). Многие строители откажутся от этой цифры — еще не так давно установка 50-миллиметрового утеплителя в пол считалась достаточно продвинутой.

Изоляция подвесного деревянного пола

Подвесной деревянный пол обычно холодный и сквозняк из-за циркуляции воздуха под ним.Установка любого количества утеплителя согреет половицы и поможет избежать сквозняков. Эффект — большее ощущение комфорта , что, в свою очередь, позволяет домовладельцу выключать термостат.

Обычно ремонтник не должен соответствовать тем же требованиям Строительных норм и иметь больше свободы в количестве устанавливаемой изоляции. С другой стороны, заметное воздействие изоляции, вероятно, будет больше.

Kingspan Kooltherm K3 устанавливается между балками в подвесном полу (Изображение предоставлено: Kingspan)

Достигает значения U, равного 0.25 было бы хорошей целью. Для этого потребуется 90 мм жесткого пенопласта или 150 мм минеральной ваты . Как правило, лучше всего подходит полужесткий материал, так как его можно разрезать с незначительным превышением размера и втиснуть между балками пола, тем самым гарантируя отсутствие сквозных зазоров.

Изоляция должна быть плотно прижата к нижней стороне половиц. Не менее 25 мм балки должно быть оставлено открытым для обеспечения циркуляции воздуха. Это необходимо для предотвращения отсыревания балки и развития сухой гнили.По той же причине необходимо оставлять воздушные кирпичи чистыми, чтобы обеспечить хороший поток воздуха.

Способ установки изоляции будет зависеть от типа и жесткости изоляции:

  • Для жесткого пенопласта достаточно лишь нескольких крючков, чтобы он не упал.
  • Для полужесткого войлока потребуются рейки, закрепленные вдоль балок
  • Для гибкой шерсти потребуются латы поперек балок.

Толщина, необходимая для достижения значения U 0,25 Вт / м² на подвесном полу, составляет:

  • Минеральная вата: 150 мм
  • Жесткая пена: 90 мм

Space Blanket

Это изоляция из стекловолокна заключен в металлизированную полиэтиленовую пленку.Считается, что он более эффективен, чем простой стекловолокно, поскольку металлизированная пленка отражает тепло. Он полезен в труднодоступных местах и ​​под подвесным полом, так как его можно прикрепить на место.

Модернизация изоляции пола

Kingspan VIP-панели предлагают ультратонкую конструкцию толщиной всего 26 мм (Изображение предоставлено Kingspan)

Установка теплоизоляции поверх пола может вызвать проблемы с высотой потолка, дверей и оконных подоконников , Новая линейка панелей с вакуумной изоляцией (VIP) Kingspan предлагает интересное решение для тех, кому требуется ультратонкое покрытие.

Панели состоят из микропористой сердцевины, которая откачана и герметизирована тонкой газонепроницаемой мембраной. Они могут достигать производительности, аналогичной толщине традиционной изоляции на уровне всего 26 мм .

,

Изоляция сплошных стен — TheGreenAge

Solid Wall Insulation

Что такое сплошная изоляция стен?

Если ваш дом был построен до 1930-х годов, велика вероятность, что у него будут сплошные стены — просто сплошной слой кирпичной кладки. Изоляция стен — независимо от того, являются ли они полыми или сплошными (или даже с деревянным каркасом) — это отличный способ сделать ваш дом более энергоэффективным. Изоляция сведет к минимуму потери тепла зимой, сэкономив вам деньги на счетах за отопление. Это также предотвратит чрезмерное нагревание вашего дома летом, помогая поддерживать в доме более комфортную температуру.

Согласно исследованиям, через неизолированную твердую стену может быть потеряно вдвое больше тепла, чем через неизолированную полую стену. Однако хорошая новость заключается в том, что массивные стены можно утеплять как внутри, так и снаружи.

Наука за изоляцией

Если горячий и холодный воздух разделены стеной, тепло будет передаваться через стену, в конечном итоге охлаждая комнату до тех пор, пока не будет достигнуто равновесие (когда наружная температура равна внутренней температуре).На самом деле это случается очень редко, потому что комнаты имеют тенденцию к обогреву; Так как тепло уходит через стену, ваша система отопления поставляет больше горячего воздуха, поддерживая комфортную температуру окружающей среды. Если температурный градиент больше, например, в холодный и зимний день, движение тепловой энергии через стену будет ускорено.

Изоляция массивной каменной стены помогает создать тепловой барьер, который помогает замедлить движение тепла, уходящего во внешнюю среду.Следовательно, для поддержания в доме необходимой температуры требуется меньше обогрева.

Виды сплошного утепления стен для вашего дома

Как внутренняя, так и внешняя изоляция отлично сохраняют тепло в вашем доме, снижают счета за отопление и сокращают выбросы углерода. Однако оба решения по-разному влияют на ваш дом, что объясняется в следующем разделе:

Внутренняя изоляция сплошных стен

Есть несколько способов изолировать сплошную стену изнутри: либо использовать жесткую изоляционную плиту, либо построить каркасную стену.Мы рекомендуем вам нанять профессионала для выполнения этого типа работы, и вы не выполняете ее как сделай сам, если у вас нет большого опыта. Толщина внутренней монолитной стены может достигать 100 мм, поэтому ваша комната будет «сжиматься» везде, где есть внешняя несущая стена.

Одним из способов избежать потери площади на полу является использование изоляционных обоев, толщина которых всего 10 мм дает некоторое преимущество внутренней прочной изоляции стен, не влияя на размер вашей комнаты. Однако, к сожалению, изоляционные обои не дадут вам таких же характеристик, как при сухой облицовке изоляционными плитами.

Преимущества внутреннего утепления стен
    • Дешевле внешней изоляции
    • Внешний вид вашего дома не изменится
    • Хорошо работает, когда в доме идет ремонт внутри
Недостатки внутреннего утепления стен
    • Уменьшает размер жилой зоны до 10 см, в зависимости от используемых материалов
    • Не обязательно избавится от проблем с влажностью, которые нужно решать отдельно

Наружная изоляция сплошных стен

Для внешней изоляции стен вам необходимо нанять профессионала, а также учитывать местные строительные нормы и правила.Это связано с тем, что этот процесс включает покрытие оригинальной кирпичной кладки и может значительно изменить текущий внешний вид собственности, не согласуясь с окружающей местностью. После получения разрешения на строительство дом можно утеплить с помощью клеящего материала, который прикрепляется к стене, а затем заштукатурен.

Отделка внешней стены может представлять собой любую комбинацию текстурирования, покраски, облицовки плиткой, кирпичей, кирпичной кладки и / или облицовки.

Преимущества утепления сплошных стен
    • Меньше неудобств в домашнем хозяйстве, так как работа ведется за пределами
    • Обновляет внешний вид вашего дома и увеличивает срок службы кирпичной кладки.
    • Дополняет другие ремонтные работы
    • Возможность заполнить трещины и отверстия в кирпичной кладке, что поможет уменьшить сквозняки (дополнительную информацию см. В разделе «Проверка чертежей»).
Недостатки сплошного утепления стен
    • Дороже внутренней изоляции
    • Может потребоваться разрешение на строительство
    • Любые работы должны соответствовать местным строительным нормам
    • Может не решить всех проблем с влажностью
    • Работы не рекомендуются, если здание не является конструктивно прочным
Затраты на утепление сплошных стен
    • Около 100 фунтов стерлингов / м2.
    • Дополнительные расходы на водостоки, газовые трубы, дымоходы и посуду
    • В зависимости от силы рендеринга — дополнительные затраты на удаление старого / слабого рендера

Измерение эффективности твердой изоляции стен

R-value — это мера теплового сопротивления, используемая сегодня в строительстве. Чем выше значение R, тем лучше изоляционные свойства материала, поэтому вам следует стремиться изолировать свой дом материалами с высоким значением R.Как ни странно, вы также можете услышать слово U-value, которое часто встречается. Это полная противоположность, описывающая способность материала проводить тепло, поэтому вы хотите, чтобы ваш изоляционный материал имел низкий коэффициент теплопроводности.

Установка утеплителя сплошных стен

Заинтересованы в установке сплошных стен? Мы обыскали всю страну в поисках лучших торговцев, чтобы убедиться, что мы рекомендуем только тех, кому действительно доверяем.

Если вы хотите, чтобы мы нашли для вас местного установщика, просто заполните форму ниже, и мы свяжемся с вами в ближайшее время!

,