380 в 220: Почему между фазой и нолем 220 В, а между фазами 380 В?

Содержание

Почему между фазой и нолем 220 В, а между фазами 380 В?

Мы знаем, что в нашей сети между фазой и нолем 220 В. Но почему тогда между двумя фазами 380 В, а не 440, например? Разбираемся в сути феномена.

Фазное и линейное напряжения

Напряжение между фазой и нолем называется фазным. На одной фазе напряжение всегда 220 В, а на ноле, соответственно, 0. Так как разница между ними составляет 220 В, то значит фазное напряжение всегда будет 220 В (в бытовой сети бывают скачки и падения, поэтому напряжение может немного меняться).

Но если фазным напряжением все предельно ясно, то с линейным не все так просто. Линейным напряжением называется напряжение между двумя фазами. Мы знаем, что оно составляется 380 В, но откуда оно получается?

Все дело в работе генератора, который генерирует электроэнергию, и установлен на подстанции.

Обратите внимание на иллюстрацию ниже. Обмотки (фазы А, В и С) генератора расположены под углом 120о относительно друг друга. Внутренний индуктор или магнит (обозначенный буквами С и Ю) вращаясь, создает электромагнитное поле. Но так как фазы расположены под углом 120о относительно друг друга, то вращение индуктора по отношению к каждой фазе смещено на 1/3 цикла. В итоге, когда магнит проходит возле одной фазы, то он максимально возбуждает обмотку до 220 В, а в это же время другая фаза возбуждена лишь на -160. В данном случае линейное напряжение составит Uл = 220 — (-160) = 380 В.

Также для четырехпроводной системы проводки при соединении трехфазного генератора звездой существует такая формула: Uл = квадратный корень из 3*Uф, где Uф — это фазное напряжение, которое равняется 220 В. В итоге получаем Uл = 1,73 *220 = 380 В.

Как бы вы ни решили проводить вычисления, вы придете к показателю в 380 В.

Читайте также:

Как перевести 380 вольт на 220 вольт

Почти все бытовые электроприборы рассчитаны на напряжение 220 В. Мы, не задумываясь, включаем их в розетку и наслаждаемся работой устройств. Но иногда требуется подключить асинхронный двигатель, рассчитанный на 380 В. Для его запуска можно использовать специальную схему, которая позволяет подключать электромотор к однофазной сети, но при этом придётся смириться с потерей мощности. Можно ли однофазную сеть превратить в трехфазную и как из 220 Вольт сделать 380?

Оказывается, такая возможность есть. Существует несколько способов получить 380 В из однофазной сети. Ниже мы покажем, как это сделать, но для начала разберёмся в том, чем отличается однофазная сеть от трёхфазной.

Теория

На промышленных электростанциях генераторы вырабатывают трёхфазный ток, и повышают его напряжение до десятков и даже сотен киловольт. По линиям электропередач электричество поставляется потребителям. Но перед этим ток поступает на силовой трансформатор, который понижает напряжение до 380 В. Из распределительной подстанции электроэнергия поступает в потребительскую сеть.

В трёхфазной сети ток подаётся таким образом, что все три сдвинуты относительно друг друга на 120 градусов. Напряжение между фазами составляет 380 В, а между фазой и нейтралью 220 В (см.рис. 1). Именно это напряжение подаётся в каждую квартиру.

Рис. 1. Структура трёхфазного тока

Так как нашей целью является получение 380 В именно из однофазной сети, то перейдём к способам преобразования 220 В на 380.

Способы получения 380 Вольт из 220

Рассмотрим основные способы преобразования 220 вольт в полноценный трёхфазный ток, напряжением 380 В:

  • с помощью электронного преобразователя напряжения;
  • путём применения трансформатора;
  • использованием трёх фаз;
  • используя трёхфазный двигатель в качестве генератора;
  • пользуясь конденсаторной схемой.

Преобразователь напряжения

Самый простой и надёжный способ преобразовать 220 В в 380 – купить электронный преобразователь напряжения. (см. рис. 2). Этот прибор часто называют инвертором. Гаджет прост в управлении и генерирует качественный трёхфазный ток. Правда, мощность инверторов не слишком большая, но её, как правило, хватает для большинства трёхфазных бытовых приборов.

Рис. 2. Преобразователь напряжения

Преобразователь хорош ещё и тем, что у него есть встроенная функция защиты от перегрузок и КЗ. А это значит, что электромотор не перегреется и не выйдет из строя в результате КЗ.

Высокое качество тока достигается благодаря принципу работы устройства. Инвертор сначала выпрямляет переменный однофазный ток, а затем генерирует трёхфазное напряжение с заданной частотой и со стандартным сдвигом фаз. При этом количество фаз может быть и больше чем 3 (с соответствующим углом сдвига).

Используя трансформатор

С помощью повышающего трансформатора можно получить какое угодно напряжение, в том числе и 380 В. Однако, если вас интересует трёхфазное напряжение, то необходим специальный трёхфазный трансформатор. преобразующий однофазный ток в трёхфазный. Такие трансформаторы есть в продаже.

Обмотки трансформатора соединены звездой или треугольником. Напряжение однофазной сети подаётся на две первичные обмотки напрямую, а на третью – через конденсатор. При этом ёмкость конденсатора подбирается из расчёта 7 мкФ на каждые 100 Вт мощности.

Обратите внимание на то, что номинальное напряжение конденсатора не должно быть ниже 400 В. Такое устройство нельзя включать без нагрузки.

Хоть мы и получим таким способом необходимые 380 В, всё равно будет наблюдаться снижение мощности электромотора (если вы планируете подключать его к трансформатору). Соответственно КПД двигателя тоже упадёт.

Использование 3-х фаз

Если вы проживаете в многоквартирном доме, то к нему уже подведено 3 фазы, которые с целью оптимального распределения нагрузок разведены по отдельным квартирам. На каждом этаже стоят распределительные щиты, откуда можно завести в квартиру недостающие две фазы. Но для этого потребуется разрешение.

При желании вы можете получить разрешение у энергоснабжающей компании или согласовать с Энергонадзором обустройство трёхфазного питания в вашей квартире. При этом потребуется установить трёхфазный счётчик электроэнергии.

Использование электродвигателя

Вы наверно знаете, что ротор обычного трёхфазного двигателя после запуска продолжает вращаться после отключения одной фазы. Оказывается, что между выводом отключенной обмотки и задействованными выводами имеется ЭДС.

Сдвиг фаз между обмотками статора зависит только от их расположения. В трёхфазном двигателе эти катушки расположены под углом 120º, а значит они обеспечивают такой же угол сдвига фаз. Это обстоятельство наталкивает на мысль, что асинхронный трёхфазный двигатель можно использовать для получения 380 вольт от обычной однофазной сети. Простая схема подключения электромотора изображена на рисунке 3. Конденсатор на схеме нужен только для запуска двигателя. После запуска его можно отключить. Конденсатор берём типа МБГО, МБГП, МБГТ или К42-4, рабочее напряжение которого должно быть не менее 600 В.

Можно применить конденсатор К42-19, с рабочим напряжением минимум 250 В.

Пример подключения фазосдвигающего конденсатора см. на рис. 3.

Рис. 3. Подключение пускового конденсатора

Параметры конденсатора подбираем в зависимости от мощности мотора. Заметим, что параметры фазосдвигающего конденсатора на качество генерируемого тока не влияют. Нагрузку подключаем к обмоткам статора, согласно схеме, показанной на рис. 4.

Рис. 4. Трёхфазный ток от электромотора

Скорость вращения ротора почти не зависит от напряжения однофазной сети, так что её можно считать постоянной. Это значит, что частота трёхфазного тока при номинальных нагрузках изменяться не будет.

Следует иметь в виду то, что мощность трёхфазного двигателя, работающего от однофазной сети, падает. Соответственно, номинальная мощность трёхфазной нагрузки будет, примерно, на треть ниже, от той, которая заявлена в паспорте электромотора.

Электродвигатель в качестве генератора

Ещё один способ, позволяющий из 220 В получить 380, это создание системы двигатель-генератор.

В качестве двигателя можно взять любой электромотор, работающий от сети 220 В, а в качестве генератора – доработанный трёхфазный асинхронный двигатель (схему установки смотрите на рис. 5).

Сразу заметим, что эффективность такой установки под вопросом, но получить таким способом требуемое напряжение 380 В можно. В данной схеме требуется обеспечить такую частоту вращения ротора, чтобы генератор выдавал ток с частотой, равной 50 Гц. Для этого необходимо вращать вал с угловой скоростью 1500 об/мин.

Рис. 5. Трёхфазный двигатель в качестве генератора

В домашних условиях в качестве привода можно использовать однофазный мотор от стиральной машины или другой бытовой техники. Важно только обеспечить требуемую угловую скорость вращения ротора.

Поскольку вращение вала электродвигателей работающих, например, в стиральной машине составляет около 12 – 20 тыс. об./мин., то необходимо использовать шкивы, диаметры которых соотносятся как 1 к 10. То есть, чтобы обеспечить вращение ротора генератора со скоростью 1500 об/мин.

можно взять шкив, который уже смонтирован на электромоторе от пралки, а на вал трёхфазного двигателя надеть шкив, диаметром в 10 раз больше.

Выводы

Получить 380 вольт от сети 220 В возможно несколькими способами. Самым эффективным является способ применения электронного инвертора:

  • стабильные параметры тока;
  • безопасная эксплуатация;
  • обеспечение заявленной выходной мощности;
  • компактность установки.

Все выше перечисленные способы преобразования 220 Вольт в 380 работают, поэтому имеют право на существование. Но надо быть готовым к потере мощности и к трудностям по достижению других параметров тока, включая его частотные характеристики.

Почти все бытовые электроприборы рассчитаны на напряжение 220 В. Мы, не задумываясь, включаем их в розетку и наслаждаемся работой устройств. Но иногда требуется подключить асинхронный двигатель, рассчитанный на 380 В. Для его запуска можно использовать специальную схему, которая позволяет подключать электромотор к однофазной сети, но при этом придётся смириться с потерей мощности. Можно ли однофазную сеть превратить в трехфазную и как из 220 Вольт сделать 380?

Оказывается, такая возможность есть. Существует несколько способов получить 380 В из однофазной сети. Ниже мы покажем, как это сделать, но для начала разберёмся в том, чем отличается однофазная сеть от трёхфазной.

Теория

На промышленных электростанциях генераторы вырабатывают трёхфазный ток, и повышают его напряжение до десятков и даже сотен киловольт. По линиям электропередач электричество поставляется потребителям. Но перед этим ток поступает на силовой трансформатор, который понижает напряжение до 380 В. Из распределительной подстанции электроэнергия поступает в потребительскую сеть.

В трёхфазной сети ток подаётся таким образом, что все три сдвинуты относительно друг друга на 120 градусов. Напряжение между фазами составляет 380 В, а между фазой и нейтралью 220 В (см.рис. 1). Именно это напряжение подаётся в каждую квартиру.

Рис. 1. Структура трёхфазного тока

Так как нашей целью является получение 380 В именно из однофазной сети, то перейдём к способам преобразования 220 В на 380.

Способы получения 380 Вольт из 220

Рассмотрим основные способы преобразования 220 вольт в полноценный трёхфазный ток, напряжением 380 В:

  • с помощью электронного преобразователя напряжения;
  • путём применения трансформатора;
  • использованием трёх фаз;
  • используя трёхфазный двигатель в качестве генератора;
  • пользуясь конденсаторной схемой.

Преобразователь напряжения

Самый простой и надёжный способ преобразовать 220 В в 380 – купить электронный преобразователь напряжения. (см. рис. 2). Этот прибор часто называют инвертором. Гаджет прост в управлении и генерирует качественный трёхфазный ток. Правда, мощность инверторов не слишком большая, но её, как правило, хватает для большинства трёхфазных бытовых приборов.

Рис. 2. Преобразователь напряжения

Преобразователь хорош ещё и тем, что у него есть встроенная функция защиты от перегрузок и КЗ. А это значит, что электромотор не перегреется и не выйдет из строя в результате КЗ.

Высокое качество тока достигается благодаря принципу работы устройства. Инвертор сначала выпрямляет переменный однофазный ток, а затем генерирует трёхфазное напряжение с заданной частотой и со стандартным сдвигом фаз. При этом количество фаз может быть и больше чем 3 (с соответствующим углом сдвига).

Используя трансформатор

С помощью повышающего трансформатора можно получить какое угодно напряжение, в том числе и 380 В. Однако, если вас интересует трёхфазное напряжение, то необходим специальный трёхфазный трансформатор. преобразующий однофазный ток в трёхфазный. Такие трансформаторы есть в продаже.

Обмотки трансформатора соединены звездой или треугольником. Напряжение однофазной сети подаётся на две первичные обмотки напрямую, а на третью – через конденсатор. При этом ёмкость конденсатора подбирается из расчёта 7 мкФ на каждые 100 Вт мощности.

Обратите внимание на то, что номинальное напряжение конденсатора не должно быть ниже 400 В. Такое устройство нельзя включать без нагрузки.

Хоть мы и получим таким способом необходимые 380 В, всё равно будет наблюдаться снижение мощности электромотора (если вы планируете подключать его к трансформатору). Соответственно КПД двигателя тоже упадёт.

Использование 3-х фаз

Если вы проживаете в многоквартирном доме, то к нему уже подведено 3 фазы, которые с целью оптимального распределения нагрузок разведены по отдельным квартирам. На каждом этаже стоят распределительные щиты, откуда можно завести в квартиру недостающие две фазы. Но для этого потребуется разрешение.

При желании вы можете получить разрешение у энергоснабжающей компании или согласовать с Энергонадзором обустройство трёхфазного питания в вашей квартире. При этом потребуется установить трёхфазный счётчик электроэнергии.

Использование электродвигателя

Вы наверно знаете, что ротор обычного трёхфазного двигателя после запуска продолжает вращаться после отключения одной фазы. Оказывается, что между выводом отключенной обмотки и задействованными выводами имеется ЭДС.

Сдвиг фаз между обмотками статора зависит только от их расположения. В трёхфазном двигателе эти катушки расположены под углом 120º, а значит они обеспечивают такой же угол сдвига фаз. Это обстоятельство наталкивает на мысль, что асинхронный трёхфазный двигатель можно использовать для получения 380 вольт от обычной однофазной сети. Простая схема подключения электромотора изображена на рисунке 3. Конденсатор на схеме нужен только для запуска двигателя. После запуска его можно отключить. Конденсатор берём типа МБГО, МБГП, МБГТ или К42-4, рабочее напряжение которого должно быть не менее 600 В. Можно применить конденсатор К42-19, с рабочим напряжением минимум 250 В.

Пример подключения фазосдвигающего конденсатора см. на рис. 3.

Рис. 3. Подключение пускового конденсатора

Параметры конденсатора подбираем в зависимости от мощности мотора. Заметим, что параметры фазосдвигающего конденсатора на качество генерируемого тока не влияют. Нагрузку подключаем к обмоткам статора, согласно схеме, показанной на рис. 4.

Рис. 4. Трёхфазный ток от электромотора

Скорость вращения ротора почти не зависит от напряжения однофазной сети, так что её можно считать постоянной. Это значит, что частота трёхфазного тока при номинальных нагрузках изменяться не будет.

Следует иметь в виду то, что мощность трёхфазного двигателя, работающего от однофазной сети, падает. Соответственно, номинальная мощность трёхфазной нагрузки будет, примерно, на треть ниже, от той, которая заявлена в паспорте электромотора.

Электродвигатель в качестве генератора

Ещё один способ, позволяющий из 220 В получить 380, это создание системы двигатель-генератор. В качестве двигателя можно взять любой электромотор, работающий от сети 220 В, а в качестве генератора – доработанный трёхфазный асинхронный двигатель (схему установки смотрите на рис. 5).

Сразу заметим, что эффективность такой установки под вопросом, но получить таким способом требуемое напряжение 380 В можно. В данной схеме требуется обеспечить такую частоту вращения ротора, чтобы генератор выдавал ток с частотой, равной 50 Гц. Для этого необходимо вращать вал с угловой скоростью 1500 об/мин.

Рис. 5. Трёхфазный двигатель в качестве генератора

В домашних условиях в качестве привода можно использовать однофазный мотор от стиральной машины или другой бытовой техники. Важно только обеспечить требуемую угловую скорость вращения ротора.

Поскольку вращение вала электродвигателей работающих, например, в стиральной машине составляет около 12 – 20 тыс. об./мин., то необходимо использовать шкивы, диаметры которых соотносятся как 1 к 10. То есть, чтобы обеспечить вращение ротора генератора со скоростью 1500 об/мин. можно взять шкив, который уже смонтирован на электромоторе от пралки, а на вал трёхфазного двигателя надеть шкив, диаметром в 10 раз больше.

Выводы

Получить 380 вольт от сети 220 В возможно несколькими способами. Самым эффективным является способ применения электронного инвертора:

  • стабильные параметры тока;
  • безопасная эксплуатация;
  • обеспечение заявленной выходной мощности;
  • компактность установки.

Все выше перечисленные способы преобразования 220 Вольт в 380 работают, поэтому имеют право на существование. Но надо быть готовым к потере мощности и к трудностям по достижению других параметров тока, включая его частотные характеристики.

В жизни бывают ситуации, когда нужно запустить 3-х фазный асинхронный электродвигатель от бытовой сети. Проблема в том, что в вашем распоряжении только одна фаза и «ноль».

Что делать в такой ситуации? Можно ли подключить мотор с тремя фазами к однофазной сети?

Если с умом подойти к работе, все реально. Главное — знать основные схемы и их особенности.

СОДЕРЖАНИЕ (нажмите на кнопку справа):

Конструктивные особенности

Перед тем как приступать к работе, разберитесь с конструкцией АД (асинхронный двигатель).

Устройство состоит из двух элементов — ротора (подвижная часть) и статора (неподвижный узел).

Статор имеет специальные пазы (углубления), в которые и укладывается обмотка, распределенная таким образом, чтобы угловое расстояние составляло 120 градусов.

Обмотки устройства создают одно или несколько пар полюсов, от числа которых зависит частота, с которой может вращаться ротор, а также другие параметры электродвигателя — КПД, мощность и другие параметры.

При включении асинхронного мотора в сеть с тремя фазами, по обмоткам в различные временные промежутки протекает ток.

Создается магнитное поле, взаимодействующее с роторной обмоткой и заставляющее его вращаться.

Другими словами, появляется усилие, прокручивающее ротор в различные временные промежутки.

Если подключить АД в сеть с одной фазой (без выполнения подготовительных работ), ток появится только в одной обмотке.

Создаваемого момента будет недостаточно, чтобы сместить ротор и поддерживать его вращение.

Вот почему в большинстве случаев требуется применение пусковых и рабочих конденсаторов, обеспечивающих работу трехфазного мотора. Но существуют и другие варианты.

Как подключить электродвигатель с 380 на 220В без конденсатора?

Как отмечалось выше, для пуска ЭД с короткозамкнутым ротором от сети с одной фазой чаще всего применяется конденсатор.

Именно он обеспечивает пуск устройства в первый момент времени после подачи однофазного тока. При этом емкость пускового устройства должна в три раза превышать этот же параметр для рабочей емкости.

Для АД, имеющих мощность до 3-х киловатт и применяемых в домашних условиях, цена на пусковые конденсаторы высока и порой соизмерима со стоимостью самого мотора.

Следовательно, многие все чаще избегают емкостей, применяемых только в момент пуска.

По-другому обстоит ситуация с рабочими конденсаторами, использование которых позволяет загрузить мотор на 80-85 процентов его мощности. В случае их отсутствия показатель мощности может упасть до 50 процентов.

Тем не менее, бесконденсаторный пуск 3-х фазного мотора от однофазной сети возможен, благодаря применению двунаправленных ключей, срабатывающих на короткие промежутки времени.

Требуемый момент вращения обеспечивается за счет смещения фазных токов в обмотках АД.

Сегодня популярны две схемы, подходящие для моторов с мощностью до 2,2 кВт.

Интересно, что время пуска АД от однофазной сети ненамного ниже, чем в привычном режиме.

Основные элементы схемы — симисторы и симметричный динистры. Первые управляются разнополярными импульсами, а второй — сигналами, поступающими от полупериода питающего напряжения.

Подходит для электродвигателей на 380 Вольт, имеющих частоту вращения до 1 500 об/минуту с обмотками, подключенными по схеме треугольника.

В роли фазосдвигающего устройства выступает RC-цепь. Меняя сопротивление R2, удается добиться на емкости напряжения, смещенного на определенный угол (относительно напряжения бытовой сети).

Выполнение главной задачи берет на себя симметричный динистор VS2, который в определенный момент времени подключает заряженную емкость к симистору и активирует этот ключ.

Подойдет для электродвигателей, имеющих частоту вращения до 3000 об/минуту и для АД, отличающихся повышенным сопротивлением в момент пуска.

Для таких моторов требуется больший пусковой ток, поэтому более актуальной является схема разомкнутой звезды.

Особенность — применение двух электронных ключей, замещающих фазосдвигающие конденсаторы. В процессе наладки важно обеспечить требуемый угол сдвига в фазных обмотках.

Делается это следующим образом:

  • Напряжение на электродвигатель подается через ручной пускатель (его необходимо подключить заранее).
  • После нажатия на кнопку требуется подобрать момент пуска с помощью резистора R

При реализации рассмотренных схем стоит учесть ряд особенностей:

  • Для эксперимента применялись безрадиаторные симисторы (типы ТС-2-25 и ТС-2-10), которые отлично себя проявили. Если использовать симисторы на корпусе из пластмассы (импортного производства), без радиаторов не обойтись.
  • Симметричный динистор типа DB3 может быть заменен на KP Несмотря на тот факт, что KP1125 сделан в России, он надежен и имеет меньше переключающее напряжение. Главный недостаток — дефицитность этого динистора.

Как подключить через конденсаторы

Для начала определитесь, какая схема собрана на ЭД. Для этого откройте крышку-барно, куда выводятся клеммы АД, и посмотрите, сколько проводов выходит из устройства (чаще всего их шесть).

Обозначения имеют следующий вид: С1-С3 — начала обмотки, а С4-С6 — ее концы. Если между собой объединяются начала или концы обмоток, это «звезда».

Сложнее всего обстоят дела, если с корпуса просто выходит шесть проводов. В таком случае нужно искать на них соответствующие обозначения (С1-С6).

Чтобы реализовать схему подключения трехфазного ЭД к однофазной сети, требуются конденсаторы двух видов — пусковые и рабочие.

Первые применяются для пуска электродвигателя в первый момент. Как только ротор раскручивается до нужного числа оборотов, пусковая емкость исключатся из схемы.

Если этого не происходит, возможные серьезные последствия вплоть до повреждения мотора.

Главную функцию берут на себя рабочие конденсаторы. Здесь стоит учесть следующие моменты:

  • Рабочие конденсаторы подключаются параллельно;
  • Номинальное напряжение должно быть не меньше 300 Вольт;
  • Емкость рабочих емкостей подбирается с учетом 7 мкФ на 100 Вт;
  • Желательно, чтобы тип рабочего и пускового конденсатора был идентичным. Популярные варианты — МБГП, МПГО, КБП и прочие.

Если учитывать эти правила, можно продлить работу конденсаторов и электродвигателя в целом.

Расчет емкости должен производиться с учетом номинальной мощности ЭД. Если мотор будет недогружен, неизбежен перегрев, и тогда емкость рабочего конденсатора придется уменьшать.

Если выбрать конденсатор с емкостью меньше допустимой, то КПД электромотора будет низким.

Помните, что даже после отключения схемы на конденсаторах сохраняется напряжение, поэтому перед началом работы стоит производить разрядку устройства.

Также учтите, что подключение электродвигателя мощностью от 3 кВт и более к обычной проводке запрещено, ведь это может привести к отключению автоматов или перегоранию пробок. Кроме того, высок риск оплавления изоляции.

Чтобы подключить ЭД 380 на 220В с помощью конденсаторов, действуйте следующим образом:

  • Соедините емкости между собой (как упоминалось выше, соединение должно быть параллельным).
  • Подключите детали двумя проводами к ЭД и источнику переменного однофазного напряжения.
  • Включайте двигатель. Это делается для того, чтобы проверить направление вращения устройства. Если ротор движется в нужном направлении, каких-либо дополнительных манипуляций производить не нужно. В ином случае провода, подключенные к обмотке, стоит поменять местами.

С конденсатором дополнительная упрощенная — для схемы звезда.

С конденсатором дополнительная упрощенная — для схемы треугольник.

Как подключить с реверсом

В жизни бывают ситуации, когда требуется изменить направление вращения мотора. Это возможно и для трехфазных ЭД, применяемых в бытовой сети с одной фазой и нулем.

Для решения задачи требуется один вывод конденсатора подключать к отдельной обмотке без возможности разрыва, а второй — с возможностью переброса с «нулевой» на «фазную» обмотку.

Для реализации схемы можно использовать переключатель с двумя положениями.

К крайним выводам подпаиваются провода от «нуля» и «фазы», а к центральному — провод от конденсатора.

Как подключить по схеме «звезда-треугольник» (с тремя проводами)

В большей части в ЭД отечественного производства уже собрана схема звезды. Все, что требуется — пересобрать треугольник.

Главным достоинством соединения «звезда/треугольник» является тот факт, что двигатель выдает максимальную мощность.

Несмотря на это, в производстве такая схема применяется редко из-за сложности реализации.

Чтобы подключить мотор и сделать схему работоспособной, требуется три пускателя.

К первому (К1) подключается ток, а к другому — обмотка статора. Оставшиеся концы подключаются к пускателям К3 и К2.

Далее обмотка последнего пускателя (К2) объединяется с оставшимися фазам для создания схемы «треугольник».

Когда к фазе подключается пускатель К3, остальные концы укорачиваются, и схема преобразуется в «звезду».

Учтите, что одновременное включение К2 и К3 запрещено из-за риска короткого замыкания или выбиванию АВ, питающего ЭД.

Чтобы избежать проблем, предусмотрена специальная блокировка, подразумевающая отключение одного пускателя при включении другого.

Принцип работы схемы прост:

  • При включении в сеть первого пускателя, запускается реле времени и подает напряжение на третий пускатель.
  • Двигатель начинает работу по схеме «звезда» и начинает работать с большей мощностью.
  • Через какое-то время реле размыкает контакты К3 и подключает К2. При этом электродвигатель работает по схеме «треугольник» со сниженной мощностью. Когда требуется отключить питание, включается К1.

Итоги

Как видно из статьи, подключить электродвигатель трехфазного тока в однофазную сеть без потери мощности реально. При этом для домашних условий наиболее простым и доступным является вариант с применением пускового конденсатора.

Как подцепить двигатель 380 на 220

Асинхронные трехфазные двигатели, а именно их, из-за широкого распространения, часто приходится использовать, состоят из неподвижного статора и подвижного ротора. В пазах статора с угловым расстоянием в 120 электрических градусов уложены проводники обмоток, начала и концы которых (C1, C2, C3, C4, C5 и C6) выведены в распределительную коробку. Обмотки могут быть соединены по схеме «звезда» (концы обмоток соединены между собой, к их началам подводится питающее напряжение) или «треугольник» (концы одной обмотки соединены с началом другой).

В распределительной коробке контакты обычно сдвинуты – напротив С1 не С4, а С6, напротив С2 – С4.

При подключении трехфазного двигателя к трехфазной сети по его обмоткам в разный момент времени по очереди начинает идти ток, создающий вращающееся магнитное поле, которое взаимодействует с ротором, заставляя его вращаться. При включении двигателя в однофазную сеть, вращающий момент, способный сдвинуть ротор, не создается.

Среди разных способов подключения трехфазных электродвигателей в однофазную сеть наиболее простой – подключение третьего контакта через фазосдвигающий конденсатор.

Частота вращения трехфазного двигателя, работающего от однофазной сети, остается почти такой же, как и при его включении в трехфазную сеть. К сожалению, этого нельзя сказать о мощности, потери которой достигают значительных величин. Точные значения потери мощности зависят от схемы подключения, условий работы двигателя, величины емкости фазосдвигающего конденсатора. Ориентировочно, трехфазный двигатель в однофазной сети теряет около 30-50% своей мощности.

Не все трехфазные электродвигатели способны хорошо работать в однофазных сетях, однако большинство из них справляются с этой задачей вполне удовлетворительно – если не считать потери мощности. В основном для работы в однофазных сетях используются асинхронные двигатели с короткозамкнутым ротором (А, АО2, АОЛ, АПН и др.).

Асинхронные трехфазные двигатели рассчитаны на два номинальных напряжения сети – 220/127, 380/220 и т.д. Наиболее распространены электродвигатели с рабочим напряжением обмоток 380/220В (380В – для «звезды», 220 – для «треугольника). Большее напряжение для «звезды», меньшее – для «треугольника». В паспорте и на табличке двигателей кроме прочих параметров указывается рабочее напряжение обмоток, схема их соединения и возможность ее изменения.

Обозначение на табличке А говорит о том, что обмотки двигателя могут быть подключены как «треугольником» (на 220В), так и «звездой» (на 380В). При включении трехфазного двигателя в однофазную сеть желательно использовать схему «треугольник», поскольку в этом случае двигатель потеряет меньше мощности, чем при подключении «звездой».

Табличка Б информирует, что обмотки двигателя подсоединены по схеме «звезда», и в распределительной коробке не предусмотрена возможность переключить их на «треугольник» (имеется всего лишь три вывода). В этом случае остается или смириться с большой потерей мощности, подключив двигатель по схеме «звезда», или, проникнув в обмотку электродвигателя, попытаться вывести недостающие концы, чтобы соединить обмотки по схеме «треугольник».

Начала и концы обмоток (различные варианты)

Самый простой случай, когда в имеющемся двигателе на 380/220В обмотки уже подключены по схеме «треугольник». В этом случае нужно просто подсоединить токоподводящие провода и рабочий и пусковой конденсаторы к клеммам двигателя согласно схеме подключения.

Если в двигателе обмотки соединены «звездой», и имеется возможность изменить ее на «треугольник», то этот случай тоже нельзя отнести к сложным. Нужно просто изменить схему подключения обмоток на «треугольник», использовав для этого перемычки.

Определение начал и концов обмоток. Дело обстоит сложнее, если в распределительную коробку выведено 6 проводов без указания об их принадлежности к определенной обмотке и обозначения начал и концов. В этом случае дело сводится к решению двух задач (Но прежде чем этим заниматься, нужно попробовать найти в Интернете какую-либо документацию к электродвигателю. В ней может быть описано к чему относятся провода разных цветов.):

  • определению пар проводов, относящихся к одной обмотке;
  • нахождению начала и конца обмоток.

Первая задача решается «прозваниванием» всех проводов тестером (замером сопротивления). Если прибора нет, можно решить её с помощью лампочки от фонарика и батареек, подсоединяя имеющиеся провода в цепь последовательно с лампочкой. Если последняя загорается, значит, два проверяемых конца относятся к одной обмотке. Таким способом определяются три пары проводов (A, B и C на рисунке ниже) относящихся к трем обмоткам.

Вторая задача (определение начала и конца обмоток) несколько сложнее и требует наличия батарейки и стрелочного вольтметра. Цифровой не годится из-за инертности. Порядок определения концов и начал обмоток показан на схемах 1 и 2.

К концам одной обмотки (например, A) подключается батарейка, к концам другой (например, B) – стрелочный вольтметр. Теперь, если разорвать контакт проводов А с батарейкой, стрелка вольтметра качнется в ту или иную сторону. Затем необходимо подключить вольтметр к обмотке С и проделать ту же операцию с разрывом контактов батарейки. При необходимости меняя полярность обмотки С (меняя местами концы С1 и С2) нужно добиться того, чтобы стрелка вольтметра качнулась в ту же сторону, как и в случае с обмоткой В. Таким же образом проверяется и обмотка А – с батарейкой, подсоединенной к обмотке C или B.

В итоге всех манипуляций должно получиться следующее: при разрыве контактов батарейки с любой из обмоток на 2-х других должен появляться электрический потенциал одной и той же полярности (стрелка прибора качается в одну сторону). Теперь остается пометить выводы одного пучка как начала (А1, В1, С1), а выводы другого – как концы (А2, В2, С2) и соединить их по необходимой схеме – «треугольник» или «звезда» (если напряжение двигателя 220/127В).

Извлечение недостающих концов. Пожалуй, самый сложный случай – когда двигатель имеет соединение обмоток по схеме «звезда», и нет возможности переключить ее на «треугольник» (в распределительную коробку выведено всего лишь три провода – начала обмоток С1, С2, С3) (см. рисунок ниже). В этом случае для подключения двигателя по схеме «треугольник» необходимо вывести в коробку недостающие концы обмоток С4, С5, С6.

Чтобы сделать это, обеспечивают доступ к обмотке двигателя, сняв крышку и, возможно, удалив ротор. Отыскивают и освобождают от изоляции место спайки. Разъединяют концы и припаивают к ним гибкие многожильные изолированные провода. Все соединения надежно изолируют, крепят провода прочной нитью к обмотке и выводят концы на клеммный щиток электродвигателя. Определяют принадлежность концов началам обмоток и соединяют по схеме «треугольник», подсоединив начала одних обмоток к концам других (С1 к С6, С2 к С4, С3 к С5). Работа по выводу недостающих концов требует определенного навыка. Обмотки двигателя могут содержать не одну, а несколько спаек, разобраться в которых не так-то и просто. Поэтому если нет должной квалификацией, возможно, не останется ничего иного, как подключить трехфазный двигатель по схеме «звезда», смирившись со значительной потерей мощности.

Схемы подключения трехфазного двигателя в однофазную сеть

Обеспечение пуска. Пуск трехфазного двигателя без нагрузки можно осуществлять и от рабочего конденсатора (подробнее ниже), но если электродвигатель имеет какую-то нагрузку, он или не запустится, или будет набирать обороты очень медленно. Тогда для быстрого пуска необходим дополнительный пусковой конденсатор Сп (расчет емкости конденсаторов описан ниже). Пусковые конденсаторы включаются только на время пуска двигателя (2-3 сек, пока обороты не достигнут примерно 70% от номинальных), затем пусковой конденсатор нужно отключить и разрядить.

Удобен запуск трехфазного двигателя с помощью особого выключателя, одна пара контактов которого замыкается при нажатой кнопке. При ее отпускании одни контакты размыкаются, а другие остаются включенными – пока не будет нажата кнопка «стоп».

Реверс. Направление вращения двигателя зависит от того, к какому контакту («фазе») подсоединена третья фазная обмотка.

Направлением вращения можно управлять, подсоединив последнюю, через конденсатор, к двухпозиционному тумблеру, соединенному двумя своими контактами с первой и второй обмотками. В зависимости от положения тумблера двигатель будет вращаться в одну или другую сторону.

На рисунке ниже представлена схема с пусковым и рабочим конденсатором и кнопкой реверса, позволяющая осуществлять удобное управление трехфазным двигателем.

Подключение по схеме «звезда». Подобная схема подключения трехфазного двигателя в сеть с напряжением 220В используется для электродвигателей, у которых обмотки рассчитаны на напряжение 220/127В.

Конденсаторы. Необходимая емкость рабочих конденсаторов для работы трехфазного двигателя в однофазной сети зависит от схемы подключения обмоток двигателя и других параметров. Для соединения «звездой» емкость рассчитывается по формуле:

Для соединения «треугольником»:

Где Ср – емкость рабочего конденсатора в мкФ, I – ток в А, U – напряжение сети в В. Ток рассчитывается по формуле:

Где Р – мощность электродвигателя кВт; n – КПД двигателя; cosф – коэффициент мощности, 1.73 – коэффициент, характеризующий соотношение между линейным и фазным токами. КПД и коэффициент мощности указаны в паспорте и на табличке двигателя. Обычно их значение находится в диапазоне 0,8-0,9.

На практике величину емкости рабочего конденсатора при подсоединении «треугольником» можно посчитать по упрощенной формуле C = 70•Pн, где Pн – номинальная мощность электродвигателя в кВт. Согласно этой формуле на каждые 100 Вт мощности электродвигателя необходимо около 7 мкФ емкости рабочего конденсатора.

Правильность подбора емкости конденсатора проверяется результатами эксплуатации двигателя. Если её значение оказалось больше, чем требуется при данных условиях работы, двигатель будет перегреваться. Если емкость оказалась меньше требуемой, выходная мощность электродвигателя будет слишком низкой. Имеет резон подбирать конденсатор для трехфазного двигателя, начиная с малой емкости и постепенно увеличивая её значение до оптимального. Если есть возможность, лучше подобрать емкость измерением тока в проводах подключенных к сети и к рабочему конденсатору, например токоизмерительными клещами. Значение тока должно быть наиболее близким. Замеры следует производить при том режиме, в котором двигатель будет работать.

При определении пусковой емкости исходят, прежде всего, из требований создания необходимого пускового момента. Не путать пусковую емкость с емкостью пускового конденсатора. На приведенных выше схемах, пусковая емкость равна сумме емкостей рабочего (Ср) и пускового (Сп) конденсаторов.

Если по условиям работы пуск электродвигателя происходит без нагрузки, то пусковая емкость обычно принимается равной рабочей, то есть пусковой конденсатор не нужен. В этом случае схема включения упрощается и удешевляется. Для такого упрощения и главное удешевления схемы, можно организовать возможность отключения нагрузки, например, сделав возможность быстро и удобно изменять положение двигателя для ослабления ременной передачи, или сделав для ременной передачи прижимной ролик, например, как у ременного сцепления мотоблоков.

Пуск под нагрузкой требует наличия дополнительной емкости (Сп) подключаемой на время запуска двигателя. Увеличение отключаемой емкости приводит к возрастанию пускового момента, и при некотором определенном ее значении момент достигает своего наибольшего значения. Дальнейшее увеличение емкости приводит к обратному результату: пусковой момент начинает уменьшаться.

Исходя из условия запуска двигателя под нагрузкой близкой к номинальной, пусковая емкость должна быть в 2-3 раза больше рабочей, то есть, если емкость рабочего конденсатора 80 мкФ, то емкость пускового конденсатора должна быть 80-160 мкФ, что даст пусковую емкость (сумма емкости рабочего и пускового конденсаторов) 160-240 мкФ. Но если двигатель имеет небольшую нагрузку при запуске, емкость пускового конденсатора может быть меньше или, как писалось выше, его вообще может не быть.

Пусковые конденсаторы работают непродолжительное время (всего несколько секунд за весь период включения). Это позволяет использовать при запуске двигателя наиболее дешевые пусковые электролитические конденсаторы, специально предназначенные для этой цели (http://www.platan.ru/cgi-bin/qweryv.pl/0w10609.html).

Отметим, что у двигателя подключенного к однофазной сети через конденсатор, работающего без нагрузки, по обмотке, питаемой через конденсатор, идет ток на 20-30% превышающий номинальный. Поэтому, если двигатель используется в недогруженном режиме, то емкость рабочего конденсатора следует уменьшить. Но тогда, если двигатель запускался без пускового конденсатора, последний может потребоваться.

Лучше использовать не один большой конденсатор, а несколько поменьше, отчасти из-за возможности подбора оптимальной емкости, подсоединяя дополнительные или отключая ненужные, последние можно использовать в качестве пусковых. Необходимое количество микрофарад набирается параллельным соединением нескольких конденсаторов, исходя из того, что суммарная емкость при параллельном соединении подсчитывается по формуле: Cобщ = C1 + C1 + . + Сn.

В качестве рабочих используются обычно металлизированные бумажные или пленочные конденсаторы (МБГО, МБГ4, К75-12, К78-17 МБГП, КГБ, МБГЧ, БГТ, СВВ-60). Допустимое напряжение должно не менее чем в 1,5 раза превышать напряжение сети.

Раньше схема подключения электродвигателя 380 на 220 Вольт была популярна по простой причине, в продаже почти не было электродвигателей на 220 Вольт. Люди приносили с работы, заводов, промышленные трехфазные электродвигатели на 380 В. В основном они использовались в частных домах для заточных станков малой мощности, очень часто для циркуляционных, компрессоров. Не во всех домах было 380 В, даже более того, в подавляющем большинстве. И по этой причине необходимо было подключение электродвигателя 380 на 220 В.

Разновидности схем подключения

Существует несколько видов схем подключение трехфазного электродвигателя с помощью конденсаторов. Разновидности схем подключения 380 на 220 В обусловлены несколькими факторами, мощность (Р, кВт) и вид соединения обмоток. Если мощность более 1.5 кВт, то необходимо использовать пусковые конденсаторы, которые используются только при пуске двигателя и затем отключаются.

При выборе типа применения учитывают соединения обмоток асинхронного двигателя. Их две, звезда и треугольник. В первом случае, обмотки соединяются в одной точке, при треугольнике, начало обмотки соединяется с концом предыдущей.

Выводов на клемник агрегата три. Значит, соединение в звезду уже собрано. Но в некоторых случаях заводом изготовителем выводят 6 концов, а маркируются они С1, С2, С3 (начало обмоток), С4, С5, С6 (конец обмотки). Необходимо посмотреть на бирку, где обозначено соединение двигателя (треугольник, звезда) и согласно ей сделать соединение проводов. Лучше это предоставить электрику.

Рис.1. Включение двигателя до 1.5 кВт при соединении треугольник, звезда

Тут нужно учитывать, при применении вида треугольника, теряется порядка 70 % номинальной мощности, а звездой потери могут достигать 50 %.

Как видно из рисунка, схема подключения электродвигателя простая. Фаза и ноль присоединяются к двум выводам обмоток (два провода на электродвигателе), а третий провод (обмотка) компенсируется через рабочий конденсатор к фазному проводу сети.

Рис.2. Схема включения при мощности электродвигателя более 1.5 кВт

В данной схеме необходимо добавить пусковой конденсатор параллельно рабочему, как показано на рисунке. Рекомендуется его включать через кнопку, то есть нажал, двигатель запустился и отпустил ее.

Если ротор вращается не в ту сторону, то просто нужно поменять фазу и ноль. Так же нужно правильно выбрать кабель.

Выбор емкости рабочего и пускового конденсатора

Напряжение его должно быть не менее 300 В, но оптимальным вариантом это 400 В. Рекомендуется брать типов МБГО, МБПГ, МБГЧ.

Расчет рабочей емкости производится по формуле:

Сраб. = 4800 × I/ U, где I номинальный ток электродвигателя, А. U, напряжение сети, В.

При включении по схеме треугольник рассчитывается по формуле:

Сраб. = 2800 × I/ U

В некоторых случаях принимают приблизительный расчет емкости, на каждый киловатт мощности электродвигателя берется 70 – 100 мкФ емкости. Такой расчет используют, когда двигатель после перемотки и существует определенная погрешность, так как нельзя в условиях электроцеха сделать ремонт и при этом достичь номинальных технических характеристик. В этом случае рабочую емкость нужно собирать из нескольких, что бы потом добавлять или уменьшать.

Расчет пусковой емкости Спуск=Сраб×(2-3)

Несколько советов

  • Включение двигателей мощностью более 4 киловатт 380 В на 220 В в частных домах не рекомендуется. Просто будет выбивать автоматический выключатель.
  • После окончания работы на контактах конденсаторах долгое время присутствует опасное напряжение, остерегайтесь к ним прикосновения
  • При схеме подключения двигателя 380 на 220 В он не должен работать в холостую, так как при этом он сгорит.

Как подключить электродвигатель с 380 на 220: схемы

Бывают ситуации, когда оборудование, рассчитанное на 380 вольт, нужно подключить к домашней сети на 220 В. Потому что двигатель при всем этом не запустится, нужно поменять в нем некие детали. Это можно без усилий сделать без помощи других. Даже невзирая на то что КПД несколько снизится, таковой подход бывает оправданным.

Трехфазные и однофазные двигатели

Чтоб разобраться, как подключить электродвигатель с 380 на 220 Вольт, узнаем, что означает питание на 380 вольт.

Трехфазные двигатели имеют огромное количество преимуществ по сопоставлению с бытовыми однофазовыми. Потому их применение в индустрии широко. И дело заключается не только лишь в мощности, да и в коэффициенте полезного деяния. – Двигатель глохнет на сигнала на форсунки и один как проверить снятый. В их также предусмотрены пусковые обмотки и конденсаторы. Это упрощает конструкцию механизма. Инструкция, как подключить электродвигатель с 380 на 220. Разные методы подключения электродвигателя. Например, пусковое защитное реле холодильника выслеживает, сколько врублено обмотки. А в трехфазном движке в этом элементе необходимость отпадает.

Это достигается 3-мя фазами, во время работы которых снутри статора крутится электрическое поле.

Почему 380 В?

Когда поле снутри статора крутится, ротор двигается также. Обороты не совпадают с пятьюдесятью Герцами сети из-за того, что больше обмоток, количество полюсов хорошее, также по различным причинам происходит проскальзывание. Эти характеристики используются для регуляции вращения моторного вала.

Все три фазы имеют значение по 220 В. Но разница меж хоть какими 2-мя из их в хоть какое время будет хорошим от 220. Так и получится 380 Вольт. как снять двигатель ваз 2108-2115 сделай сам! Как снять задний бампер на ваз 2114,2113. Другими словами двигатель применяет 220 В для работы, при всем этом имеется сдвиг фаз, составляющий 100 20 градусов.

Смотрите:

Поэтому как подключить электродвигатель 380 на 220 Вольт впрямую нереально, приходится использовать ухищрения. Конденсатор считается самым обычным методом. Необходимо посмотреть на бирке двигателя, р = 1,73 * 380 * 1,16 * 0,67 =510,9 как запустить двигатель:. Когда емкость проходит фазу, последняя меняется на девяносто градусов. Хоть до 100 20 она не доходит, этого довольно для пуска и работы трехфазного мотора.

Как

подключить электродвигатель с 380 на 220 В

Для реализации задачки нужно осознавать, как устроены обмотки. Обычно корпус защищен кожухом, а под ним размещена разводка. Сняв его, необходимо изучить содержимое. Нередко тут можно отыскать схему соединений. Чтоб подключение электродвигателя к сети 380-220 состоялось, употребляется коммутация в форме звезды. Концы обмоток находятся в общей точке, которая именуется нейтралью. Фазы подаются на обратную сторону.

«Звезду» придется поменять. Для этого обмотки мотора нужно соединить в другую форму — в виде треугольника, объединив их на концах вместе.

Как

подключить электродвигатель с 380 на 220: схемы

Схема может смотреться последующим образом:

  • напряжение сети прикладывается к третьей обмотке;
  • тогда на первую обмотку напряжение перейдет через конденсатор при фазовом сдвиге в девяносто градусов;
  • на 2-ой обмотке скажется разница напряжений.

Как подключить

двигатель 380 на 220 легко быстро просто

Как подключить асинхронный трехфазный электродвигатель в однофазовую сеть.Как сделать переделать наждак.

Двигатель 380 в 220

Включение двигателя 380В. 3 фазы в бытовую сеть 220В.

Понятно, что сдвиг фаз получится на девяносто и 40 5 градусов. Из-за этого вращение равномерным не получится. К тому же форма фазы на 2-ой обмотке не будет синусоидальной. Потому, после того как подключить трехфазный электродвигатель к 220 вольтам получится, он не сумеет реализовываться без утрат мощности. Что он на 380. На 220 переделать двигатель 11квт с 380 на 220, как подключить с 380 на 220. Время от времени вал даже залипает и перестает вертеться.

Рабочая емкость

После набора оборотов емкость запуска уже будет не нужна, потому что сопротивление движению станет малозначительным. Для разряжения емкости ее укорачивают на сопротивление, через которое ток уже не пройдет. Для правильного выбора рабочей и пусковой емкости сначала необходимо учесть, что рабочее конденсаторное напряжение должно значительно перекрывать 220 Вольт. Минимум оно должно составлять 400 В. Также необходимо направить внимание на провода, чтоб токи были созданы для однофазовой сети.

При очень малой рабочей емкости вал будет залипать, потому для него употребляется изначальное ускорение.

Рабочая емкость зависит также от последующих причин:

  • Чем сильнее мотор, тем больше конденсаторный номинал будет нужно. Если значение составляет 250 Вт, то хватит и нескольких 10-ов мкФ. Но если мощность будет выше, то и номинал может считаться сотками. Как снять двигатель на ваз — luxvaz. Конденсаторы лучше получать пленочные, так как электронные придется дополнительно доделывать (они созданы для неизменного, а не переменного тока, и без переделок могут подорваться).
  • Чем больше обороты мотора, тем и номинал нужен выше. Если взять двигатель на 3000 об/мин и мощностью 2,2 кВт, то батарея ему будет нужно от 200 до 250 мкФ. А это большущее значение.

Еще эта емкость зависит и от нагрузки.

Смотрите:

Завершающий этап

Понятно, что электронный двигатель 380 В в 220 Вольтах будет лучше работать в этом случае, если напряжения получатся с равными значениями. Для этого обмотку, подсоединяющуюся к сети, трогать не надо, но потенциал измеряется на обеих других.

У асинхронного мотора имеется свое реактивное сопротивление. Как переделать электродвигатель с 380 на 220. Нужно найти минимум, при котором он начнет вращение. После чего номинал понемногу наращивают до того времени, пока все обмотки не выравняются.

Но когда двигатель раскрутится, может получиться, что равенство нарушится. Это происходтит из-за понижения сопротивления. Потому, перед тем как подключить электродвигатель с 380 на 220 Вольт и зафиксировать это, необходимо сравнять значения и при работающем агрегате.

Напряжение может быть и выше 220 В. Поглядите, чтоб обеспечивалась размеренная стыковка контактов, и не было утраты мощности либо перегрева. Идеальнее всего коммутация делается на особых клеммах с закрепленными болтами. После того как подключить электродвигатель с 380 на 220 Вольт вышло с необходимыми параметрами, на агрегат опять надевают кожух, а провода пропускают по краям через резиновый уплотнитель.

Что еще может случиться и как решить проблемы

Часто после сборки находится, что вал крутится не в ту сторону, в которую необходимо. Направление нужно поменять.

Для этого третью обмотку подключают через конденсатор к резьбовой клемме 2-ой обмотки статора.

Бывает, что из-за долговременной работы со временем возникает шум мотора. Но этот звук совершенно другого рода по сопоставлению с рокотом при неверном подключении. Случается с течением времени и вибрация мотора. Время от времени даже приходится с силой крутить ротор. Как правило это вызвано износом подшипников, из-за чего появляются очень огромные зазоры и возникает шум. Как своими руками переделать электродвигатель с 380 на 220 вольт. Рабочие схемы для переделки, подбор конденсаторов и реверсирование мотора. С течением времени это может привести к заклиниванию, а позднее — к порче деталей мотора.

Лучше такового не допускать, по другому механизм придет в негодность. Проще поменять подшипники на новые. Вопрос установки дисковых тормозов на задние колеса ваз 2114 как снять двигатель на. Тогда электродвигатель прослужит еще долгие и длительные годы.

Питающее напряжение 220 В однофазное и 380 В трехфазное в РФ. 50Гц. Почему так. Жаргон электриков и здравый смысл.

Питающее напряжение 220 В однофазное и 380 В трехфазное в РФ. 50Гц. Почему так. Жаргон электриков и здравый смысл.

Во первых почему питающее напряжение в электрических сетях пременное, а не постоянное? Первые генераторы в конце 19-го века выдавали постоянное напряжение, пока кто-то (умный!) не сообразил, что производить переменное при генерации и выпрямлять при необходимости его в точках потребления проще, чем производить постоянное при генерации и рожать переменное в точках потребления.

Во вторых, почему 50 Гц? Да просто у немцев так получилось, в начале 20 века. Нет тут особого смысла. В США и некоторых других странах 60 Гц. (см. справку проекта TehTab.ru)

В третьих, почему передающие сети (линии электропередач) имеют очень высокое напряжение? Тут смысл есть, если вспомнить основные формулы электротехники, то: потери мощности при транспортирове равны d(P)=I2*R, а полная передаваемая мощность равна P=I*U. Доля потерь от общей мощности выражается как d(P)/P=I*R/U. Минимальная доля потерь общей мощности, т. о. будет при максимальном напряжении. Трёхфазные сети, передающие большие мощности, имеют следующие классы напряжения:

  • от 1000 кВ и выше (1150 кВ, 1500 кВ) — ультравысокий
  • 1000 кВ, 500 кВ, 330 кВ — сверхвысокий
  • 220 кВ, 110 кВ — ВН, высокое напряжение
  • 35 кВ — СН-1, среднее первое напряжение
  • 20 кВ, 10 кВ, 6 кВ, 1 кВ — СН-2, среднее второе напряжение
  • 0,4 кВ, 220 В, 110 В и ниже — НН, низкое напряжение.

В четвертых: что такое номинальное обозначение В=»Вольт» ( А=»Ампер») в цепях переменного напряжения (тока)? Это действующее=эффективное=среднеквадратическое= среднеквадратичное значение напряжения (тока) , т.е. такое значение постоянного напряжения (тока) , которое даст такую-же тепловую мощность на аналогичном сопротивлении. Показывающие вольтметры и амперметры дают именно это значение. Максимальные амплитудные значения (например с осцилографа) по модулю всегда выше действующего.

В пятых, почему в в сетях потребителей напряжение ниже? Тут смысл тоже есть. Практически допустимые напряжения определялись доступными изоляционными материалами и их электрической прочностью. А потом уже ничего было не поменять.

Что такое «трехфазное напряжение 380 В и однофазное напряжение 220 В»? Тут внимание. Строго говоря, в большинстве случаев ( но не во всех) под трехфазной бытовой сетью в РФ понимают сеть 220/380В (изредка встречаются бытовые сети 127/220 В и промышленные 380/660 В!!!). Неправильные, но встречающиеся обозначения: 380/220В;220/127 В; 660/380 В!!! Итак, далее говорим об обычной сети 220/380Вольт, для работы с остальными — лучше бы Вам быть электриком. Итак для такой сети:

  • Наша домашняя (РФ, да и СНГ…) сеть 220/380В-50Гц, в Европе 230/400В-50Гц (240/420В-50Гц в Италии и Испании), в США — частота 60Гц, а номиналы вообще другие
  • К Вам придет как минимум 4 провода: 3 линейных («фазы») и один нейтральный (вовсе не обязательно с нулевым потенциалом!!!)-если у Вас только 3 линейных провода, лучше зовите инженера-электрика.
  • 220В — это действующее напряжение между любой из «фаз»=линейный провод и нейтралью (фазное напряжение).Нейтраль — это не ноль!
  • 380В — это действующее значение между любыми двумя «фазами»=линейными проводами (линейное напряжение)

Проект DPVA.info предупреждает: если Вы не имеете представления о мерах безопасности при работе с электроустановками (см. ПУЭ), лучше сами и не начинайте.

  • Нейтраль (всех видов) не обязательно имеет нулевой потенциал. Качество питающего напряжения на практике не соответствует никаким стандартам, а должно бы соответствовать ГОСТ 13109-97 «Электрическая энергия. Совместимость технических средств. Нормы качества электрической энергии в системах электроснабжения общего назначения» (никто не виноват…)
  • Защитные автоматы (тепловые и КЗ) защищают цепь от перегрузки и пожара, а не Вас от удара током
  • Заземление вовсе не обязательно имеет низкое сопротивление (т.е. спасает от удара током).
  • Точки с нулевым потенциалом могут иметь бесконечно большое сопротивление.
  • УЗО установленное в подающем щите не защищает никого, кто получает удар током из гальванически развязанной цепи, запитанной от этого щита.

Удачи!

Преобразователь 220 380 — главные условия работы

Частотные преобразователи 220-380 В делают возможным работу трехфазного двигателя на всю мощность, мягко регулировать обороты, включать обратное вращение ротора. Такие преобразователи используют в промышленных условиях, на различных предприятиях. Они имеют преимущества:

  • экономия электроэнергии, так как мощность увеличивается на 40-50%;
  • постоянной работе — перепады напряжения не влияют на работу оборудования;
  • увеличение срока работы — мягкий пуск и торможение уменьшают степень износа техники.

В современном мире любители электротехники и владельцы своего подворья интересуются применением 3-фазный асинхронный двигатель в сети с одной фазой. Такие двигатели по конструкции простые и не требуют особых затрат в работе. Это дает их большое применение среди любителей. Однако, применение 3-фазных моторов в сети с одной фазой не всегда обходится без трудностей. Трехфазный ток обуславливает магнитное поле, которое вращается, дает момент вращения на вал мотора. Ток с одной фазой образует поле пульсаций, которое не может вращать ротор мотора. Его нужно переделать в многофазный и тогда подать на электромотор. Сейчас существует много методов изменения однофазного тока в трехфазный. Они не лишены недостатков:

  1. Невозможно получить мощности трехфазный ток без помех (с разностью фаз 120 градусов). Значительно теряется мощность двигателя.
  2. Частотные преобразователи 1-фазного тока из 220 в 380 вольт не являются универсальными. Они делаются для конкретного мотора, ограничены по мощности. Также есть такие электродвигатели, которые нельзя запустить этими методами в однофазной сети.
  3. Конденсаторы мощности для пуска двигателя (реактивные элементы) неудобны в эксплуатации. Система становится большой, опасной дома.

Преимущества частотного преобразователя

Универсальные преобразователи частоты мощности innovert idd из однофазного тока 220 вольт в трех фазный 380 вольт изготовлены на основе простого трехфазного электродвигателя, имеют ряд преимуществ:

  1. Может вырабатывать трехфазный ток 380 вольт напряжения.
  2. Асинхронный двигатель не теряет мощность.
  3. Применяется для разных типов моторов с любыми характеристиками (ограничение только по сети, мощность не более 7 киловатт).
  4. Имеет простую конструкцию. Люди со средним образованием вполне могут сделать его за пару часов. Нужен будет двигатель асинхронного типа трехфазный 4 киловатта мощностью, емкость 50 микрофарад, куски проводов, три фазы. Электромотор не нужно переделывать.
  5. Потребляемая мощность от сети небольшая. Двигатель мощности на 4 кВт в холостую берет от сети около 200 ватт.

Главные условия работы

Генератор синхронный 3-фазного тока имеет в себе неподвижные катушки и якорь. Катушки смещены на 120 градусов. Блоком питания ротор вращается, его переменный поток магнитной энергии создает индуктивную ЭДС в обмотках статора. При подключении катушек статора с мотором, 3-фазный электроток мощности появляется в цепи. Его можно применять в быту.

Как, имея одну фазу, добавить остальные две? Берем простой электромотор мощности асинхронного типа с тремя фазами с замкнутым ротором. У него есть ротор и и 3 обмотки статорные, которые сдвинуты по углу 120 градусов. На одну обмотку подключаем 1-фазный ток. Ротор мотора не будет вращаться. А если другой силой передать ему некоторое вращательное движение, то он начнет вращаться за счет напряжения изменяющегося тока с одной фазой в 1-ой обмотке. Ротор при вращении наводит электродвижущую силу индукции в остальных обмотках, образует другие две фазы. Мы получаем вращающийся трансформатор. Одна обмотка мотора, на которую идет изменяющийся 1-фазный ток мощности по сети, будет обмоткой возбуждения, которая формирует магнитное поле ротора вращения, а он дает возбуждение напряжения переменного в других обмотках.

Данное напряжение оказывается 3-фазным, потому что электродвигатель дает эффект. На остальных обмотках напряжение уменьшено по сравнению с обмоткой возбуждения (из-за преобразовательных потерь). Это различие равняется около15 вольт и определено особенностями конструкции электромотора.

Как можно сделать вращение ротора от 1-фазного напряжения? Можно по-разному. Рекомендуется использование схемы с конденсатором пуска. Величина мощности емкости маленькая, потому что ротор преобразователя асинхронного типа вращается без нагрузки. Для работы преобразователя с двигателем в 4 киловатта хватит и 60 микрофарад. При всех неплохих результатах есть и недостатки преобразователи частоты:

  1. Потенциал напряжения опасен для людей 380 вольт. Чтобы уменьшить риск поражения током, используют 220 вольт напряжения линейного.
  2. Расход энергии преобразователем 220 на 380 вольт был ощутимым. Это уменьшало его КПД на холостом ходу.

Система постепенно модернизировалась, уходили от недочетов. Вместо преобразователя мощности использовали электромотор на 4 киловатта асинхронного типа с обмоткой на шесть полюсов статорной. Эти обмотки были включены звездой для напряжения линейного на 380 вольт. Мы подключали их на 220 вольт (между нулем и фазой образовалось 127 вольт).

Конденсатор пуска выключается после начала работы преобразователя, хотя не всегда надо его отключать. Он почти не влияет на работу всей конструкции. Получается звезда с несимметричным расположением. преобразователи частоты выдают две фазы и ноль. Такой ток еще называют квазитрехфазным.

На самом деле положительного у него мало, по сравнению с обычным трехфазным током. Частотник создает поле магнитного вращения. Преобразователи частоты созданы из двигателя асинхронного типа трехфазного, сочетаются с рабочим током для таких двигателей. Получилось уменьшить напряжение до 220 вольт, свое потребление энергии сделать 200 ватт мощности. Все устройства можно включать треугольником и звездой.

На испытуемых нами частотные преобразователи напряжения 220 в 380 вольт работают следующие потребители на трех фазах:

  1. Пила циркулярная 2,7 кВт;
  2. Крупорушка 1,2 кВт;
  3. Наждак 0,4 кВт;

На другом преобразователе другие потребители также успешно работают:

  1. Бур электрический 1,5 кВт;
  2. Бетономешалка строительная 600 Вт;
  3. Электрорубанок 0,7 кВт.

Электромоторы на трех фазах при работе в однофазной сети расходуют с помощью преобразователя напряжения такое же количество энергии, как по паспорту частотник, это сохранение энергии по закону.

Если давать наставления на повторения конструкции частотные преобразователи, то можно забыть о проблемах при эксплуатации двигателей частотник от сети 220 вольт, хотя сами моторы сделаны на 380 вольт.

Мощность электромотора, который используется частотник самим преобразователем, может быть выше мощности подсоединяемого к нему привода электрического. Если в преобразователе применяется электродвигатель 4,5 кВт, то мощность электромоторов, подключаемых к нему, не может быть более 3 кВт.

Жизнь показывает, что мощность преобразователя в 4 киловатта решает многие вопросы работы. Нагруженность сети до 3 киловатт вполне нормальной.

Расходуемый ток в режиме работы не может быть выше параметров тока по паспорту для этого вида электромоторов (иначе преобразователь 220 на 380 выйдет из строя.

Электродвигатели для преобразователей чаще всего используют с малыми оборотами вращения (до 1000 оборотов). Они мягко пускаются и отношение тока пуска к току работы у них ниже, чем у высокоскоростных электродвигателей, а значит меньше нагрузка на проводку.

Последовательность запуска должна быть следующей: сначала включается частотник преобразователь, потом двигатели 3-фазного двигателя. Отключать необходимо в обратном порядке.

Вместо конденсатора для пуска используют такие типы: МБГТ, МБГО, К-42-4 с напряжением работы более 600 вольт. Использование конденсаторов электролитов не рекомендуется. Размер емкости конденсатора пуска рассчитывается из мощности преобразователя 220 на 380 вольт. Например, для преобразователя на 4 кВт емкость получается 80 мкФ.

Схемы подключения статорных обмоток 3-фазного двигателя асинхронного типа: а – звездой, б – треугольником, в – звездой и треугольником на щитке клемм частотник электромотора.

С1, С2, С3 – начало обмотки, С4, С5, С6 – окончание обмотки. Часто используется маркировка вывода U1, V1, W1 – начало обмотки, U2, V2, W2 – конец обмотки.

По стандарту обмотка двигателя асинхронного типа обозначается: I фаза – С1 начало, С4 окончание, II фаза – С2 начало, С5 окончание, III фаза – С3 начало, С6 окончание.

Если имеется двигатель асинхронный с тремя фазами с ротором замкнутым накоротко, то сделать три фазы легко из одной. Для этого надо принудительно включить его в работу генератором. Генератор частотник необходимо вращать, чтобы он стал выдавать ток и напряжение. Значит необходим будет еще один мотор с одной фазой по мощности совместимый, с необходимыми оборотами.

Но нужен ли еще один электродвигатель частотник, если мы можем вынудить работать 3-фазный электродвигатель от одной фазы? Необходимо создать два условия: включить на одну обмотку напряжение с одной фазой и крутнуть двигатель, потому что он не станет работать с одной фазой. Что нужно для этого сделать? Можно запустить его руками, это просто. А можно применить для этой цели пусковой конденсатор.

Размер емкости пускового конденсатора может быть и маленькой, так как без нагруженности он легко запускается. При начале вращения преобразователи частоты легко запустятся от 1-ой фазы. Частотник создаст дополнительными своими обмотками остальные две обмотки. Один минус у такой схемы подключения – это перекошенность фаз, которую можно исправить добавлением в схему автотрансформатора.

Для этого частотник можно использовать вместо автотрасформатора статор вышедшего из строя электромотора на 15 киловатт (только магнитопровод), на нем сделал 380 витков провода поперечным сечением 6 мм2 с выводом на 40 витков. Выводы нужны для хорошей подготовки потенциала для фазы. Использовать частотник генератором можно мотор на 4 киловатта, нагрузку берем до 3 киловатт. Пусковой конденсатор возьмем типа МБГП, МБГО на емкость 40 мкФ, напряжение более 600 вольт. Подключать частотник генератор необходимо без нагруженности, выключать также.

Преобразователи частоты 220 на 380 В применяются с давних времен, но о них нет хорошей информации, даже у специалистов, обслуживающих электродвигатели. Многим, у кого имеется свое хозяйство, мастерская, гараж, пришлось столкнуться с пуском двигателя. Кому-то частотные преобразователи смогут оказать свою помощь в экономии электроэнергии, сделать жизнь и работу легче. Таким преобразователям уже давно нужно быть бытовыми приборами в доме и хозяйстве.

Напряжение 380 220 что значит

Добавлено 12 декабря 2014 года в 15:32, Пт

Очень часто, использование неприхотливых в эксплуатации и простых в обслуживании трехфазных асинхронных электродвигателей, в бытовых условиях бывает серьезно ограничено имеющимся напряжением питания. Далеко не всегда есть возможность подключения двигателя к трехфазной сети — нередко, в наличии имеется лишь питающее напряжение 220 В.

Предложенный ставшим уже “классическим” способ пуска “асинхронника” с использованием фазосдвигающего конденсатора отличается относительной простотой и невысокой стоимостью его реализации. Правда, следует учесть, что двигатель при таком подключении, сохраняя заявленную частоту вращения, существенно теряет в мощности; в лучшем случае (при соединении его статорных обмоток “треугольником”), потери составят 30-40%.

Определить схему соединения обмоток можно по данным на шильдике — металлической бирке на корпусе электродвигателя. Надпись 220/380 означает, что соединение может быть выполнено как по схеме “звезда”, так и “треугольник”. В этом случае, все 6 концов обмоток выведены в клеммную коробку.

Выведенные в коробку 3 конца, свидетельствую о том, что статорные обмотки скоммутированы по схеме “звезда” внутри двигателя. Соединить их “треугольником” более затруднительно: для этого потребуется разобрать двигатель, найти это соединение и, разорвав его, вывести (предварительно “нарастив”) оставшиеся 3 конца в коробку, где и соединить “треугольником” (при этом, важно не перепутать “начала” и ”концы” обмоток).

Использование двух конденсаторов в схеме связано с тем, что для пуска двигателя во время его разгона необходима намного большая емкость, чем по окончании пуска, в его рабочем состоянии. Буквенные обозначения Cр и Cп в данной схеме — рабочий и пусковой конденсаторы. Для нормального пуска, емкость пускового конденсатора должна превышать емкость рабочего приблизительно в 2-3 раза.

Выбор и расчет емкости конденсаторов. Использовать следует конденсаторы МБГО, МБГЧ, МБПГ с Uраб = 500 В. Необходимая емкость определяется, прежде всего, мощностью двигателя; чем он мощнее, тем пусковой и рабочий конденсаторы должны иметь большую емкость.

Для электродвигателей, обмотки которых соединены “звездой” емкость рабочего конденсатора определяется формулой:

При соединении обмоток треугольником, формула для расчета емкости имеет следующий вид:

где I — ток потребления двигателя (А), U — сетевое напряжение (В).

Результат расчета, помноженный на 2,5-3 составит нужную емкость пускового конденсатора — Cп. Данным способом можно добиться относительно неплохой точности результатов, для его упрощения предлагаем воспользоваться нашим калькулятором расчета емкости конденсаторов.

На практике, чаще всего, емкость определяют из расчета 7 мкФ на 100 Вт мощности двигателя. Это более простой способ найти емкость рабочего конденсатора, но менее точный. При эксплуатации электродвигателя в малонагруженном режиме или, преимущественно, вхолостую, емкость рабочего конденсатора может быть снижена.

Трёхфазные электродвигатели асинхронного типа с короткозамкнутым ротором доминируют над однофазными и двухфазными собратьями в применении, т.к. имеют более высокую эффективность, а также включаются в сеть без помощи пусковых устройств. По номинальному питанию отечественные электродвигатели делятся на два типа: напряжением 220 / 380 и 127 / 220 Вольт. Последний тип электромоторов небольшой мощности применяется значительно реже.

В шильдике, размещенном на корпусе электродвигателя, обозначена необходимая информация — напряжение питания, мощность, ток потребления, КПД, возможные варианты включения и коэффицент мощности, количество оборотов.

Схемы подключения ЗВЕЗДА и ТРЕУГОЛЬНИК

Производители предлагают трехфазные электродвигатели как с возможностью изменять схему подключения, так и без таковой.

Более раннему обозначению выводов обмоток С1 — С6 соответствует современное U1 — U2, W1 — W2 и V1 — V2. В распред. коробке выведены провода в количестве трёх (заводом изготовителем по умолчанию осуществлена схема подключения *звезда*) или шести (двигатель можно подключать к трехфазной сети как звездой, так и треугольником). В первом случае необходимо начала обмоток (W2, U2, V2) соединить в единой точке, три оставшихся провода (W1, U1, V1) подключить к фазам питающей сети (L1, L2, L3).

Преимущество метода звезда — плавный запуск мотора и мягкая работа (обусловленная щадящим режимом и благоприятно сказывающаяся на эксплуатационном сроке агрегата), а также меньший пусковой ток. Недостаток — потеря по мощности примерно в полтора раза и меньший крутящий момент. Применяется для оборудования, имеющего на валу свободно вращающуюся нагрузку – вентиляторы, центробежные насосы, валы станков, центрифуг и другого оборудования, не требовательного к крутящему моменту. Схему треугольник применяют для электродвигателей, изначально имеющих на валу неинерционную нагрузку, такую как вес груза лебедки или сопротивление поршневого компрессора.
Для снижения пускового тока осуществляют комбинированный тип включения (применим для электромоторов мощностью от 5 кВт) — сочетающий в себе преимущества первых двух схем — пуск происходит по схеме звезда, а после вхождения электромотора в рабочее состояние происходит автоматическое (реле времени) или ручное переключение (пакетник) — мощность возрастает до номинальной.

Включение трёхфазного двигателя в однофазную сеть через конденсатор (380 на 220)

На практике часто приходится подключать трёхфазный двигатель к сети 220 вольт; хотя КПД при этом падает до 50 % (в лучшем случае до 70%), такая переделка бывает оправданной. Фактически мотор начинает работать как двухфазный, используя фазосдвигающий элемент.
Конденсатор подбирают исходя из мощности двигателя — на каждые 100Вт потребуется ёмкость 6, 5 мкф, по рабочему напряжению должен быть больше питающего минимум в 1,5 раза, иначе от скачков напряжения в момент включения и выключения они могут выйти из строя; тип — МБГО, МБГ4, К78-17 МБГП, К75-12, БГТ, КГБ, МБГЧ. Хорошо себя зарекомендовали металлизированные полипропиленовые конденсаторы типа СВВ5, СВВ60, СВВ61. В случае применения конденсатора бОльшей ёмкости двигатель будет перегреваться, меньшей — будет работать в недогруженном режиме либо вообще не запустится. В схеме ниже Сп — пусковой, Ср — конденсатор рабочий.

Пусковой конденсатор при наличии нагрузки на валу двигателя

В случае, если на валу имеется нагрузка, либо мощность превышает 1,5 кВт, движок может не запуститься или медленно набирать обороты. *Поправить* это можно применением рабочего и пускового конденсатора, служащих для сдвига фазы и разгона. Кнопку разгона нужно удерживать пока обороты не достигнут примерно 70% от номинальных (2 — 3 секунды), после чего отпустить.

Ёмкость пускового кондера должна превышать рабочую в 2..3 раза в зависимости от нагрузки на валу. Если проблематично достать вышеуказанные конденсаторы нужной ёмкости, возможно применение электролитических, спаянных по особой схеме с диодами. Однако для работы мощных станков следует избегать подобной замены и рекомендовать её лишь для временного включения.

Важно!

Не рекомендуется подключать электродвигатель мощностью более 3 кВт к домашней сети ввиду её невысокой нагрузочной способности.
Автоматический выключатель в цепи питания электродвигателя должен быть с время — токовой характеристикой C или D ввиду существенного кратковременного пускового тока, превышающего номинальный в 3 и 5 раз (звезда / треугольник) соответственно.
Если 3 — фазный электродвигатель будет долго работать без нагрузки от однофазной сети, он сгорит!
Выбирая правильное соединение или переключение, необходимо учитывать особенности электрической сети, силовой мощности электродвигателя и варианты подключения. В каждом случае следует ознакомиться с техническими характеристиками мотора и оборудования, для которого он предназначен.

Почти все бытовые электроприборы рассчитаны на напряжение 220 В. Мы, не задумываясь, включаем их в розетку и наслаждаемся работой устройств. Но иногда требуется подключить асинхронный двигатель, рассчитанный на 380 В. Для его запуска можно использовать специальную схему, которая позволяет подключать электромотор к однофазной сети, но при этом придётся смириться с потерей мощности. Можно ли однофазную сеть превратить в трехфазную и как из 220 Вольт сделать 380?

Оказывается, такая возможность есть. Существует несколько способов получить 380 В из однофазной сети. Ниже мы покажем, как это сделать, но для начала разберёмся в том, чем отличается однофазная сеть от трёхфазной.

Теория

На промышленных электростанциях генераторы вырабатывают трёхфазный ток, и повышают его напряжение до десятков и даже сотен киловольт. По линиям электропередач электричество поставляется потребителям. Но перед этим ток поступает на силовой трансформатор, который понижает напряжение до 380 В. Из распределительной подстанции электроэнергия поступает в потребительскую сеть.

В трёхфазной сети ток подаётся таким образом, что все три сдвинуты относительно друг друга на 120 градусов. Напряжение между фазами составляет 380 В, а между фазой и нейтралью 220 В (см.рис. 1). Именно это напряжение подаётся в каждую квартиру.

Рис. 1. Структура трёхфазного тока

Так как нашей целью является получение 380 В именно из однофазной сети, то перейдём к способам преобразования 220 В на 380.

Способы получения 380 Вольт из 220

Рассмотрим основные способы преобразования 220 вольт в полноценный трёхфазный ток, напряжением 380 В:

  • с помощью электронного преобразователя напряжения;
  • путём применения трансформатора;
  • использованием трёх фаз;
  • используя трёхфазный двигатель в качестве генератора;
  • пользуясь конденсаторной схемой.

Преобразователь напряжения

Самый простой и надёжный способ преобразовать 220 В в 380 – купить электронный преобразователь напряжения. (см. рис. 2). Этот прибор часто называют инвертором. Гаджет прост в управлении и генерирует качественный трёхфазный ток. Правда, мощность инверторов не слишком большая, но её, как правило, хватает для большинства трёхфазных бытовых приборов.

Рис. 2. Преобразователь напряжения

Преобразователь хорош ещё и тем, что у него есть встроенная функция защиты от перегрузок и КЗ. А это значит, что электромотор не перегреется и не выйдет из строя в результате КЗ.

Высокое качество тока достигается благодаря принципу работы устройства. Инвертор сначала выпрямляет переменный однофазный ток, а затем генерирует трёхфазное напряжение с заданной частотой и со стандартным сдвигом фаз. При этом количество фаз может быть и больше чем 3 (с соответствующим углом сдвига).

Используя трансформатор

С помощью повышающего трансформатора можно получить какое угодно напряжение, в том числе и 380 В. Однако, если вас интересует трёхфазное напряжение, то необходим специальный трёхфазный трансформатор. преобразующий однофазный ток в трёхфазный. Такие трансформаторы есть в продаже.

Обмотки трансформатора соединены звездой или треугольником. Напряжение однофазной сети подаётся на две первичные обмотки напрямую, а на третью – через конденсатор. При этом ёмкость конденсатора подбирается из расчёта 7 мкФ на каждые 100 Вт мощности.

Обратите внимание на то, что номинальное напряжение конденсатора не должно быть ниже 400 В. Такое устройство нельзя включать без нагрузки.

Хоть мы и получим таким способом необходимые 380 В, всё равно будет наблюдаться снижение мощности электромотора (если вы планируете подключать его к трансформатору). Соответственно КПД двигателя тоже упадёт.

Использование 3-х фаз

Если вы проживаете в многоквартирном доме, то к нему уже подведено 3 фазы, которые с целью оптимального распределения нагрузок разведены по отдельным квартирам. На каждом этаже стоят распределительные щиты, откуда можно завести в квартиру недостающие две фазы. Но для этого потребуется разрешение.

При желании вы можете получить разрешение у энергоснабжающей компании или согласовать с Энергонадзором обустройство трёхфазного питания в вашей квартире. При этом потребуется установить трёхфазный счётчик электроэнергии.

Использование электродвигателя

Вы наверно знаете, что ротор обычного трёхфазного двигателя после запуска продолжает вращаться после отключения одной фазы. Оказывается, что между выводом отключенной обмотки и задействованными выводами имеется ЭДС.

Сдвиг фаз между обмотками статора зависит только от их расположения. В трёхфазном двигателе эти катушки расположены под углом 120º, а значит они обеспечивают такой же угол сдвига фаз. Это обстоятельство наталкивает на мысль, что асинхронный трёхфазный двигатель можно использовать для получения 380 вольт от обычной однофазной сети. Простая схема подключения электромотора изображена на рисунке 3. Конденсатор на схеме нужен только для запуска двигателя. После запуска его можно отключить. Конденсатор берём типа МБГО, МБГП, МБГТ или К42-4, рабочее напряжение которого должно быть не менее 600 В. Можно применить конденсатор К42-19, с рабочим напряжением минимум 250 В.

Пример подключения фазосдвигающего конденсатора см. на рис. 3.

Рис. 3. Подключение пускового конденсатора

Параметры конденсатора подбираем в зависимости от мощности мотора. Заметим, что параметры фазосдвигающего конденсатора на качество генерируемого тока не влияют. Нагрузку подключаем к обмоткам статора, согласно схеме, показанной на рис. 4.

Рис. 4. Трёхфазный ток от электромотора

Скорость вращения ротора почти не зависит от напряжения однофазной сети, так что её можно считать постоянной. Это значит, что частота трёхфазного тока при номинальных нагрузках изменяться не будет.

Следует иметь в виду то, что мощность трёхфазного двигателя, работающего от однофазной сети, падает. Соответственно, номинальная мощность трёхфазной нагрузки будет, примерно, на треть ниже, от той, которая заявлена в паспорте электромотора.

Электродвигатель в качестве генератора

Ещё один способ, позволяющий из 220 В получить 380, это создание системы двигатель-генератор. В качестве двигателя можно взять любой электромотор, работающий от сети 220 В, а в качестве генератора – доработанный трёхфазный асинхронный двигатель (схему установки смотрите на рис. 5).

Сразу заметим, что эффективность такой установки под вопросом, но получить таким способом требуемое напряжение 380 В можно. В данной схеме требуется обеспечить такую частоту вращения ротора, чтобы генератор выдавал ток с частотой, равной 50 Гц. Для этого необходимо вращать вал с угловой скоростью 1500 об/мин.

Рис. 5. Трёхфазный двигатель в качестве генератора

В домашних условиях в качестве привода можно использовать однофазный мотор от стиральной машины или другой бытовой техники. Важно только обеспечить требуемую угловую скорость вращения ротора.

Поскольку вращение вала электродвигателей работающих, например, в стиральной машине составляет около 12 – 20 тыс. об./мин., то необходимо использовать шкивы, диаметры которых соотносятся как 1 к 10. То есть, чтобы обеспечить вращение ротора генератора со скоростью 1500 об/мин. можно взять шкив, который уже смонтирован на электромоторе от пралки, а на вал трёхфазного двигателя надеть шкив, диаметром в 10 раз больше.

Выводы

Получить 380 вольт от сети 220 В возможно несколькими способами. Самым эффективным является способ применения электронного инвертора:

  • стабильные параметры тока;
  • безопасная эксплуатация;
  • обеспечение заявленной выходной мощности;
  • компактность установки.

Все выше перечисленные способы преобразования 220 Вольт в 380 работают, поэтому имеют право на существование. Но надо быть готовым к потере мощности и к трудностям по достижению других параметров тока, включая его частотные характеристики.

Источник высокого качества Трансформатор 220 380 производителя и Трансформатор 220 380 на Alibaba.com

Испытайте всю мощь лучших. трансформатор 220 380 о невероятных скидках на Alibaba.com. Соответствующий. трансформатор 220 380 повышайте свою производительность, торгуя напряжением и током в электрической цепи. Вы можете использовать расширение. трансформатор 220 380 для преобразования электроэнергии с высоким напряжением и небольшим током в электроэнергию с низким напряжением и большим током или наоборот в соответствии с вашими потребностями.

На сайте Alibaba.com. трансформатор 220 380 доступны в самом большом ассортименте, который включает в себя различные размеры и модели. Независимо от ваших потребностей в трансформации власти, вы найдете правильный тип. трансформатор 220 380, которые помогут вам достичь ваших целей. Вы найдете такие, которые можно использовать во всех сферах, от бытовой техники до промышленного. Все. трансформатор 220 380 сделаны из прочных материалов, которые делают их очень прочными и эффективными на протяжении долгого срока службы.

Они. трансформатор 220 380 соблюдают строгие стандарты качества и меры для обеспечения максимальной безопасности и ожидаемых результатов. трансформатор 220 380 производители и дистрибьюторы, указанные на сайте, обладают высокой надежностью и заслуживают доверия несомненно из-за их длинные истории производства и поставки высококачественных продуктов последовательно. Это гарантирует вам, что вы всегда найдете лучшее качество. трансформатор 220 380 в каждую вашу покупку.

Зайдите на Alibaba.com сегодня и откройте для себя удивительное. трансформатор 220 380. Выберите наиболее подходящий для вас в соответствии с вашими потребностями. Неоспоримая максимальная производительность покажет вам, почему они стоят каждого цента. Если вы ведете бизнес, воспользуйтесь скидками, предназначенными для. трансформатор 220 380 оптовикам и поставщикам и увеличивайте свою прибыльность.

3-фазный 480 В, треугольник — 380 Y 220 — Промышленный трансформатор Maddox

Этот трансформатор предназначен для преобразования 3-фазного 480 В в 3-фазное 380 Y 220 для работы оборудования, такого как панели, двигатели, станки с ЧПУ, сварочные аппараты, конвейерные системы, насосы, печатное оборудование, инструменты для изготовления, майнеры криптовалюты, оборудование центров обработки данных и другие бизнес-машины.

Первичное напряжение: 480 дельта

Вторичное напряжение: 380 Y 220 Технические характеристики трансформатора

:

  • Одобрено CSA и UL
  • 60 Гц Частота
  • Повышение температуры 150 ° C
  • Отводы первичной регулировки 2 вверху, 4 внизу в 2.С шагом 5%
  • Высокоэффективные алюминиевые обмотки
  • Класс изоляции 220 ° C
  • Обмотки, пропитанные вакуумным давлением
  • NEMA 3R Внешний / внутренний шкаф
  • DOE 2016 Энергоэффективность
  • Настенный монтаж до 75 кВА
  • Проушины включены до 75 кВА

    Точные размеры и форма могут отличаться. Трансформатор может отличаться от изображенного на рисунке.

    Нужно что-то другое? Свяжитесь с нами для индивидуального предложения: 600vsales @ maddoxtransformer.com

    Скачать инструкцию по эксплуатации

    Приблизительные размеры и масса корпуса:

    кВА
    15
    30
    45
    75
    112,5
    150
    Размеры (ВхШхГ)
    28 «x21» x14 «
    32″ x27 «x17»
    32 «x27» x17 «
    39″ x29 «x20»
    41 «x32» x22 «
    41″ x32 «x22»
    Вес (фунты)
    220
    320
    385
    565
    725
    860

    Стоимость доставки
    Стоимость доставки варьируется, но обычно составляет 5-10% от общей стоимости покупки.

    Отгрузка От
    Отгрузка трансформаторов со склада в течении 3-5 рабочих дней. У Мэддокса 22 региональных фулфилмент-центра, поэтому доставка никогда не заканчивается через несколько дней!

    Центры обработки заказов Maddox

    Возврат
    Наша политика действует 30 дней. Если с момента покупки прошло 30 дней, к сожалению, мы не сможем предложить вам возврат или обмен. Мы все еще можем быть заинтересованы в выкупе устройства обратно.

    Чтобы вернуть товар, заполните эту форму.

    Для отправки запроса …

    Подробнее здесь: Политика доставки, возврата и возврата

    5 лет гарантии

    Покупайте с уверенностью. Все новые и бывшие в употреблении трансформаторы Maddox проходят испытания и имеют полную 5-летнюю гарантию от дефектов. Если у вас возникнут проблемы, просто позвоните нам и получите бесплатную замену. Мы даже оплатим доставку!

    Лучшее соотношение цены и качества от 220 до 380 — Отличные предложения от 220 до 380 от 220 до 380 продавцов по всему миру

    Отличные новости !!! Вы находитесь в нужном месте с 220 до 380. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

    Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

    AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, так как эти топовые 220–380 скоро станут одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что получили свои 220–380 на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

    Если вы все еще сомневаетесь между 220 или 380 и думаете о том, чтобы выбрать аналогичный товар, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам решить, стоит ли доплачивать за высококлассную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

    А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести 220 to 380 по самой выгодной цене.

    У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

    Двигатель специального напряжения 1 л.с., 3 фазы, 1500 об / мин, 220/380/440 В, рама 56, TEFC

    Двигатель специального напряжения 1 л.с., 3 фазы, 1500 об / мин, 220/380/440 В, рама 56, TEFC

    Поделитесь своими отзывами об этом продукте. Страница:

    Отзыв отправлен успешно

    Выберите до трех продуктов для сравнения.

    Каталожный номер:

    Номер детали:

    Номер детали клиента:

    № в каталоге: 114888.00

    Номер детали: 114888.00

    • Подходит для 220/380 В, 50 Гц или 440 В, 50 Гц, трехфазного питания
    • Крутящий момент превышает характеристики NEMA для двигателей конструкции B
    • Конструкция соответствует стандартам защиты IP 54
    • Изоляция класса F

    Файл не найден.Пожалуйста, попробуйте еще раз или обратитесь в службу поддержки.

    К сожалению, в настоящее время этот продукт не соответствует стандартам выбранной вами страны.

    Этот продукт соответствует стандартам выбранной вами страны.

    У вашей учетной записи нет доступа для покупки этого продукта. Чтобы совершить покупку, перейдите в свой аккаунт {0}.

    Следующие элементы были перемещены в {0}: {1}

    При количестве свыше {0} может потребоваться дополнительное время выполнения заказа.В этом случае с вами свяжется представитель Regal.

    Вы можете заказывать только количество, кратное {0}. Пожалуйста, введите действительное количество для этого товара.

    У вас нет товаров, выбранных для сравнения. Выберите не менее двух продуктов для сравнения с помощью флажка «Добавить для сравнения» на страницах со списком продуктов или на страницах с описанием продуктов.

    Извините, этот товар больше не доступен.

    Снято с производства

    Свободных складов не найдено.

    Минимальный заказ товара: {0} штук.

    Товар необходимо заказывать в количестве, кратном {0} шт.

    Вес: 31.00 фунтов

    ЭффективностьЧилиКанадаСоединенные ШтатыЮжная КореяМексикаЯпонияЕвропаСаудовская АравияКитайАвстралияНовая ЗеландияБразилия

    Этот продукт соответствует стандартам выбранной вами страны.

    К сожалению, в настоящее время этот продукт не соответствует стандартам выбранной вами страны.

    Общие технические характеристики

    014271
    UPC: 6 Вес: 31.00 фунтов
    Длина в упаковке: 14,44 IN Ширина в упаковке: 10,44 IN
    Высота в упаковке: 10,88 IN

    Технические характеристики паспортной таблички

    Мощность HP: 1 л.с. Мощность кВт: 0,75 кВт
    Частота: 50 Гц Напряжение: 220/380/440 В
    Текущий: 3.5 / 2,0 / 1,8 А Скорость: 1425 об / мин
    Фактор обслуживания: 1,15 Фаза: 3
    Эффективность: 77% Коэффициент мощности: 73
    Обязанность: Непрерывный Класс изоляции: Б
    Код дизайна: НЕТ ДИЗАЙН-КОДА кВА Код: Дж
    Рама: 56 Корпус: Полностью закрытый вентилятор с охлаждением
    Тепловая защита: Температура окружающей среды: 40 ° С
    Размер подшипника приводного конца: 6203 Размер подшипника со стороны привода Opp: 6203
    UL: Распознано CSA: Y
    CE: Y IP код: 54

    Технические характеристики

    Электрический тип: Индукционный прогон с беличьей клеткой Метод запуска: через линию
    Полюсы: 4 Вращение: Реверсивный
    Основное сопротивление: 5.11 Ом Монтаж: Жесткое основание
    Ориентация двигателя: Горизонтальный Подшипник приводного конца: Мяч
    Подшипник конца привода Opp: Мяч Материал рамы: Прокат
    Тип вала: NEMA 56 Общая длина: 10.98 из
    Длина рамы: 5,50 дюйма Диаметр вала: 0,625 дюйма
    Удлинитель вала: 1,88 дюйма Сборка / Монтаж в коробке: ТОЛЬКО F1

    Скоростные характеристики

    Точка изгиба Ток (А) Текущий (%) Крутящий момент (LB-FT) Крутящий момент (%) Скорость (об / мин) Номинальная мощность (кВт) Коэффициент мощности (%) Номинальная мощность (л.с.)
    Заторможенный ротор 17.28 0,0 8,90 0,0 0 5,36 0,0 1,00
    Подтягивание 0,00 0,0 8,60 0,0 75 0,00 0,0 1,00
    Разбивка 0,00 0,0 11,50 0,0 939 0,00 0,0 1,00
    Полная нагрузка 3.59 0,0 3,60 0,0 1,431 0,95 77,2 1,00

    Нагрузочные характеристики

    % от номинальной нагрузки 0% 25% 50% 75% 100% 125% 150% 175% 200%
    Ток (А) 1,34 1,38 1.47 1,63 1,83 2,03 2,31 2,62 2,96
    Номинальная мощность (кВт) 0,12 0,31 0,50 0,71 0,93 1,14 1,37 1,61 1,87
    КПД (%) 0,0 62,1 74,6 78,6 79,7 80,0 78.7 77,4 74,8
    Коэффициент мощности (%) 8,9 29,0 44,5 57,4 66,0 73,7 77,5 80,8 83,3
    Скорость (об / мин) 1,498 1,485 1,473 1,459 1,444 1,429 1,411 1,390 1,367
    Темп.Взлет @ FL 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
    Крутящий момент (LB-FT) 0,00 0,90 1,73 2,70 3,60 4,43 5,37 6,32 7,22

    Извините, этот товар больше не доступен.

    Просмотреть больше сопутствующих товаров

    Это имя используется, введите другое

    {0} было успешно создано.

    {0} успешно удалено.

    Новый пароль и пароль подтверждения не совпадают.

    Введенный пароль не соответствует нашей политике паролей. Пожалуйста, попробуйте еще раз.

    Введенный пароль не соответствует нашей политике паролей. Пожалуйста, попробуйте еще раз.

    У вас уже есть доступ к зарегистрированной учетной записи.

    Учетная запись уже добавлена ​​

    Пожалуйста, выберите учетную запись

    Введенный номер учетной записи недействителен или учетная запись еще не переведена для использования в Regalbeloit.com.

    Для добавления необходимо указать действующий номер счета. Если вы не знаете номер своего счета, обратитесь к своему торговому представителю или администратору учетной записи.

    Установите флажок «Дополнительный доступ».

    Пожалуйста, введите свой адрес.

    Пожалуйста, введите ваш адрес (продолжение).

    Пожалуйста, проверьте, чтобы согласиться с Условиями использования и Политикой конфиденциальности.

    Пожалуйста, укажите ваш город.

    Пожалуйста, введите название вашей компании.

    Пожалуйста, введите пароль для подтверждения.

    Пожалуйста, выберите вашу страну.

    Пожалуйста, введите правильный формат вашего электронного адреса.

    Пожалуйста, введите свой адрес электронной почты.

    Пожалуйста, введите ваше имя.

    Пожалуйста, введите вашу должность.

    Пожалуйста, введите вашу фамилию.

    Текущий введенный пароль не соответствует вашему паролю, или новый пароль совпадает с предыдущим, или пароль изменен за последние 30 дней.

    Профиль успешно обновлен.

    Ошибка при запросе доступа.

    Регистрационная информация получена. Спасибо за проявленный интерес к Regal.

    Пожалуйста, введите новый пароль.

    Введите старый пароль.

    Пожалуйста, введите правильный формат вашего номера телефона.

    Пожалуйста, введите свой номер телефона.

    Пожалуйста, введите допустимый формат для вашего добавочного номера.

    Выберите хотя бы одну категорию продуктов.

    Убедитесь, что вы не робот.

    Регистрационная информация получена.Спасибо за проявленный интерес к Regal.

    Вы должны указать имя сотрудника Regal Beloit, который может подтвердить вашу потребность в доступе к технической документации Genteq.

    Пожалуйста, выберите ваш штат.

    Этот адрес электронной почты уже используется. Пожалуйста, авторизуйтесь.

    Пожалуйста, введите свой почтовый индекс.

    Время вашего сеанса истекло. Вы должны войти снова, чтобы получить доступ к защищенному содержимому. Любая работа на текущей странице будет потеряна.

    Вы можете заказать максимальное количество {2} для позиции {0}.

    В корзину добавлены следующие товары: {0}

    Загрузка…

    Вт от 380 ~ 480 В до 110 ~ 120 В или 220 ~ 240 В Трансформатор 50 ВА

    Описание продукта

    Трансформатор цепи управления с широким диапазоном входного и двойного выходного напряжения (для последовательного или параллельного соединения).

    Высокие технические характеристики с защитными клеммами IP20.

    Пропитка лаком класса H и заземление жилы.

    Диапазон температуры окружающей среды от -10 ° C до +35 ° C.

    Простота установки и возможность монтажа на DIN-рейку.

    Разработан в соответствии с EN 61558-1: изоляция класса E.

    Регулировка напряжения 15%.

    Трансформатор цепи управления с широким диапазоном входного и двойного выходного напряжения (для последовательного или параллельного соединения).

    Высокие технические характеристики с защитными клеммами IP20.

    Пропитка лаком класса H и заземление жилы.

    Диапазон температуры окружающей среды от -10 ° C до +35 ° C.

    Простота установки и возможность монтажа на DIN-рейку.

    Разработан в соответствии с EN 61558-1: изоляция класса E.

    Регулировка напряжения 12%.

    Трансформатор цепи управления с широким диапазоном входного и двойного выходного напряжения (для последовательного или параллельного соединения).

    Высокие технические характеристики с защитными клеммами IP20.

    Пропитка лаком класса H и заземление жилы.

    Диапазон температуры окружающей среды от -10 ° C до +35 ° C.

    Простота установки и возможность монтажа на DIN-рейку.

    Разработан в соответствии с EN 61558-1: изоляция класса E.

    Регулировка напряжения 10%.

    Трансформатор цепи управления с широким диапазоном входного и двойного выходного напряжения (для последовательного или параллельного соединения).

    Высокие технические характеристики с защитными клеммами IP20.

    Пропитка лаком класса H и заземление жилы.

    Диапазон температуры окружающей среды от -10 ° C до +35 ° C.

    Разработан в соответствии с EN 61558-1: изоляция класса E.

    Регулировка напряжения 10%.

    Трансформатор цепи управления с широким диапазоном входного и двойного выходного напряжения (для последовательного или параллельного соединения).

    Высокие технические характеристики с защитными клеммами IP20.

    Пропитка лаком класса H и заземление жилы.

    Диапазон температуры окружающей среды от -10 ° C до +35 ° C.

    Разработан в соответствии с EN 61558-1: изоляция класса E.

    Регулировка напряжения 8%.

    Трансформатор цепи управления с широким диапазоном входного и двойного выходного напряжения (для последовательного или параллельного соединения).

    Высокие технические характеристики с защитными клеммами IP20.

    Пропитка лаком класса H и заземление жилы.

    Диапазон температуры окружающей среды от -10 ° C до +35 ° C.

    Разработан в соответствии с EN 61558-1: изоляция класса E.

    Регулировка напряжения 8%.

    Трансформатор цепи управления с широким диапазоном входного и двойного выходного напряжения (для последовательного или параллельного соединения).

    Высокие технические характеристики с защитными клеммами IP20.

    Пропитка лаком класса H и заземление жилы.

    Диапазон температуры окружающей среды от -10 ° C до +35 ° C.

    Разработан в соответствии с EN 61558-1: изоляция класса E.

    Регулировка напряжения 8%.

    Трансформатор цепи управления с широким диапазоном входного и двойного выходного напряжения (для последовательного или параллельного соединения).

    Высокие технические характеристики с защитными клеммами IP20.

    Пропитка лаком класса H и заземление жилы.

    Диапазон температуры окружающей среды от -10 ° C до +35 ° C.

    Разработан в соответствии с EN 61558-1: изоляция класса E.

    Регулировка напряжения 8%.

    Трансформатор цепи управления с широким диапазоном входного и двойного выходного напряжения (для последовательного или параллельного соединения).

    Высокие технические характеристики с защитными клеммами IP20.

    Пропитка лаком класса H и заземление жилы.

    Диапазон температуры окружающей среды от -10 ° C до +35 ° C.

    Разработан в соответствии с EN 61558-1: изоляция класса E.

    Регулировка напряжения 4%.

    Трансформатор цепи управления с широким диапазоном входного и двойного выходного напряжения (для последовательного или параллельного соединения).

    Высокие технические характеристики с защитными клеммами IP20.

    Пропитка лаком класса H и заземление жилы.

    Диапазон температуры окружающей среды от -10 ° C до +35 ° C.

    Разработан в соответствии с EN 61558-1: изоляция класса E.

    Регулировка напряжения 4%.

    Трансформатор цепи управления с широким диапазоном входного и двойного выходного напряжения (для последовательного или параллельного соединения).

    Высокие технические характеристики с защитными клеммами IP20.

    Пропитка лаком класса H и заземление жилы.

    Диапазон температуры окружающей среды от -10 ° C до +35 ° C.

    Разработан в соответствии с EN 61558-1: изоляция класса E.

    Регулировка напряжения 4%.

    Трансформатор цепи управления с широким диапазоном входного и двойного выходного напряжения (для последовательного или параллельного соединения).

    Высокие технические характеристики с защитными клеммами IP20.

    Пропитка лаком класса H и заземление жилы.

    Диапазон температуры окружающей среды от -10 ° C до +35 ° C.

    Разработан в соответствии с EN 61558-1: изоляция класса E.

    Регулировка напряжения 3%.

    Трансформатор цепи управления с широким диапазоном входного и двойного выходного напряжения (для последовательного или параллельного соединения).

    Высокие технические характеристики с защитными клеммами IP20.

    Пропитка лаком класса H и заземление жилы.

    Диапазон температуры окружающей среды от -10 ° C до +35 ° C.

    Разработан в соответствии с EN 61558-1: изоляция класса E.

    Регулировка напряжения 3%.

    Трансформатор цепи управления с широким диапазоном входного и двойного выходного напряжения (для последовательного или параллельного соединения).

    Высокие технические характеристики с защитными клеммами IP20.

    Пропитка лаком класса H и заземление жилы.

    Диапазон температуры окружающей среды от -10 ° C до +35 ° C.

    Разработан в соответствии с EN 61558-1: изоляция класса E.

    Регулировка напряжения 3%.

    Для получения полных технических данных свяжитесь с нашим отделом продаж.

    Полный список: Трехфазная электроэнергия (напряжение / частота)

    Абу-Даби (не страна, а штат (эмират) в Объединенных Арабских Эмиратах) 400 В 50 Гц 3 , 4
    Афганистан 380 В 50 Гц 4
    Албания 400 В 50 Гц 4
    Алжир 400 В 50 Гц 4
    Американское Самоа 208 В 60 Гц 3, 4
    Андорра 400 В 50 Гц 3, 4
    Ангола 380 В 50 Гц 4
    Ангилья 120/208 В / 127/220 В / 240/415 В 60 Гц 3, 4
    Антигуа и Барбуда 400 В 60 Гц 3, 4
    Аргентина 380 В 50 Гц 3, 4
    Армения 400 В 50 Гц 4
    Аруба 220 В 60 Гц 3, 4
    Австралия 400 В (официально, но на практике часто 415 В) 50 Гц 3, 4
    Австрия 400 В 50 Гц 3, 4
    Азербайджан 380 В 50 Гц 4
    Азорские острова 400 В 50 Гц 3, 4
    Багамы 208 В 60 Гц 3, 4
    Бахрейн 400 В 50 Гц 3, 4
    Балеарские острова 400 В 50 Гц 3, 4
    Бангладеш 400 В 50 Гц 3, 4
    Барбадос 200 В 50 Гц 3, 4
    Беларусь 380 В 50 Гц 4
    Бельгия 400 В 50 Гц 3, 4
    Белиз 190 В / 380 В 60 Гц 3, 4
    Бенин 380 В 50 Гц 4
    Бермудские острова 208 В 60 Гц 3, 4
    Бутан 400 В 50 Гц 4
    Боливия 400 В 50 Гц 4
    Бонайре 220 В 50 Гц 3, 4
    Босния и Герцеговина 400 В 50 Гц 4
    Ботсвана 400 В 50 Гц 4
    Бразилия 220/380 В 60 Гц 3, 4
    Британские Виргинские острова 190 В 60 Гц 3, 4
    Бруней 415 В 50 Гц 4
    Болгария 400 В 50 Гц 4
    Буркина-Фасо 380 В 50 Гц 4
    Бирма (официально Мьянма) 400 В 50 Гц 4
    Бурунди 380 В 50 Гц 4
    Камбоджа 400 В 50 Гц 4
    Камерун 380 В 50 Гц 4
    Канада 120/208 В / 240 В / 480 В / 347/600 В 60 Гц 3, 4
    Канарские острова 400 В 50 Гц 3, 4
    Кабо-Верде (по-португальски: Кабо-Верде) 400 В 50 Гц 3, 4
    Каймановы острова 240 В 60 Гц 3
    Центральноафриканская Республика 380 В 50 Гц 4
    Чад 380 В 50 Гц 4
    Нормандские острова (Гернси и Джерси) 400 В 50 Гц 4
    Чили 380 В 50 Гц 3, 4
    Китай, Народная Республика 380 В 50 Гц 3, 4
    Остров Рождества 400 В 50 Гц 3, 4
    Кокосовые острова (Килинг) острова 400 В 50 Гц 3, 4
    Колумбия 220 В / 440 В 60 Гц 3, 4
    Коморские острова 380 В 50 Гц 4
    Конго-Браззавиль (Республика Конго) 400 В 50 Гц 3, 4
    Конго-Киншаса (Демократическая Республика Конго) 380 В 50 Гц 3, 4
    Острова Кука 415 В 50 Гц 3, 4
    Коста-Рика 240 В 60 Гц 3, 4
    Кот-д’Ивуар (Кот-д’Ивуар) 380 В 50 Гц 3, 4
    Хорватия 400 В 50 Гц 4
    Куба 190 В / 440 В 60 Гц 3
    Кюрасао 220 В / 380 В 50 Гц 3, 4
    Кипр 400 В 50 Гц 4
    Кипр, Север (непризнанное, самопровозглашенное государство) 400 В 50 Гц 4
    Чехия (Чехия) 400 В 50 Гц 3, 4
    Дания 400 В 50 Гц 3, 4
    Джибути 380 В 50 Гц 4
    Доминика 400 В 50 Гц 4
    Доминиканская Республика 120/208 В / 277/480 В 60 Гц 3, 4
    Дубай (не страна, а государство (эмират) в составе Объединенных Арабских Эмиратов) 400 В 50 Гц 3, 4
    Восточный Тимор (Тимор-Лешти) 380 В 50 Гц 4
    Эквадор 208 В 60 Гц 3, 4
    Египет 380 В 50 Гц 3, 4
    Сальвадор 200 В 60 Гц 3
    Англия 400 В 50 Гц 4
    Экваториальная Гвинея [недоступно] [недоступно] [недоступно]
    Эритрея 400 В 50 Гц 4
    Эстония 400 В 50 Гц 4
    Эфиопия 380 В 50 Гц 4
    Фарерские острова 400 В 50 Гц 3, 4
    Фолклендские острова 415 В 50 Гц 4
    Фиджи 415 В 50 Гц 3, 4
    Финляндия 400 В 50 Гц 3, 4
    Франция 400 В 50 Гц 4
    Французская Гвиана (заморский департамент Франции) 380 В 50 Гц 3, 4
    Французская Полинезия (заморское сообщество Франции) 380 В 60 Гц 3, 4
    Габон (Габонская Республика) 380 В 50 Гц 4
    Гамбия 400 В 50 Гц 4
    Газа 400 В 50 Гц 4
    Грузия 380 В 50 Гц 4
    Германия 400 В 50 Гц 4
    Гана 400 В 50 Гц 3, 4
    Гибралтар 400 В 50 Гц 4
    Великобритания (GB) 400 В 50 Гц 4
    Греция 400 В 50 Гц 4
    Гренландия 400 В 50 Гц 3, 4
    Гренада 400 В 50 Гц 4
    Гваделупа (заморский департамент Франции) 400 В 50 Гц 3, 4
    Гуам 190 В 60 Гц 3, 4
    Гватемала 208 В 60 Гц 3, 4
    Гвинея 380 В 50 Гц 3, 4
    Гвинея-Бисау 380 В 50 Гц 3, 4
    Гайана 190 В 60 Гц 3, 4
    Гаити 190 В 60 Гц 3, 4
    Голландия (официально Нидерланды) 400 В 50 Гц 3, 4
    Гондурас 208 В / 230 В / 240 В / 460 В / 480 В 60 Гц 3, 4
    Гонконг 380 В 50 Гц 3, 4
    Венгрия 400 В 50 Гц 3, 4
    Исландия 400 В 50 Гц 3, 4
    Индия 400 В 50 Гц 4
    Индонезия 400 В 50 Гц 4
    Иран 400 В 50 Гц 3, 4
    Ирак 400 В 50 Гц 4
    Ирландия, Северная 400 В 50 Гц 4
    Ирландия, Республика (Ирландия) 400 В 50 Гц 4
    Остров Мэн 400 В 50 Гц 4
    Остров Мэн 400 В 50 Гц 4
    Израиль 400 В 50 Гц 4
    Италия 400 В 50 Гц 4
    Ямайка 190 В 50 Гц 3, 4
    Япония 200 В 50 Гц / 60 Гц 3
    Jordan 400 В 50 Гц 3, 4
    Казахстан 380 В 50 Гц 3, 4
    Кения 415 В 50 Гц 4
    Кирибати [недоступно] [недоступно] [недоступно]
    Корея, Северная 380 В 50 Гц 3, 4
    Корея, Южная 380 В 60 Гц 4
    Косово 230 В / 400 В 50 Гц 3
    Кувейт 415 В 50 Гц 4
    Кыргызстан 380 В 50 Гц 3, 4
    Лаос 400 В 50 Гц 4
    Латвия 400 В 50 Гц 4
    Ливан 400 В 50 Гц 4
    Лесото 380 В 50 Гц 4
    Либерия 208 В 60 Гц 3, 4
    Ливия 400 В 50 Гц 4
    Лихтенштейн 400 В 50 Гц 4
    Литва 400 В 50 Гц 4
    Люксембург 400 В 50 Гц 4
    Макао 380 В 50 Гц 3
    Македония, Северная 400 В 50 Гц 4
    Мадагаскар 380 В 50 Гц 3, 4
    Мадейра 400 В 50 Гц 3, 4
    Малави 400 В 50 Гц 3, 4
    Малайзия 400 В (официально, но на практике часто 415 В) 50 Гц 4
    Мальдивы 400 В 50 Гц 4
    Мали 380 В 50 Гц 3, 4
    Мальта 400 В 50 Гц 4
    Маршалловы Острова [недоступно] [недоступно] [недоступно]
    Мартиника (Французский заморский департамент) 380 В 50 Гц 3, 4
    Мавритания 380 В 50 Гц 3, 4
    Маврикий 400 В 50 Гц 4
    Майотта (Французский заморский департамент) [недоступен] [недоступен] [недоступен]
    Мексика 127/220 В / 120/240 В / 440 В / 240/480 В 60 Гц 3, 4
    Микронезия (официально: Федеративные Штаты Микронезии) [недоступно] [недоступно] [недоступно]
    Молдова 400 В 50 Гц 4
    Монако 400 В 50 Гц 4
    Монголия 400 В 50 Гц 4
    Черногория 400 В 50 Гц 3, 4
    Монтсеррат 400 В 60 Гц 4
    Марокко 380 В 50 Гц 4
    Мозамбик 380 В 50 Гц 4
    Мьянма (ранее Бирма) 400 В 50 Гц 4
    Намибия 380 В 50 Гц 4
    Науру 415 В 50 Гц 4
    Непал 400 В 50 Гц 4
    Нидерланды 400 В 50 Гц 3, 4
    Новая Каледония (французское зарубежье) 380 В 50 Гц 3, 4
    Новая Зеландия 400 В 50 Гц 3, 4
    Никарагуа 208 В 60 Гц 3, 4
    Нигер 380 В 50 Гц 4
    Нигерия 415 В 50 Гц 4
    Ниуэ 400 В 50 Гц 3, 4
    Остров Норфолк 400 В 50 Гц 3, 4
    Северный Кипр (непризнанное, самопровозглашенное государство) 400 В 50 Гц 4
    Северная Корея 380 В 50 Гц 3, 4
    Северная Македония 400 В 50 Гц 4
    Северная Ирландия 400 В 50 Гц 4
    Норвегия 230 В / 400 В 50 Гц 3, 4
    Оман 415 В 50 Гц 4
    Пакистан 400 В 50 Гц 3
    Palau 208 В 60 Гц 3
    Палестина 400 В 50 Гц 4
    Палестина 400 В 50 Гц 4
    Панама 240 В 60 Гц 3
    Папуа-Новая Гвинея 415 В 50 Гц 4
    Парагвай 380 В 50 Гц 4
    Перу 220 В 60 Гц 3
    Филиппины 380 В 60 Гц 3
    Острова Питкэрн [недоступно] [недоступно] [недоступно]
    Польша 400 В 50 Гц 4
    Португалия 400 В 50 Гц 3, 4
    Пуэрто-Рико 480 В 60 Гц 3, 4
    Катар 415 В 50 Гц 3, 4
    Реюньон (Французский заморский департамент) 400 В 50 Гц 4
    Румыния 400 В 50 Гц 4
    Россия (официально Российская Федерация) 380 В 50 Гц 4
    Руанда 400 В 50 Гц 4
    Saba [недоступно] [недоступно] [недоступно]
    Сен-Бартелеми (французское заморское сообщество, неофициально также именуемое Сен-Бартс или Сен-Бартс) [недоступно] [недоступно] [недоступно]
    Святой Елены [недоступно] [недоступно] [недоступно]
    Сент-Китс и Невис (официально Федерация Сент-Кристофера и Невиса) 400 В 60 Гц 4
    Сент-Люсия 400 В 50 Гц 4
    Сен-Мартен (французское зарубежье) [недоступно] [недоступно] [недоступно]
    Сен-Пьер и Микелон (французское зарубежье) [недоступно] [недоступно] [недоступно]
    Сент-Винсент и Гренадины 400 В 50 Гц 4
    Самоа 400 В 50 Гц 3, 4
    Сан-Марино 400 В 50 Гц 4
    Сан-Томе и Принсипи 400 В 50 Гц 3, 4
    Саудовская Аравия 400 В 60 Гц 4
    Шотландия 400 В 50 Гц 4
    Сенегал 400 В 50 Гц 3, 4
    Сербия 400 В 50 Гц 3, 4
    Сейшельские острова 240 В 50 Гц 3
    Сьерра-Леоне 400 В 50 Гц 4
    Сингапур 400 В 50 Гц 4
    Синт-Эстатиус 220 В 60 Гц 3, 4
    Синт-Мартен 220 В 60 Гц 3, 4
    Словакия 400 В 50 Гц 4
    Словения 400 В 50 Гц 3, 4
    Соломоновы Острова [недоступно] [недоступно] [недоступно]
    Сомали 380 В 50 Гц 3, 4
    Сомалиленд (непризнанное, самопровозглашенное государство) 380 В 50 Гц 3, 4
    Южная Африка 400 В 50 Гц 3, 4
    Южная Корея 380 В 60 Гц 4
    Южный Судан 400 В 50 Гц 4
    Испания 400 В 50 Гц 3, 4
    Шри-Ланка 400 В 50 Гц 4
    Судан 400 В 50 Гц 4
    Суринам (Суринам) 220 В / 400 В 60 Гц 3, 4
    Свазиленд 400 В 50 Гц 4
    Швеция 400 В 50 Гц 3, 4
    Швейцария 400 В 50 Гц 3, 4
    Сирия 380 В 50 Гц 3
    Таити (самый большой остров во Французской Полинезии, заморское сообщество Франции) 380 В 60 Гц 3, 4
    Тайвань 220 В 60 Гц 4
    Таджикистан 380 В 50 Гц 3
    Танзания 415 В 50 Гц 3, 4
    Таиланд 400 В 50 Гц 3, 4
    Того 380 В 50 Гц 4
    Токелау 400 В 50 Гц 3, 4
    Тонга 415 В 50 Гц 3, 4
    Тринидад и Тобаго 115/230 В / 230/400 В 60 Гц 4
    Тунис 400 В 50 Гц 4
    Турция 400 В 50 Гц 3, 4
    Туркменистан 380 В 50 Гц 3
    Острова Теркс и Кайкос 240 В 60 Гц 4
    Тувалу 400 В 50 Гц 3, 4
    Уганда 415 В 50 Гц 4
    Украина 400 В 50 Гц 4
    Объединенные Арабские Эмираты (ОАЭ) 400 В 50 Гц 3, 4
    Соединенное Королевство (Великобритания) 400 В 50 Гц 4
    Соединенные Штаты Америки (США) 120/208 В / 277/480 В / 120/240 В / 240 В / 480 В 60 Гц 3, 4
    Виргинские острова США 190 В 60 Гц 3, 4
    Уругвай 380 В 50 Гц 3
    Узбекистан 380 В 50 Гц 4
    Вануату 400 В 50 Гц 3, 4
    Ватикан 400 В 50 Гц 4
    Венесуэла 120 В 60 Гц 3, 4
    Вьетнам 380 В 50 Гц 4
    Виргинские острова (Британские) 190 В 60 Гц 3, 4
    Виргинские острова (США) 190 В 60 Гц 3, 4
    Уэльс 400 В 50 Гц 4
    Уоллис и Футуна (французское зарубежье) 380 В 50 Гц 3, 4
    Западный берег 400 В 50 Гц 4
    Западная Сахара 380 В 50 Гц 4
    Йемен 400 В 50 Гц 4
    Замбия 400 В 50 Гц 4
    Зимбабве 400 В 50 Гц 3, 4

    Сухой понижающий трансформатор 380/220 В

    СТУПЕНЧАТЫЙ СУХИЙ ТРАНСФОРМАТОР 6400380 220 вольт

    Описание продукта

    Описание продукта

    АВТОМАТИЧЕСКИЙ РЕГУЛЯТОР НАПРЯЖЕНИЯ

    ТРАНСФОРМАТОР НАПРЯЖЕНИЯ НАПРЯЖЕНИЯ ИЗ ЭПОКСИДНОЙ СМОЛЫ

    ПЕРЕДАЧА ПЕРЕДАЧИ

    000 ПРЕОБРАЗОВАНИЕ НАПРЯЖЕНИЯ

    ПРОМЫШЛЕННЫЙ АВТОМАТИЧЕСКИЙ КОНТРОЛЛЕР НАПРЯЖЕНИЯ

    ВЫПРЯМИТЕЛЬНЫЙ ТРАНСФОРМАТОР

    ИЗОЛЯЦИОННЫЙ ТРАНСФОРМАТОР

    Информация о компании

    POWER является компанией, зарегистрированной в соответствии с ISO 9001: 2008, NS 8623IC76STREET, DUN BRADIC76STREET .Имея пять заводов по всей Индии. Мы занимаемся производством промышленных трансформаторов до 10 МВА (конструкция из эпоксидной смолы, сухого типа, с масляным охлаждением) низкого и среднего напряжения, промышленных автоматических стабилизаторов напряжения мощностью до 7000 кВА (тип Brentford в Великобритании), источников переменного напряжения (0 — 33000 вольт), трансформаторы специального назначения (повышающие / понижающие, автотрансформаторы, сверхизолирующие трансформаторы), выпрямительное оборудование от 0 до 1500 вольт и до 25000 ампер.для промышленного применения.

    Электрические трансформаторы или просто трансформаторы — это электрические устройства, предназначенные для преобразования электрической энергии. Основная функция трансформатора — изменять напряжение, обычно с высокого на низкое. Другими словами, трансформатор решает задачу передачи энергии от электростанций в дома, офисы, рынки, торговые центры и т. Д. В соответствующем состоянии. В настоящее время электрические трансформаторы доступны в нескольких различных типах.Кроме того, размеры электрических трансформаторов различаются в зависимости от области их применения. Например, трансформаторы, необходимые для электростанций, представляют собой многотонные блоки, большие и громоздкие; электрические трансформаторы, применяемые на опорах, представляют собой промежуточные блоки средних размеров; электрические приборы в домах, офисах и т. д. требуют компактных трансформаторов.

    Электротрансформаторы, производимые Power Engineers & Consultants, точно и эффективно спроектированы так, чтобы обеспечить оптимальное соотношение цены и качества.Наши трансформаторы обеспечивают безопасную и экономичную передачу тока от основного источника питания к соответствующему оборудованию. Наш ассортимент электрических трансформаторов упомянут ниже:

    Трансформаторы специального назначения
    Трансформаторы специального назначения нашли свое применение в областях, где требования к напряжению имеющихся машин значительно отличаются от стандартного напряжения. Наши трансформаторы специального назначения занимают лидирующие позиции в отрасли.Мы строго придерживаемся международных стандартов качества при производстве этих трансформаторов. Также выполняем индивидуальные требования до 5000 кВА.

    Трансформаторы распределения питания
    Основная функция трансформатора распределения энергии — преобразовать электрическое питание от основного источника в заранее определенное напряжение, которое должно соответствовать целевому оборудованию. Мы используем высококачественные материалы и передовые технологии производства для изготовления этих трансформаторов.Мы также способны спроектировать эти трансформаторы по индивидуальному заказу в соответствии со спецификациями клиента. Наши силовые распределительные трансформаторы в первую очередь востребованы крупными производственными предприятиями, электрическими щитами и ветряными мельницами.

    Изолирующие трансформаторы Ultra
    Изоляционные трансформаторы Ultra считаются идеальными для устранения нарушений в линии и предотвращения неисправной и нестабильной работы определенного чувствительного оборудования, такого как компьютер, компьютеризированные станки, медицинское оборудование, станки с ЧПУ, системы цифровой телеметрии и т. Д. так.Мы специализируемся на производстве именно этой разновидности трансформаторов. Наши сверхизолирующие трансформаторы очень эффективны в устранении помех, возникающих в результате шумной нагрузки оборудования, которая попадает в линию электропередачи. Эти трансформаторы также спроектированы нами по индивидуальному заказу, чтобы удовлетворить особые потребности наших клиентов.

    Наши услуги

    1. Предпродажное обслуживание
    a. сделать техническое решение
    б. отправить предложение, технические данные и чертеж
    c. подготовить план передачи электроэнергии, план испытаний и план отгрузки
    2. Обслуживание продаж
    a. контролировать производственный график полностью в соответствии с планом
    б. отправлять фотографии клиенту во время каждого производственного процесса (точка ожидания)
    c. проинформируйте клиента за неделю до тестирования.
    3. Послепродажное обслуживание
    a. монтаж и ввод в эксплуатацию
    б. обучение рабочих
    c. быстрый ответ в течение 12 часов в любое время
    d. обычно обеспечивают 12 месяцев гарантии.

    Влияние продукта

    УЛЬТРАИЗОЛЯЦИОННЫЙ ТРАНСФОРМАТОР: Ультра изолирующие трансформаторы эффективны для изоляции чувствительного оборудования от скачков напряжения, скачков и утечки постоянного тока и т. Д.Они специально разработаны для чувствительного критически важного оборудования, такого как компьютеры и периферийное оборудование, медицинские приборы, системы телеметрии с цифровой связью, станки с ЧПУ, ПЛК, приводы и т. Д., И останавливают такие помехи, создаваемые шумной нагрузкой оборудования от попадания в линию электропередачи. Применяемые методы множественного экранирования уменьшают межобмоточную емкость до менее 0,005 пикофарад и увеличивают изоляцию по постоянному току до более чем 1000 мегаом.

    Технически любые трансформаторы, у которых нет пути постоянного тока между первичной и вторичной обмотками, обеспечивают изоляцию.Другие широко используемые трансформаторы, даже если у них есть отдельные первичная и вторичная обмотки, предназначены для преобразования входного напряжения на более полезный уровень и очень мало делают для ослабления прохождения шума или переходных процессов от первичной к вторичной. Несмотря на то, что оба являются трансформаторами с раздельной обмоткой, они существенно отличаются от трансформаторов. конструкция, спецификация и рабочие характеристики.

    Коэффициент К определяется как соотношение между дополнительными потерями из-за гармоник и потерями на вихревые токи при 50 Гц.Он используется для оценки трансформаторов на нелинейные нагрузки. Доступны трансформаторы с номинальным К-фактором 4, 7, 13, 20 и 30.

    В стандарте ANSI / IEEEE C57.110 была получена система взвешивания того, сколько гармонических токов нагрузки может выдержать трансформатор без превышения максимального уровня повышения температуры. Коэффициент K, равный 1, указывает на отсутствие гармоник, в то время как коэффициент K, равный 50, является самой жесткой возможной гармонической средой. Обычно для большинства приложений достаточно К-фактора 13. Чтобы рассчитать трансформатор правильного размера, необходимо определить коэффициент K.

    Приложения

    Центры обработки данных, центры обработки вызовов, IPO

    Индукционные нагреватели / инверторы

    ИБП, частотно-регулируемые приводы и приводы

    HID Lightings

    Корпоративные и медицинские центры

    Больницы / медицинские центры

    Больницы / медицинские центры, исследовательские лаборатории Финансовые учреждения

    Влияние гармоник

    • Перегрев
    • Неисправное оборудование
    • Вибрация оборудования
    • Срабатывание выключателей

    Особенности трансформаторов с номинальной мощностью K

  1. Низкое выходное сопротивление
  2. Превосходное подавление шума в поперечной моде
  3. Конструкция катушки оптимизирована для низких потерь на вихревые токи и высокой пропускной способности по гармоническим токам.
  4. Сердечники, предназначенные для уменьшения плотности потока для компенсации гармонических искажений напряжения
  5. Удаляют тройные гармонические токи из линии
  6. Двойной нейтральный вывод
  7. Сердечник из высококачественной электротехнической стали
  8. Тихая работа
  9. Ref StandardUL-1561, IEEE — C-57-110, I
  10. Скачки и скачки генерируются из-за переключения в Электростанции, подстанции, включения-выключения машин на собственном заводе и соседних предприятиях на той же линии.Эти скачки и пики для очень короткой продолжительности (в милях-секундах), которые влияют на чувствительные электронные / компьютеризированные машины и повреждают электронные карты и программирование станков с ЧПУ.

    Упаковка и доставка

    Деталь упаковки: Деревянные ящики
    Сведения о доставке: В течение 30 дней

    ДЕРЕВЯННАЯ УПАКОВКА ПОДХОДИТ ДЛЯ МОРЯ или ВОЗДУХА.

    Оптимизация напряжения

    Оптимизация напряжения (или Оптимизация напряжения и мощности) — это название, данное методу энергосбережения, при котором специальное устройство оптимизации устанавливается последовательно с сетью электроснабжения на месте, чтобы обеспечить оптимальное напряжение питания. для оборудования на объекте и улучшите качество электроэнергии за счет балансировки фазных напряжений и фильтрации гармоник и переходных процессов от источника питания.Тип используемого устройства определяет, будет ли источник питания « оптимизирован » или просто снижен (снижение напряжения может быть достигнуто с помощью автоматического контроллера напряжения) Технология оптимизации напряжения дает конечному пользователю возможность оптимизировать свое питание локально, устраняя проблемы с качеством электроэнергии от сетка и предназначена для очень эффективной работы. В Великобритании и Европе установленные блоки оптимизации напряжения позволили сэкономить в среднем около 13% энергии за последние пять лет, что делает этот метод энергосбережения одним из самых быстрорастущих на рынке.Крупные предприятия и организации государственного сектора приняли оптимизацию напряжения в качестве первой меры по экономии энергии.

    Общие проблемы качества электроэнергии

    Перенапряжение

    Перенапряжение означает напряжение, превышающее напряжение, при котором оборудование спроектировано для наиболее эффективной работы. Это приводит к сокращению срока службы оборудования и увеличению потребляемой энергии без повышения производительности. В 16-м издании Руководства для электриков BS7671 содержатся следующие утверждения относительно перенапряжения: «Лампа с номинальным напряжением 230 В, используемая при напряжении 240 В, проработает только 55% от ее номинального срока службы» «Для линейного устройства 230 В, используемого с источником питания 240 В, потребуется 4 штуки.На 3% больше тока и потребляет почти на 9% больше энергии ». Для предотвращения перенапряжения можно использовать различные технологии, но это должно быть сделано так эффективно, чтобы экономия энергии в результате использования правильного напряжения не компенсировалась потерями энергии в устройстве, используемом для этого.

    Влияние на электрические нагрузки

    Распространенное заблуждение в отношении оптимизации мощности напряжения — это предположение, что снижение напряжения приведет к увеличению тока и, следовательно, к постоянной мощности.Хотя это верно для определенных нагрузок с фиксированной мощностью, на большинстве площадок используются различные нагрузки, которые в большей или меньшей степени выиграют от экономии энергии, объединенной по всему сайту в целом. Преимущества типичного оборудования на трехфазных объектах обсуждаются ниже.

    Трехфазные двигатели переменного тока

    Трехфазные асинхронные двигатели переменного тока, вероятно, являются наиболее распространенным типом трехфазной нагрузки и используются в разнообразном оборудовании, включая охлаждение, насосы, кондиционирование воздуха, приводы конвейеров, а также в более очевидных областях их применения.Влияние перенапряжения и трехфазного дисбаланса на двигатели переменного тока хорошо известно. Перенапряжение приводит к насыщению стального сердечника, потере энергии из-за вихревых токов и увеличению гистерезисных потерь. Избыточный ток приводит к избыточному тепловыделению из-за потерь меди. Дополнительная нагрузка от перенапряжения на двигатели сокращает срок службы двигателя . Предотвращение перенапряжения не влияет на скорость двигателя, так как это функция от частоты питания и количества полюсов в двигателе при условии, что двигатель правильно нагружен.Это также не снижает КПД двигателя, поэтому можно добиться значительной экономии энергии за счет снижения потерь в железе и меди. Это особенно очевидно, если применение двигателя означает, что он испытывает различные условия нагрузки, поскольку КПД двигателя дополнительно снижается как при перенапряжении, так и при неполной нагрузке.

    Освещение

    Поскольку осветительные нагрузки используются в течение значительной части времени, экономия энергии на осветительном оборудовании чрезвычайно важна.Как показывают предыдущие выдержки из Руководства для электриков, освещение лампами накаливания особенно чувствительно к потере энергии и сокращению срока службы при высоких напряжениях. Однако другие типы освещения также могут извлечь выгоду из улучшенного качества электроэнергии, включая системы с резистивными или реактивными балластами. Флуоресцентное освещение более эффективно, чем освещение лампами накаливания, и существуют также типы электронных систем управления оптимизацией напряжения для высокочастотного освещения, которые не улучшат срок службы или потребление энергии на том же уровне, что и освещение лампами накаливания.Тем не менее, контроллеры освещения и балласты отвечают за создание высоких уровней гармонических искажений, которые можно отфильтровать с помощью оптимизатора напряжения, что дополнительно снижает потребность в контроллере освещения. Распространенной проблемой является то, что некоторые источники света не срабатывают при более низких напряжениях. Однако этого не должно происходить, поскольку целью оптимизации напряжения является не просто максимально возможное снижение напряжения, а приведение его к напряжению, при котором он был разработан для наиболее эффективной работы.

    Гармоники

    Гармоники — это формы сигналов тока и напряжения с более высокой частотой, чем основная частота основного источника питания 50 Гц, и они возникают на частоте, кратной основной гармонике. Гармоники вызываются нелинейными нагрузками, в том числе источниками питания для компьютерного оборудования, приводами с регулируемой скоростью и многими трансформаторами. «Тройные» гармоники (нечетные кратные третьей гармоники) возникают, когда фазные напряжения не сбалансированы в трехфазной системе электропитания и накапливаются в нейтрали, вызывая протекание лишних токов.Возможные последствия, если уровень гармоник, известный как полное гармоническое искажение, станет слишком высоким, включают повреждение чувствительного электронного оборудования и снижение эффективности трансформатора высокого напряжения. Эффективность электрических нагрузок можно повысить за счет ослабления гармоник в источнике питания или предотвращения их генерации.

    Неуравновешенность фазных напряжений

    Большинство средних и крупных промышленных и коммерческих объектов снабжены трехфазным электричеством, которое передается из национальной сети с интервалами фаз 120º.Дисбаланс между тремя фазами вызывает проблемы, в чем-то похожие на проблемы с гармониками, например нагрев двигателей и существующей проводки, приводящий к неэффективному потреблению энергии

    Коэффициент мощности и реактивная мощность

    Коэффициент мощности источника питания — это отношение реальной мощности полной мощности источника питания. Это полезная мощность, используемая сайтом, деленная на общую потребляемую мощность. Последний включает в себя неиспользуемую мощность, поэтому желателен коэффициент мощности 1.Низкий коэффициент мощности будет означать, что поставщик электроэнергии будет эффективно поставлять больше энергии, чем указано в счете потребителя, а поставщикам разрешено взимать плату за низкий коэффициент мощности. Реактивная мощность — это неиспользуемая мощность. Он не работает в электрической системе, но используется для зарядки конденсаторов или создания магнитного поля вокруг поля индуктора. Реактивная мощность должна генерироваться и распределяться по цепи, чтобы обеспечить достаточную реальную мощность для запуска процессов.Реактивная мощность значительно увеличивается с увеличением напряжения , поскольку реактивное сопротивление оборудования увеличивается. Таким образом, исправление этого с помощью оптимизации напряжения приведет к снижению реактивной мощности и повышению коэффициента мощности.

    Экономия энергии и выбросов

    Экономия энергии, достигаемая за счет оптимизации напряжения, представляет собой совокупность улучшенной эффективности всего оборудования на площадке в ответ на улучшение качества электроэнергии, описанное выше.Это было и остается ключевым методом экономии энергии.

    ЗНАМЯ

    Артикул № K8AK-PA2 380/480 В переменного тока, 220, 230, 240 и 277 В переменного тока Реле чередования фаз и обрыва фазы переменного тока на Omron Automation Americas

    Тип
    Нет данных Реле обрыва фазы чередования фаз

    Тип крепления
    Нет данных DIN-рейка

    Тип клеммы
    Нет данных Винтовой зажим

    Конфигурация контактов
    Нет данных Однополюсный двойной бросок (SPDT)

    Принадлежности
    Нет данных PFP

    Эксплуатация
    Нет данных Обнаружение перенапряжения, пониженного напряжения, обрыва фазы, чередования фаз

    Материал корпуса
    Нет данных Поликарбонат (ПК) и акрилонитрилбутадиенстирол (АБС)

    Тип подключения
    Нет данных Винтовой зажим (сплошной провод 2.5 мм, витой провод: AWG 16, AWG18; Рекомендуемые манжеты: Al 1.5-8BK (для AWG 16), Al 1-8RD (AWG 18), Al 0,75-8GY (AWG18))

    Количество фаз
    Нет данных 3

    Диапазон напряжения переменного тока в 3-фазном 4-проводном режиме
    Нет данных 220 В 230 В 240 В 277 В

    Диапазон напряжения переменного тока в 3-фазном 3-проводном режиме
    Нет данных 380 В 400 В 415 В 480 В

    Ток при 250 В переменного тока и 30 В постоянного тока Напряжение
    Нет данных 5 А
    .