Как из 220 вольт сделать 12: Как получить напряжение 12 Вольт: описание 8 простых способов

Содержание

Как своими руками получить из 220 — 12 вольт без трансформатора | Андрей Швадронов

Очень часто пользователей световых электроприборов и СБТ интересует: «Как без трансформатора из 220 вольт получить 12в или другое низкое напряжение?». Обычно этим вопросом задаются владельцы электронной техники и аппаратуры, работающей от источников питания на понижающем сетевом трансформаторе. Это тем более актуально, поскольку весогабаритные показатели блока питания (БП) нередко превосходят аналогичные параметры запитываемого гаджета или стационарного устройства.

1.Основные способы понижения

Например, «ходовой» трансформатор частоты 50 Гц с относительно небольшой мощностью 200 Вт, выполненный на трансформаторном железе, весит более 1 килограмма и стоит от 9–18 $. Это не только делает блок питания громоздким, но и значительно удорожает стоимость девайса.

На трансформаторах реализована классическая схема понижения и последующего преобразования переменного напряжения (АС) в постоянное (DС) по цепи «трансформатор → выпрямитель → стабилизатор».

Существует более сложная схема построения «выпрямитель → импульсный генератор → трансформатор → выпрямитель → стабилизатор» импульсного блока питания, обладающая меньшими габаритами.

Преимуществом приведенных схем является гальваническая развязка. При замыкании цепи нагрузки на «ноль» она предотвращает выход из строя аппаратуры и снижает опасность поражения человека электрическим током.

Однако самыми миниатюрными источниками питания 12 В являются бестрансформаторные блоки питания, в которых производится:

1. С помощью балластного конденсатора понижение напряжения.

2. При помощи балластного резистора гасится избыточное напряжение.

3. Нерегулируемым автотрансформатором снимается требуемое напряжение и сглаживается дросселем.

1.1 Балластный конденсатор

Сегодня весьма популярным среди радиолюбителей средством снижения напряжения стала установка гасящего конденсатора. Этот универсальный способ повсеместно используется для питания светодиодных ламп и в зарядных устройствах маломощных аккумуляторных батарей. Установка радиоэлемента в разрыв сети питания диодного моста позволяет получить требуемый ток в электрической цепи без рассеивания значительной мощности на тепло.

Схема простого конденсаторного (бестрансформаторного) блока питания с минимальным количеством радиоэлементов и напряжением 12 В мощностью 0,18 Вт выглядит следующим образом:

В качестве Р1 используется любое устройство, рассчитанное на постоянное напряжение 12 В с рабочим амперажом ≤ 0,15А. Конденсатор С1 – балластный, зашунтирован резистором R1. Он предназначен для предотвращения поражения электрическим током от накопленного на пластинах конденсатора С1 заряда. Со своим большим сопротивлением в сотни кОм резистор R1 не влияет на прохождение тока через емкость во время рабочей сессии. Однако после завершения работы блока питания в течение времени , измеряемого несколькими секундами, через резистор проходит ток разряда обкладок конденсатора. Электролитический конденсатор С2, включенный параллельно нагрузке после диодного моста, сглаживает пульсации выпрямленного тока.

Заметно снизит зависимость выходного напряжения от сопротивления нагрузки БП симбиоз выпрямителя и параметрического стабилизатора с регулирующим элементом. Осуществляется такая доработка впаиванием параллельно P1 стабилитрона на 12 вольт.

1.2 При помощи резистора

Способ подходит для запитки слаботочной нагрузки, например, светодиода или маломощного LED-светильника. Основной недостаток резистивной схемы – низкий КПД по причине рассеивания большого количества активной мощности, затрачиваемой на нагрев резистора. В самом простом варианте БП представляет собой делитель напряжения на резисторах, установленный после диодного выпрямителя, с нижнего плеча которого снимается напряжение. Стабилизация осуществляется посредством изменения сопротивления одного из плеч делителя: номиналы резисторов подбираются таким образом, чтобы понизить выходное напряжение до приемлемых значений.

1.3 Автотрансформатор или дроссель с подобной логикой намотки

В автотрансформаторе отсутствует вторичная обмотка: выходное напряжение снимается с одной единственной обмотки на тороидальном магнитопроводе, которая одновременно используется для подачи сетевого напряжения 220 В, 50 Гц. Принцип действия аналогичен ЛАТР, только снимаемое с витков напряжение имеет определенную фиксированную величину. Поэтому замена силового трансформатора на автотрансформатор повышает КПД блока питания, заметно снижает размеры и вес девайса (при прочих равных условиях весогабаритные характеристики трансформатора в 1,5 раза больше заменяющего изделия).


Схема автотрансформатора с фиксированным напряжением U2.

Однако нерегулируемый автотрансформатор имеет существенный недостаток: он не защищает от бросков напряжения и наведенных в сети импульсов. Низкочастотные (НЧ) и высокочастотные (ВЧ) пульсации, сетевые помехи и паразитные гармоники значительно снизятся, если в выходную цепь установить дроссель. В тандеме с автотрансформатором используют дроссель с высокой индуктивностью ≤ 0,5–1,0 ГН, устанавливаемый последовательно с нагрузкой.

Индуктивный элемент накапливает в магнитном поле катушки энергию питающей сети, а затем отдает в нагрузку. Дроссель в электрической цепи противодействует изменению тока в электрической цепи. При резком падении катушка поддерживает протекающий ток, а при резком повышении ограничивает, не давая быстро возрасти. Компактные дроссели переменного тока применяются в бустерах энергосберегающих ламп и LED-драйверах, питающих светодиодные светильники.

2. Технические требования к конденсатору

Для бестрансформаторного БП подойдет конденсатор, рассчитанный на амплитудное (или большее) значение переменного напряжения. Если действующее значение напряжения равно 220 В, то амплитудное рассчитывается по формуле 220 * = 311 В (номинальное 400 В). Конденсаторы лучше выбрать плёночные, оптимально подходят емкостные элементы серии К73-17.

3. Бестрансформаторное электропитание: возможные схематические решения

1. Можно своими руками собрать простой драйвер (источник стабилизированного тока) на недорогой (0,3 $) микросхеме линейного стабилизатора LM317АMDT. На вход преобразователя DС-AC подается напряжение сети 220 В, 50 Гц. Стабилизированное напряжение 12 В получается на ИМС с минимальным набором элементов в обвязке (в самом простом варианте используется только R1 и R2). Подбирая номинал резисторов, можно регулировать ток в нагрузке, при суммарном токе светодиодов до 0,3 А микросхема отлично работает без радиатора. Ниже приведена типовая схема устройства на микросхеме LM317:

2. Самым бюджетным вариантом, безусловно, считается использование зарядного устройства (ЗУ) от сотового телефона. Плата зарядника имеет совсем небольшие габариты и подойдет для питания 12 В гаджета с мощностью ≤ P ном. блока питания. Необходимо только заменить в ней однополупериодный выпрямитель на выпрямитель с удвоенным напряжением (добавляется по одному диоду и конденсатору). После модернизации получаем искомые 12 вольт с током 0.5А и полноценной развязкой от сети. В качестве альтернативы, не требующей вмешательства в конструкцию, можно к выходу ЗУ через переходник подключается повышающий DС-DС преобразователь напряжения (например, 2-х амперный, размером 30мм х 17мм х 14мм, стоимостью 1$) с USB-разъемом. Требуется только выставить подстроечным резистором требуемое напряжение 12 В и подключить преобразователь к гаджету или стационарному электроприемному устройству.

4. Для чего может использоваться напряжение 12 или 24 вольт в быту

В бытовых условиях зачастую используются источники электропитания низкого напряжения. От напряжения 12 или 24В постоянного тока DС запитываются переносные/стационарные электротехнические и электронные устройства, а также некоторые осветительные приборы:

· аккумуляторные электродрели, шуруповерты и электропилы;

· стационарные насосы для полива огородов;

· аудио-видеотехника и радиоэлектронная аппаратура;

· системы видеонаблюдения и сигнализации;

· батареечные радиоприемники и плееры;

· ноутбуки (нетбуки) и планшеты;

· галогенные и LED-лампы, светодиодные ленты;

· портативные ультрафиолетовые облучатели и портативное медицинское оборудование;

· паяльные станции и электропаяльники;

· зарядные устройства мобильных телефонов и повербанков;

· слаботочные сети электропитания в местах с повышенной влажностью и системы ландшафтного освещения;

· детские игрушки, елочные гирлянды, помпы аквариумов;

· различные самодельные радиоэлектронные устройства, в том числе на популярной платформе Arduino.

Большинство устройств работает от батареек и Li-ion аккумуляторов, но использование товарных позиций не всегда оправдано с точки зрения эксплуатационных затрат. Заряжать аккумуляторные батареи можно 300–1500 раз, но гальванические элементы с большой энергоемкостью и низким током саморазряда стоят дорого. Заметно дешевле обойдется приобретение батареек, особенно солевых и щелочных, но такие элементы придётся часто менять. Тем более, что для обеспечения подающего напряжения 12 В понадобится 8 последовательно соединенных пальчиковых батареек (типа АА или ААА) или 1,5-вольтовых «таблеток» в корпусе типа 27А.

Поэтому в местах с доступом к бытовой сети 220 В 50 Гц для питания электроприемников с амперажом больше 0,1 А рациональнее использовать блок питания.

Как из 12 вольт сделать 220 при помощи преобразователя напряжения

Понимание, как из 12 вольт сделать 220, позволяет самостоятельно изготовить преобразователь для получения стандартного сетевого напряжения.

Чтобы сделать прибор с качественной синусоидой на выходе, обязательно должны быть учтены все требования электротехники.

В каких случаях необходим преобразователь напряжения?

Преобразователи напряжения — приборы, изменяющие постоянный ток от аккумуляторной батареи в переменные показатели с заданными параметрами, равными 220 В и 50 Гц.

В бытовых условиях это устройство обеспечивает беспроблемное функционирование таких приборов, как газовый котел, холодильник, телевизор и другая сложная электротехника при невозможности использовать централизованную подачу электрической энергии на 220 В.

Особенности влияния параметров на электрические приборы:

  • амплитуда прилагаемого напряжения влияет на частоту оборотов двигателя, а от показателей питающей электросети напрямую зависит скорость валового вращения в двигателе асинхронного типа;
  • бытовые приборы нагревательного типа функционируют при показателях рабочего тока, пропорциональных уровню напряжения, но значительная часть таких изделий не рассчитана на эксплуатацию в нестандартных условиях напряжения;
  • бытовая электротехника часто нуждается в напряжении, отличном от сетевых параметров со строго определенными, стабильными показателями амплитуды, поэтому нормальная работоспособность некоторых приборов возможна только в условиях применения преобразователя напряжения.

Схема повышающего преобразователя напряжения 12-220 В

Особенно часто устройство используется в домовладениях с системой автономного обогрева, где в качестве отопительного прибора устанавливается импортное газовое оборудование с электронным управлением и контролем.

Работоспособность таких приборов полностью зависит от наличия бесперебойного напряжения в 220 В и 50 Гц с правильной синусоидой.

Область применения преобразователя напряжения очень широкая, включая походные условия, эксплуатацию яхт и автомобилей, дачные участки без сетевого электроснабжения и так далее.

Электросчетчики бывают разными по количеству фаз, по тарифам и другим параметрам. Какой счетчик электроэнергии лучше поставить в квартире – читайте рекомендации специалистов.

Принцип работы светодиодных ламп и советы по ремонту неисправных лампочек своими руками описаны тут.

С правилами монтажа счетчиков электроэнергии вы можете ознакомиться по ссылке.

Разновидности преобразователей 12 на 220 вольт

Инверторы — устройства, позволяющие преобразовывать постоянные токовые величины, включая 12 В, в переменный ток с изменением уровня напряжения или без.

Как правило, такие приборы являются генераторами периодического напряжения, приближенного к форме синусоиды.

Все выпускаемые в настоящее время преобразователи напряжения постоянных токовых величин могут быть представлены:

  • регуляторами напряжения;
  • преобразователями уровня напряжения;
  • линейными стабилизаторами.

Самодельный преобразователь

Чисто теоретически, на выход можно получить любые токовые величины, регулируемые от нулевой отметки до максимальных значений. Чаще всего в качестве источника постоянного тока на 12 В используется стандартная аккумуляторная батарея. Существующие на сегодняшний день преобразователи отличаются по нескольким параметрам.

В зависимости от вида получаемой синусоиды:

  • Приборы, создаваемые синусоиду нормального или постоянного вида, характеризуются функционированием без отклонений и соблюдением всех эксплуатационных параметров с высоким уровнем точности. Такие устройства используются в подключении любых электроприборов, которые работают в условиях напряжения 220 В.
  • Приборы, создаваемые синусоиду модифицированного вида, характеризуются незначительными отклонениями в величине напряжения. Такие особенности не способны оказывать негативное воздействие на эксплуатационные качества стандартных бытовых устройств. Тем не менее, такое оборудование не применяется для подключения приборов, относящихся к категории сложной измерительной или медицинской техники.

В зависимости от показателей мощности:

  • преобразователи с мощностью до 100 Вт не рассчитаны на слишком высокие нагрузки, поэтому являются оптимальным вариантом для питания зарядного устройства простого бытового прибора;
  • преобразователи с мощностью в пределах от 100 Вт до 1,5 кВт. Такой тип устройств применяется преимущественно для питания простых приборов, подключаемых к бытовой электросети;
  • преобразователи с мощностью выше 1,5 кВт позволяют обеспечивать питанием такие достаточно мощные бытовые приборы, включая микроволновую печь, утюги и объёмные мультиварки.
В зависимости от конструктивных особенностей:
  • устройства компактного типа, отличающиеся неприхотливостью к источнику питания, и функционирующие в условиях напряжения 12-50 В;
  • устройства стационарного типа, обладающие чистым синусом и выдающие низковольтное напряжение 12-36 В;
  • автомобильные устройства переносного типа, характеризующиеся работой в определенных устройствах.

При выборе модели преобразователя показателей напряжения рекомендуется приобретать прибор, имеющий некоторый запас по уровню мощности.

Преобразователи напряжения с 12 на 220 В выдают на выход стандартные показатели, соответствующие основным характеристикам домашней электросети, поэтому являются совместимыми с практически любыми бытовыми приборами.

По форме сигнала выходного напряжения

Электронные устройства в виде преобразователей или инверторов различаются в зависимости от формы сигнала в выходном напряжении:

  • Модифицированный вариант, представленный плавной синусоидой, измененной до трапециевидной, прямоугольной или даже треугольной формы. Такие устройства характеризуются ограниченной областью использования и пригодны для потребителей, представленных осветительными и нагревательными приборами. Чтобы обеспечить функционирование оборудования с индуктивной нагрузкой, инверторная мощность должна иметь значительный запас, что обусловлено высоким пусковым током.
  • Вариант «чистой» синусоиды используются в питании любого вида нагрузки, а также позволяют обеспечить надежное и стабильное функционирование высокочувствительного оборудования. Значительная часть инверторов такого вида имеет зарядное устройство встроенного типа, благодаря чему используется в качестве источника бесперебойного питания.
  • Гибридный вариант подходит для обеспечения схем электрического снабжения, рассчитанных на обслуживание нескольких источников питания. В устройстве есть возможность использовать определенный вид приоритетного источника энергии или использовать сразу несколько вариантов с целью зарядка аккумуляторной батареи.

Преобразователь напряжения 12-220 самодельный

При выборе устройства следует обратить внимание на доступность альтернативных источников энергии, что позволяет быстро окупить приобретенное, достаточно дорогостоящее оборудование.

Приобретаемое устройство должно иметь оптимальные показатели номинальной мощности, защиту от перегревов и замыканий, систему пассивного и активного охлаждения, а также достаточный для функционирования КПД.

Трансформаторные устройства

Преобразователи трансформаторного типа являются устройствами, основанными на двух обмоточных системах. Приборы такого вида характеризуются изменением индуктивной связи при воздействии входного перемещения.

При этом осуществляется подключение одной обмоточной системы к источнику переменного тока с напряжением, а вторая обмотка, в этом случае, используется в качестве выходной.

Автомобильный преобразователь напряжения 12-220 В

Любой трансформатор предназначен для выполнения таких основных функций, как измерение и защита. Особенно востребованы современные трансформаторные устройства преобразующего типа, предназначенные для выполнения схемы удвоения или утроения частоты питающего напряжения.

В производственной области и быту современные приборы, позволяющие обеспечивать контроль входного/выходного тока и трансформировать переменные показатели в постоянные параметры, а также способные распределять напряжение, – являются очень востребованными.

Конструкция обычного повышающего преобразователя напряжения с 12 на 220

Тем не менее, нужно учитывать и некоторые минусы таких проборов. Основные недостатки преобразователей напряжения представлены восприимчивостью многих моделей таких устройств к повышенным показателям влажности, часто весьма внушительными размерами и сравнительно высокой стоимостью, поэтому к выбору инвертора нужно подходить очень внимательно.

Видео на тему

Преобразователь напряжения из 220 в 12 вольт, устройство и различия

Инверторы с 220 на 12 вольт производятся разной формы и размеров.

По своему типу бывают трансформаторные и импульсные. Трансформаторный преобразователь 220 на 12 вольт В основе конструкции, как следует из названия, лежит понижающий трансформатор.

Виды преобразователей и их устройство

Трансформатор представляет собой изделие, состоящее из двух основных частей:

  • сердечника, собранного из электротехнической стали;
  • обмоток, выполненных в виде витков из проводникового материала.

Его работа основана на появлении электродвижущей силы в замкнутом проводящем контуре. При протекании по первичной обмотке переменного тока образовываются переменные линии магнитного потока. Эти линии пронизывают сердечник и все обмотки, на которых появляется электродвижущая сила. Когда вторичная обмотка находится под нагрузкой, то под действием этой силы начинает протекать ток.

Значение разности потенциалов будет определяться отношением количества витков первичной обмотки и вторичной. Таким образом, изменяя это соотношение, можно получить любое значение.

Для снижения значения напряжения количество витков во вторичной обмотке делается меньше. Стоит отметить, что описанное выше работает только при подаче на первичную обмотку переменного тока. При использовании постоянного тока создаётся постоянный магнитный поток, который не наводит ЭДС и энергия передаваться не будет.

Бестрансформаторный преобразователь с 220 на 12 вольт

Такие устройства питания называют импульсными. Главной частью такого устройства обычно является специализированная микросхема (широтно-импульсный модулятор).

Инвертирование 220 в 12 вольт происходит следующим образом. Сетевое напряжение поступает на выпрямительную цепь, а далее сглаживается ёмкостью номиналом 300-400 вольт. Затем выпрямленный сигнал с помощью транзисторов преобразуется в высокочастотные прямоугольные импульсы с требуемой скважностью. Преобразователь импульсного типа за счёт применения инвертирующей схемы, выдаёт на выходе стабильное напряжение. При этом преобразование происходит как с гальванической развязкой от выходных цепей, так и без неё.

В первом случае используется импульсный трансформатор, на который поступает высокочастотный сигнал до 110 кГц.

При изготовлении сердечника используют ферромагнетики, что ведёт к снижению веса и размеров. Во втором вместо трансформатора используется фильтр нижних частот.

Преимущества импульсных источников заключаются в следующем:

  1. малый вес;
  2. улучшенный КПД;
  3. дешевизна;
  4. наличие встроенной защиты.

К недостаткам относят то, что используя в работе высокочастотные импульсы, устройство само создаёт помехи. Это требует устранения и приносит усложнения электрических схем.

Как из 220 вольт сделать 12 вольт самостоятельно

Проще всего сделать аналоговое устройство на базе трансформатора вида тор. Такое устройство несложно выполнить самостоятельно. Для этого понадобится любой трансформатор с первичной обмоткой, рассчитанной на 220 вольт. Вторичная обмотка рассчитывается согласно несложным формулам или подбирается практическим путём.

Для подбора может понадобиться:

  • прибор для измерения напряжения;
  • изолирующая лента;
  • киперная лента;
  • медная проволока;
  • паяльник;
  • инструмент для разборки (кусачки, отвёртки, плоскогубцы, нож и т. п. ).

В первую очередь необходимо определить, с какой стороны переделываемого трансформатора расположена вторичная обмотка. Аккуратно снять защитный слой для получения к ней доступа. Используя тестер, измерить напряжение на выводах.

В случае меньшего напряжения к любому из концов обмотки допаять проволоку, тщательно заизолировав место соединения. Используя эту проволоку сделать десять витков и опять измерить напряжение. В зависимости от того насколько увеличилось напряжение и рассчитать дополнительное количество витков.

В случае если напряжение превышает требуемое, делаются обратные действия. Отматываются десять витков, измеряется напряжение и рассчитывается, сколько их необходимо их убрать. После этого лишний провод обрезается и запаивается на клемму.

По окончании работ трансформатор собирается в обратной последовательности. Если все правильно рассчитано, то получится преобразователь из 220 в 12 вольт переменного напряжения. Для получения постоянного напряжения необходимо добавить выпрямитель. Это простейшее электронное устройство, состоящее из диодного моста и конденсатора. Используя свойства диодов, напряжение выпрямляется, а с помощью конденсатора убираются паразитные влияния.

Следует отметить, что при использовании диодного моста выходная разность потенциалов поднимется на величину, равную произведению переменного напряжения и величины 1.41.

Главным преимущество трансформаторного преобразования является простота и высокая надёжность. А недостатком — габариты и вес.

Самостоятельная сборка импульсных инверторов возможна только при хорошем уровне подготовке и знаний электроники. Хотя можно купить готовые наборы КИТ. Такой набор содержит печатную плату и электронные компоненты. В набор также входит электрическая схема и чертёж с подробным расположением элементов. Останется только всё аккуратно распаять.

Используя импульсную технологию, можно сделать и преобразователь с 12 на 220 вольт. Что очень полезно при использовании в автомобилях. Ярким примером может служить источник бесперебойного питания, сделанный из стационарного оборудования.

ПРЕОБРАЗОВАТЕЛЬ 12 ВОЛЬТ В 220

   Понадобился мне для некоторых целей повышающий преобразователь с 12В на стандартное сетевое напряжение 220 вольт. Поискав на форуме решил сделать из запчастей блока питания компьютера. Сразу замечу, что трансформатор лучше брать побольше — маленький может своеобразно мигать и обычно тянет в нормальном режиме порядка 20 ватт, а то и меньше. Радиаторы ставятся при нагрузке более 50 ватт, когда транзисторы нагреваются выше нормы.


Схема электрическая преобразователя 12-220 вольт

   Конструктивно плата устройства может крепится в любом корпусе, обеспечивающим защиту от прикосновения человеком. Рисунок смотрите на фото или ищите файл на форуме.

   Если питать будем телевизор или лампочку, то можно вообще не использовать выпрямитель Кстати, компактную люминисцентную лампу КЛЛ, этот преобразователь также запускает — пробовал с лампой на 15 Вт. Все детали, кроме трансформатора, брались новыми — поэтому особых проблем не наблюдалось. В будущем планируется сделать еще два экземпляра, с учетом выявленных осбенностей по деталям и схематически.


   Небольшое описание схемы и ее работы от уважаемого пользователя форума ear: Схема представляет собой двухтактный импульсный преобразователь, собранный на ШИМ-контроллере TL494 (и ее аналогов), что позволяет сделать её довольно простой. На выходе стоят высокоэффективные выпрямительные диоды удваивающие напряжение. Также можно использовать его и без диодов, получая переменное напряжение. Для электронных балластов постоянное напряжение и полярность включения не актуальна, так как в схеме балласта на входе стоит диодный мост (правда диоды там не такие «шустрые» как в нашем преобразователе).  


   В преобразователе 12 вольт в 220 используется готовый высокочастотный понижающий трансформатор из блока питания (БП) компьютера, но в нашем преобразователе он станет наоборот повышающим. Понижающий трансформатор можно взять как из AT так и из ATX БП. Из практики трансформаторы отличаются только габаритами, а расположение выводов идентично. Убитый БП (или трансформатор из него) можно найти в любой мастерской по ремонту компьютеров.  

 C1 – это 1 нанофарад, на корпусе кодировка 102;
 R1 – задает ширину импульсов на выходе.
 R2 (совместно с C1) задаёт рабочую частоту.

   Уменьшаем сопротивление R1 – увеличиваем частоту. Увеличиваем емкость C1 – уменьшаем частоту. И наоборот. 


   Транзисторы – мощные МОП (металл-окисел-полупроводник) полевые транзисторы, которые характеризуются меньшим временем срабатывания и более простыми схемами управления. Одинаково хорошо работают IRFZ44N, IRFZ46N, IRFZ48N. Радиатор не нужен, так как продолжительная работа не вызывает ощутимый нагрев транзисторов. А если возникнет желание поставить на радиатор, то, внимание, фланцы корпусов транзисторов не закорачивать через радиатор! Используйте изоляционные прокладки и шайбы втулки от компьютерного БП. 


   Тем не менее, для первого запуска радиатор не помешает; по крайней мере транзисторы сразу не сгорят от перегрева в случае ошибок монтажа или КЗ на выходе. Защиту схемы от перегрузки и переполюсовки можно реализовать через предохранитель и диод на входе.  


   У меня в качестве ключей например были применены популярные полевые irf540n. В конференции ведется обсуждение схемы преобразователя и там вы можете задавать возникающие по ходу сборки вопросы. Сборка и испытания: redmoon.

   Форум по инверторным источникам питания

   Форум по обсуждению материала ПРЕОБРАЗОВАТЕЛЬ 12 ВОЛЬТ В 220

Из 12 В делаем 220 вольт в авто, или как заряжать ноутбук в автомобиле (и не только)

Лето – пора отпусков, путешествий и вылазок в лес или на море. Кто из нас не мечтает в погожий летний денек выбраться из душного офиса, запрыгнуть в автомобиль и отправиться навстречу приключениям? 

В поездках нередко возникает необходимость зарядить различные гаджеты, без которых многие уже не представляют свою жизнь. В таких случаях весьма пригодится розетка (автомобильный инвертор) в машине, установить которую совсем несложно.

Трудно найти второй настолько же полезный аксессуар для автомобиля, как преобразователь напряжения (инвертор). Вкратце, он добавляет розетку 220 В к любому автомобилю, позволяя подключать что угодно — от ноутбука до телевизора с плоским экраном.

Представьте себе телевизор (до 30 дюймов), который транслирует в прямом эфире матч прямо в салоне вашей машины. Либо подключите к розетке микроволновку и подогрейте себе что-нибудь вкусное.

♥ ПО ТЕМЕ: 7 аксессуаров для iPhone и iPad, которые нужно иметь в каждом автомобиле.

 

Что такое автомобильный инвертор?

Современные автомобили оснащены огромным количеством приборов, работающих от аккумулятора. Все они рассчитаны на напряжение 12 В, но что делать в ситуациях, когда требуется 220 В? На помощь придет автомобильный инвертор – преобразователь напряжения с 12 В до 220 В. Это настоящая палочка-выручалочка для автомобилистов, которая позволит использовать в автомобиле бытовые приборы, такие как домашняя аудиосистема, телевизор или холодильник. Качественный преобразователь оснащен защитными механизмами, предохраняющими устройство от возгорания в случае его перегрева. На рынке также представлены модели, в которых предусмотрено активное охлаждение воздушного типа.

Внешне инверторы представляют собой боксы небольшого размера, подключаемые к прикуривателю или к электрической системе автомобиля. Они оснащены несколькими розетками для бытовых приборов, а некоторые устройства даже включают порты USB для подсоединения мобильных гаджетов.

♥ ПО ТЕМЕ: Автомобильная зарядка для iPhone и гаджетов на Android: как выбрать + 10 лучших вариантов.

 

Автомобильный инвертор, или как сделать розетку 220 вольт в автомобиле?

Практически все современные автомобильные преобразователи тока оснащены двумя USB-портами и розеткой переменного тока. Через двойные USB-порты можно заряжать большинство моделей телефонов и планшетов одновременно, а розетки переменного тока отлично подходят для гирлянд, ноутбуков, молокоотсосов, аппаратов для вентиляции легких, ингаляторов, игровых консолей, телевизоров, холодильников, DVD-плееров, «болгарок», дрелей, микроволновок, фонариков, iPad и многих других электронных устройств.

Запитать инвертер можно через прикуриватель в салоне авто при помощи соответствующего кабеля или напрямую от аккумулятора.

Автомобильный инвертер идеально подходит для путешествий: зачастую это небольшое устройство длиной около 20 см, а шириной около 10 см, компактное и удобное. Чрезвычайно портативное и легкое. Вес – около 1 кг.

Хороший инвертер всегда имеет систему защиты — встроенный предохранитель для защиты вашего устройства. Безопасная конструкция зарядки обеспечивает защиту от перегрева, перепадов напряжения, короткого замыкания и перегрузки.

Прочный металлический корпус обеспечивает улучшенную защиту от намокания и ударов. Встроенный очень тихий охлаждающий вентилятор помогает предотвратить перегрев.

В зависимости от планируемых задач, при покупке обязательно обратите внимание на значение выходной мощности, которой обладает преобразователь.

♥ ПО ТЕМЕ: Как правильно выбрать внешний аккумулятор (повербанк).

 

Чем дорогие инверторы отличаются от дешевых?

В отличие от большинства устройств и гаджетов стоимость преобразователя зависит не от популярности торговой марки, а от его мощности и других функций. Эксперты разделяют инверторы на три категории:

До 300 Вт – наименее мощные модели, которые, чаще всего, подключаются через прикуриватель. Некоторые устройства из этой категории можно подключать напрямую к электросети авто, но для этого придется потратить немало усилий. В основном автомобилисты покупают такие девайсы для зарядки мобильных устройств и некоторых моделей ноутбуков, хотя чаще всего проще просто подключить зарядку к прикуривателю.

300 Вт — 1500 Вт – стандартные инверторы, которые подсоединяются к электросети машины. Их можно использовать для подключения телевизора, микроволновой печи, ноутбуков и прочих приборов.

Свыше 1500 Вт – особо мощные преобразователи, подключаемые только к аккумулятору машины. Они могут применяться для работ на дикой местности (например, если речь идет о строительстве).

При выборе инвертора убедитесь, что он превосходит ваши гаджеты по мощности примерно на 20-30%. Подключение слишком мощного устройства может быть чревато выходом из строя инвертора и повреждением проводки в автомобиле (по крайней мере, в теории).

Если вы намерены использовать приборы, которым требуется не меньше 220В, выбирайте инверторы мощностью более 1500 Вт, так как модели на 300 Вт вряд ли обеспечат напряжение свыше 200В.

Купить усовершенствованный инвертор UKC 2000 Вт с бесплатной доставкой

Купить усовершенствованный инвертор повышенной мощности UKC 4000 Вт с бесплатной доставкой

♥ ПО ТЕМЕ: Какой телевизор лучше выбрать в 2020 году для дома: 11 практических советов.

 

Три режима работы автомобильных инверторов

Режим запуска — в данном режиме устройство быстро отдает максимальную мощность, чтобы «завести» что-то требовательное. В данном режиме преобразователь не сможет работать длительное время.

Обычный режим — в данном режиме инвертор поддерживает свою обычную мощность сколько потребуется.

Режим перегрузки — особо мощный режим. В данном режиме устройство может работать до получаса и выдавать мощность, превышающую заявленную в 1,5 раза.

Любой квалифицированный специалист подтвердит, что ни одно устройство не сможет долго функционировать на пределе возможностей. То же касается и инверторов – если вы не хотите, чтобы устройство вышло из строя, старайтесь использовать его в обычном режиме и не перегружайте слишком часто.

♥ ПО ТЕМЕ: Xiaomi 70mai Air Compressor Lite: качественный тихий автомобильный компрессор (насос).

 

Как правильно выбрать автомобильный инвертор

При выборе преобразователя следует учитывать, какие устройства будут к нему подключаться, а также ряд прочих аспектов:

1. Мощность генератора автомобиля. Покупая инвертор, стоит помнить, что его мощность не должна превышать 50% мощности генератора, чтобы преобразователь не разряжал аккумулятор (по крайней мере в случае, если к нему подключены бытовые приборы). Примерно половина его мощности будет затрачена на обеспечение нужд систем машины, а остальное пойдет на подключенные устройства. Если не соблюдать это правило, вы рискуете остаться с разряженным аккумулятором.

2. Устройства. Преобразователь следует выбирать, исходя из предполагаемой мощности используемой техники, в том числе с учетом данных о том, сколько мощности требуется гаджетам при запуске, в нормальном режиме и на пике. Как уже указывалось выше, только самые мощные преобразователи могут обеспечивать напряжение в 220 В.

3. Модель использования инвертора. Как правило, прикуриватель в машине выдает не более 100 Вт, поэтому стоит учитывать этот аспект, если вы присматриваетесь к инвертору, который подключается через гнездо прикуривателя. На выбор устройства также может повлиять место, где должна располагаться розетка (внутри салона или нет), а также желаемая мощность.

4. Торговая марка. Качественные инверторы от известных брендов обладают защитой от короткого замыкания и возгорания, чего не скажешь о китайских устройствах сомнительного происхождения. При покупке инверторов лучше обращаться в крупные сетевые магазины, чтобы не попасть на откровенно некачественную модель.

5. Тип розетки. При покупке инвертора нужно уточнить тип розетки, поскольку не все из них являются универсальными и подходят под все типы вилок.

6. Дополнительные функции. Инверторы с высоким ценником предлагают широкий ассортимент дополнительных возможностей, например, информационные экраны, изменение напряжения или поддержку USB. Если функционал для вас бесполезен, лучше не тратить лишние деньги и обратить внимание на что-нибудь попроще.

♥ ПО ТЕМЕ: Чехол-зарядка для iPhone: подборка лучших вариантов в соотношении цена / качество.

 

Как правильно использовать инвертор

Как и любое другое устройство инвертор не терпит небрежного отношения, поэтому во избежание проблем, связанных с электросистемой автомобиля, стоит придерживаться нескольких простых правил:

1. При запуске двигателя автомобиля инвертор должен быть выключен.

2. После включения инвертора следует подождать 10-15 секунд.

3. Только при соблюдении вышеуказанных условий можно подключать все устройства и приборы.

Прежде чем бежать в магазин за инвертором подумайте, а действительно ли он вам нужен? К примеру, для мобильных устройств и ноутбуков можно приобрести зарядные банки, которые помогут гаджетам продержаться несколько дней. Однако, если речь идет об устаревших моделях ноутбуков, зарядных устройствах для батареек от фотоаппарата и других бытовых приборах, инвертор в поездке окажется весьма полезной вещью.

Смотрите также:

Как сделать блок питания 12В своими руками

Блок питания постоянного напряжения 12 вольт состоит из трех основных частей:

  • Понижающий трансформатор с обычного входного переменного напряжения 220 В. На его выходе будет такое же синусоидальное напряжение, только пониженное до примерно 16 вольт по холостому ходу – без нагрузки.
  • Выпрямитель в виде диодного моста. Он «срезает» нижние полусинусоиды и кладет их вверх, то есть получается напряжение, меняющееся от 0 до тех же 16 вольт, но в положительной области.
  • Электролитический конденсатор большой емкости, который сглаживает полусинусоиды напряжения, делая их приближающимися к прямой линии на уровне в 16 вольт. Это сглаживание тем лучше, чем больше емкость конденсатора.

Самое простое, что нужно для получения постоянного напряжения, способного питать приборы, рассчитанные на 12 вольт – лампочки, светодиодные ленты и другое низковольтное оборудование.

Понижающий трансформатор можно взять из старого блока питания компьютера или просто купить в магазине, чтобы не заморачиваться с обмотками и перемотками. Однако чтобы выйти в конечном счете на искомые 12 вольт напряжения при работающей нагрузке, нужно взять трансформатор, понижающий вольт до 16.

Для моста можно взять четыре выпрямительных диода 1N4001, рассчитанных на нужный нам диапазон напряжений или аналогичные.

Конденсатор должен быть емкостью не менее 480 мкФ. Для хорошего качества выходного напряжения можно и больше, 1 000 мкФ или выше, но для питания осветительных приборов это совсем не обязательно. Диапазон рабочих напряжений конденсатора нужен, скажем, вольт до 25.

Компоновка прибора

Если мы хотим сделать приличный прибор, который не стыдно будет потом приделать в качестве постоянного блока питания, допустим, для цепочки светодиодов, нужно начать с трансформатора, платы для монтажа электронных компонентов и коробки, где все это будет закреплено и подключено. При выборе коробки важно учесть, что электрические схемы при работе разогреваются. Поэтому коробку хорошо найти подходящую по размерам и с отверстиями для вентиляции. Можно купить в магазине или взять корпус от блока питания компьютера. Последний вариант может оказаться громоздким, но в нем как упрощение можно оставить уже имеющийся трансформатор, даже вместе с вентилятором охлаждения.

Корпус блока питанияКорпус блока питания

На трансформаторе нас интересует низковольтная обмотка. Если она дает понижение напряжения с 220 В до 16 В – это идеальный случай. Если нет, придется ее перемотать. После перемотки и проверки напряжения на выходе трансформатора его можно закрепить на монтажной плате. И сразу продумать, как монтажная плата будет крепиться внутри коробки. У нее для этого имеются посадочные отверстия.

Низковольтная обмоткаМонтажная плата

Дальнейшие действия по монтажу будут проходить на этой монтажной плате, значит, она должна быть достаточной по площади, длине и допускать возможную установку радиаторов на диоды, транзисторы или микросхему, которые должны еще поместиться в выбранную коробку.

Диодный мост

Диодный мост собираем на монтажной плате, должен получиться такой ромбик из четырех диодов. Причем левая и правая пары состоят одинаково из диодов, подключенных последовательно, а обе пары параллельны друг другу. Один конец каждого диода маркирован полоской – это обозначен плюс. Сначала паяем диоды в парах друг к другу. Последовательно – это значит плюс первого соединен с минусом второго. Свободные концы пары тоже получатся – плюс и минус. Параллельно соединить пары – значит спаять оба плюса пар и оба минуса. Вот теперь имеем выходные контакты моста – плюс и минус. Или их можно назвать полюсами – верхним и нижним.

Схема диодного моста

Остальные два полюса – левый и правый – используются как входные контакты, на них подается переменное напряжение с вторичной обмотки понижающего трансформатора. А на выходы моста диоды подадут пульсирующее знакопостоянное напряжение.

Если теперь подключить параллельно с выходом моста конденсатор, соблюдая полярность – к плюсу моста – плюс конденсатора, он напряжение начнет сглаживать, причем настолько хорошо, насколько велика у него емкость. 1 000 мкФ будет достаточно, и даже ставят 470 мкФ.

Внимание! Электролитический конденсатор – прибор небезопасный. При неверном подключении, при подаче на него напряжения вне рабочего диапазона или при большом перегреве он может взорваться. При этом разлетается по округе все его внутреннее содержимое – лохмотья корпуса, металлической фольги и брызги электролита. Что весьма опасно.

Ну вот и получился у нас самый простой (если не сказать, примитивный) блок питания для приборов напряжением 12 V DC, то есть постоянного тока.

Проблемы простого блока питания с нагрузкой

Сопротивление, нарисованное на схеме – это эквивалент нагрузки. Нагрузка должна быть такова, чтобы ток, ее питающий, при подаваемом напряжении в 12 В не превысил 1 А. Можно рассчитать мощность нагрузки и сопротивление по формулам.

Откуда сопротивление R = 12 Ом, а мощность P = 12 ватт. Это значит, что если мощность будет больше 12 ватт, а сопротивление меньше 12 Ом, то наша схема начнет работать с перегрузкой, будет сильно греться и быстро сгорит. Решить проблему можно несколькими способами:

  1. Стабилизировать выходное напряжение так, чтобы при изменяющемся сопротивлении нагрузки ток не превышал максимально допустимого значения или при внезапных скачках тока в сети нагрузки – например, в момент включения некоторых приборов – пиковые значения тока срезались до номинала. Такие явления бывают, когда блок питания запитывает радиоэлектронные устройства – радиоприемники, и пр.
  2. Использовать специальные схемы защиты, которые бы отключали блок питания при превышении тока на нагрузке.
  3. Использовать более мощные блоки питания или блоки питания с большим запасом мощности.

Блок питания со стабилизатором на микросхеме

На рисунке ниже представлено развитие предыдущей простой схемы включением на выходе микросхемы 12-вольтового стабилизатора LM7812.

Блок питания со стабилизатором на микросхеме

Это уже лучше, но максимальный ток в нагрузке такого блока стабилизированного питания по-прежнему не должен превышать 1 А.

Блок питания повышенной мощности

Более мощным блок питания можно сделать, добавив в схему несколько мощных каскадов на транзисторах Дарлингтона типа TIP2955. Один каскад даст прибавку нагрузочного тока в 5 А, шесть составных транзисторов, подключенных параллельно, обеспечат нагрузочный ток в 30 А.

Транзисторы Дарлингтона типа TIP2955

Схема, обладающая такой выходной мощностью, требует соответствующего охлаждения. Транзисторы должны быть обеспечены радиаторами. Возможно, понадобится и дополнительный вентилятор охлаждения. Кроме того, можно защититься еще плавкими предохранителями (на схеме не показано).

На рисунке показано подключение одного составного транзистора Дарлингтона, дающего возможность увеличения выходного тока до 5 ампер. Можно увеличивать и дальше, подключая новые каскады параллельно с указанным.

Подключение одного составного транзистора Дарлингтона

Внимание! Одним из главных бедствий в электрических цепях является внезапное короткое замыкание в нагрузке. При этом, как правило, возникает ток гигантской силы, который сжигает все на своем пути. В этом случае сложно придумать такой мощный блок питания, который способен это выдержать. Тогда применяют схемы защиты, начиная от плавких предохранителей и кончая сложными схемами с автоматическим отключением на интегральных микросхемах.

Схема подключения точечных светильников 220В и 12В

В зависимости от типа используемых ламп, в точечным светильниках, существует две основных схемы подключения — это:

– схема подключения точечных светильников 220в

– схема подключения точечных светильников 12в

Два основных стандарта питания точечных светильников существует не просто так, каждый вариант подключения имеет свои положительные и отрицательные стороны и выбирается в зависимости от существующих условий.

Схема подключения точечных светильников 220в

Схема подключения точечных светильников 220в, при аналогичном стандарте бытового напряжении принятом в нашей стране, кажется наиболее естественной и правильной. Обычно, схема подключения через выключатели выглядит так (см. изображение ниже):

 

 

Электрический ток проходя через счетчик электроэнергии и защитную автоматику приходит в распределительную коробку, в которой рабочий ноль и земля (защитный ноль) идут напрямую к точечному светильнику, а вот фазный провод идет на выключатель. В зависимости от типа выключателя (одно-, двух- или трехклавишный) из него выходит соответствующее количество питающих проводов к группа точечных светильников. На изображениях ниже представлены схемы подключения точечных светильников 220в к одноклавишному и двухклавишному выключателю.

Схема подключения точечных светильников 220В к одноклавишному выключателю:

 

Схема подключения точечных светильников 220В к двухклавишному выключателю:

Основные преимущества использования точечных светильников 220в:

– Простая схема подключения, соответственно максимально надежная

– Отсутствие ограничений по длине цепи, точечные светильники одной группы могут располагаться на любом расстоянии друг от друга без потери эффективности освещения.

– Низкие токи в цепи с напряжением 220в позволяют использовать в проводке кабель меньшего сечения, чем в сетях 12в.
 
Минусы использования точечных светильников 220в:

– Высокое напряжение источник повышенной опасности, требует квалификации при монтаже и особой осторожности при обслуживании и эксплуатации

– Без дополнительных защитных устройств, лампы подвержены более быстрому разрушению, чем 12В.

 
Как видите, основной недостаток у точечных светильников 220в, это как ни странно их достаточно высокое напряжение, опасное для человека, как при непосредственном контакте, так и возможностью возникновения возгорания. Из-за этого накладывается множество ограничений при установке и эксплуатации, что достаточно неудобно.

Схема подключения точечных светильников 12в

Использование для питания точечных светильников напряжения 12 вольт, решает эту проблему. Ведь такое низкое напряжение считается условно безопасным и практически исключает возгорания и поражения человека электрическим током.  Кроме этого, при напряжении 12 вольт, стало возможным сделать нити накаливания у ламп толще, рассчитанных на больший ток, а следовательно более надежных и долговечных.

Для работы точечных светильников на 12в, в схему добавляются трансформатор, преобразующий стандартное напряжения бытовой сети 220 Вольт в необходимые 12 Вольт. Чаще всего в продаже вы встретите электронные трансформаторы,

к их основным достоинствам относятся:

– малый габаритный размер и вес

– встроенные системы защиты такие как от короткого замыкания, плавный пуск значительно продлевающий срок жизни ламп и т. п.

– автоматическая регулировка напряжения

– постоянное напряжение на выходе

– низкий уровень шума

 

Выбор трансформатора (блока питания) для точечных светильников.

К основным характеристикам трансформаторов для точечных светильников относятся:

– Выходное напряжение

– Номинальная мощность

–  Выходной ток

Выходное напряжение для галогенных ламп в точечных светильниках обычно должно быть 12В.

Номинальная мощность трансформатора рассчитывается исходя из суммарной мощности подключаемых к нему светильников, плюс небольшой запас.

Так например, при параллельном подключении к трансформатору трех точечных светильников по 50Вт каждый, номинальная мощность трансформатора должна быть больше 150Вт, значит берем 210Вт.
Следует отметить, что трансформаторы для точечных светильников на 12в выпускаются стандартных мощностей это: 60Вт, 70Вт, 105Вт, 150Вт, 210Вт, 250Вт, 400Вт.

Очень важная характеристика трансформатора для точечных светильников это выходной ток. Ведь малое напряжение предполагает высокий ток, который соответственно вызывает падение напряжения в проводах и если их неправильно подобрать, возможны очень неприятные последствия. Ниже представлена таблица выбора сечения кабеля для точечных светильников 12в в зависимости от его длины.

 

Таблица выбора сечения кабеля для точечных светильников 12в в зависимости от его длины

Если рассмотреть на нашем примере, описанном выше, где мы выбрали трансформатор на 210Вт, выходной ток такого трансформатора достигает 18 Ампер! В нашей таблице для такого тока, подбираем минимальное сечение кабеля, которое равно 1.5 кв. мм., при  этом максимальная длина его не должна превышать 3,4 метра.

Чтобы свечение было равномерное у всех точечных светильников на 12в, запитанных от одного трансформатора, при параллельном подключении длины всех проводов должны совпадать (последовательная схема подключения для точечных светильников 12В не применяется).

Даже если один точечный светильник расположен совсем близко к трансформатору, а два других дальше, все равно длины каждого из проводов идущих от трансформатора к точечному светильнику 12в должны быть равны.

Если же, допустим, расстояние оказывается большим, чем минимально возможное из таблицы, то необходимо брать провод большего сечения, так например если в нашем примере мы проложим кабель 2.5. кв.мм., то он может быть длинной уже до 5,7 метра.

Схема параллельного подключения точечных светильников на 12В выглядит так:

 

 

Самый оптимальный вариант подключения точечных светильников на 12В, это когда на каждую точку стоит свой понижающий трансформатор, это несколько повышает стоимость набора освещения, но несомненно стоит того. Отпадает проблема с расчетом длин и сечений проводов, а главное при выходе из строя одного трансформатора, остальные лампы группы продолжат гореть. Схема подключения точечных светильников 12 Вольт, каждый через свой трансформатор, представлена ниже.

 

 

 Обе представленные схемы, верны как для светильников на 12В постоянного, так и переменного тока. В случае с лампами на 12 Вольт переменного тока, полярность подключения проводов не важна, пусть вас не смущает маркировка клемм на схеме “+” и “-“.

Основные преимущества точечных светильников 12В:

– Безопасность, низкая вероятность поражения током человека или возникновения возгорания

– Больший срок службы ламп, в связи с их особенностями, а так же с дополнительными защитами реализованными в трансформаторе.

Основные минусы точечных светильников на 12В:

– Необходимость установки в схему трансформатора и связанные с этим сложности.

– Необходимость точного расчета и подбора сечений и длин проводов, из-за высокого тока.

Решать, какие именно выбрать точечные светильники на 220В или на 12В вам, но сейчас общая тенденция выражается в отказе от схем с отдельными трансформаторами. У многих производителей уже есть в линейке продуктов надежные галогенные лампы с питанием 220В для точечных светильников, а производители диодных ламп пошли еще дальше, и встраивают преобразователи напряжения в корпуса ламп, так что для их работы не требуется никаких изменений в проводке, подробнее об этом мы уже писали в статье «Замена ламп на светодиодные».

Преобразователи переменного тока в постоянный ток

, преобразование настенного питания переменного тока 110/220 В в 12 В постоянного тока — Преобразователи напряжения

Купите преобразователь переменного тока в постоянный, чтобы заменить дорогой автомобильный аккумулятор на 12 В постоянного тока. Эти преобразователи напряжения переменного / постоянного тока принимают мощность переменного тока 110 В или 220 В от сетевой розетки и преобразуют ее в мощность 12 В постоянного тока, что исключает необходимость использования батарей для оборудования с батарейным питанием.

Эти универсальные преобразователи напряжения могут преобразовывать как 110 В, так и 220 В в напряжение 12 В постоянного тока. Также известен как источник питания класса 2 или преобразователи напряжения переменного / постоянного тока. Многие модели предназначены для преобразования напряжения 12 В постоянного тока, 24 В, 3 В, 6 В, 9 В, 12 В, 15 или 18 В постоянного тока в напряжение переменного тока 110–240 В дома, в офисе или в дороге.

Пожалуйста, прочтите наше Руководство по покупке трансформатора , прежде чем делать выбор.

Быстрая доставка через FedEx в любую точку США.

  • DF-1763 Универсальный преобразователь 110/220 В переменного тока в 12 В / 13,8 В постоянного тока, макс. 10 А
    Подробнее…

    59,99 долл. США 79,99 долл. США

  • DF-1765 Универсальный преобразователь переменного тока в постоянный с выходом 12 В — 13,8 В постоянного тока, 20 А
    Подробнее . ..

    82,99 $ $ 109.95

  • DF-1766 Универсальный преобразователь 110 В 220 В переменного тока в постоянный, выход 12 В постоянного тока, 25 А
    Подробнее…

    92,99 доллара США $ 112.95

  • DF-1767 Универсальный преобразователь 110/220 В переменного тока в 12 В-13,8 В постоянного тока, макс., 30 А
    Подробнее …

    $ 119,99

  • DF-1768 Универсальный 110/220 В переменного тока до 12 В — 13.Преобразователь постоянного тока на 8 В, 40 А
    Подробнее …

    139,99 долл. США $ 179,99

  • DF-1769 Универсальный преобразователь 110/220 В переменного тока в 12 В / 13,8 В постоянного тока, 50 А
    Подробнее …

    169 долларов.99

  • DF-1745 Универсальный преобразователь переменного тока в постоянный 3В, 6В, 9В, 12В, 15В Выход постоянного тока Макс. 8 Ампер
    Подробнее …

    139,99 долл. США

  • DF-1730 Универсальный преобразователь переменного тока в постоянный ток 110-240 В переменного тока в 0-30 В постоянного тока, 5 А
    Подробнее…

    109,99 долл. США

  • DF-1736 Универсальный преобразователь переменного тока в постоянный — Вход: 110-240 В Выход: 0-40 В постоянного тока, макс. 6 А
    Подробнее …

    129,99 долл. США

  • DF-1730SL Универсальный преобразователь переменного тока в постоянный Вход: 110/240 В Выход: 0–30 В, макс. 20 А
    Подробнее…

    229,99 долл. США

Как сделать схему преобразователя / инвертора с 12 В постоянного тока в 220 В переменного тока?

Инверторы часто необходимы в местах, где невозможно получить питание переменного тока от сети. Схема инвертора используется для преобразования мощности постоянного тока в мощность переменного тока. Инверторы могут быть двух типов: истинные / чистые синусоидальные инверторы и квази или модифицированные инверторы.Эти инверторы истинной / чистой синусоидальной волны дороги, в то время как модифицированные или квазиинверторы недороги.

Эти модифицированные инверторы генерируют прямоугольную волну и не используются для питания чувствительного электронного оборудования. Здесь построена простая инверторная схема, управляемая напряжением, использующая силовые транзисторы в качестве переключающих устройств, которая преобразует сигнал 12 В постоянного тока в однофазный 220 В переменного тока.

Принцип, лежащий в основе этой схемы

Основная идея, лежащая в основе каждой схемы инвертора, состоит в том, чтобы создавать колебания с использованием заданного постоянного тока и передавать эти колебания через первичную обмотку трансформатора путем усиления тока.Это первичное напряжение затем повышается до более высокого напряжения в зависимости от количества витков в первичной и вторичной катушках.

Также получите представление о схеме преобразователя постоянного тока 12 В в 24 В

Схема преобразователя с использованием транзисторов

Преобразователь 12 В постоянного тока в 220 В переменного тока также может быть разработан с использованием простых транзисторов. Его можно использовать для питания ламп мощностью до 35 Вт , но его можно использовать для управления более мощными нагрузками, добавив больше полевых МОП-транзисторов.

Инвертор, реализованный в этой схеме, представляет собой преобразователь прямоугольной формы и работает с устройствами, которым не требуется чистый синусоидальный переменный ток.

Принципиальная схема

Необходимые компоненты
  • Аккумулятор 12 В
  • МОП-транзистор IRF 630-2
  • 2N2222 Транзисторы
  • 2,2 мкФ конденсаторы-2
  • Резистор
  • Трансформатор 12–220 В с ответвлением от центра .
Рабочий

Схему можно разделить на три части: генератор, усилитель и трансформатор. Требуется генератор на 50 Гц, так как частота переменного тока составляет 50 Гц.

Этого можно достичь, сконструировав нестабильный мультивибратор, который генерирует прямоугольную волну на частоте 50 Гц. В цепи R1, R2, R3, R4, C1, C2, T2 и T3 образуют генератор.

Каждый транзистор генерирует инвертирующие прямоугольные волны. Значения R1, R2 и C1 (R4, R3 и C2 идентичны) будут определять частоту. Формула для частоты прямоугольной волны, генерируемой нестабильным мультивибратором:

F = 1 / (1,38 * R2 * C1)

Инвертирующие сигналы генератора усиливаются силовыми полевыми МОП-транзисторами T1 и T4.Эти усиленные сигналы подаются на повышающий трансформатор, центральный отвод которого подключен к 12 В постоянного тока.

Выходное видео
Коэффициент трансформации трансформатора должен быть 1:19, чтобы преобразовать 12 В в 220 В. Трансформатор объединяет оба инвертирующих сигнала для генерации переменного выходного сигнала прямоугольной формы 220 В.

К с использованием батареи 24 В , нагрузки до 85 Вт могут питаться , но конструкция неэффективна. Чтобы увеличить мощность инвертора, необходимо увеличить количество полевых МОП-транзисторов.

Чтобы спроектировать инвертор на 100 Вт, прочтите Простой инвертор на 100 Вт

Схема преобразователя 12 В постоянного тока в 220 В переменного тока с использованием нестабильного мультивибратора

В схемах инвертора можно использовать тиристоры в качестве переключающих устройств или транзисторов. Обычно для приложений малой и средней мощности используются силовые транзисторы. Причина использования силовых транзисторов заключается в том, что они имеют очень низкий выходной импеданс, позволяющий протекать на выходе максимальному току.

Одно из важных применений транзистора — это переключение.Для этого применения транзистор смещен в области насыщения и отсечки.

Когда транзистор смещен в области насыщения, переходы коллектор-эмиттер и коллектор-база смещены в прямом направлении. Здесь напряжение коллектор-эмиттер минимально, а коллекторный ток максимален.

Еще одним важным аспектом этой схемы является генератор. Важное применение 555 Timer IC — это использование в качестве нестабильного мультивибратора.

Нестабильный мультивибратор генерирует выходной сигнал, который переключает между двумя состояниями и, следовательно, может использоваться в качестве генератора.Частота колебаний определяется номиналами конденсатора и резисторов.

[Также прочтите: Как сделать регулируемый таймер]

Принципиальная схема

Принципиальная электрическая схема преобразователя 12 В постоянного тока в 220 В переменного тока — ElectronicsHub.Org

Компоненты цепи

  • V1 = 12 В R1 = 10 кОм
  • R2 = 150 кОм
  • R3 = 10 Ом
  • R4 = 10 Ом
  • Q1 = TIP41
  • Q2 = TIP42
  • D1 = D2 = 1N4007
  • C3 = 2200 мкФ
  • T1 = повышающий трансформатор 12 В / 220 В
Описание схемы

Конструкция осциллятора: В качестве генератора можно использовать нестабильный мультивибратор.Здесь сконструирован нестабильный мультивибратор с таймером 555. Мы знаем, что частота колебаний таймера 555 в нестабильном режиме определяется выражением:

f = 1,44 / (R1 + 2 * R2) * C

, где R1 — сопротивление между выводом разряда и Vcc, R2 — сопротивление. сопротивление между разрядным выводом и пороговым выводом, а C — это емкость между пороговым выводом и землей. Также рабочий цикл выходного сигнала определяется следующим образом:

D = (R1 + R2) / (R1 + 2 * R2)

Поскольку наше требование составляет f = 50 Гц и D = 50% и предполагается, что C равно 0.1 мкФ, мы можем рассчитать, что значения R1 и R2 составляют 10 кОм и 140 кОм соответственно. Здесь мы предпочитаем использовать потенциометр 150K для точной настройки выходного сигнала.

Также между выводом управления и землей используется керамический конденсатор емкостью 0,01 мкФ.

Схема коммутации: Наша главная цель — создать сигнал переменного тока напряжением 220 В. Это требует использования мощных транзисторов, чтобы обеспечить прохождение максимального количества тока к нагрузке. По этой причине мы используем силовой транзистор TIP41 с максимальным током коллектора 6 А, где ток базы определяется как ток коллектора, деленный на коэффициент усиления постоянного тока.Это дает ток смещения около 0,4 А * 10, то есть 4 А. Однако, поскольку этот ток больше максимального тока базы транзистора, мы предпочитаем значение меньше максимального тока базы. Предположим, что ток смещения равен 1А. Тогда резистор смещения равен

R b = (V cc — V BE (ON) ) / I bias

Для каждого транзистора V BE (ON) равен около 2В. Таким образом, R b для каждого рассчитывается как 10 Ом.Поскольку диоды используются для смещения, прямое падение напряжения на диодах должно быть равно прямому падению напряжения на транзисторах. По этой причине используются диоды 1N4007.

Конструкция транзисторов PNP и NPN одинакова. Мы используем силовой транзистор PNP TIP42.

Конструкция выходной нагрузки: Поскольку выходной сигнал схемы переключения является выходом с широтно-импульсной модуляцией, он может содержать гармонические частоты, отличные от основной частоты переменного тока.По этой причине необходимо использовать электролитный конденсатор, чтобы пропускать через него только основную частоту. Здесь мы используем электролитный конденсатор емкостью 2200 мкФ, достаточно большой, чтобы отфильтровать гармоники. Поскольку требуется выходное напряжение 220 В, предпочтительно использовать повышающий трансформатор. Здесь используется повышающий трансформатор 12 В / 220 В.

Работа цепи преобразователя постоянного тока 12 В в переменный 220 В
  • Когда это устройство питается от батареи 12 В, таймер 555, подключенный в нестабильном режиме, выдает прямоугольный сигнал с частотой 50 Гц.
  • Когда на выходе высокий логический уровень, диод D2 будет проводить, и ток пройдет через диоды D1, R3 на базу транзистора Q1.
  • Таким образом, транзистор Q1 будет включен. Когда выход находится на низком логическом уровне, диод D1 будет проводить, и ток будет течь через D1 и R4 к базе Q2, вызывая его включение.
  • Это позволяет создавать постоянное напряжение через первичную обмотку трансформатора через чередующиеся интервалы. Конденсатор обеспечивает требуемую основную частоту сигнала.
  • Этот сигнал 12 В переменного тока на первичной обмотке трансформатора затем повышается до сигнала 220 В переменного тока на вторичной обмотке трансформатора.
Применение схемы преобразователя 12 В постоянного тока в 220 В переменного тока
  1. Эта схема может использоваться в автомобилях и других транспортных средствах для зарядки небольших аккумуляторов.
  2. Эту схему можно использовать для управления двигателями переменного тока малой мощности.
  3. Ее можно использовать в солнечной энергетической системе.
Ограничения
  1. Поскольку используется таймер 555, выходной сигнал может незначительно изменяться в пределах требуемого рабочего цикла 50%, т.е.е. Трудно достичь точного сигнала 50% рабочего цикла.
  2. Использование транзисторов снижает КПД схемы.
  3. Использование переключающих транзисторов может вызвать перекрестные искажения выходного сигнала. Однако это ограничение было до некоторой степени уменьшено за счет использования смещающих диодов.

Note

Вместо таймера 555 можно использовать любой нестабильный мультивибратор. Например, эти схемы также могут быть построены с использованием нестабильного мультивибратора 4047, выходной ток которого усиливается и подается на трансформатор.

[Читать: Солнечный инвертор для дома ]

Преобразование ватт в амперы с помощью простого калькулятора (+ диаграмма)

Пример: кондиционер работает от 900 Вт. Сколько это ампер? Это 7,5 ампер.

Чтобы преобразовать электрическую мощность в электрический ток (ватты в амперы), нам нужно использовать уравнение электрической мощности:

P = I * V

где:

  • P — электрическая мощность, измеренная в ваттах (Вт)
  • I — электрический ток или сила тока, измеряемая в амперах (A).
  • В — электрический потенциал или напряжение, измеренное в вольтах (В). Стандартное напряжение для большинства электрических устройств составляет 110-120 В, а для мощных электрических устройств с повышенным напряжением используется 220 В.

Используя это уравнение, мы можем преобразовать ватты напрямую в амперы, если нам известно напряжение.

Калькулятор ватт в ампер (от W до A)

Здесь вы можете легко преобразовать ватты в амперы с помощью этого калькулятора:

Чтобы продемонстрировать, как ватты можно преобразовать в усилители, мы решили несколько примеров того, сколько ампер составляет 500 Вт, 1000 Вт и 3000 Вт.В конце концов, вы также найдете таблицу ватт-ампер при электрическом потенциале 120 В.

Вот небольшая полезная информация:

Сколько ватт в усилителе?

При 120 В, 120 Вт дают 1 ампер. Это означает, что 1 ампер = 120 Вт.

При 240 В, 240 Вт составляет 1 ампер.

Имея это в виду, давайте рассмотрим 3 примера:

Пример 1: Сколько ампер составляет 500 Вт?

Допустим, у нас есть вилка кондиционера мощностью 500 Вт, подключенная к напряжению 120 В.

Вот как мы можем рассчитать, сколько ампер в 500 Вт:

I = P / V

Если мы введем P = 500 Вт и V = 120 В, мы получим:

I = 500 Вт / 120 В = 4,17 А

Короче говоря, 500 Вт равняются 4,17 А.

Пример 2: Сколько ампер в 1000 Вт?

Если мы повторим упражнение и спросим себя, сколько ампер равно 1000 Вт, мы получим:

I = 1000 Вт / 120 В = 8,33 А

Мы видим, что устройство на 1000 Вт потребляет в два раза больше ампер, чем устройство на 500 Вт.

Пример 3: 3000 ватт равняется сколько ампер?

Устройства мощностью 3000 Вт могут подключаться к сети 120 В или 220 В. В случаях с более высокой мощностью нет ничего необычного в использовании более высокого напряжения 220 В. Это сделано для уменьшения силы тока.

Например, 3000 Вт равно:

  • 25 Ампер, если использовать 120 В.
  • 13,64 А, при 220 В.

Например, для 25 ампер вам уже понадобится автоматический выключатель. Но если воткнуть такое устройство в 220 В, ток будет всего 13.64 А (автоматические выключатели не нужны).

Пример: Для более крупных многозонных мини-сплит-блоков обычно требуются автоматические выключатели. Вы можете проверить 2-зонную, 3-зонную, 4-зонную и 5-зонную мини-сплит-систему, чтобы узнать, на скольких усилителях они работают.

Таблица ватт в амперы (при 120 В)

Вт: А (при 120 В):
100 Вт до ампер 0,83 А
200 Вт до ампер 1,67 А
300 Вт до ампер 2.50 ампер
400 Вт в ампер 3,33 А
500 Вт до ампер 4,17 А
600 Вт до ампер 5,00 ампер
700 Вт в ампер 5,83 А
800 Вт до ампер 6,67 А
900 Вт до ампер 7,50 А
1000 Вт до ампер 8,33 А
1100 Вт в ампер 9.17 ампер
1200 Вт в ампер 10,00 А
1300 Вт в ампер 10,83 А
1400 Вт в ампер 11,67 А
1500 Вт до ампер 12,17 А
1800 Вт до ампер 15,00 А
2000 Вт до ампер 16,67 А
2500 Вт до ампер 20.83 Ампер
3000 Вт до ампер 25,00 А

Если у вас есть конкретный вопрос о том, как преобразовать ватты в амперы, вы можете использовать раздел комментариев ниже, и мы постараемся вам помочь.

Преобразователь 12–220 В

Преобразователь 12–220 В

Цепи инвертора

очень полезны для выработки высокого напряжения с использованием источника постоянного тока низкого напряжения или батареи.Здесь схема инвертора от 12 до 220 вольт разработана с использованием нескольких легко доступных компонентов, а также может быть легко построена на печатной плате общего назначения.

Основная работа инвертора этого типа — это импульсный импульсный и повышающий трансформатор, поэтому IC CD4047 действует как импульсное генераторное устройство, а n-канальный силовой полевой МОП-транзистор IRFZ44n действует как переключатель, а затем вторичный трансформатор 12-0-12 В, инвертируемый как повышающий трансформатор. .

Схема подключения

Необходимые компоненты

  1. IC CD4047
  2. силовой полевой МОП-транзистор IRFZ44 = 2.
  3. Вторичный трансформатор 12–0–12 В 1 ампер
  4. Переменный резистор 22 кОм
  5. Резисторы 100 Ом / 10 Вт = 2
  6. конденсатор 0,22 мкФ
  7. Сла-аккумулятор 12 В

Строительство и работа

Эта простая инверторная схема от 12 до 220 вольт состоит из переключающего устройства и повышающего трансформатора. Поскольку мы знаем, что импульс высокой частоты переключения достигает повышающего трансформатора, выходное напряжение достигает высокого значения из-за взаимной индуктивности.

IC CD 4047 настроена в режиме нестабильного мультивибратора с помощью переменного резистора RV1 и конденсатора C1, изменяя значение переменного резистора, мы можем получить разный диапазон выходного импульса на выводах Q и Q ‘, что приводит к изменению выходного напряжения на трансформатор.

Силовые МОП-транзисторы канала

N IRFZ44 Дренажные контакты подключены к контактам вторичной обмотки трансформатора, а общий контакт вторичной обмотки подключен к положительному смещению батареи, оба контакта источника МОП-транзистора подключены к отрицательному смещению батареи, и эти МОП-транзисторы управляются Q и Q ‘вывод микросхемы CD4047.Когда чередующиеся прямоугольные импульсы приводят в действие полевой МОП-транзистор, тогда вторичная обмотка вынуждена индуцировать переменное магнитное поле, и это магнитное поле индуцирует большую (первичную) обмотку трансформатора и создает высокое переменное напряжение. (Здесь обычный трансформатор на 1 ампер 12-0-12В используется как повышающий трансформатор).

Примечание. Эта схема используется при обращении с рукояткой высокого напряжения переменного тока с особой осторожностью.

Как легко сделать источник питания 12 В в домашних условиях

Как легко сделать блок питания на 12 В в домашних условиях

В этом проекте мы узнаем, как сделать блок питания 12 В простым в домашних условиях или как преобразовать 230 В в 12 В постоянного тока, используя несколько простых шагов с принципиальной схемой.Для создания этого проекта нам понадобятся некоторые компоненты.

Компоненты, необходимые для изготовления адаптера 12 В:

  • LM7812 Регулятор напряжения
  • Радиатор
  • 50 В 1000 мкФ (конденсатор)
  • светодиод
  • Резистор 1 кОм
  • 1N4007 (4 диода)
  • 12-0-12 (трансформатор 12 В / 1 А)
  • Печатная плата
  • Паяльник
  • Проволока для пайки

В этом проекте мы используем регулятор напряжения LM7812.Основная функция регулятора напряжения — это выход ровно 12 В.

Мы используем диодный мост, потому что он преобразует переменное напряжение в постоянное.

Схема блока питания 12 В

Схема источника питания 12 В:

  • Возьмите 4 диода и сделайте перемычку, как на схеме.
  • Соединить выход трансформатора с диодом, как на схеме.
  • Теперь подключите положительный провод конденсатора 1000 мкФ к положительному проводу, а отрицательную сторону — к заземляющему проводу.
  • и теперь подключите резистор 1 кОм и светодиод с положительным и отрицательным проводом.
  • Теперь 1-й контакт регулятора напряжения соединяется с плюсовым проводом, 2-й контакт соединяется с проводом заземления, а 3-й контакт используется для вывода.
  • 2-й (-12 В) и 3-й (+12) контакты регулятора напряжения используются для выходного питания.
  • Наконец, подсоедините радиатор к регулятору напряжения.
LM7812 Регулятор напряжения

Вывод стабилизатора напряжения LM7812:

Регулятор напряжения LM7812 имеет 3 контакта.

  • 1-й вход
  • 2-я земля
  • 3-й выход

Основная функция регулятора напряжения — это выход ровно 12 В.

например, если на входе 20 В, а на выходе я хочу ровно 12 В, тогда я использую LM7812.

Узнайте больше, посмотрев видео

Видео о том, как сделать адаптер питания на 12 В:

Некоторые основные вопросы и ответы:

Зачем использовать диодный мост?

Поскольку мы производим источник питания постоянного тока, а трансформатор обеспечивает питание переменного тока, мы используем диодный мост для преобразователя переменного тока в постоянный.мы также можем использовать выпрямитель напряжения. обе работы одинаковы. если вы не можете найти выпрямитель напряжения, вы можете использовать диодный мост.

Зачем использовать трансформатор?

потому что наше требование — входное напряжение 220 вольт и выходное напряжение 12 В. и трансформатор преобразует мощность 220 вольт в 12 В. Основное назначение трансформатора — понижение мощности с 220В до 12В.

в чем смысл трансформатора 12-0-12?

трансформатор 12-0-12 означает 12в два выхода . Средний провод — нейтральный провод или отрицательный провод.1-й и 3-й провод — положительный. оба имеют выход 12 В. если мы оставим средний провод и будем использовать только 1-й и 3-й провод, то он предоставит нам выход 24 В.

Зачем использовать регулятор напряжения LM7812?

потому что нам нужен стабильный выход 12 В. и регулятор напряжения LM7812 обеспечивают стабильный выход 12 В. например, если мы используем вход 24 В, тогда регулятор напряжения преобразует его в идеальный выход 12 В.

Зачем использовать конденсатор?

когда мы преобразуем переменный ток в постоянный с помощью диода, его отрицательный контур падает, и напряжение распадается.поэтому мы используем конденсатор. его напряжение накапливается в течение нескольких секунд и обеспечивает выход в состоянии и в одном направлении.

Сколько используют входное напряжение?

Обычно вы можете использовать входное напряжение от 220 до 250 В. Если ваш трансформатор поддерживает 150 вольт, вы также можете использовать входную мощность 150 В.

Можно ли использовать трансформатор для питания постоянного тока?

Да, трансформатор — это основная часть источника питания. мы также используем трансформатор. и дополнительные компоненты мы используем диодный мост для преобразователя переменного тока в постоянный. Только трансформатор не может обеспечить нас постоянным током.мы должны использовать другие компоненты для преобразования его в постоянный ток.

Как переменный ток преобразуется в постоянный?

Используя выпрямитель напряжения или диодный мост, мы можем преобразовать переменный ток в постоянный. нормальный переменный ток проходит по 2 петлям. верхний и нижний. (это называется переменным током), когда мы используем выпрямитель напряжения или диод, его нижний контур падает, а пропускаются только верхние контуры. тогда мы получаем питание постоянного тока.

Возможен ли трансформатор постоянного тока?

Нет, потому что трансформатор работает от переменного тока, он не может пропускать постоянный ток. например, мы хотим вводить 230 В и 12 В постоянного тока, используя только трансформатор.так что это невозможно. трансформатор только преобразует 230 В переменного тока в 12 В переменного тока. если вы хотите преобразовать его в DC, вам нужно присоединить больше компонентов.

Что это означает AC и DC?

AC означает или AC означает альтернативный ток . и DC означает постоянный ток .

Ссылки на другие проекты в области электроснабжения:


Источник питания и хранение от 220 до 12 вольт (PDF)

Этот проект предназначен для создания источника питания от 220 до 12 В постоянного тока, который также может сохранять мощность в течение длительного времени.Используемая схема является эффективной и внесла множество улучшений в существующие источники питания постоянного тока, такие как регулирование напряжения и устранение пульсаций на выходе. Напряжение 220 АС сначала преобразуется в 12 В переменного тока понижающим трансформатором, затем используется двухполупериодный выпрямительный мост (на основе моста пшеничного камня) для преобразования переменного тока в постоянный ток.Затем этот выходной сигнал дважды фильтруется двумя механизмами.

> Для устранения ряби в форме волны мостовой схемы.

> Создайте регулируемый и эффективный источник питания.

NPN-транзистор с базой, подключенной к стабилитрону, также используется в качестве коммутирующей цепи. Затем на выходе получается 12 В. Схемы и формы сигналов создаются с помощью PSpice. Благодаря регулировке напряжения и устранению пульсаций на выходе этот источник питания также можно использовать в качестве «разрядника батареи», который обеспечивает постоянный и эффективный выход на нагрузку без необходимости в батарее.

В области электротехники всегда есть потребность в источниках питания постоянного тока. Основными преимуществами этих источников питания постоянного тока являются портативность и экономическая эффективность по сравнению с источниками питания переменного тока, но иногда дешевизна этих источников питания постоянного тока приводит к недостаточной эффективности их выхода. То есть выход большинства имеющихся на рынке источников питания постоянного тока имеет пульсации и не является чистым постоянным током.Кроме того, выходное напряжение неточно из-за потерь в цепи.Чтобы устранить эти недостатки в источниках питания постоянного тока, мы создали эффективную схему, которая не только устраняет пульсации выходного напряжения, чтобы получить чистый сигнал постоянного тока, но также регулирует напряжение до постоянного и желаемого значения. Это достигается за счет использования схемы фильтра и транзистора, который используется в качестве переключателя. Мы использовали мостовой выпрямитель вместо двухдиодного выпрямителя (который также производит двухполупериодное выпрямление), потому что мостовой выпрямитель не требует высокого «пикового обратного напряжения», поскольку он использует большую часть обмоток трансформатора.Мы также использовали простой трансформатор вместо центрального ответвителя, потому что он дешевле и обеспечивает компактную и дешевую передачу энергии. Использование схемы RL в качестве фильтра повысило эффективность схемы за счет устранения пульсаций в постоянном токе, которые устраняются мостом. Использование транзистора в качестве переключателя привело к еще одному усовершенствованию схемы, т.е. он отрегулировал напряжение до постоянного значения, что спасло нашу нагрузку от повреждений, вызванных колебаниями напряжения. Используются перезаряжаемые никель-металлогидридные батареи, которые в наши дни широко используются в бытовой электронике.Они также имеют меньшее время зарядки и очень долговечны. Благодаря эффективному сочетанию значений элементов схемы к выходной цепи можно подключить множество нагрузок, то есть любой элемент схемы, имеющий напряжение 12 В и сопротивление более 10 Ом.

ПРИМЕНЕНИЕ

> Схема может использоваться в качестве «разрядника батареи», поскольку она обеспечивает постоянное регулируемое напряжение и отсутствие пульсаций на выходе. Его можно использовать для вывода сначала напрямую на нагрузку, а не на батарею.Это снижает стоимость аккумулятора.

> Может использоваться как зарядное устройство. Его можно отсоединить от схемы и затем использовать для подачи питания на различные электронные устройства.

> Его можно использовать в качестве регулятора напряжения постоянного тока, который может обеспечивать напряжение без пульсаций.

> Для зарядки аккумуляторной батареи электромобиля.

> Для подзарядки стартерной батареи топливного транспортного средства, где используется модульное зарядное устройство.

Сопутствующие товары

Адаптеры источников питания постоянного тока 12 В. 1, 2, 3, 4, 5 А, 12 В (1 А, 2 А, 2,5 А, 3 А, 3,5 А, 4 А, 5 А, 6 А)

Краткая инструкция по выбору блока питания:

Единственная информация, которую вам нужно иметь, чтобы найти правильный источник питания для вашего устройства, — это напряжение / вольты (В) и сила тока / амперы (A).

Напряжение должно точно совпадать. Для устройства на 12 В постоянного тока требуется адаптер на 12 В постоянного тока.

Сила тока — это количество энергии, которое использует ваше устройство.Адаптер, который вы заказываете, должен обеспечивать, по крайней мере, то количество ампер, которое потребляет ваше устройство. Если ваше устройство заявляет, что оно составляет 12 В 3 А, адаптер на 3 А может справиться с этой нагрузкой, но также с 4 А и 5 А. Блок питания с большей силой тока (ампер) работать не будет. так же трудно справиться с меньшей нагрузкой, и он будет работать более прохладно и стабильно.

Если сила тока вашего устройства неравномерная, например 3,13 А или 4,16 А, всегда округляйте в большую сторону. 3,13 А округляется до 3,5 А, а 4,16 А устройство округлит до 4,5 А или 5 А.

Если вы соответствуете этим двум спецификациям (V и A), блок питания будет работать для вашего устройства.

Подробные инструкции:

Чтобы найти подходящий блок питания для вашего устройства, вам понадобятся две части информации. Это напряжение (измеряется в вольтах или В) и сила тока (измеряется в амперах или А). Вы можете найти эту информацию на задней панели старого блока питания, или с задней стороны самого устройства. Если вы не нашли его на устройстве, вы можете проверить на сайте производителя или в инструкции к устройству в разделе «Технические характеристики».

Напряжение:
Все продаваемые нами блоки питания рассчитаны на 12 В постоянного тока. Они принимают любой вход от 100 В до 220 В переменного тока, который выходит из вашей сетевой розетки, и выход 12 В постоянного тока. Это то, что большинство цифровых устройств, таких как ЖК-экраны, DVD-плееры, жесткие диски, аудио Gear и большинство других цифровых устройств используют. Мы поставляем только блоки питания 12 В постоянного тока, поэтому, если ваш блок не 12 В, вы не найдете здесь подходящего адаптера.

Сила тока:
После того, как вы подтвердите, что вам нужен блок питания на 12 В, вам нужно будет узнать, сколько мощности ваше устройство. рисует.Это называется силой тока. Рядом с 12 В в технических характеристиках будет еще один номер, за которым следует заглавная буква «А» для ампер. Вам понадобится блок питания, который может обеспечить достаточное количество энергии для вашего устройства. Если ваше устройство говорит, что потребляет 3 А (3 А), вам необходимо использовать блок питания. который может выдать хотя бы такое количество ампер. Если ваше устройство заявляет, что ему требуется 3А, вы можете использовать блок на 3А, 4А или 5А. Все будет работать.

Если сила тока вашего устройства неравномерная, например 3,13 А или 4,16 А, всегда округляйте в большую сторону.3,13 А округляется до 3,5 А, а 4,16 А устройство округлит до 4,5 А или 5 А.

Разъем:
Все наши блоки питания имеют разъем, стандартный для устройства 12 В постоянного тока. В большинстве устройств 12 В постоянного тока используется стандартный наконечник. Этот наконечник имеет размер 5,5 мм (внешний цилиндр) на 2,5 мм (внутренний цилиндр) и имеет положительный центр.