Как узнать мощность асинхронного двигателя если нет бирки: Как определить мощность электродвигателя без бирки по диаметру вала

Содержание

Узнать мощность электродвигателя по диаметру вала без бирки

При замене сломанного советского электродвигателя на новый, часто оказывается, что на нем нет шильдика. Нам часто задают вопросы: как узнать мощность электродвигателя? Как определить обороты двигателя? В этой статье мы рассмотрим, как определить параметры электродвигателя без бирки — по диаметру вала, размерам, току.
Заказать новый электродвигатель по телефону

Как определить мощность?

Существует несколько способов определения мощности электродвигателя: диаметру вала, по габариту и длине, по току и сопротивлению, замеру счетчиком электроэнергии.

По габаритным размерам

Все электродвигатели отличаются по габаритным размерам. Определить мощность двигателя можно сравнив габаритные размеры с таблицей определения мощности электродвигателя, перейдя по ссылке габаритно-присоединительные размеры электродвигателей АИР.

Какие размеры необходимо замерить:

  • Длина, ширина, высота корпуса
  • Расстояние от центра вала до пола
  • Длина и диаметр вала
  • Крепежные размеры по лапам (фланцу)

По диаметру вала

Определение мощности электродвигателя по диаметру вала — частый запрос для поисковых систем.

Но для точного определения этого параметра недостаточно – два двигателя в одном габарите, с одинаковыми валами и частотой вращения могут иметь различную мощность.

Таблица с привязкой диаметров валов к мощности и оборотам для двигателей АИР и 4АМ.

Мощность
электродвигателя Р, кВт
Диаметр вала, мм Переход к модели
3000 об/мин 1500 об/мин 1000 об/мин 750 об/мин
0,18 11 11 14 АИР56А2, АИР56В4, АИР63А6
0,25 14 19 АИР56В2, АИР63А4, АИР63В6, АИР71В8
0,37 14 19 22 АИР63А2, АИР63В4, АИР71А6, АИР80А8
0,55 19 АИР63В2, АИР71А4, АИР71В6, АИР80В8
0,75 19 22 24 АИР71А2, АИР71В4, АИР80А6, АИР90LA8
1,1 22 АИР71В2, АИР80А4, АИР80В6, АИР90LB8
1,5 22 24 28 АИР80А2, АИР80В4, АИР90L6, АИР100L8
2,2 24 28 32 АИР80В2, АИР90L4, АИР100L6, АИР112МА8
3 24 32 АИР90L2, АИР100S4, АИР112МА6, АИР112МВ8
4 28 28 38 АИР100S2, АИР100L4, АИР112МВ6, АИР132S8
5,5 32 38 АИР100L2, АИР112М4, АИР132S6, АИР132М8
7,5 32 38 48 АИР112M2, АИР132S4, АИР132М6, АИР160S8
11 38 48 АИР132M2, АИР132М4, АИР160S6, АИР160М8
15 42 48 55 АИР160S2, АИР160S4, АИР160М6, АИР180М8
18,5 55 60 АИР160M2, АИР160M4, АИР180М6, АИР200М8
22 48 55 60 АИР180S2, АИР180S4, АИР200М6, АИР200L8
30 65 АИР180M2, АИР180M4, АИР200L6, АИР225М8
37 55 60 65 75 АИР200M2, АИР200M4, АИР225М6, АИР250S8
45 75 75 АИР200L2, АИР200L4, АИР250S6, АИР250M8
55 65 80 АИР225M2, АИР225M4, АИР250M6, АИР280S8
75 65 75 80 АИР250S2, АИР250S4, АИР280S6, АИР280M8
90 90 АИР250М2, АИР250M4, АИР280M6, АИР315S8
110 70 80 90 АИР280S2, АИР280S4, АИР315S6, АИР315M8
132 100 АИР280M2, АИР280M4, АИР315M6, АИР355S8
160 75 90 100 АИР315S2, АИР315S4, АИР355S6
200 АИР315M2, АИР315M4, АИР355M6
250 85 100 АИР355S2, АИР355S4
315 АИР355M2, АИР355M4

По показанию счетчика

Как правило измерение счетчика отображаются в киловаттах (далее кВт). Для точности измерения стоит отключить все электроприборы или воспользоваться портативным счетчиком. Мощность электродвигателя 2,2 кВт, подразумевает что он потребляет 2,2 кВт электроэнергии в час.

Для измерения мощности по показанию счетчика нужно:

  1. Подключить мотор и дать ему поработать в течении 6 минут.
  2. Замеры счетчика умножить на 10 – получаем точную мощность электромотора.

Расчет мощности по току

Для начала нужно подключить двигатель к сети и замерить показатели напряжения. Замеряем потребляемый ток на каждой из обмоток фаз с помощью амперметра или мультиметра. Далее, находим сумму токов трех фаз и умножаем на ранее замеренные показатели напряжения, наглядно в формуле расчета мощности электродвигателя по току.

  • P – мощность электродвигателя;
  • U – напряжение;
  • Ia – ток 1 фазы;
  • Ib – 2 фазы;
  • Ic – 3 фазы.

Определение оборотов вала

Асинхронные трехфазные двигатели по частоте вращения ротора делятся 4 типа: 3000, 1500, 1000 и 750 об. мин. Приводим пример маркировки на основании АИР 180:

  1. АИР 180 М2 – где 2 это 3000 оборотов.
  2. АИР 180 М4 – 4 это 1500 об. мин.
  3. АИР 180 М6 – 6 обозначает частоту вращения 1000 об/мин.
  4. АИР 180 М8 – 8 означает, что частота вращения выходного вала 750 оборотов.

Самый простой способ определить количество оборотов трехфазного асинхронного электродвигателя – снять задний кожух и посмотреть обмотку статора.

У двигателя на 3000 об/мин катушка обмотки статора занимает половину окружности — 180 °, то есть начало и конец секции параллельны друг другу и перпендикулярны центру. У электромоторов 1500 оборотов угол равен 120 °, у 1000 – 90 °. Схематический вид катушек изображен на чертеже. Все обмоточные данные двигателей смотрите в таблице.

Узнать частоту вращения с помощью амперметра

Узнать обороты вала двигателя, можно посчитав количество полюсов. Для этого нам понадобится миллиамперметр — подключаем измерительный прибор к обмотке статора. При вращении вала двигателя стрелка амперметра будет отклонятся. Число отклонений стрелки за один оборот – равно количеству полюсов.

Если не получилось узнать мощность и обороты

Если не получилось узнать мощность и обороты электродвигатели или вы не уверены в измерениях – обращайтесь к специалистам «Систем Качества». Наши специалисты помогут подобрать нужный мотор или провести ремонт сломанного электродвигателя АИР.

Как определить мощность электродвигателя?


Какими способами можно определить мощность электродвигателя?

Электрический двигатель представляет собой электрическую машину, роль которой заключается в преобразовании электрической энергии в энергию механическую.

Нередко случаются ситуации, когда технический паспорт электродвигателя теряется, а маркировка на корпусе стирается в силу времени. В таком случае определить мощность электродвигателя становится сложно.

Но существует несколько способов, которые помогут Вам справиться с подобной проблемой.

Определить мощность электродвигателя можно следующими способами:

  • используя практические измерения;
  • таблицы;
  • исходя из количества оборотов в минуту;
  • по габаритам;
  • на основе мощности, которая выдается двигателем.

Практическое определение мощности электродвигателя

Наиболее простым и доступным каждому способом определить мощность электродвигателя является снятие показаний счетчика электрической энергии.

Изначально необходимо отключить все бытовые электроприборы, выключить свет во всем помещении. Важно помнить, что работа даже небольшой маломощной лампочки может сильно исказить показания.

Обратите внимание на то, чтобы счетчик оставался неподвижным, а индикатор не мигал (все зависит от модели электрического счетчика).

В случае со счетчиком марки «Меркурий» процесс существенно облегчается, поскольку данная модель устройства отображает нагрузку в киловаттах (кВт). Следовательно, будет достаточно просто включить электродвигатель на всю мощность и посмотреть показания на счетчике.

В ситуации с индукционным счетчиком определить мощность электродвигателя будет несколько сложнее, поскольку учет ведется в киловаттах в час (кВт/ч). Сначала требуется записать показания счетчика до того, как включите мотор. После включения двигатель должен поработать в течение 10 минут. Для отслеживания времени пользуйтесь секундомером, точность периода работы очень важна. По прошествии 10 минут снимите новые показания счетчиков и способом вычитания выявите разницу. Разницу умножьте на 6. Итоговый результат будет обозначать мощность электродвигателя в киловаттах (кВт).

Определить мощность электродвигателя небольшой силы еще сложнее. Для этого нужно узнать количество оборотов (импульсов), равных 1 кВт/ч.

Данную информацию Вы отыщите на счетчике. Возьмем для примера 1600 оборотов (в некоторых моделях вспышек индикатора). Итак, если при функционирующем электродвигателе электросчетчик совершает 20 об/мин, данную цифру нужно умножить на 60, т.е. количество минут в часе. В итоге получаем 1200 об/мин. После имеющиеся 1600 оборотов в минуту делим на 1200, получаем 1,3, что и являет собой мощность электродвигателя.

Определение мощности электродвигателя по таблицам

Сегодня люди за помощью все чаще обращаются к интернету, ведь там можно найти абсолютно любую информацию. Также при помощи глобальной сети Вы можете определить мощность электродвигателя по диаметру вала.

Для использования данного метода вычисления достаточно в интернете отыскать технические таблицы для распознавания типа мотора и его мощности, а также снять необходимые параметры (диаметр вала и частота его вращения, крепежные габариты, при фланцевом двигателе – диаметр фланца, расстояние до центра вала и расстояние до оси, длина мотора без выпирающего элемента вала).

Важно при таком способе быть терпеливым и внимательным, чтобы точно измерить все показатели и получить точный результат.

Как определить мощность электродвигателя по числу оборотов за одну минуту?

Применение данного способа для определения мощности электродвигателя требует визуального определения числа обмоток статора. Также необходимо применение специальных измерительных приборов, таких как тестер или миллиамперметр. для распознавания количества полюсов, чтобы избежать разбора мотора.

Измерительный прибор подключается к одной из обмоток. Вал при этом нужно вращать равномерно и постепенно. Отклонение стрелки и будет показывать количество полюсов. Важно учитывать тот факт, что частота вращения вала при таком способе определения мощности будет немного ниже полученного результата.

Определение мощности электродвигателя на основе его габаритов

Данный способ используется в основном для определения мощности трехфазных электродвигателей.

Для расчета мощности по габаритам необходимо знать:

  • диаметр сердечника (см) – D. Измерение происходит во внутренней части статора. При этом необходимо знать длину сердечника, учитывая вентиляционные отверстия;
  • показатель частоты валового вращения – n;
  • частота сети – f.

Используя данные значения, вычисляется полюсное деление. Для этого показатель диаметра (D) умножается на частоту валового вращения (n) и на число Пи. Итоговую цифру обозначим условно А.

Показатель частоты сети f умножается на 120, получаем (условно) В.

Получив значения А и В, осуществляем их деление, а именно: число А делим на число В. В итоге получаем необходимый нам показатель мощности электродвигателя.

На самом деле все не так уж сложно, достаточно вспомнить уроки математики в школе.

Способ определения по показателю мощности, что выдает электродвигатель

В данном случае необходимо снова обратиться к знаниям школьной математики, а также использовать калькулятор для точного вычисления.

Сначала узнайте количество оборотов вала в секунду (А), тяговое усилие мотора (В) и радиус вала (С). Подставьте значения в следующую формулу: Аx6,28xBxC. Результат и есть мощность электродвигателя.

Зная мощность электродвигателя, Вы без труда сможете выбрать необходимое сопутствующее оборудование (тепловые реле и автоматические выключатели). Также, знание данного показателя поможет Вам легко и быстро узнать пропускную способность и норму сечения кабельно-проводниковой продукции для подсоединения двигателя к сети. Самое главное – Вы сможете использовать электродвигатель без вероятности перегрузок.

Как видите, определить мощность электродвигателя без бирки можно и при чем довольно просто. Способов достаточное количество. Вам остается лишь выбрать наиболее удобный и правдивый на ваш взгляд и воспользоваться им.

Как определить мощность и частоту оборотов электродвигателя


Возникла необходимость узнать мощность или частоту оборотов вала и другие параметры электродвигателя, но после внимательного осмотра на его корпусе не нашлось таблички (шылдика) с его наименованием и техническими параметрами. Придется определять самому, для этого есть несколько способов и мы их рассмотрим ниже.

Мощность электродвигателя представляет из себя скорость преобразования электрической энергии, ее принято определять в ваттах.

Чтоб осознать, как это работает, нам понадобится 2 величины: сила тока и напряжение. Сила тока — численность тока, которое проходит через поперечное сечение за некий отрезок времени, ее принято определять в амперах. Напряжение — значение, равная работе по перемещению заряда меж 2-мя точками цепи, ее принято определять в вольтах.

Для расчета мощности используется формула N = A/t, где:

N - мощность;

А - работа;

t - время.

Часто электродвигатель поступает с завода с уже указанными техническими параметрами. Но заявленная мощность не всегда соответствует фактической, а скорее всего она может значить лишь максимальную мощность электропотока.

Так что если на вашем электроинструменте указана, например, мощность в 500 ват, это совсем не значит что инструмент будит потреблять точно 500 ват.

Электродвигатели производят стандартной дискретной мощности, линейки типа 1.5,  2.2,  4 кВт.

Опытный электрик может легко отличить 1.5 от 2.2 кВт всего лишь взглянув на его габариты. Помимо этого он сможет определить количество оборотов двигателя по размеру статора, количеству пар полюсов и диаметра вала.

Еще более опытным в этом деле окажется обмотчик, специалист который занимается перемоткой электродвигателей со 100%-ой уверенностью определит технические параметры вашего электродвигателя.

Если табличка с характеристиками двигателя потеряна для подсчета мощности двигателя нужно измерить силу тока на обмотках ротора и с помощью стандартной формулы найти потребляемую мощность электродвигателя. 

Основные способы определения мощности двигателя

Определение мощности по току. Для этого подключаем двигатель в сеть и контролируем напряжение. Затем поочередно, в цепь каждой из обмоток статора включаем амперметр и замеряем потребляемый ток. После того как мы нашли суму потребляемых токов, полученное число необходимо умножить на фиксированное напряжение в результате получим число определяющее мощность электродвигателя в ваттах.

Определяем мощность по габаритам. Нужно измерить диаметр сердечника (с внутренней стороны) и его длину.

Дальше если знаем частоту сети нужно узнать синхронную частоту вращения вала.

Умножаем синхронную частоту вращения вала на диаметр сердечника (в сантиметрах) полученную цифру умножаем на 3.14 затем разделяем на частоту сети умноженную на 120. Полученное значение мощности будит в киловаттах.

Замер по счетчику. Способ считается самым простым. Для этого, для чистоты эксперимента, отключаем все нагрузки в доме. Дальше необходимо включить двигатель на определенное время (например 10 минут) На щетчике будит видно разницу в киловаттах по ней уже легко можно высчитать сколько киловаттах потребляет двигатель. Удобней всего будит воспользоваться портативным электросчетчиком который показывает потребление в киловаттах (ваттах) в режиме реального времени.


Для определения реального показателя мощности, которую выдает двигатель, необходимо найти скорость валового вращения, измеряемую в числе оборотов за секунду, тяговое усилие двигателя.

Частота вращения умножается последовательно на 6,28, показатель силы и радиус вала, который можно вычислить при помощи штангенциркуля. Найденное значение мощности выражается в ваттах.

Определяем рабочее количество оборотов двигателя.

Самый быстрый способ - посчитать количество катушек (катушечных групп) Определяем мощность по расчетным таблицам. С помощью штангенциркуля замеряем диаметр вала, длину мотора (без выступающего вала) и расстояние до оси.Замеряем вылет вала и его выступающую часть, диаметр фланца если он есть, а также расстояние крепежных отверстий. По этим данным с помощью сводной таблицы можно легко определить мощность двигателя и другие характеристики

1,1 КВТ

Обороты в минуту3000 об/мин1500 об/мин1000 об/мин
Габариты h, мм718080
Диаметр вала d1, мм192222
Крепление лап по ширине b10, мм112125125
Крепление лап по длине L10, мм90100100
Крепление фланца по центрам отверстий d20, мм165165165
Замок фланца d25, мм130130130

1,5 КВТ

Обороты в минуту3000 об/мин1500 об/мин1000 об/мин
Габариты h, мм808090
Диаметр вала d1, мм222224
Крепление лап по ширине b10, мм125125140
Крепление лап по длине L10, мм100100125
Крепление фланца по центрам отверстий d20, мм165165215
Замок фланца d25, мм130130180

2,2 КВТ

Обороты в минуту3000 об/мин1500 об/мин1000 об/мин
Габариты h, мм8090100
Диаметр вала d1, мм222428
Крепление лап по ширине b10, мм125140160
Крепление лап по длине L10, мм100125140
Крепление фланца по центрам отверстий d20, мм165215215
Замок фланца d25, мм130180180

4 КВТ

Обороты в минуту3000 об/мин1500 об/мин1000 об/мин
Габариты h, мм100100112
Диаметр вала d1, мм282832
Крепление лап по ширине b10, мм160160190
Крепление лап по длине L10, мм112140140
Крепление фланца по центрам отверстий d20, мм215215265
Замок фланца d25, мм180180230

Как определить параметры двигателя без шильдика?

Для замены или ремонта вышедшего из строя электродвигателя необходимо знать его характеристики. К основным параметрам двигателя относятся номинальная мощность, номинальный ток, напряжение питания, скорость вращения, схема подключения. Сведения о некоторых характеристиках содержатся на шильдике — табличке на корпусе двигателя. Однако иногда шильдик отсутствует, и параметры определяются по косвенным признакам.

Мощность и ток

Ориентировочно мощность электродвигателя можно определить по его габаритам и диаметру вала. При одинаковых размерах и большем диаметре вала мощность на валу будет больше, а частота оборотов – меньше.

Если двигатель уже подключен, то примерная мощность определяется по уставкам защитных устройств, через которые он питается (мотор-автомат, тепловое реле). Если привод подключен через преобразователь частоты, мощность будет равна либо меньше мощности ПЧ.

Еще один способ – включить двигатель на номинальную мощность, обеспечив нужную нагрузку на валу. После этого нужно померить токоизмерительными клещами ток двигателя, который должен быть одинаков по всем обмоткам. На основании измеренного тока определяется мощность.

Также приблизительно оценить мощность асинхронного двигателя, подключенного по схеме «звезда», можно, разделив его номинальный измеренный ток на 2. Для двигателей менее 1,5 кВт из-за потерь ток нужно делить на 2,2…2,5, для мощности более 30 кВт этот эмпирический коэффициент будет равен 1,8…1,9.

Если нет шильдика, косвенно мощность можно определить и по сопротивлению обмоток, заодно проверив их целостность. Для этого необходимо измерить сопротивления при помощи омметра и сравнить их с сопротивлением двигателей известных мощностей, либо обратиться к информации от производителей.

Частота вращения

Как было сказано выше, частоту оборотов двигателя можно оценить по диаметру вала. Но есть и другие способы.

Согласно известной формуле, скорость вращения электродвигателя равна 60F/P, где F — частота питающей сети (50 Гц), Р – количество пар полюсов статора.

Полюсы можно посчитать, сняв переднюю или заднюю крышку. В двухполюсном электродвигателе (Р = 1) на каждую фазу приходится одна обмотка, содержащая 2 катушки, итого для трех фаз 6 катушек. Исходя из способа намотки нужно определить конфигурацию катушки, затем установить способ намотки всего статора. При количестве пар полюсов Р = 1 скорость вращения составит 3000 об/мин, при P = 2 – 1500 об/мин и так далее.

Отметим, что реальная скорость вращения двигателя отличается от расчетной за счет механических потерь и скольжения электромагнитного поля. У маломощных двигателей рабочая скорость под нагрузкой может быть ниже расчетной на 10-15 %.

Напряжение питания

Напряжение можно определить по схеме включения. Если двигатель подключен «звездой», его питающее линейное напряжение равно 380 В, а если «треугольником» – 220 В. Тогда в первом случае электродвигатель можно питать от сети напрямую, во втором – от однофазной сети через конденсатор или преобразователь частоты.

В большинстве новых двигателей для определения схемы включения достаточно вскрыть коробку борно. В ней расположены три пары проводов, подключенных по одной из схем, а на обратной стороне крышки борно указаны схемы и напряжения питания.

В двигателях, подвергшихся перемотке, схему собирают внутри, и из корпуса выводят три провода. В этом случае можно предположить, что напряжение питания равно 380 В и включить двигатель через защитный мотор-автомат. Если рабочее напряжение выше (660 В), двигатель будет вращаться замедленно, с пониженной мощностью. Если ниже (220 В), возникнет перегрузка, и сработает мотор-автомат, либо двигатель начнет перегреваться.

Заключение

Процесс определения параметров двигателя без шильдика часто бывает интуитивным, на основании опыта и последовательных измерений. Также важно при пробных включениях двигателя обеспечивать его защиту и электробезопасность.

Другие полезные материалы:
Выбор электродвигателя для компрессора
Подбор импортного аналога двигателя АИР
Принципы программирования ПЛК

Как узнать мощность электродвигателя по сопротивлению обмоток — MOREREMONTA

При замене сломанного советского электродвигателя на новый, часто оказывается, что на нем нет шильдика. Нам часто задают вопросы: как узнать мощность электродвигателя? Как определить обороты двигателя? В этой статье мы рассмотрим, как определить параметры электродвигателя без бирки — по диаметру вала, размерам, току.
Заказать новый электродвигатель по телефону

Как определить мощность?

Существует несколько способов определения мощности электродвигателя: диаметру вала, по габариту и длине, по току и сопротивлению, замеру счетчиком электроэнергии.

По габаритным размерам

Все электродвигатели отличаются по габаритным размерам. Определить мощность двигателя можно сравнив габаритные размеры с таблицей определения мощности электродвигателя, перейдя по ссылке габаритно-присоединительные размеры электродвигателей АИР.

Какие размеры необходимо замерить:

  • Длина, ширина, высота корпуса
  • Расстояние от центра вала до пола
  • Длина и диаметр вала
  • Крепежные размеры по лапам (фланцу)

По диаметру вала

Определение мощности электродвигателя по диаметру вала — частый запрос для поисковых систем. Но для точного определения этого параметра недостаточно – два двигателя в одном габарите, с одинаковыми валами и частотой вращения могут иметь различную мощность.

Таблица с привязкой диаметров валов к мощности и оборотам для двигателей АИР и 4АМ.

Мощность
электродвигателя Р, кВт
Диаметр вала, мм
3000 об/мин 1500 об/мин 1000 об/мин 750 об/мин
1,5 22 22 24 28
2,2 24 28 32
3 24 32
4 28 28 38
5,5 32 38
7,5 32 38 48
11 38 48
15 42 48 55
18,5 55 60
22 48 55 60
30 65
37 55 60 65 75
45 75 75
55 65 80
75 65 75 80
90 90
110 70 80 90
132 100
160 75 90 100
200
250 85 100
315

По показанию счетчика

Как правило измерение счетчика отображаются в киловаттах (далее кВт). Для точности измерения стоит отключить все электроприборы или воспользоваться портативным счетчиком. Мощность электродвигателя 2,2 кВт, подразумевает что он потребляет 2,2 кВт электроэнергии в час.

Для измерения мощности по показанию счетчика нужно:

  1. Подключить мотор и дать ему поработать в течении 6 минут.
  2. Замеры счетчика умножить на 10 – получаем точную мощность электромотора.

Расчет мощности по току

Для начала нужно подключить двигатель к сети и замерить показатели напряжения. Замеряем потребляемый ток на каждой из обмоток фаз с помощью амперметра или мультиметра. Далее, находим сумму токов трех фаз и умножаем на ранее замеренные показатели напряжения, наглядно в формуле расчета мощности электродвигателя по току.

  • P – мощность электродвигателя;
  • U – напряжение;
  • Ia – ток 1 фазы;
  • Ib – 2 фазы;
  • Ic – 3 фазы.

Определение оборотов вала

Асинхронные трехфазные двигатели по частоте вращения ротора делятся 4 типа: 3000, 1500, 1000 и 750 об. мин. Приводим пример маркировки на основании АИР 180:

  1. АИР 180 М2 – где 2 это 3000 оборотов.
  2. АИР 180 М4 – 4 это 1500 об. мин.
  3. АИР 180 М6 – 6 обозначает частоту вращения 1000 об/мин.
  4. АИР 180 М8 – 8 означает, что частота вращения выходного вала 750 оборотов.

Самый простой способ определить количество оборотов трехфазного асинхронного электродвигателя – снять задний кожух и посмотреть обмотку статора.

У двигателя на 3000 об/мин катушка обмотки статора занимает половину окружности — 180 °, то есть начало и конец секции параллельны друг другу и перпендикулярны центру. У электромоторов 1500 оборотов угол равен 120 °, у 1000 – 90 °. Схематический вид катушек изображен на чертеже. Все обмоточные данные двигателей смотрите в таблице.

Узнать частоту вращения с помощью амперметра

Узнать обороты вала двигателя, можно посчитав количество полюсов. Для этого нам понадобится миллиамперметр — подключаем измерительный прибор к обмотке статора. При вращении вала двигателя стрелка амперметра будет отклонятся. Число отклонений стрелки за один оборот – равно количеству полюсов.

  • 2 полюса – 3000 об/мин
  • 4 полюса – 1500 об/мин
  • 6 полюса – 2000 об/мин
  • 8 полюса – 750 об/мин

Если не получилось узнать мощность и обороты

Если не получилось узнать мощность и обороты электродвигатели или вы не уверены в измерениях – обращайтесь к специалистам «Систем Качества». Наши специалисты помогут подобрать нужный мотор или провести ремонт сломанного электродвигателя АИР.

Определение мощности электродвигателя без бирки

При отсутствии техпаспорта или бирки на двигателе возникает вопрос: как узнать мощность электродвигателя без таблички или технической документации? Самые распространенные и быстрые способы, о которых мы расскажем в статье:

  • По диаметру и длине вала
  • По габаритам и крепежным размерам
  • По сопротивлению обмоток
  • По току холостого хода
  • По току в клеммной коробке
  • С помощью индукционного счетчика (для бытовых электродвигателей)

Определение мощности двигателя по диаметру вала и длине

Простейшие способы определения мощности и марки двигателя – габаритные размеры – вал или крепежные отверстия. В таблице указаны длины и диаметры валов (D1) и длина (L1) для каждой модели асинхронного промышленного трехфазного мотора. Перейти к подробным габаритным размерам электродвигателей АИР

1. Какие электродвигатели применяются чаще всего?

Наиболее распространены асинхронные электродвигатели с короткозамкнутым ротором. Они имеют сравнительно простую конструкцию и относительно недороги.

Для работы асинхронного двигателя требуется трехфазное напряжение, создающее на обмотках статора вращающееся магнитное поле. Это поле приводит в движение ротор двигателя, который передает крутящий момент на нагрузку, например, на пропеллер вентилятора или редуктор конвейера. Изменяя конфигурацию обмоток статора, можно менять основные характеристики привода – частоту оборотов и мощность на валу. В случае работы асинхронного электродвигателя в однофазной сети применяют фазосдвигающие и пусковые конденсаторы.

Также в настоящее время находят применение двигатели постоянного тока. Данные приводы имеют щетки, подверженные износу и искрению. Кроме того, необходима обмотка подмагничивания (возбуждения), на которую подается постоянное напряжение. Несмотря на эти недостатки, электродвигатели постоянного тока используются там, где необходимо быстрое изменение скорости вращения и контроль момента, а также при мощностях более 100 кВт.

В быту также применяют коллекторные (щеточные) электродвигатели переменного тока, которые имеют низкую надежность по сравнению с асинхронными.

2. Какие способы управления электродвигателями используются на практике?

Управление электродвигателем подразумевает возможность изменения его скорости и мощности. Так, если на асинхронный двигатель подать напряжение заданной величины и частоты, он будет вращаться с номинальной скоростью и сможет обеспечить мощность на валу не более номинала. Если же нужно понизить или повысить скорость электродвигателя, используют преобразователи частоты. ПЧ может обеспечить нужный режим разгона и торможения, а также позволит оперативно управлять частотой работы.

Для обеспечения требуемого разгона и торможения без изменения рабочей частоты применяют устройство плавного пуска (УПП). Если нужно управлять только разгоном двигателя, используют схему включения «звезда-треугольник».

Для запуска двигателей без ПЧ и УПП широко применяются контакторы, которые позволяют дистанционно управлять пуском, остановом и реверсом.

3. Как прозвонить электродвигатель и определить его сопротивление?

Асинхронный электродвигатель, как правило, имеет три обмотки. У каждой обмотки есть по два вывода, которые должны быть обозначены в клеммной коробке двигателя. Если выводы обмоток известны, то можно легко прозвонить каждую из них и сравнить величину сопротивления с остальными обмотками. Если величины сопротивлений отличаются не более, чем на 1%, то скорее всего, обмотки исправны.

Сопротивление обмоток электродвигателя измеряется с помощью омметра, как и сопротивление обмоток трансформатора. Чем больше мощность двигателя, тем меньше сопротивление его обмоток, и наоборот.

4. Как определить мощность электродвигателя?

Проще всего определить номинальную мощность электродвигателя по шильдику. На нем указана механическая мощность (мощность на валу), значение которой всегда меньше потребляемой мощности за счет потерь на трение и нагрев. Однако, если шильдик на корпусе двигателя отсутствует, можно очень приблизительно оценить характеристики привода по его габаритам. При одинаковой мощности двигатель с бо́льшим диаметром вала будет иметь более высокую мощность на валу и меньшую частоту оборотов.

Также мощность можно определить по нагрузке и по настройкам защитных устройств, через которые питается двигатель (мотор-автомат, тепловое реле).

Еще один способ – включаем двигатель на номинальную мощность, обеспечив нужную нагрузку на валу. После этого измеряем токоизмерительными клещами ток, который должен быть одинаков по всем обмоткам. Для приблизительной оценки мощности асинхронного двигателя, подключенного по схеме «звезда», нужно разделить номинальный измеренный ток на 2.

5. Как увеличить или уменьшить обороты электродвигателя?

Управление скоростью вращения двигателя необходимо в трех режимах работы – при разгоне, торможении, и в рабочем режиме.

Наиболее универсальный способ управления оборотами — использование частотного преобразователя. Настройками ПЧ можно добиться любой частоты вращения в пределах технической возможности. При этом можно управлять и другими параметрами электродвигателя, а также следить за его состоянием во время работы. Частоту можно менять и плавно, и ступенчато.

Управление оборотами двигателя в режиме разгона и торможения возможно при использовании УПП. Это устройство позволяет значительно снизить пусковой ток за счет плавного разгона с медленным увеличением оборотов.

6. Как рассчитать ток и мощность электродвигателя?

Бывает так, что известен ток асинхронного двигателя (по измерениям в номинальном режиме или по шильдику), но неизвестна его мощность. Как в таком случае рассчитать мощность? Обычно используют следующую формулу:

Р = I (1,73·U·cosφ·η)

где:
Р – номинальная полезная мощность на валу двигателя в Вт (указывается на шильдике),
I – ток двигателя, А,
U – напряжение питания обмоток (380 В при подключении в «звезду», 220 В при подключении в «треугольник»),
cosφ, η – коэффициенты мощности и полезного действия для учета потерь (обычно 0,7…0,8).

Для расчета тока по известной мощности пользуются обратной формулой:

I = P/(1,73·U·cosφ·η)

Для двигателей мощностью 1,5 кВт и более, обмотки которых подключены в «звезду» (это подключение используется чаще всего), существует простое эмпирическое правило – чтобы приблизительно оценить ток двигателя, нужно умножить его мощность на 2.

7. Как увеличить мощность электродвигателя?

Номинальная мощность на валу, которая указывается на шильдике двигателя, обычно ограничивается допустимым током, а значит – нагревом корпуса привода. Поэтому при увеличении мощности необходимо предпринять дополнительные меры по охлаждению электродвигателя, установив отдельный вентилятор.

При использовании преобразователя частоты для повышения мощности можно изменить несущую частоту ШИМ, однако следует избегать перегрева ПЧ. Мощность также можно увеличить с помощью редуктора или ременной передачи, пожертвовав количеством оборотов, если это допустимо.

Если приведенные советы неприменимы – придётся менять двигатель на более мощный.

8. Каковы потери мощности при подключении трехфазного двигателя к однофазной сети (380 на 220)?

При таком подключении используются пусковой и рабочий фазосдвигающие конденсаторы. Номинальную мощность на валу в данном случае получить не удастся, и потери мощности составят 20-30% от номинала. Это происходит из-за невозможности обеспечить отсутствие перекоса по фазам при изменении нагрузки.

9. Какие исполнения двигателей бывают?

В зависимости от исполнения электродвигатели классифицируются по способу монтажа, классу защиты, климатическому исполнению. Существует два основных способа монтажа асинхронных электродвигателей – на лапах и через фланец. Оба варианта исполнения в различных комбинациях показаны в таблице ниже.

Виды климатического исполнения предполагают использование двигателя в определенных климатических зонах: умеренный климат (У), холодный климат (ХЛ), умеренно-холодный климат (УХЛ), тропический климат (Т), общеклиматическое исполнение (О), общеклиматическое морское исполнение (ОМ), всеклиматическое исполнение (В). Также различают категории размещения (на открытом воздухе, под навесом или в помещении и т.д.).

Класс защиты обозначает характер защиты двигателя от попадания пыли и влаги. Наиболее часто встречаются приводы с классами IP55 и IP55.

10. Зачем электродвигателю тормоз?

В некоторых устройствах (лифтах, электроталях, лебедках) при остановке двигателя необходимо зафиксировать его вал в неподвижном состоянии. Для этого применяют электромагнитный механический тормоз, который входит в конструкцию двигателя и располагается в его задней части. Управление тормозом осуществляется с помощью частотного преобразователя или схемы на контакторах.

11. Как двигатель обозначается на электрических схемах?

Электродвигатель обозначается на схемах с помощью буквы «М», вписанной в круг. Также на схемах могут быть указаны порядковый номер двигателя, количество фаз (1 или 3), род тока (переменный или постоянный), способ включения обмоток ( «звезда» или «треугольник»), мощность. Примеры обозначений показаны ниже.

12. Почему греется электродвигатель?

Двигатель может нагреваться по одной из следующих причин:

  • износ подшипников и повышенное механическое трение
  • увеличение нагрузки на валу
  • перекос напряжения питания
  • пропадание фазы
  • замыкание в обмотке
  • проблема с обдувом (охлаждением)

Нагрев двигателя резко снижает его ресурс и КПД, а также может приводить к поломке привода.

13. Типичные неисправности электродвигателей

Выделяют два вида неисправностей электродвигателей: электрические и механические.

К электрическим относятся неисправности, связанные с обмоткой:

  • межвитковое замыкание
  • замыкание обмотки на корпус
  • обрыв обмотки

Для устранения этих неисправностей требуется перемотка двигателя.

  • износ и трение в подшипниках
  • проворачивание ротора на валу
  • повреждение корпуса двигателя
  • проворачивание или повреждение крыльчатки обдува

Замена подшипников должна производиться регулярно с учетом их износа и срока службы. Крыльчатка также меняется в случае повреждения. Остальные неисправности устранению практически не подлежат, и единственный выход — замена двигателя.

Если у вас есть вопросы, ответы на которые вы не нашли в данной статье, напишите нам. Будем рады помочь!

Определение мощности электродвигателя без бирки

Электрический двигатель — это электромеханический преобразователь, в каковом электричество превращается в энергию механики, конечным эффектом чего и есть выделение теплоты. Электродвижок необходим для работы всех электромашин. Чтобы выбрать такой двигатель нужно учитывать все параметры прибора и его характеристику, так как эти показатели необходимы, для определения назначения двигателя и нагрузки на него через сеть. Это полностью обуславливает долговечность и качество дела электромашины.

Содержание

Блок: 1/14 | Кол-во символов: 505
Источник: https://les74.ru/approximate-power-of-the-electric-motor-in-size-how-to-determine-the-main-parameters-of-the-electric-motor.html

Составляющие электромашины

Основой для электрической машины является правило электроиндукции с магнитной индукцией. Такой прибор включает в себя статор или как его называют константной частью (характерно для асинхронных, синхронных машин изменяющегося тока) или индуктора (для приборов константного тока) и ротора, его называют активной или движущейся частью (для асинхронных и синхронных машин изменяющегося тока) или якоря (приборов константного тока). В роли константной части для машин тока с малой мощью активно применяются магниты (неизменного состояния).

Блок: 2/14 | Кол-во символов: 563
Источник: https://les74.ru/approximate-power-of-the-electric-motor-in-size-how-to-determine-the-main-parameters-of-the-electric-motor.html

Мощность электродвигателя

Электрическая мощность – это физическая величина, которая характеризуется скоростью преобразования ну или передачи электрической энергии. Чтобы облегчить понимание движение тока электрики представляют, как передвижение жидкости по трубе, а напряжение – с разницей положения ярусов этой жидкости. Электричество, так же, осуществляя работу, передвигается от высокой возможности к низкой, как и жидкость. Значит мощь электрики это количество работы, некая совершается за 1 секунду, или быстрота выполнения самой работы. Сумма тока электрики, которая прокладывается сквозь поперечный разрез цепи на протяжении одной секунды, это и есть сила тока в самой цепи.

Отсюда вытекает, что мощность электрическая равна в пропорции напряжению и силе тока в цепи. Для определения мощи тока принята единица – ватт, сокращенно — Вт.
Для физических подсчетов принято было применять стандартную формулу N=A/t, где N – мощность, A – работа, t – время.
Существует много вариантов данной формулы с разными буквенными обозначениями.

Блок: 3/14 | Кол-во символов: 1041
Источник: https://les74.ru/approximate-power-of-the-electric-motor-in-size-how-to-determine-the-main-parameters-of-the-electric-motor.html

Проверить мощность по габаритам и крепежным размерам

Таблица подбора мощности двигателя по крепежным отверстиям на лапах (L10 и B10):

Р, кВт

3000 об.

1500 об.

1000 об.

750 об.

L10, мм

B10, мм

L10, мм

B10, мм

L10, мм

B10, мм

L10, мм

B10, мм

1,5

100

125

100

125

125

140

140

160

2,2

125

140

140

160

190

125

140

112

160

190

112

160

140

216

5,5

140

190

216

178

7,5

190

216

178

254

178

216

178

254

210

254

254

210

241

279

18,5

210

210

241

279

267

318

203

279

203

279

267

318

310

241

241

310

311

356

267

318

267

318

311

356

406

310

310

406

349

311

406

311

406

368

457

419

457

349

349

419

406

508

110

368

457

368

457

406

508

547

132

419

419

457

610

355

160

406

508

406

508

610

355

200

457

457

560

610

250

610

355

610

355

560

610

315

630/800

686/630

Для фланцевых электродвигателей

Таблица для подбора мощности электродвигателя по диаметру фланца (D20) и диаметру крепежных отверстий фланца (D22)

Мощность электродвигателя P, кВт

3000 об.

1500 об.

1000 об.

750 об.

D20, мм

D22, мм

D20, мм

D22, мм

D20, мм

D22, мм

D20, мм

D22, мм

1,5

165

165

215

215

2,2

215

265

215

365

265

300

5,5

265

300

7,5

265

300

300

350

18,5

350

400

350

350

400

500

400

400

500

400

500

500

550

500

550

500

110

550

550

132

550

680

160

550

680

200

550

740

250

680

680

740

315

680

Блок: 4/6 | Кол-во символов: 4533
Источник: https://slemz.com.ua/news/kak-opredelit-moshchnost-elektrodvigatelya

Как определить мощность?

Существует несколько способов определения мощности электродвигателя: диаметру вала, по габариту и длине, по току и сопротивлению, замеру счетчиком электроэнергии.

По габаритным размерам

Какие размеры необходимо замерить:

  • Длина, ширина, высота корпуса
  • Расстояние от центра вала до пола
  • Длина и диаметр вала
  • Крепежные размеры по лапам (фланцу)

По диаметру вала

Определение мощности электродвигателя по диаметру вала — частый запрос для поисковых систем. Но для точного определения этого параметра недостаточно – два двигателя в одном габарите, с одинаковыми валами и частотой вращения могут иметь различную мощность.

Таблица с привязкой диаметров валов к мощности и оборотам для двигателей АИР и 4АМ.

Мощность
электродвигателя Р, кВт
Диаметр вала, мм Переход к модели
3000 об/мин 1500 об/мин 1000 об/мин 750 об/мин
0,18 11 11 14 АИР56А2, АИР56В4, АИР63А6
0,25 14 19 АИР56В2, АИР63А4, АИР63В6, АИР71В8
0,37 14 19 22 АИР63А2, АИР63В4, АИР71А6, АИР80А8
0,55 19 АИР63В2, АИР71А4, АИР71В6, АИР80В8
0,75 19 22 24 АИР71А2, АИР71В4, АИР80А6, АИР90LA8
1,1 22 АИР71В2, АИР80А4, АИР80В6, АИР90LB8
1,5 22 24 28 АИР80А2, АИР80В4, АИР90L6, АИР100L8
2,2 24 28 32 АИР80В2, АИР90L4, АИР100L6, АИР112МА8
3 24 32 АИР90L2, АИР100S4, АИР112МА6, АИР112МВ8
4 28 28 38 АИР100S2, АИР100L4, АИР112МВ6, АИР132S8
5,5 32 38 АИР100L2, АИР112М4, АИР132S6, АИР132М8
7,5 32 38 48 АИР112M2, АИР132S4, АИР132М6, АИР160S8
11 38 48 АИР132M2, АИР132М4, АИР160S6, АИР160М8
15 42 48 55 АИР160S2, АИР160S4, АИР160М6, АИР180М8
18,5 55 60 АИР160M2, АИР160M4, АИР180М6, АИР200М8
22 48 55 60 АИР180S2, АИР180S4, АИР200М6, АИР200L8
30 65 АИР180M2, АИР180M4, АИР200L6, АИР225М8
37 55 60 65 75 АИР200M2, АИР200M4, АИР225М6, АИР250S8
45 75 75 АИР200L2, АИР200L4, АИР250S6, АИР250M8
55 65 80 АИР225M2, АИР225M4, АИР250M6, АИР280S8
75 65 75 80 АИР250S2, АИР250S4, АИР280S6, АИР280M8
90 90 АИР250М2, АИР250M4, АИР280M6, АИР315S8
110 70 80 90 АИР280S2, АИР280S4, АИР315S6, АИР315M8
132 100 АИР280M2, АИР280M4, АИР315M6, АИР355S8
160 75 90 100 АИР315S2, АИР315S4, АИР355S6
200 АИР315M2, АИР315M4, АИР355M6
250 85 100 АИР355S2, АИР355S4
315 АИР355M2, АИР355M4

По показанию счетчика

Как правило измерение счетчика отображаются в киловаттах (далее кВт). Для точности измерения стоит отключить все электроприборы или воспользоваться портативным счетчиком. Мощность электродвигателя 2,2 кВт, подразумевает что он потребляет 2,2 кВт электроэнергии в час.

Для измерения мощности по показанию счетчика нужно:

  1. Подключить мотор и дать ему поработать в течении 6 минут.
  2. Замеры счетчика умножить на 10 – получаем точную мощность электромотора.

Расчет мощности по току

Для начала нужно подключить двигатель к сети и замерить показатели напряжения. Замеряем потребляемый ток на каждой из обмоток фаз с помощью амперметра или мультиметра. Далее, находим сумму токов трех фаз и умножаем на ранее замеренные показатели напряжения, наглядно в формуле расчета мощности электродвигателя по току.

  • P – мощность электродвигателя;
  • U – напряжение;
  • Ia – ток 1 фазы;
  • Ib – 2 фазы;
  • Ic – 3 фазы.

Блок: 2/4 | Кол-во символов: 2892
Источник: https://xn--80aqy.com.ua/poleznoe/kak-uznat-moshhnost-i-oboroty-dvigatelya/

Если не получилось узнать мощность и обороты

Если не получилось узнать мощность и обороты электродвигатели или вы не уверены в измерениях – обращайтесь к специалистам «Систем Качества». Наши специалисты помогут подобрать нужный мотор или провести ремонт сломанного электродвигателя АИР.

Если техническая документация к двигателю утеряна, а надписи на корпусе стерлись или не читаемы, возникает вопрос: как определить мощность электродвигателя без бирки? Существуют несколько методов, о которых мы вам расскажем, и вам останется выбрать из них наиболее удобный в вашем случае.

Блок: 5/11 | Кол-во символов: 576
Источник: https://moreremonta.info/strojka/kak-uznat-moshhnost-jelektrodvigatelja-esli-net/

Расчет по току

Электродвигатель подключается к сети и измеряется напряжение. С помощью амперметра поочередно замеряем ток в цепи каждой из обмоток статора. Сумму потребляемых токов умножаем на фиксированное напряжение. Полученное число – мощность электродвигателя в ваттах.

Как проверить мощность электродвигателя по току холостого хода

Проверить мощность по току холостого хода можно с помощью таблицы.

Р двигателя, кВт

Ток холостого хода (% от номинального)

Обороты двигателя, об/мин

600

750

1000

1500

3000

0,75-1,5

1,5-5,5

5,5-11

15-22,5

22,5-55

55-110

Блок: 5/6 | Кол-во символов: 913
Источник: https://slemz.com.ua/news/kak-opredelit-moshchnost-elektrodvigatelya

Определение количества оборотов в минуту

Частота вращения асинхронного двигателя, зависит от количества обмоток статора. Разобрав мотор можно визуально определить их число. Для определения числа оборотов используйте таблицу:

Определить число полюсов, не разбирая электромотор, можно с помощью миллиамперметра, или тестера с соответствующим режимом. Для этого подключаем измерительный прибор к одной из обмоток. Равномерно вращая вал, смотрим, сколько раз стрелка миллиамперметра отклонится. Это число, и есть количество полюсов двигателя.

При таком способе определения частоты вращения вала, надо учитывать, что реальная частота несколько ниже вычисленной. Например, не 3000, а 2940, или не 1500, а 1450.

Применение описанных выше методик, позволит подобрать электромотор, удовлетворяющий предъявляемым требованиям, но, все же, надо следить за сохранностью шильдиков и паспортов, чтобы не тратить время на расчеты и поиск информации.

  • При поступлении в ремонт электродвигателя с отсутствующей табличкой, приходиться определять мощность и обороты по статорной обмотке. В первую очередь нужно определить обороты электродвигателя. Самый простой способ для определения оборотов в однослойной обмотке это посчитать количество катушек (катушечных групп).
Количество катушек (катушечных групп) в обмотке шт. Частота вращения об/мин.
При частоте питающей сети f=50Гц.
Трёхфазные Однофазные
в рабочей обмотке
Односл. Двухсл.
6 6 2 3000
6 12 4 1500
9 18 6 1000
12 24 8 750
15 30 10 600
18 36 12 500
21 42 14 428
24 48 16 375
27 54 18 333
30 60 20 300
36 72 24 250
  • По таблице у однослойных обмоток на 3000 и 1500 об/мин. одинаковое количество катушек по 6, визуально отличить их можно по шагу. Если от одной стороны катушки к другой стороне провести линию, и линия будет проходить через центр статора, то это обмотка 3000 об/мин. рисунок №1. У электродвигателей на 1500 оборотов шаг меньше.

2p 2 4 6 8 10 12
об/ мин f=50Гц 3000 1500 1000 750 600 500
2p 14 16 18 20 22 24
об/ мин f=50Гц 428 375 333 300 272 250
2p 26 28 30 32 34 36
об/ мин f=50Гц 230 214 200 187,5 176,4 166,6
2p 38 40 42 44 46 48
об/ мин f=50Гц 157,8 150 142,8 136,3 130,4 125

Блок: 8/14 | Кол-во символов: 2344
Источник: https://les74.ru/approximate-power-of-the-electric-motor-in-size-how-to-determine-the-main-parameters-of-the-electric-motor.html

Определение мощности двигателя по диаметру вала и длине

Простейшие способы определения мощности и марки двигателя – габаритные размеры – вал или крепежные отверстия. В таблице указаны длины и диаметры валов (D1) и длина (L1) для каждой модели асинхронного промышленного трехфазного мотора. Перейти к подробным габаритным размерам электродвигателей АИР

Р, кВт 3000 об. мин 1500 об. мин 1000 об. мин 750 об. мин
D1, мм L1, мм D1, мм L1, мм >D1, мм L1, мм D1, мм L1, мм
1,5 22 50 22 50 24 50 28 60
2,2 24 28 60 32 80
3 24 32 80
4 28 60 28 60 38
5,5 32 80 38
7,5 32 80 38 48 110
11 38 48 110
15 42 110 48 110 55
18,5 55 60 140
22 48 55 60 >140
30 65
37 55 >60 140 65 75
45 75 75
55 65 80 170
75 65 140 75 80 170
90 90
110 70 80 170 90
132 100 210
160 75 90 100 210
200
250 85 170 100 210
315

Блок: 3/6 | Кол-во символов: 1228
Источник: https://slemz.com.ua/news/kak-opredelit-moshchnost-elektrodvigatelya

Параметры электродвигателя: таблица

Наименование параметра

Единица измерения

Примечание

Тип
Номинальная мощность Киловатт
Номинальный ток Ампер Для трехфазных электродвигателей зависит от типа соединения обмоток
Номинальное напряжение Вольт
Коэффициент мощности (КПД)
Коэффициент полезного действия (cos ϕ) %
Номинальная скорость вращения Обороты в минуту

Но иногда табличка отсутствует, либо прочесть ее невозможно. При эксплуатации двигатель неоднократно окрашивают, нередко – вместе с табличкой. Поэтому приходится определять его параметры методом измерений.

Блок: 10/14 | Кол-во символов: 590
Источник: https://les74.ru/approximate-power-of-the-electric-motor-in-size-how-to-determine-the-main-parameters-of-the-electric-motor.html

Для чего необходимо знать мощность двигателя

Из всех технических характеристик электродвигателя (КПД, номинальный рабочий ток, частота вращения и т.д.) самая значимая – мощность. Зная главные данные, вы сможете:

  • Подобрать подходящие по номиналам тепловое реле и автомат.
  • Определить пропускную способность и сечение электрических кабелей для подключения агрегата.
  • Эксплуатировать двигатель согласно его параметрам, не допуская перегрузок.

Мы описали, как замерить мощность электродвигателя разными способами. Используйте тот, который в вашем случае будет оптимальным. Применяя любой из методов, вы подберете агрегат, который будет лучшим образом отвечать вашим требованиям. Но самый эффективный вариант, экономящий ваше время и избавляющий вас от необходимости искать информацию и проводить замеры и расчеты – это сохранить технический паспорт в надежном месте и следить за тем, чтобы шильдик с данными не потерялся.

Блок: 11/11 | Кол-во символов: 915
Источник: https://moreremonta.info/strojka/kak-uznat-moshhnost-jelektrodvigatelja-esli-net/

Параметры электродвигателя №3: тип соединения обмоток

Это очень важный параметр трехфазного электродвигателя. Все шесть выводов начал и концов обмоток выведены в барно двигателя. Подключить их можно либо в звезду, либо в треугольник.

Рядом с символами «треугольник/звезда» на табличке указывается номинальное напряжение – «220/380 В» . Это означает, что при включении в сеть трехфазного тока напряжением 380 В обмотки двигателя нужно соединить в звезду. Ошибка в соединении приведет к выходу электродвигателя из строя.

Номинальный ток также указывается через дробь. В описанном случае необходимо значение, указанное в знаменателе.

Блок: 13/14 | Кол-во символов: 633
Источник: https://les74.ru/approximate-power-of-the-electric-motor-in-size-how-to-determine-the-main-parameters-of-the-electric-motor.html

Пусковой ток электродвигателя

В момент запуска вал электродвигателя неподвижен. Чтобы его раскрутить, нужно усилие, превышающее номинальное. Поэтому и ток при пуске превышает номинальный. При раскручивании вала ток плавно уменьшается.

Пусковые токи мешают работе электрооборудования, вызывая резкие провалы напряжения. При запуске мощных агрегатов могут даже отпадать пускатели других электродвигателей, гаснуть лампы ДРЛ.

Блок: 14/14 | Кол-во символов: 422
Источник: https://les74.ru/approximate-power-of-the-electric-motor-in-size-how-to-determine-the-main-parameters-of-the-electric-motor.html

Кол-во блоков: 15 | Общее кол-во символов: 17155
Количество использованных доноров: 4
Информация по каждому донору:
  1. https://xn--80aqy.com.ua/poleznoe/kak-uznat-moshhnost-i-oboroty-dvigatelya/: использовано 1 блоков из 4, кол-во символов 2892 (17%)
  2. https://les74.ru/approximate-power-of-the-electric-motor-in-size-how-to-determine-the-main-parameters-of-the-electric-motor.html: использовано 7 блоков из 14, кол-во символов 6098 (36%)
  3. https://moreremonta.info/strojka/kak-uznat-moshhnost-jelektrodvigatelja-esli-net/: использовано 2 блоков из 11, кол-во символов 1491 (9%)
  4. https://slemz.com.ua/news/kak-opredelit-moshchnost-elektrodvigatelya: использовано 3 блоков из 6, кол-во символов 6674 (39%)

Расчет номинального тока электродвигателя | Сайт электрика

Привет посетители сайта fazanet.ru, и в сегодняшней статье мы с вами разберём, как же сделать, этот непонятный расчёт тока электродвигателя. Каждый уважающий себя электромонтёр, робота которого связана с обслуживанием электрических, машин просто обязан это знать. Я в своё время тоже помню, что меня это очень сильно интересовало, когда меня перевили с одного цеха в другой. А конкретно именно работать электромонтёром.

Перед этим я уже немного затрагивал темы электродвигателей, когда писал о том как запустить асинхронные двигателей, и когда писал какие бывают номиналы электродвигателей.

Ну а теперь приступим конкретно к самому расчёту. Допустим: у вас есть трёхфазный асинхронный электродвигателей переменного тока, номинальная мощность, которого составляет 25 кВт, и вам хочется узнать какой же у него будет номинальный ток.

Для этого существует специальная формула: Iн = 1000Pн /√3•(ηн • Uн • cosφн),

Где Pн – это мощность электродвигателя; измеряется в кВт

Uн – это напряжение, при котором работает электродвигатель; В

ηн – это коэффициент полезного действия, обычно это значение 0.9

ну и cosφн – это коэффициент мощности двигателя, обычно 0.8.

Последние два значения обычно пишутся на заводской бирке, хотя они у всех двигателей практически одинаковые. Но все же нужно брать данные именно с заводской бирки на двигателе.

Вот как на этой картинке все значения видны, а ток нет. Только если КПД написан 81%, то для расчёта нужно брать 0.81.

Теперь подставим значения Iн = 1000•25/√3 • (0.9 • 380 • 0.8) = 52.81 А

Тем, кто не помнит, сколько будет √3, напоминаю – это будет 1,732

Вот и всё, все расчёты закончены. Всё очень легко и просто. По моему образцу вы можете легко рассчитать номинальный ток электродвигателя, вам всего лишь нужно подставить своих данных.

Как определить ток электродвигателя на практике.

Ещё в заключении, хотел поделиться с вами, тем как я определяю приблизительное значение тока без всяких расчётов. Если реально посмотреть, что у нас с вами получилось при расчёте, то реально вид, что номинальный ток приблизительно в два раза больше чем его мощность. Вот так я определяю ток на практике, мощность умножаю на два. Но это только приблизительное значение.

А ток холостого хода будет обычно в два раза меньше, чем его мощность. Но про то, как определить эти значения, мы поговорим с вами в следующих статьях. Так что подписывайтесь на обновления и не забываете поделиться этой статьёй со своими друзьями в социальных сетях.

На этом у меня всё. Пока.

С уважением Александр!

Читайте также статьи:

Советы по определению номинального напряжения асинхронного двигателя без паспортных данных

Сначала измерьте двигатель и сравните его с таблицами стандартных размеров NEMA и / или IEC, чтобы определить, будет ли это стандартный двигатель NEMA или IEC. Определите стандартные номинальные значения напряжения, частоты, скорости и мощности, которые могут применяться к двигателю такого размера.

Осмотрите провода или клеммы двигателя. Определите, позволяет ли количество выводов или клемм подключать двигатель более чем к одному напряжению.Найдите стандартные схемы подключения и подключите двигатель на максимально возможное напряжение.

Для этого типа проекта у вас должен быть регулируемый трансформатор достаточного размера, чтобы обеспечить половину вероятного номинального тока. Вал двигателя не должен быть связан с какой-либо нагрузкой. Подключите двигатель при минимальном напряжении трансформатора. Запишите напряжение, ток и скорость двигателя. Нанесите на график напряжение и ток. Продолжайте увеличивать напряжение и строить график тока, пока не заметите, что ток увеличивается быстрее, чем увеличивается напряжение.В этот момент приложенное напряжение, вероятно, на 20 или 30 процентов выше номинального напряжения. Выберите стандартное напряжение IEC или NEMA, которое находится на соответствующей области кривой.

Если вы применяете 50 Гц к двигателю NEMA или 60 Гц к двигателю IEC, скорректируйте свою оценку, используя номинальное напряжение 50 Гц = 5/6 X номинальное напряжение 60 Гц.

Добавлена ​​ссылка в формате PDF для вышеуказанного.

Что-то попробовать после предварительного определения номинального напряжения:

Если вы можете провести динамометрический тест, вы можете построить график зависимости напряжения отток для момента нагрузки, который тщательно поддерживается постоянным. Приложенная нагрузка должна быть хорошей оценкой номинального крутящего момента при полной нагрузке. Минимальный ток должен быть близким к номинальному напряжению. Номер ссылки

Работа индукционного генератора с добавленным материалом:

Я нашел ссылку, которая показывает взаимосвязь между напряжением и нагрузкой с различными номиналами конденсаторов.

Аль-Саффар, Массачусетс; Юи-Чеол Нхо; Липо, Т.А., "Самовозбуждающийся индукционный генератор с управляемым шунтирующим конденсатором", на конференции по промышленным приложениям, 1998 г.Тридцать третье ежегодное собрание IAS. 1998 IEEE, том 2, №, стр. 1486-1490, том 2, 12-15 октября 1998 г.

Как оценить номинальный крутящий момент

Сначала я бы измерил диаметр вала двигателя. Сравните диаметр с опубликованными данными для аналогичных двигателей. Это должно обеспечить диапазон вероятных значений номинального крутящего момента.

Запустите динамометрический тест, чтобы получить данные для построения кривой зависимости крутящего момента от скорости. Перед сбором данных доведите двигатель до номинальной рабочей температуры, поработав его в течение часа или более с минимальным крутящим моментом диапазона, который вы оцениваете на основе диаметра вала.При работе двигателя с крутящим моментом выше максимального в расчетном диапазоне, снимайте данные как можно быстрее, чтобы избежать перегрева двигателя. Если возможно, используйте автоматический сбор данных, чтобы получить данные от заблокированного ротора при поломке. Получив эти данные, нарисуйте кривую и сравните ее с опубликованными кривыми или данными для двигателей, которые могут быть похожими. Вы можете использовать этот метод для более точной оценки диапазона номинального крутящего момента.

Вы можете сузить диапазон, запустив двигатель с различным крутящим моментом.При каждом значении крутящего момента запустите двигатель до тех пор, пока температура не стабилизируется, и проведите повышение температуры путем испытания сопротивления. К сожалению, это не даст точного значения номинального крутящего момента, если вы не знаете номинальную температуру изоляции, используемой для обмоток.

Скольжение в электрических асинхронных двигателях

Асинхронный двигатель переменного тока (переменного тока) состоит из статора и ротора, и взаимодействие токов, протекающих в стержнях ротора, и вращающегося магнитного поля в статоре создает крутящий момент, который вращает двигатель.При нормальной работе с нагрузкой скорость ротора всегда отстает от скорости магнитного поля, позволяя стержням ротора разрезать магнитные силовые линии и создавать полезный крутящий момент.

Разница между синхронной скоростью магнитного поля электродвигателя и скоростью вращения вала составляет скольжение - измеряется в оборотах в минуту или частоте.

Скольжение увеличивается с увеличением нагрузки, обеспечивая больший крутящий момент.

Обычно скольжение выражается как отношение скорости вращения вала к скорости синхронного магнитного поля.

s = (n s - n a ) 100% / n s (1)

где

s = скольжение

n s = синхронная скорость магнитного поля (об / мин, об / мин)

n a = скорость вращения вала (об / мин, об / мин)

Когда ротор не вращается, скольжение 100% .

Проскальзывание при полной нагрузке варьируется от менее 1% для двигателей с высокой мощностью до более 5–6% для двигателей с малой мощностью.

Размер двигателя
(л. 2,5
1,7 0,8

Число полюсов, частоты и скорость синхронного асинхронного двигателя

No.магнитных полюсов Частота (Гц)
50 60
2 3000 3600
4 1500 1000 1200
8 750 900
10 600 720
12 500 600
20 300 360

Скольжение и напряжение

Когда двигатель начинает вращаться, скольжение составляет 100% , а ток двигателя максимальный.Скольжение и ток двигателя уменьшаются, когда ротор начинает вращаться.

Частота скольжения

Частота уменьшается при уменьшении скольжения.

Реактивное сопротивление скольжения и индуктивное сопротивление

Индуктивное реактивное сопротивление зависит от частоты и скольжения. Когда ротор не вращается, частота скольжения максимальна, как и индуктивное сопротивление.

Двигатель имеет сопротивление и индуктивность, и когда ротор вращается, индуктивное сопротивление низкое, а коэффициент мощности приближается к на .

Скольжение и импеданс ротора

Индуктивное реактивное сопротивление будет изменяться с проскальзыванием, поскольку полное сопротивление ротора является суммой фаз постоянного сопротивления и переменного индуктивного реактивного сопротивления.

Когда двигатель начинает вращаться, индуктивное реактивное сопротивление высокое, а полное сопротивление в основном индуктивное. Ротор имеет низкий коэффициент мощности. Когда скорость увеличивается, индуктивное реактивное сопротивление уменьшается до уровня сопротивления.

Классификация асинхронных двигателей

Электрические асинхронные двигатели предназначены для различных применений в отношении таких характеристик, как момент срабатывания, тяговый момент, скольжение и т. Д. - проверьте классификацию электрических асинхронных двигателей NEMA A, B, C и D.

Трехфазный асинхронный двигатель с короткозамкнутым ротором



ЦЕЛИ

• описание конструкции трехфазного двигателя с короткозамкнутым ротором, перечисление основные компоненты этого типа мотора.

• определите следующие элементы и объясните их важность для работы. трехфазного асинхронного двигателя с короткозамкнутым ротором: поле вращающегося статора, синхронная скорость, индуцированные напряжения ротора, регулирование скорости, проскальзывание в процентах, крутящий момент, пусковой ток, коэффициент мощности без нагрузки, коэффициент мощности при полной нагрузке, обратное вращение и контроль скорости.

• рассчитать скорость двигателя и процент скольжения.

• реверс двигателя с короткозамкнутым ротором.

• опишите, почему двигатель потребляет больше тока при нагрузке.

• нарисуйте схемы, показывающие соединения с двойным напряжением для 230/460 вольт моторный режим.

• объясните информацию на паспортной табличке двигателя.

РАБОЧИЕ ХАРАКТЕРИСТИКИ

Трехфазный асинхронный двигатель с короткозамкнутым ротором относительно мал в физический размер для данного рейтинга мощности по сравнению с другими типами моторов.Асинхронный двигатель с короткозамкнутым ротором имеет очень хорошую регулировку скорости. при различных условиях нагрузки. Благодаря прочной конструкции и надежности трехфазный асинхронный двигатель с короткозамкнутым ротором широко используется для многих промышленных приложений (рис. 1).

КОНСТРУКТИВНЫЕ ДЕТАЛИ

Трехфазный асинхронный двигатель с короткозамкнутым ротором обычно состоит из статор, ротор и два торцевых щита, в которых размещены подшипники, поддерживающие вал ротора.

Для этого типа двигателя требуется минимум обслуживания, поскольку

• обмотки ротора закорочены в короткозамкнутую клетку.

• нет коммутатора или контактных колец для обслуживания (по сравнению с DC мотор).

• нет щеток для замены.

Корпус двигателя обычно изготавливается из литой стали. Сердечник статора запрессован прямо в кадр. Два торцевых щита, в которых размещены подшипники, прикручены болтами. к стальной литой раме.Подшипники, поддерживающие вал ротора, подшипники скольжения или шарикоподшипники. Ill 2 - это вид в разрезе собранного мотора. На рисунке 3 показаны основные части трехфазного, асинхронный двигатель с короткозамкнутым ротором.


ил. 1 Трехфазные двигатели, используемые для насосов


ил. 2 Внешний вид конструкции и особенности типового трехфазного взрывозащищенный двигатель: ПОЛЕВЫЕ ОБМОТКИ СТАТОРА; СМАЗОЧНАЯ ПРОБКА; ПОДЪЕМНЫЙ ГЛАЗ


ил.3 Основные компоненты асинхронного двигателя с короткозамкнутым ротором: —РОТОР С ОХЛАЖДАЮЩИЕ ПЛАСТИНЫ; КОРОБКА ПРОВОДОВ


ил. 4 Частично намотанный статор трехфазного двигателя

Статор

Типичный статор содержит трехфазную обмотку, установленную в пазах ламинированный стальной сердечник (рис. 4). Сама обмотка состоит из формованных катушки с проводом соединены так, что есть три однофазные обмотки, разнесенные 120 электрических градусов друг от друга.Три отдельные однофазные обмотки затем соединяются, обычно внутри, по схеме звезды или треугольника. Три или девять выводов от трехфазных обмоток статора выведены на клемму коробка, установленная на раме двигателя, для подключения одно- или двух напряжений.

Ротор

Вращающаяся часть двигателя состоит из стальных перфораций или пластин. расположены в цилиндрическом сердечнике (от 5 до 7). Медь или алюминий штанги устанавливаются у поверхности ротора.Прутки припаяны или приварен к двум медным концевым кольцам. В некоторых небольших асинхронных двигателях с короткозамкнутым ротором стержни и концевые кольца отлиты из алюминия как одно целое.

ил 5 показывает такой ротор. Обратите внимание, что ребра залиты в ротор. для циркуляции воздуха и охлаждения двигателя во время его работы. Отметим также, что штанги ротора между кольцами перекошены под углом к ​​граням кольца. Благодаря такой конструкции работающий двигатель будет работать тише и плавнее.На левом конце вала видна шпоночная канавка. С помощью этого шпоночного паза можно закрепить шкив или муфту вала нагрузки.


ил. 5 ротор с короткозамкнутым ротором асинхронного двигателя; больной. 6 Вид в разрезе обоймы ротора; больной. 7 Беличья клетка для асинхронного двигателя


ил. 8: Торцевой щиток подшипника скольжения для открытого многофазного двигателя: SLINGER КОЛЬЦО, МАСЛЯНЫЙ СБОРНИК; больной. 9: Торцевой щиток подшипника скольжения для многофазного Индукционный двигатель.

Подшипники вала

Типовые подшипники скольжения показаны на 8 и 9.Внутри стенки подшипников скольжения изготовлены из металла баббита, что обеспечивает гладкая, полированная и длинная изнашиваемая поверхность вала ротора. Большой маслоотражательное кольцо увеличенного размера свободно облегает вал ротора и выдвигается вниз в масляный резервуар. Это кольцо собирает масло и стягивает его по вращающемуся вал и опорные поверхности. Два масляных кольца показаны на рисунке 10. Это смазывающая масляная пленка сводит к минимуму потери на трение. Маслосмотровая чашка на сторона каждого торцевого щита позволяет обслуживающему персоналу проверять уровень масла в подшипнике скольжения.

илл. С 14-11 по 14-14 иллюстрируют шарикоподшипниковые узлы. В некоторых двигателях вместо подшипников скольжения используются шариковые подшипники. Смазка, а не масло используется для смазки шариковых подшипников. Этот тип подшипника обычно составляет две трети полный смазки во время сборки двигателя. Специальная фурнитура есть на концевых раструбах, чтобы можно было использовать шприц для смазки для нанесения дополнительных смазывать шарикоподшипниковые узлы через определенные промежутки времени.

При смазке роликовых подшипников снимите нижнюю заглушку, чтобы старая смазка вытесняется.Технические характеристики двигателя должны Проконсультируйтесь по поводу рекомендованного сорта смазочного материала, процедуры смазки и нагрузок на подшипники.


ил. 10 Частично собранный подшипник скольжения для полностью закрытого, 1250-сильный мотор


ил. 11 Торцевой щиток шарикоподшипника для открытого многофазного двигателя


ил. 12 Врезка однорядного шарикоподшипника:


ил. 13 Одиночный шарикоподшипник закрытого типа.


ил. 14 Подшипник шариковый двухрядный.

ПРИНЦИП РАБОТЫ ДВИГАТЕЛЯ БЛОЧКОМ

Как указано в предыдущем абзаце конструкции статора, пазы сердечника статора содержат три отдельные однофазные обмотки. Когда три токи, разнесенные на 120 электрических градусов, проходят через эти обмотки, вращающийся результаты магнитного поля. Это поле движется по внутренней части статора. основной. Скорость вращающегося магнитного поля зависит от количества полюса статора и частота источника питания.Эта скорость называется синхронная скорость и определяется по формуле:

Синхронная скорость об / мин = 120 x частота в герцах / количество полюсов

S = 120xf / p

S = синхронная скорость

f = Герцы (частота)

p = Количество полюсов на фазу

Пример 1 . Если трехфазный асинхронный двигатель с короткозамкнутым ротором имеет шесть полюсов на обмотке статора и подключен к трехфазному, 60 Гц источника, то синхронная скорость вращающегося поля составляет 1200 об / мин-оборотов В минуту.

S = 120xf / p = 120x60 / 6 = 1200 об / мин

Поскольку это магнитное поле вращается с синхронной скоростью, оно разрезает медь. стержни ротора и индуцирует напряжения в стержнях беличьей клетки обмотка. Эти наведенные напряжения создают токи в стержнях ротора, которые в свою очередь создают поле в сердечнике ротора. Это поле ротора реагирует с поле статора вызывает скручивающий эффект или крутящий момент, который вращает ротор. Ротор всегда вращается со скоростью немного меньшей, чем синхронная скорость. поля статора.Это означает, что поле статора всегда будет сокращать штанги ротора. Если ротор вращается с той же скоростью, что и поле статора, поле статора не режет стержни ротора и не будет индуцированного напряжения или крутящий момент.

Регулировка скорости и процентное скольжение

Асинхронный двигатель с короткозамкнутым ротором имеет очень хорошие характеристики регулирования скорости. (отношение разницы в скорости от холостого хода к полной нагрузке). Скорость работы измеряется в процентах скольжения.Синхронная скорость вращения поле статора используется как точка отсчета. Напомним, что синхронный скорость зависит от количества полюсов статора и рабочей частоты. Поскольку эти две величины остаются постоянными, синхронная скорость также остается постоянным. Если скорость ротора при полной нагрузке вычитается из синхронная скорость поля статора, разница в количестве оборотов в минуту, когда ротор проскальзывает за вращающимся полем статора.

Проскальзывание в процентах = [(синхронная скорость - скорость ротора) / синхронная скорость] х 100

Пример 2 . Если трехфазный асинхронный двигатель с короткозамкнутым ротором используемый в Примере 1, имеет синхронную скорость 1200 об / мин и полную нагрузку. скорость 1140 об / мин, найти процент скольжения.

Синхронная скорость (Пример 1) = 1200 об / мин

Частота вращения ротора при полной нагрузке = 1140 об / мин

Процент скольжения = [(синхронная скорость - скорость ротора) / синхронная скорость] х 100

Процентное скольжение = [(1200–1140) / 1200] x 100

Процентное скольжение = 60/1200 x 100 = 0.05 х 100

Процентное скольжение = 5%

Для асинхронного двигателя с короткозамкнутым ротором, так как значение процентного скольжения уменьшается в сторону 0% улучшаются скоростные характеристики двигателя. Среднее Диапазон процентного скольжения для асинхронных двигателей с короткозамкнутым ротором составляет от 2% до 6 процентов.


ил. 15: Кривая скорости и кривая проскальзывания в процентах.

ill 15 показывает кривую скорости и процент скольжения для беличьей клетки. асинхронный двигатель, работающий от холостого хода до полной нагрузки.Скорость ротора на холостом ходу проскальзывает за синхронной скоростью вращающегося поля статора ровно столько, чтобы создать крутящий момент, необходимый для преодоления трения и ветра потери на холостом ходу. Поскольку на вал двигателя действует механическая нагрузка, ротор имеет тенденцию замедляться. Это означает, что поле статора (вращающееся при фиксированной скорости) режет стержни ротора большее количество раз за данную период. Индуцированные напряжения в стержнях ротора увеличиваются, что приводит к увеличению ток в стержнях ротора и более сильное поле ротора.Есть большая магнитная реакция между полями статора и ротора, которая вызывает более сильную скручивающий эффект или крутящий момент. Это также увеличивает ток статора, снимаемый с линия. Двигатель способен выдерживать повышенную механическую нагрузку с очень небольшое снижение скорости вращения ротора.

Показаны типичные кривые момента скольжения для асинхронного двигателя с короткозамкнутым ротором. на рисунке 16. Выходной крутящий момент двигателя в фунт-футах (фунт-фут) увеличивается. как прямая линия с увеличением значения процентного скольжения как механическая нагрузка увеличена до точки полной нагрузки.За пределами полной нагрузки, кривая крутящего момента изгибается и, наконец, достигает максимальной точки, называемой поломкой крутящий момент. Если двигатель нагружен сверх этой точки, будет соответствующий уменьшайте крутящий момент до тех пор, пока не будет достигнута точка остановки двигателя. Тем не мение, все асинхронные двигатели имеют некоторое скольжение для нормальной работы. Пусковой момент не показан, но составляет примерно 300% рабочего крутящего момента.

Пусковой ток

Когда трехфазный асинхронный двигатель с короткозамкнутым ротором подключен через полное линейное напряжение, пусковой импульс тока мгновенно достигает от 400% до 600% или более номинального тока полной нагрузки.В момент запуска двигателя ротор остановлен. В этот момент поэтому поле статора режет стержни ротора с большей скоростью, чем когда ротор вращается. Это означает, что будет относительно высокая индуцированная напряжение в роторе, которое вызовет сильный ток ротора. Результирующий входной ток обмоток статора будет большим в момент пуска. Из-за этого высокого пускового тока пусковая защита имеет высокий как 300 процентов от номинального тока полной нагрузки для предохранителей без задержки настройки Предусмотрено для асинхронных двигателей с короткозамкнутым ротором.

Большинство асинхронных двигателей с короткозамкнутым ротором запускаются при полном напряжении. Если здесь есть вопросы по запуску крупногабаритных двигателей на полную мощность напряжения, следует проконсультироваться с электроэнергетической компанией. В случае что фидеры и защитные устройства электросети не могут для работы с большими пусковыми токами, пусковыми цепями пониженного напряжения должен использоваться с двигателем.


ил. 16 Кривые момента скольжения для работающего двигателя с короткозамкнутым ротором: ПОЛНАЯ НАГРУЗКА МОМЕНТ, ПРОСМОТР, МОМЕНТ ПРИ НОМИНАЛЬНОМ НАПРЯЖЕНИИ, МОМЕНТ ПРОБИРАТЕЛЬНОГО МОМЕНТА

Коэффициент мощности

Низкий коэффициент мощности асинхронного двигателя с короткозамкнутым ротором на холостом ходу и при низкой нагрузке.На холостом ходу коэффициент мощности может составлять всего Отставание на 15 процентов. Однако, когда к двигателю приложена нагрузка, мощность фактор увеличивается. При номинальной нагрузке коэффициент мощности может достигать Отставание от 85 до 90 процентов.

Коэффициент мощности на холостом ходу низкий, потому что намагничивающая составляющая входной ток составляет большую часть от общего входного тока двигателя. Когда нагрузка на двигатель увеличивается, синфазный ток подается к двигателю увеличивается, но намагничивающая составляющая тока остается практически то же самое.Это означает, что результирующий линейный ток больше почти в фазе с напряжением, и коэффициент мощности улучшается, когда двигатель нагружен, по сравнению с ненагруженным двигателем, у которого есть намагничивание ток как основной компонент входного тока.

ил 17 показывает увеличение коэффициента мощности из состояния холостого хода. до полной загрузки. На диаграмме холостого хода синфазный ток (Iw) невелик. по сравнению с током намагничивания (Im), таким образом, коэффициент мощности равен плохо на холостом ходу.На диаграмме полной нагрузки синфазный ток увеличился при этом ток намагничивания остается прежним. В результате угол задержки линейного тока уменьшается, а коэффициент мощности увеличивается.


ил. 17 Коэффициент мощности на холостом ходу и при полной нагрузке. БОЛЬШОЙ УГОЛ ОТСТАВКИ - НИЗКИЙ КОЭФФИЦИЕНТ МОЩНОСТИ, БЕЗ НАГРУЗКИ, ПОЛНАЯ НАГРУЗКА

Реверс вращения

Направление вращения трехфазного асинхронного двигателя можно реверсировать охотно.Двигатель будет вращаться в противоположном направлении, если любые два из три линейных провода перевернуты (рис. 18). Отведения поменяны местами у мотора.


ил. 18: Обратное вращение асинхронного двигателя: ВРАЩЕНИЕ ДО / ПОСЛЕ ПОДКЛЮЧЕНИЯ ИЗМЕНЕНЫ

Контроль скорости

Асинхронный двигатель с короткозамкнутым ротором почти не изменяет скорость без внешний контроль. Напомним, что скорость двигателя зависит от частоты трехфазного источника и числа полюсов обмотки статора.

Частота питающей сети обычно 60 герц, поддерживается по этой стоимости местной энергокомпанией. Поскольку количество полюсов в двигателе также есть фиксированное значение, синхронная скорость двигателя остается постоянным. В результате невозможно получить диапазон скорость без изменения применяемой частоты. Его можно контролировать с помощью система электронного привода переменного тока с регулируемой частотой или путем изменения количества опор с помощью внешних контроллеров.

ИНДУКЦИОННЫЕ ДВИГАТЕЛИ С ДВОЙНЫМ НАПРЯЖЕНИЕМ

Многие трехфазные асинхронные двигатели с короткозамкнутым ротором предназначены для работы при двух разных номинальных напряжениях. Например, типичный номинал двойного напряжения для трехфазного двигателя 230/460 вольт.

илл. 19 показана типичная обмотка статора, соединенная звездой, которая может быть используется для трехфазного напряжения 230 В или трехфазного 460 Вольт. Каждый из трех однофазных обмоток состоят из двух обмоток катушки.Там это девять выводов, выведенных наружу из обмотки статора этого типа. Эти выводы, обозначенные как выводы с 1 по 9, заканчиваются в клеммной коробке мотор. Чтобы отметить выводы, начните с верхнего левого вывода T1 и продолжайте движение по часовой стрелке по спирали к центру, отмечая каждый вывод, как показано на рисунке.


ил. 19: Метод определения маркировки клемм.


ил. 20: соединение звездой на 460 Вольт. Катушки соединены последовательно.

ил 20 показывает соединения, необходимые для работы двигателя от 460-вольтовый, трехфазный источник. Две катушки каждой однофазной обмотки соединены последовательно, илл. 14-21 показаны соединения, позволяющие работать от трехфазного источника на 230 В.


ил. 21: соединение звездой 230 В. Катушки подключены параллельно.

Двигатели с соединением звездой

Если идентификация отведения 9-проводная (с двойным напряжением), 3-фазная, с соединением звездой двигатель был разрушен, электрик должен повторно идентифицировать их перед подключение мотора к линии.Можно использовать следующий метод. Первый, Определите внутреннюю подключенную точку звезды, проверив целостность цепи между тремя выводами, как на рисунке 22 A.

Затем идентифицируйте три других набора катушек по непрерывности между двумя ведет за один раз (илл. 22 B). Назначьте T7, T8 и T9 любому из трех выводы постоянных катушек, соединенных звездой (а). Применить более низкий рейтинг линейное напряжение для двигателя на T7, T8 и T9 и работайте, чтобы проверить направление вращения.Отключите сетевое напряжение и подключите один из неопределенных катушки на T Подключите питание, оставив линии на T7, T8 и T9. Если Катушка правильно подключена и является правильной катушкой, напряжение должно быть примерно в 1,5 раза выше линейного напряжения между свободным концом и другим две строчки. Будьте осторожны с сетевым напряжением.

Если выбрана правильная катушка, но она поменяна местами, напряжение между свободный конец и два других вывода будут составлять около 58% от линейного напряжения.Если выбрана неправильная катушка, разница напряжений между свободными конец и два других вывода линии будут неровными (см. рис. 22 C).

Когда показания равны и примерно в 1,5 раза больше напряжения сети, Пометьте провод, подключенный к T7, как T4, а другой конец катушки как T1.

Выполните те же испытания с другой катушкой, подключенной к T Отметьте эти провода. T и T Выполните тот же тест с последней катушкой, подключенной к 19, чтобы определить 13 и 16 отведений.

Подключите L1 к T1, L2 к T2, L3 к T3 и T4 к T7, T5 к T8, T6 к T9 и включите двигатель. Двигатель должен работать в том же направлении, что и раньше и работать спокойно.


ил. 22: Двигатель, подключенный звездой или звездой; A) Внутренняя маркировка выводов со звездочкой; B) Маркировка выводов группы катушек C) Проверка правильности маркировки выводов катушек на Двигатель с двойным напряжением, соединенный звездой

Двигатели с соединением Delta

Другой вариант подключения трехфазных двигателей - соединение треугольником. мотор.Он назван так потому, что получившийся схематический узор выглядит как греческая буква Дельта (символ дельты).

Метод идентификации и подключения этих выводов необходим, потому что он отличается от двигателя, подключенного звездой или звездой.

Правильное подключение выводов соединителя Delta , трехфазного, Двигатель с двойным напряжением представляет проблему, если маркировка выводов повреждена.


ил. 23: Девять выводов треугольника, трехфазного, двойного напряжения. двигатель

Сначала электрик должен определить, подключен ли двигатель треугольником. или звезда подключена.Оба двигателя имеют девять выводов, если они двухвольтные. моторы. Однако двигатель, подключенный по схеме треугольника, имеет три комплекта по три провода. которые имеют непрерывность, а двигатель, подключенный звездой, имеет только один комплект из трех.

Для продолжения необходим чувствительный омметр, чтобы найти середину каждого группа из трех отведений. Значения сопротивления низкие при использовании постоянного тока омметр, поэтому будьте осторожны при определении центра каждой группы катушек. Обозначьте центр каждой группы T1, T2 и T3 соответственно.Использование маскировки ленты, временно обозначьте другие отведения группы T1 как T4 и T9. См. больной 23 А.

Временно отметьте концы группы T2 как T5 и T7 и отметьте концы группы Т3 как Т6 и Т8.

Подключите двигатель с более низким номинальным напряжением, используя линии 1, 2 и 3, к T1, Т4 и Т9. Остальные катушки будут иметь наведенное напряжение, поэтому будьте осторожны, прикоснуться к другим свободным проводам друг к другу или к вам!

Отключите питание и подсоедините провод с маркировкой T4 к T7.Подключите мощность, как и раньше, и считайте напряжение между T1 и T2. Если маркировка правильные, напряжение должно быть примерно в два раза выше приложенного линейного напряжения. Если он показывает примерно в 1,5 раза больше напряжения в сети, снова подключите T4 к проводу. отмечен T5. Если напряжение T1 - T2 затем упадет до 220, повторно подключите T9 к T7. тем самым перевернув обе катушки. Когда напряжение от T1 до T2 равно удвоенному значению приложенного линейного напряжения, пометьте соединенные вместе провода как T4 от Группа T1 подключена к T7 группы T2.

Теперь используйте третью группу катушек. Оставьте нижнюю линию напряжения подключенной к первая группа по-прежнему. Проверьте и подключите провода так, чтобы при включении T9 подключенный к проводу третьей группы, напряжение T1-to-T2 в два раза больше приложенное линейное напряжение. Пометьте провод, подключенный к T9, как T6, а другой конец группы катушек как T8.

Для двойной проверки отсоедините провод линии от T9 и снова подключите к T7. отсоедините сетевой провод от T1 и снова подсоедините его к T2, отсоедините провод от T9 и снова подключите его к T5 Двигатель должен работать в том же направление как раньше.Если этого не произошло, еще раз проверьте маркировку проводов.

Для дальнейшей проверки переместите провода от T7 к T8, от T2 к T6 и от T5 к T3. Запустить мотор. Вращение должно быть таким же, как и в предыдущем. шаги. Будьте осторожны! На другие обмотки наведено напряжение. (См. илл 24).


ил. 24 Иллюстрация испытаний напряжением, используемых для определения правильного вывода маркировка двигателя Delta

ТАБЛИЧКА ДВИГАТЕЛЯ

Таблички с паспортными данными двигателя

содержат информацию, важную для правильного выбора и установки двигателя.Наиболее полезные данные, указанные на паспортной табличке, относятся к к электрическим характеристикам двигателя. Зная эту информацию и используя Национальный электротехнический кодекс, электрик может определить размеры кабелепровода, провода, пусковой и пусковой защиты. (NEC дает минимальные требования.)

Данные о конструкции и производительности, указанные на паспортной табличке, полезны для технического обслуживания. персонал. Информация жизненно важна для быстрой и правильной замены. двигателя, если необходимо.Для лучшего понимания мотора типичный Информация на паспортных табличках двигателя описывается следующим образом (рис. 25).

• Название производителя

• Тип определяет тип корпуса. Это производитель система кодовой идентификации.

• Серийный номер - это конкретный идентификатор двигателя. Это человек номер, присвоенный двигателю, аналогично номеру социального страхования для человек. Он хранится у производителя.

• Номер модели является дополнительной идентификацией производителя, обычно используется для заказа.

• Типоразмер определяет размеры двигателя.

• Коэффициент обслуживания (или SF) - коэффициент обслуживания 1,0 означает, что нельзя ожидать, что двигатель будет обеспечивать мощность, превышающую его номинальную мощность в лошадиных силах. Мотор будет безопасно работать, если номинальная мощность в лошадиных силах умножена на коэффициент обслуживания, максимум. Общие сервисные коэффициенты от 1,0 до 1.15. Рекомендуется двигатель не может работать непрерывно в диапазоне эксплуатационных коэффициентов. Это может сократить срок службы изоляционной системы.

Ампер означает ток, потребляемый из линии, когда двигатель работает. при номинальном напряжении и частоте при полной номинальной мощности, указанной на паспортной табличке.

• Вольт должно быть значением, измеренным на клеммах двигателя, и должно быть значением, на которое рассчитан двигатель.

• Класс изоляции относится к изоляционному материалу, используемому в обмотке. статор двигателя.Например, в системе класса B максимальная рабочая температура 130 ° С; для класса F это 155 ° C; а для класса H это 180 ° С.

• об / мин (или об / мин) означает скорость в оборотах в минуту, когда все остальные соблюдены условия паспортной таблички.

• Герцы - это частота системы питания, для которой предназначен двигатель. Производительность будет изменена, если он будет работать на других частотах.

• Режим работы - это рабочий цикл, при котором двигатель может безопасно работать.«Непрерывный» означает, что двигатель может работать с полной нагрузкой 24 часа в сутки. Если «средний» отображается временной интервал. Это означает, что двигатель может работать при полной загрузке за указанный период. Затем следует остановить двигатель и дать ему остыть перед повторным запуском.

• Температура окружающей среды указывает максимальную температуру окружающего воздуха. при которой двигатель может работать для выдачи номинальной мощности.

• Ввод фазы указывает количество фаз напряжения, при которых двигатель предназначен для работы.

кВА - это буквенный код, обозначающий заблокированный ротор, кВА на Лошадиные силы. Это используется для определения пускового оборудования и защиты. для мотора. Таблицу кодовых букв можно найти в Национальном электротехническом Код.

• КПД выражается в процентах. Это значение находится в стандартном двигатели, а также двигатели с «премиальной эффективностью».

• Шум - некоторые двигатели рассчитаны на низкий уровень шума. Уровень шума Значение, указанное на паспортной табличке, измеряется в единицах звука «дБА».

• Примечания производителя - список конкретных характеристик двигателей, таких как «Термозащищенные» и / или «подшипники со шкалой».

ВЫСОТА

Гарантии производителя для стандартных двигателей обычно основаны на при работе на любой высоте до 3300 футов. Двигатели пригодные для эксплуатации на высоте более 3300 футов над уровнем моря имеют особую конструкцию и / или другой класс изоляции. Например, стандартные двигатели с коэффициентом обслуживания 1.15 может эксплуатироваться на высоте до 9900 футов, используя коэффициент обслуживания. На высоте 9900 футов коэффициент обслуживания будет 1,00. Возможно, потребуется снизить мощность двигателя. или используйте рамку большего размера.

РЕЗЮМЕ

Трехфазные асинхронные двигатели используют в роторе короткозамкнутую обмотку. К ротору нет электрических соединений, но наведен ток. в обмотки ротора за счет электромагнитной индукции.Беличья клетка обмотка создает магнитное поле, которое подталкивается и притягивается статором магнитное поле.

Ротор поддерживается стальным валом, который должен вращаться. Вал допускается вращение с применением различных типов подшипников и различных смазок. Синхронная скорость, регулировка скорости и проскальзывание в процентах все расчеты используются для определения скорости ротора. Мотор электрические характеристики, такие как коэффициент мощности и пусковой ток связанных с электрической схемой двигателя.

Если маркировка выводов двигателя разрушена, выводы можно пометить заново. в соответствии с процедурами, описанными в этом блоке. Данные паспортной таблички двигателя является важной информацией, которую следует использовать при заказе двигателей на замену. Некоторый информация на паспортной табличке важна для правильной замены рабочего характеристики и другие данные используются для расчета параметров электропитания и защиты двигателя.

ВИКТОРИНА

A. Ответьте на следующие утверждения и вопросы.

1. Перечислите основные части асинхронного двигателя с короткозамкнутым ротором. ___________

2. Назовите два преимущества использования асинхронного двигателя с короткозамкнутым ротором. _______

3. Назовите два недостатка асинхронного двигателя с короткозамкнутым ротором. ________

4. Перечислите два фактора, которые определяют синхронную скорость индукции. мотор.

5. Объясните, как изменить направление вращения трехфазного, асинхронный двигатель с короткозамкнутым ротором.

6. Четырехполюсный трехфазный асинхронный двигатель с короткозамкнутым ротором, 60 Гц, скорость полной нагрузки 1725 об / мин. Определите синхронную скорость этого мотор.

7. Какой процент скольжения двигателя указан в вопросе 6? ______________

8. Почему термин «беличья клетка» применяется к этому типу трехфазной индукции? мотор?

B. Выберите правильный ответ для каждого из следующих заявления.

9.Кто или что определяет, можно ли запускать большие асинхронные двигатели при полное напряжение на линии?

а. максимальный размер двигателя

г. номинальное напряжение

г. Энергетическая компания

г. отдел строительства и безопасности

10. Коэффициент мощности трехфазного асинхронного двигателя с короткозамкнутым ротором, работающего разгружено __

а. так же, как и при полной загрузке.

г. очень бедный.

г. очень хороший.

г. в среднем.

11. Коэффициент мощности трехфазного асинхронного двигателя с короткозамкнутым ротором, работающего с полной нагрузкой _____

а. улучшается без нагрузки.

г. уменьшается от холостого хода.

г. остается таким же, как и без нагрузки.

г. становится 100 процентов.

12. Асинхронный двигатель с короткозамкнутым ротором популярен благодаря своим характеристикам. из:

а. высокий процент скольжения.

г.низкий процент скольжения.

г. простая, прочная конструкция.

г. хорошая регулировка скорости.

13. Скорость асинхронного двигателя с короткозамкнутым ротором зависит от:

а. приложенное напряжение.

г. частота и количество полюсов.

г. Напряженность поля.

г. сила тока.

14. Скорость рассчитывается по формуле:

а. p = (120xf) / об / мм

г. Обороты = 120xp / f

г.Обороты = (p x f) / 120

г. Об / мин = 120xf) / p

C. Нарисуйте следующие схемы подключения.

15. Покажите схему подключения девяти оконечных выводов соединенного звездой. трехфазный двигатель на 230/460 вольт для работы при 460 вольт, три фаза.

16. Покажите схему подключения девяти оконечных выводов соединенного звездой. трехфазный двигатель на 230/460 вольт для работы от 230 вольт, трехфазный.

Двигатели переменного тока, контроллеры и частотно-регулируемые приводы

Что такое двигатель переменного тока?

Основные сведения о двигателе переменного тока

Стандартное определение двигателя переменного тока - это электродвигатель, приводимый в действие переменным током. Двигатель переменного тока используется для преобразования электрической энергии в механическую. Эта механическая энергия создается за счет использования силы, создаваемой вращающимися магнитными полями, создаваемыми переменным током, протекающим через его катушки.Двигатель переменного тока состоит из двух основных компонентов: стационарного статора, который находится снаружи и имеет катушки, на которые подается переменный ток, и внутреннего ротора, который прикреплен к выходному валу.

Как работает двигатель переменного тока?

Основная работа двигателя переменного тока основана на принципах магнетизма. Простой двигатель переменного тока содержит катушку с проводом и два фиксированных магнита, окружающих вал. Когда электрический заряд (переменного тока) прикладывается к катушке с проволокой, она становится электромагнитом, генерирующим магнитное поле.Проще говоря, когда магниты взаимодействуют, вал и катушка проводов начинают вращаться, приводя в движение двигатель.


Обратная связь двигателя переменного тока

Продукты

AC Motor имеют два варианта управления с обратной связью. Эти опции представляют собой преобразователь двигателя переменного тока или датчик двигателя переменного тока. И резольвер двигателя переменного тока, и энкодер двигателя переменного тока могут определять направление, скорость и положение выходного вала. Хотя и преобразователь двигателя переменного тока, и энкодер двигателя переменного тока предлагают одно и то же решение для различных приложений, они сильно различаются.

В резольверах двигателей переменного тока используется второй набор катушек статора, называемый трансформатором, для создания напряжения на роторе в воздушном зазоре. Поскольку в резольвере отсутствуют электронные компоненты, он очень прочный и работает в широком диапазоне температур. Резольвер двигателя переменного тока также естественно устойчив к ударам благодаря своей конструкции. Резольвер часто используется в суровых условиях.

В оптическом кодировщике электродвигателя переменного тока используется затвор, который вращается для прерывания луча света, пересекающего воздушный зазор между источником света и фотодетектором.Вращение заслонки со временем вызывает износ энкодера. Этот износ снижает долговечность и надежность оптического кодировщика.

Тип приложения определяет, нужен ли преобразователь или кодировщик. Энкодеры двигателей переменного тока проще в реализации и более точны, поэтому им следует отдавать предпочтение в любом приложении. Резолвер следует выбирать только в том случае, если этого требует среда, в которой он будет использоваться.

Основные типы двигателей переменного тока

Электродвигатель переменного тока бывает трех различных типов: индукционный, синхронный и промышленный.Эти типы двигателей переменного тока определяются конструкцией ротора, используемого в конструкции. В линейке продуктов Anaheim Automation представлены все три типа.

Асинхронный двигатель переменного тока


Асинхронные двигатели переменного тока называются асинхронными двигателями или вращающимися трансформаторами. Этот тип двигателя переменного тока использует электромагнитную индукцию для питания вращающегося устройства, которым обычно является вал. Ротор в асинхронных двигателях переменного тока обычно вращается медленнее, чем его частота.Наведенный ток - это то, что вызывает магнитное поле, окружающее ротор этих двигателей. Этот асинхронный двигатель переменного тока имеет одну или три фазы.

Синхронный двигатель переменного тока

Синхронный двигатель обычно представляет собой двигатель переменного тока, ротор которого вращается с той же скоростью, что и переменный ток, который к нему подается. Ротор также может вращаться со скоростью, кратной величине подаваемого на него тока. Контактные кольца или постоянный магнит, на который подается ток, создают магнитное поле вокруг ротора.

Промышленный двигатель переменного тока


Промышленные двигатели переменного тока разработаны для применений, требующих трехфазного асинхронного двигателя большой мощности. Номинальная мощность промышленного двигателя превышает номинальную мощность стандартного однофазного асинхронного двигателя переменного тока. Anaheim Automation предлагает промышленные электродвигатели переменного тока мощностью от 220 до 2200 Вт в трехфазном режиме при 220 или 380 В переменного тока.

Где используются двигатели переменного тока?

В каких отраслях используются двигатели переменного тока?

Асинхронные двигатели в основном используются в быту из-за их относительно низких производственных затрат и долговечности, но также широко используются в промышленных приложениях.

Для чего используются двигатели переменного тока?

Двигатели переменного тока можно найти во многих бытовых приборах и приложениях, в том числе:
- Часы
- Электроинструменты
- Дисковые накопители
- Стиральные машины и другая бытовая техника
- Аудиопроигрыватели
- Вентиляторы

Их также можно найти в промышленности:
- Насосы
- Воздуходувки
- Конвейеры
- Компрессоры

Как управляются двигатели переменного тока?

Контроллеры переменного тока:

Основы

Контроллер переменного тока (иногда называемый драйвером) известен как устройство, которое контролирует скорость двигателя переменного тока.Контроллер переменного тока может также называться частотно-регулируемым приводом, приводом с регулируемой скоростью, преобразователем частоты и т. Д. Двигатель переменного тока получает мощность, которая в конечном итоге преобразуется контроллером переменного тока в регулируемую частоту. Этот регулируемый выход позволяет точно контролировать скорость двигателя.

Компоненты контроллера переменного тока

Обычно контроллер переменного тока состоит из трех основных частей: выпрямителя, инвертора и звена постоянного тока для их соединения.Выпрямитель преобразует входной переменный ток в постоянный ток, а инвертор переключает постоянное напряжение на выходное переменное напряжение с регулируемой частотой. Инвертор также можно использовать для управления выходным током, если это необходимо. И выпрямитель, и инвертор управляются набором элементов управления для генерации определенного количества переменного напряжения и частоты, чтобы соответствовать системе двигателя переменного тока в данный момент времени.

Приложения

Контроллер переменного тока может использоваться во многих различных промышленных и коммерческих приложениях.Контроллер переменного тока, который чаще всего используется для управления вентиляторами в системах кондиционирования и отопления, позволяет лучше контролировать воздушный поток. Контроллер переменного тока также помогает регулировать скорость насосов и воздуходувок. В последнее время применяются конвейеры, краны и подъемники, станки, экструдеры, линии для производства пленки и прядильные машины для текстильного волокна.

Преимущества и недостатки

Преимущества
- Увеличивает срок службы двигателя за счет высокого коэффициента мощности
- Экономичное регулирование скорости
- Оптимизация пусковых характеристик двигателя
- Более низкие затраты на обслуживание, чем при управлении постоянным током

Недостатки
- генерирует большое количество тепла и гармоник

История

Никола Тесла изобрел первый асинхронный двигатель переменного тока в 1888 году, представив более надежный и эффективный двигатель, чем двигатель постоянного тока.Однако регулирование скорости переменного тока было сложной задачей. Когда требовалось точное управление скоростью, двигатель постоянного тока стал заменой двигателя переменного тока из-за его эффективных и экономичных средств точного управления скоростью. Только в 1980-х годах регулятор скорости переменного тока стал конкурентом. Со временем технология привода переменного тока в конечном итоге превратилась в недорогого и надежного конкурента традиционному управлению постоянным током. Теперь контроллер переменного тока может управлять скоростью с полным крутящим моментом, достигаемым от 0 об / мин до максимальной номинальной скорости.

Частотно-регулируемые приводы

Основы

Частотно-регулируемый привод - это особый тип привода с регулируемой скоростью, который используется для управления скоростью двигателя переменного тока. Чтобы управлять скоростью вращения двигателя, частотно-регулируемый привод регулирует частоту подаваемой на него электроэнергии. Добавление частотно-регулируемого привода к приложению позволяет регулировать скорость двигателя в соответствии с его нагрузкой, что в конечном итоге позволяет экономить энергию.Частотно-регулируемый привод, обычно используемый во множестве приложений, работает в системах вентиляции, насосах, конвейерах и приводах станков.

Как работает частотно-регулируемый привод

Когда полное напряжение подается на двигатель переменного тока, он сначала ускоряет нагрузку и снижает крутящий момент, сохраняя ток особенно высоким, пока двигатель не достигнет полной скорости. Частотно-регулируемый привод работает иначе; он устраняет чрезмерный ток, контролируемое повышение напряжения и частоты при запуске двигателя.Это позволяет двигателю переменного тока генерировать до 150% своего номинального крутящего момента, который потенциально может быть создан с самого начала, вплоть до полной скорости, без потерь энергии. Частотно-регулируемый привод преобразует мощность через три различных этапа. Сначала мощность переменного тока преобразуется в мощность постоянного тока, а затем включаются и выключаются силовые транзисторы, вызывая форму волны напряжения на желаемой частоте. Эта форма сигнала затем регулирует выходное напряжение в соответствии с предпочтительным обозначенным значением.

Физические свойства

Обычно система частотно-регулируемого привода включает двигатель переменного тока, контроллер и интерфейс оператора.Трехфазный асинхронный двигатель чаще всего применяется в частотно-регулируемом приводе, поскольку он обеспечивает универсальность и экономичность по сравнению с однофазным или синхронным двигателем. Хотя в некоторых случаях они могут быть полезными, в системе частотно-регулируемого привода часто используются двигатели, предназначенные для работы с фиксированной скоростью.

Интерфейсы оператора частотно-регулируемого привода позволяют пользователю регулировать рабочую скорость, а также запускать и останавливать двигатель. Интерфейс оператора может также позволить пользователю переключаться и реверсировать между автоматическим управлением или ручным регулированием скорости.

Преимущества частотно-регулируемого привода

- Температуру технологического процесса можно контролировать без отдельного контроллера
- Низкие затраты на обслуживание
- Более длительный срок службы двигателя переменного тока и другого оборудования
- Более низкие эксплуатационные расходы
- Оборудование в системе, с которым невозможно справиться чрезмерный крутящий момент защищен

Типы частотно-регулируемых приводов

Существует три распространенных частотно-регулируемых привода (VFD), которые обладают как преимуществами, так и недостатками в зависимости от приложения, для которого они используются.Три распространенных конструкции VFD включают: инвертор источника тока (CSI), инвертор источника напряжения (VSI) и широтно-импульсную модуляцию (PWM). Однако существует четвертый тип частотно-регулируемого привода, называемый векторным приводом потока, который становится все более популярным среди конечных пользователей благодаря своей функции управления с обратной связью. Каждый частотно-регулируемый привод состоит из блока преобразователя, промежуточного звена постоянного тока и инвертора, но конструкция каждого из них зависит от привода. Хотя секции каждого частотно-регулируемого привода похожи, они требуют изменения схемы в том, как они подают частоту и напряжение на двигатель.

Инвертор источника тока (CSI)

Инвертор источника тока (CSI) - это тип преобразователя частоты (VFD), который преобразует входящее напряжение переменного тока и изменяет частоту и напряжение, подаваемое на асинхронный двигатель переменного тока. Общая конфигурация этого типа частотно-регулируемого привода аналогична конфигурации других частотно-регулируемых приводов в том, что он состоит из преобразователя, звена постоянного тока и инвертора. В преобразовательной части CSI используются кремниевые выпрямители (SCR), тиристоры с коммутацией затвора (GCT) или симметричные тиристоры с коммутацией затвора (SGCT) для преобразования входящего переменного напряжения в переменное постоянное напряжение.Для поддержания правильного соотношения напряжения и частоты (Вольт / Герц) напряжение должно регулироваться путем правильной последовательности SCR. В звене постоянного тока для этого типа частотно-регулируемого привода используется индуктор для регулирования пульсаций тока и для хранения энергии, используемой двигателем. Инвертор, который отвечает за преобразование постоянного напряжения обратно в синусоидальную форму сигнала переменного тока, состоит из SCRS, тиристоров отключения затвора (GTO) или симметричных тиристоров с коммутацией затвора (SGCT). Эти тиристоры ведут себя как переключатели, которые включаются и выключаются для создания выхода с широтно-импульсной модуляцией (ШИМ), который регулирует частоту и напряжение на двигателе.Частотно-регулируемые приводы CSI регулируют ток, для работы требуется большой внутренний индуктор и нагрузка двигателя. Важным примечанием к конструкциям ЧРП CSI является требование входных и выходных фильтров, которые необходимы из-за высоких гармоник на входе мощности и низкого коэффициента мощности. Чтобы обойти эту проблему, многие производители устанавливают либо входные трансформаторы, либо реакторы и фильтры гармоник в точке общего соединения (электрическая система пользователя, подключенная к приводу), чтобы уменьшить влияние гармоник на систему привода.Из обычных приводных систем с частотно-регулируемым приводом, частотно-регулируемые приводы CSI являются единственным типом приводов, которые имеют возможность рекуперации энергии. Возможность рекуперации энергии означает, что мощность, передаваемая от двигателя обратно к источнику питания, может быть поглощена.

Преимущества CSI

• Возможность рекуперации энергии
• Простая схема
• Надежность (операция ограничения тока)
• Чистая форма кривой тока

Недостатки CSI

• Зубцы двигателя, когда выходная частота ШИМ ниже 6 Гц
• Используемые индукторы большие и дорогостоящие
• Генерация больших гармоник мощности отправляется обратно в источник питания
• Зависит от нагрузки двигателя
• Низкий коэффициент входной мощности

Инвертор источника напряжения (VSI)

Секция преобразователя VSI аналогична секции преобразователя CSI в том, что входящее напряжение переменного тока преобразуется в напряжение постоянного тока.Отличие от секции преобразователя CSI и VSI заключается в том, что VSI использует выпрямитель на диодном мосту для преобразования напряжения переменного тока в напряжение постоянного тока. В звене постоянного тока VSI используются конденсаторы для сглаживания пульсаций постоянного напряжения, а также для хранения энергии для системы привода. Секция инвертора состоит из биполярных транзисторов с изолированным затвором (IGBT), тиристоров с изолированным затвором (IGCT) или транзисторов с инжекционным затвором (IEGT). Эти транзисторы или тиристоры ведут себя как переключатели, которые включаются и выключаются для создания выходного сигнала широтно-импульсной модуляции (ШИМ), который регулирует частоту и напряжение двигателя.

Преимущества VSI

• Простая схема
• Может использоваться в приложениях, требующих нескольких двигателей
• Не зависит от нагрузки

Недостатки VSI

• Генерация больших гармоник мощности в источнике питания
• Зубчатая передача двигателя, когда выходная мощность ШИМ ниже 6 Гц
• Безрегенеративный режим
• Низкий коэффициент мощности

Широтно-импульсная модуляция (ШИМ)

Частотно-регулируемый привод с широтно-импульсной модуляцией (ШИМ) является одним из наиболее часто используемых контроллеров и зарекомендовал себя как хорошо работающий с двигателями мощностью от 1/2 до 500 л.с.Большинство частотно-регулируемых приводов с ШИМ рассчитаны на работу в трехфазном режиме 230 В или 460 В и обеспечивают выходные частоты в диапазоне 2–400 Гц. Как и VSI VFD, PWM VFD использует выпрямитель на диодном мосту для преобразования входящего переменного напряжения в постоянное. В звене постоянного тока используются конденсаторы большой емкости для устранения пульсаций, возникающих после выпрямителя, и создания стабильного напряжения на шине постоянного тока. Шестиступенчатый инверторный каскад этого драйвера использует IGBT высокой мощности, которые включаются и выключаются для регулирования частоты и напряжения двигателя. Эти транзисторы управляются микропроцессором или ИС двигателя, который контролирует различные аспекты привода, чтобы обеспечить правильную последовательность.В результате на двигатель выводится сигнал синусоидальной формы. Так как же включение и выключение транзистора помогает создать синусоидальный выходной сигнал? Изменяя ширину импульса напряжения, вы получаете среднюю мощность, которая представляет собой напряжение, подаваемое на двигатель. Частота, подаваемая на двигатель, определяется количеством переходов из положительного положения в отрицательное в секунду.

Преимущество ШИМ

• Отсутствие зубчатого зацепления двигателя
• КПД от 92% до 96%
• Превосходный коэффициент входной мощности благодаря фиксированному напряжению шины постоянного тока
• Низкая начальная стоимость
• Может использоваться в приложениях, требующих нескольких двигателей

Недостатки ШИМ

• Безрегенеративный режим
• Высокочастотное переключение может вызвать нагрев двигателя и пробой изоляции

Как выбрать двигатель переменного тока

Чтобы выбрать подходящий двигатель переменного тока для конкретного применения, необходимо определить основные характеристики.Рассчитайте требуемый момент нагрузки и рабочую скорость. Помните, что асинхронные и реверсивные двигатели нельзя регулировать; они требуют редуктора. Если это необходимо, выберите подходящее передаточное число. Затем определите частоту и напряжение питания двигателя.

Преимущества и недостатки

Преимущества двигателя переменного тока
- Низкая стоимость
- Длительный срок службы
- Высокая эффективность и надежность
- Простая конструкция
- Высокий пусковой момент (индукция)
- Отсутствие скольжения (синхронное)

Недостатки двигателя переменного тока
- Частота вызывает проскальзывания вращения (индукция)
- Необходим пусковой выключатель (индукция)

Поиск и устранение неисправностей двигателя переменного тока

ПОЖАЛУЙСТА, ОБРАТИТЕ ВНИМАНИЕ: Техническая помощь в отношении продуктовой линейки двигателей переменного тока, а также всех продуктов, производимых или распространяемых Anaheim Automation, предоставляется бесплатно.Эта помощь предлагается, чтобы помочь клиенту в выборе продуктов Anaheim Automation для конкретного применения. Во всех случаях ответственность за определение пригодности индивидуального двигателя переменного тока для конкретной конструкции системы лежит исключительно на заказчике. Несмотря на то, что мы прилагаем все усилия, чтобы предложить надежные рекомендации относительно линейки двигателей переменного тока, а также других продуктов для управления движением, а также для точного создания технических данных и иллюстраций, такие советы и документы предназначены только для справки и могут быть изменены без предварительного уведомления.

Для устранения неполадок в системе двигателя и контроллера переменного тока могут быть предприняты следующие шаги:

Шаг 1. Проверьте запах двигателя. При появлении запаха гари немедленно замените двигатель.

Шаг 2: Проверьте входное напряжение двигателя. Убедитесь, что провода не повреждены и подключен надлежащий источник питания.

Шаг 3. Прислушайтесь к громкой вибрации или скрипу. Такие шумы могут указывать на повреждение или износ подшипников. Если возможно, смажьте подшипники, в противном случае замените двигатель полностью.

Шаг 4: Проверить на перегрев. С помощью сжатого воздуха очистите двигатель от мусора, дайте ему остыть и перезапустите.

Шаг 5: Двигатели переменного тока, которые пытаются запуститься, но выходят из строя, могут быть признаком плохого пускового конденсатора. Проверьте наличие каких-либо признаков утечки масла и замените конденсатор, если это так.

Шаг 6: Убедитесь, что приложение, в котором вращается двигатель, не заблокировано. Для этого отсоедините механизм и попробуйте запустить двигатель самостоятельно.

Сколько стоят изделия с электродвигателями переменного тока?

Двигатель переменного тока может быть разумным экономичным решением для ваших требований. Конструкционные материалы и конструкция двигателя делают системы двигателей переменного тока доступным решением. Двигатель переменного тока работает с вращающимся магнитным полем и не использует щеток. Это позволяет снизить стоимость двигателя и исключает компонент, который может со временем изнашиваться. Для работы двигателей переменного тока не требуется драйвер.Это экономит начальные затраты на установку. Сегодняшние производственные процессы делают производство двигателей переменного тока проще и быстрее, чем когда-либо. Статор изготовлен из тонких пластин, которые можно прессовать или штамповать на станке с ЧПУ. Многие другие детали можно быстро изготовить и усовершенствовать, сэкономив время и деньги! Anaheim Automation предлагает на выбор полную линейку продукции для двигателей переменного тока.

Физические свойства двигателя переменного тока


Обычно двигатель переменного тока состоит из двух основных компонентов: статора и ротора.Статор - это неподвижная часть двигателя, состоящая из нескольких тонких пластин, намотанных изолированным проводом, образующих сердечник.

Ротор соединен с выходным валом изнутри. Наиболее распространенным типом ротора, используемого в двигателях переменного тока, является ротор с короткозамкнутым ротором, названный в честь его сходства с колесами для упражнений на грызунах.

Статор устанавливается внутри корпуса двигателя, ротор установлен внутри, и между ними имеется зазор, отделяющий их от соприкосновения друг с другом. Кожух представляет собой корпус двигателя, содержащий два подшипниковых узла.

Формулы для двигателя переменного тока

Синхронная скорость:

Частота:

Число полюсов:

Мощность в лошадиных силах:

Двигатель

Глоссарий двигателей переменного тока

Двигатель переменного тока - Электродвигатель, приводимый в действие переменным током, а не постоянным.

Переменный ток - Электрический заряд, который часто меняет направление (противоположно постоянному току, с зарядом только в одном направлении).

Центробежный переключатель - Электрический переключатель, который регулирует скорость вращения вала, работающий за счет центробежной силы, создаваемой самим валом.

Передаточное число - Передаточное число, при котором скорость двигателя уменьшается редуктором. Скорость на выходном валу равна 1 передаточному числу x скорость двигателя.

Инвертор - Устройство, преобразующее постоянный ток в переменный. Реверс выпрямителя.

Асинхронный двигатель - Может упоминаться как асинхронный двигатель; Тип двигателя переменного тока, в котором электромагнитная индукция питает ротор. Для создания крутящего момента требуется скольжение.

Скорость холостого хода - Обычно ниже синхронной скорости, это скорость, когда двигатель не несет нагрузки.

Номинальная скорость - Скорость двигателя при номинальной выходной мощности.Обычно самая востребованная скорость.

Выпрямитель - устройство, преобразующее переменный ток в постоянный в двигателе. Они могут использоваться в качестве компонента источника питания или могут обнаруживать радиосигналы. Обычно выпрямители могут состоять из твердотельных диодов, ртутных дуговых клапанов или других веществ. Реверс инвертора.

Выпрямление - Процесс преобразования переменного тока в постоянный с помощью выпрямителя в двигателе переменного тока.

Асинхронный двигатель с расщепленной фазой - Двигатели, которые могут создавать больший пусковой крутящий момент за счет использования центробежного переключателя в сочетании со специальной пусковой обмоткой.

Момент при останове - Максимальный крутящий момент, с которым двигатель может работать, при определенном напряжении и частоте. Превышение этого количества приведет к остановке двигателя.

Пусковой крутящий момент - крутящий момент, который мгновенно создается при запуске двигателя. Двигатель не будет работать, если нагрузка трения превышает крутящий момент.

Статический момент трения - Когда двигатель останавливается, например, тормозом, это выходной крутящий момент, необходимый для удержания нагрузки при остановке двигателя.

Синхронный двигатель - В отличие от асинхронного двигателя, он может создавать крутящий момент с синхронной скоростью без скольжения.

Синхронная скорость - Обозначается скоростью в минуту, это внутренний фактор, определяемый количеством полюсов и частотой сети.

Привод с регулируемой скоростью - Оборудование, используемое для управления частотой электроэнергии, подаваемой на двигатель переменного тока, с целью управления его скоростью вращения.

Блок-схема для систем, в которых используется двигатель переменного тока

Срок службы двигателя переменного тока

Двигатели переменного тока

Anaheim Automation обычно имеют срок службы около 10 000 часов работы, при условии, что двигатели работают в надлежащих условиях и в соответствии со спецификациями.

Требуемое обслуживание двигателя переменного тока

Профилактическое обслуживание - ключ к долговечной системе электродвигателя переменного тока.Следует проводить плановую проверку. Всегда проверяйте двигатель переменного тока на предмет загрязнения и коррозии. Грязь и мусор могут закупоривать воздушные каналы и уменьшать поток воздуха, что в конечном итоге сокращает срок службы изоляции и возможный отказ двигателя. Если мусор не виден явно, убедитесь, что поток воздуха постоянный и не слабый. Это также может указывать на засорение. Во влажной, влажной или влажной среде проверьте клеммы в распределительной коробке на предмет коррозии и при необходимости отремонтируйте.

Прислушайтесь к чрезмерному шуму или вибрации и почувствуйте чрезмерное нагревание.Это может указывать на необходимость смазки подшипников. Примечание: Будьте осторожны при смазке подшипников, так как чрезмерная смазка может привести к грязи и маслам, забивающим воздушный поток. Обязательно найдите и удалите источник тепла для двигателя, чтобы избежать отказа системы.

Примечание: Будьте осторожны при смазке подшипников, так как чрезмерная смазка может привести к загрязнению и засорению потоком воздуха маслом. Обязательно найдите и удалите источник тепла для двигателя, чтобы избежать отказа системы.

Электропроводка двигателя переменного тока

Следующая информация предназначена в качестве общего руководства для электромонтажа линейки двигателей переменного тока Anaheim Automation. Имейте в виду, что при прокладке силовой и сигнальной проводки на машине или системе излучаемый шум от ближайших реле, трансформаторов и других электронных устройств может индуцироваться в двигателе переменного тока и сигналах энкодера, каналах ввода / вывода и других чувствительных низковольтных устройствах. сигналы. Это может вызвать сбои в системе.

ПРЕДУПРЕЖДЕНИЕ - В системе двигателя переменного тока может присутствовать опасное напряжение, способное вызвать травму или смерть. Соблюдайте особую осторожность при обращении, подключении, тестировании и регулировке во время установки, настройки, настройки и эксплуатации. Не делайте чрезмерных корректировок или изменений в параметрах системы двигателя переменного тока, которые могут вызвать механическую вибрацию и привести к отказу и / или потерям. После того, как система двигателя переменного тока подключена, не включайте / выключайте источник питания напрямую. Частое включение / выключение питания приведет к быстрому старению компонентов системы, что сократит срок службы системы электродвигателя переменного тока.

Строго соблюдать следующие правила:

• Следуйте схеме подключения к каждому двигателю переменного тока и / или контроллеру.
• Прокладывайте силовые кабели высокого напряжения отдельно от силовых кабелей низкого напряжения.
• Отделите входную силовую проводку и силовые кабели двигателя переменного тока от проводки управления и кабелей обратной связи двигателя. Сохраняйте это разделение на всем протяжении провода.
• Используйте экранированный кабель для силовой проводки и обеспечьте заземленный зажим на 360 градусов на стене корпуса.Оставьте на вспомогательной панели место для изгибов проводов.
• Сделайте все кабельные трассы как можно короче.
• Обеспечьте достаточный воздушный поток
• Сохраняйте окружающую среду как можно более чистой

ПРИМЕЧАНИЕ: Кабели заводского изготовления рекомендуются для использования в наших системах двигателей переменного тока. Эти кабели приобретаются отдельно и предназначены для минимизации электромагнитных помех. Эти кабели рекомендуется использовать вместо кабелей, изготовленных заказчиком, чтобы оптимизировать работу системы и обеспечить дополнительную безопасность для системы электродвигателя переменного тока, а также для пользователя.

ПРЕДУПРЕЖДЕНИЕ - Во избежание поражения электрическим током выполните все монтажные и электромонтажные работы двигателя переменного тока перед подачей питания. После подачи питания на соединительные клеммы может присутствовать напряжение.

Крепление двигателя переменного тока

Следующая информация предназначена в качестве общего руководства по установке и монтажу системы электродвигателя переменного тока. ПРЕДУПРЕЖДЕНИЕ - В системе двигателя переменного тока может присутствовать опасное напряжение, способное вызвать травму или смерть.Соблюдайте особую осторожность при обращении, тестировании и регулировке во время установки, настройки и эксплуатации. При установке и монтаже очень важно учитывать проводку двигателя переменного тока. Субпанели, устанавливаемые внутри корпуса для монтажа компонентов системы, должны иметь плоскую жесткую поверхность, защищенную от ударов, вибрации, влаги, масла, паров или пыли. Помните, что двигатель переменного тока выделяет тепло во время работы; поэтому при проектировании компоновки системы следует учитывать рассеивание тепла.Размер корпуса не должен превышать максимально допустимую температуру окружающей среды. Рекомендуется устанавливать двигатель переменного тока в положение, обеспечивающее достаточный воздушный поток. Электродвигатель переменного тока должен быть устойчиво закреплен и надежно закреплен.

ПРИМЕЧАНИЕ: Между электродвигателем переменного тока и любыми другими устройствами, установленными в системе / электрической панели или шкафу, должно быть не менее 10 мм.

Чтобы соответствовать требованиям UL и CE, система электродвигателя переменного тока должна быть заземлена в заземленном проводящем корпусе, обеспечивающем защиту, как определено в стандарте EN 60529 (IEC 529) до IP55, таким образом, чтобы они были недоступны для оператора или неквалифицированного человека. .Как и любую движущуюся часть системы, двигатель переменного тока следует держать вне досягаемости оператора. Корпус NEMA 4X превосходит эти требования, обеспечивая степень защиты IP66. Чтобы улучшить соединение между шиной питания и дополнительной панелью, сконструируйте дополнительную панель из оцинкованной (не содержащей краски) стали. Кроме того, настоятельно рекомендуется защитить систему электродвигателя переменного тока от электрических помех. Шум от сигнальных проводов может вызвать механическую вибрацию и неисправности.

Экологические аспекты двигателя переменного тока

Следующие меры по охране окружающей среды и безопасности должны соблюдаться на всех этапах эксплуатации, обслуживания и ремонта системы электродвигателя переменного тока.Несоблюдение этих мер предосторожности нарушает стандарты безопасности при проектировании, производстве и предполагаемом использовании двигателя переменного тока. Обратите внимание, что даже хорошо построенная система электродвигателя переменного тока, неправильно установленная и эксплуатируемая, может быть опасной. Пользователь должен соблюдать меры предосторожности в отношении нагрузки и условий эксплуатации. В конечном итоге заказчик несет ответственность за правильный выбор, установку и работу двигателя переменного тока и / или регулятора скорости.

Атмосфера, в которой используется двигатель переменного тока, должна способствовать соблюдению общих правил работы с электрическим / электронным оборудованием.Не эксплуатируйте систему электродвигателя переменного тока в присутствии легковоспламеняющихся газов, пыли, масла, пара или влаги. При использовании вне помещений двигатель переменного тока должен быть защищен от атмосферных воздействий соответствующей крышкой, обеспечивая при этом достаточный поток воздуха и охлаждение. Влага может вызвать опасность поражения электрическим током и / или вызвать поломку системы. Следует уделять должное внимание недопущению попадания любых жидкостей и паров. Свяжитесь с заводом-изготовителем, если ваше приложение требует определенных IP-адресов. Разумно устанавливать двигатель переменного тока в среде, свободной от конденсации, электрических шумов, вибрации и ударов.

Кроме того, предпочтительно работать с системой электродвигателя переменного тока в нестатической защитной среде. Открытые цепи всегда должны быть надлежащим образом ограждены и / или закрыты для предотвращения несанкционированного контакта человека с цепями под напряжением. Никакие работы не должны выполняться при включенном питании.

НЕ подключайте и не отключайте питание при включенном питании. После выключения питания подождите не менее 5 минут, прежде чем проводить инспекционные работы в системе двигателя переменного тока, потому что даже после отключения питания в конденсаторах внутренней цепи системы двигателя переменного тока будет оставаться некоторая электрическая энергия.
Спланируйте установку двигателя переменного тока в конструкции системы, свободной от мусора, такого как металлический мусор от резки, сверления, нарезания резьбы и сварки, или любого другого постороннего материала, который может контактировать с схемами системы. Если не предотвратить попадание мусора в систему двигателя переменного тока, это может привести к повреждению и / или поражению электрическим током.

История двигателя переменного тока

Изобретение двигателя переменного тока Асинхронные двигатели
переменного тока используются в отрасли уже более 20 лет.Идея двигателя переменного тока пришла от Николы Теслы в 1880-х годах. Никола Тесла заявил, что двигателям не нужны щетки для переключения ротора. Он сказал, что они могут быть вызваны вращающимся магнитным полем. Никола Тесла обнаружил использование переменного тока, который индуцирует вращающиеся магнитные поля. Тесла подал патент США номер 416194 на работу над двигателем переменного тока. Этот тип двигателя сегодня мы называем асинхронным двигателем переменного тока.

Развитие двигателя переменного тока
Двигатель переменного тока сделал себе имя благодаря простоте конструкции, простоте использования, прочной конструкции и рентабельности для множества различных применений.Достижения в области технологий позволили производителям развить идею Telsa и обеспечили большую гибкость в регулировании скорости асинхронного двигателя переменного тока. От простого фазового управления до более надежных систем с обратной связью, использующих векторно-ориентированное управление полем; Двигатель переменного тока усовершенствовался за последние сто двадцать лет.

Принадлежности для двигателей переменного тока

Для двигателей переменного тока существует широкий выбор принадлежностей. Доступные аксессуары включают тормоз, сцепление, вентилятор, разъем и кабели. Для получения более подробной информации и дополнительных сведений см. Страницу «Аксессуары» Anaheim Automation.

Тормоза двигателя переменного тока представляют собой систему 24 В постоянного тока. Эти тормоза идеально подходят для любых удерживающих устройств, которые вы можете использовать с электродвигателем переменного тока. Тормоза электродвигателя переменного тока имеют низковольтную конструкцию для приложений, которые подвержены разряду батареи, потере энергии или длинной проводке.

Муфта двигателя переменного тока используется для управления крутящим моментом, прилагаемым к нагрузке. Муфту двигателя переменного тока также можно использовать для увеличения скорости нагрузки с высоким моментом инерции.Муфты идеально подходят для использования с электродвигателем переменного тока, когда вы хотите точно контролировать крутящий момент или медленно прикладывать мощность. Муфты электродвигателя переменного тока также помогают предотвратить резкие скачки тока.

Вентиляторы двигателей переменного тока используются для охлаждения двигателей. Обычно они не встречаются в небольших двигателях, потому что они не нужны, но чаще встречаются с более крупными асинхронными двигателями переменного тока из-за тепловыделения. Есть два типа вентиляторов, которые используются для двигателя переменного тока. Типы бывают внутренние и внешние вентиляторы. Вентиляторы электродвигателей переменного тока идеально подходят для использования, когда возникает проблема перегрева.

Кабели двигателя переменного тока могут быть изготовлены по индивидуальному заказу с поставляемым разъемом двигателя переменного тока в соответствии с заданными спецификациями. Кабели также можно приобрести в компании Anaheim Automation.

Если двигатели переменного тока не идеальны для вашего применения, вы можете рассмотреть бесщеточные двигатели постоянного тока, щеточные двигатели постоянного тока, сервоприводы или шаговые двигатели и их совместимые драйверы / контроллеры. Наряду с двигателями переменного тока Anaheim Automation предлагает коробки передач и регуляторы скорости. Дополнительные продукты Anaheim Automation предлагает: энкодеры, HMI, муфты, кабели и соединители, линейные направляющие.

Настройка двигателя переменного тока

Anaheim Automation была основана в 1966 году как производитель систем управления перемещением «под ключ». Его упор на исследования и разработки обеспечил постоянное внедрение передовых продуктов управления движением, таких как линейка продуктов AC Motor. Сегодня Anaheim Automation занимает высокое место среди ведущих производителей и дистрибьюторов продукции для управления движением, и это положение усиливается ее отличной репутацией в области качественной продукции по конкурентоспособным ценам.Линия продуктов AC Motor не является исключением из целей компании.

Anaheim Automation предлагает широкий выбор стандартных двигателей переменного тока. Иногда OEM-заказчики со средним и большим количеством требований предпочитают иметь двигатель переменного тока, который настраивается или модифицируется в соответствии с их точными проектными требованиями. Иногда настройка настолько проста, как модификация вала, тормоз, масляное уплотнение для степени защиты IP65, установочные размеры, цвета проводов или этикетка. В других случаях заказчик может потребовать, чтобы двигатель переменного тока соответствовал идеальным характеристикам, таким как скорость, крутящий момент и / или напряжение.Для получения более подробной информации обсудите требования к вашему приложению с инженером по автоматизации в Анахайме.

Двигатель переменного тока Anaheim Automation

Инженеры

ценят то, что линейка двигателей переменного тока Anaheim Automation может удовлетворить их стремление к творчеству, гибкости и эффективности системы. Покупатели ценят простоту «универсального магазина» и экономию затрат на индивидуальную конструкцию двигателя переменного тока, в то время как инженеры довольны тем, что Anaheim Automation уделяет особое внимание их конкретным системным требованиям.

Стандартная линейка двигателей переменного тока Anaheim Automation представляет собой экономичное решение, поскольку они известны своей прочной конструкцией и отличными характеристиками. Значительный рост продаж компании явился результатом целенаправленного проектирования, дружелюбного обслуживания клиентов и профессиональной поддержки приложений, что часто превосходит ожидания клиентов в отношении выполнения их индивидуальных требований. Хотя значительная часть продаж двигателей переменного тока Anaheim Automation связана с особыми, индивидуальными требованиями или требованиями частной марки, компания гордится своей стандартной складской базой, расположенной в Анахайме, Калифорния, США.Чтобы сделать индивидуальную настройку двигателя переменного тока доступной, требуется минимальное количество и / или плата за непериодическое проектирование (NRE). Свяжитесь с заводом-изготовителем для получения подробной информации, если вам потребуется специальный двигатель переменного тока в конструкции вашей системы управления движением.

Все продажи индивидуализированного или модифицированного двигателя переменного тока не подлежат отмене и возврату, и для каждого запроса клиент должен подписать соглашение NCNR. Все продажи, включая индивидуальный двигатель переменного тока, осуществляются в соответствии со стандартными положениями и условиями Anaheim Automation и заменяют любые другие явно выраженные или подразумеваемые условия, включая, помимо прочего, любые подразумеваемые гарантии.

Anaheim Automation заказывает линейку продуктов AC Motor разнообразно: компании, эксплуатирующие или проектирующие автоматизированное оборудование или процессы, которые включают в себя пищевую, косметическую или медицинскую упаковку, маркировку или требования защиты от несанкционированного вскрытия, сборку, конвейер, погрузочно-разгрузочные работы, робототехнику, специальную киносъемку и т. Д. проекционные эффекты, медицинская диагностика, устройства контроля и безопасности, управление потоком насоса, изготовление металла (станки с ЧПУ) и модернизация оборудования. Многие OEM-заказчики просят, чтобы мы использовали двигатели переменного тока «частной торговой марки», чтобы их клиенты оставались верными им при обслуживании, замене и ремонте.

Тест двигателя переменного тока

Вопрос: Какие три основных типа электродвигателей переменного тока предлагает Anaheim Automation?
A: Индукционные, синхронные и промышленные

Q: Каковы компоненты частотно-регулируемого привода?
A: Частотно-регулируемый привод включает двигатель переменного тока, контроллер и интерфейс оператора.

Q: Какой двигатель обычно используется в частотно-регулируемом приводе?
A: Трехфазный асинхронный двигатель

Q: Каковы основные компоненты двигателя переменного тока?
A: Стационарный статор, который находится снаружи и имеет катушки, на которые подается переменный ток, и внутренний ротор, прикрепленный к выходному валу.

Q: Почему необходимо подключать конденсатор к асинхронному двигателю переменного тока?
A: Любой двигатель ACP-M, который считается однофазным асинхронным двигателем, является двигателем с конденсаторным приводом. Следовательно, для его запуска необходимо создать вращающееся магнитное поле. Конденсаторы создают источник питания с фазовым сдвигом, который необходим для создания необходимого вращательного магнитного поля. С другой стороны, трехфазные двигатели всегда подают питание с разными фазами, поэтому им не нужны конденсаторы.

В: Что подразумевается под реверсивным двигателем, рассчитанным на 30 минут?
A: Двигатель рассчитан на оптимальную работу не более 30 минут. Если работать постоянно, двигатель перегорит.

Часто задаваемые вопросы по двигателям переменного тока:

В: Почему следует выбрать трехфазный двигатель вместо однофазного?
A: Однофазные двигатели переменного тока мощностью более 10 л.с. (7,5 кВт) обычно не так распространены. Трехфазные двигатели менее вибрируют, что продлевает срок их службы по сравнению с однофазными двигателями той же мощности, используемыми в тех же условиях.

В: В чем разница между частотно-регулируемым приводом и частотно-регулируемым приводом?
A: Приводы с переменной частотой (VFD) обычно относятся только к приводам переменного тока, в то время как приводы с регулируемой скоростью (VSD) могут относиться либо к приводу переменного тока, либо к приводу постоянного тока. VFD управляет скоростью двигателя переменного тока, изменяя частоту двигателя. С другой стороны, преобразователи частоты изменяют напряжение для управления двигателем постоянного тока.

Q: Могу ли я изменить направление вращения асинхронного двигателя переменного тока, если я подключил его, как показано в каталоге, например, ACP-M-4IK25N-AU?
A: Да, можно.Однако перед переключением направления убедитесь, что двигатель полностью остановлен. Если требуется немедленное реверсирование, реверсивный двигатель лучше подходит для данной области применения; например ACP-M-4RK25N-AU.

Q: Можно ли изменить скорость асинхронных двигателей переменного тока и реверсивных двигателей?
A: Частота источника питания определяет скорость однофазных (переменного тока) асинхронных и реверсивных двигателей. Если ваше приложение требует изменения скорости, рекомендуется использовать двигатель с регулировкой скорости.

Q: Будет ли временное хранение моего асинхронного двигателя переменного тока при температуре от 0 ° F до -20 ° F создавать какие-либо проблемы?
A: Резкие перепады температуры могут привести к конденсации влаги внутри двигателя. В этом случае компоненты могут заржаветь, что значительно сократит срок службы. Постарайтесь избежать образования конденсата.

В: Это плохо, если мой асинхронный двигатель переменного тока сильно нагревается?
A: При преобразовании электрической энергии во вращательное движение внутри двигателя выделяется тепло, в результате чего он становится горячим.Температура двигателя переменного тока равна повышению температуры, вызванному потерями в двигателе, плюс температура окружающей среды. Если температура окружающей среды составляет 85 ° F, а внутренние потери в двигателе составляют 90 ° F (32 ° C), поверхность двигателя будет 175 ° F (79 ° C). Это не типично для маленького мотора.

В: Почему некоторые редукторы электродвигателя переменного тока выводят выходной сигнал противоположно двигателю, а другие - в том же направлении?
A: Редукторы снижают скорость двигателя от 1/3 до 1/180 (для асинхронных двигателей переменного тока.) Это снижение скорости является результатом использования нескольких передач; количество передач в зависимости от величины снижения скорости. Однако вращение последней шестерни определяет направление выходного вала.

Q: Подействуют ли на асинхронный двигатель переменного тока сильные колебания напряжения источника питания?
A: Напряжение источника питания влияет на крутящий момент, создаваемый двигателем. Крутящий момент примерно в два раза больше напряжения источника питания. Таким образом, при использовании двигателей с большими колебаниями напряжения питания важно помнить, что создаваемый крутящий момент будет изменяться.

Общие сведения о паспортной табличке двигателя и шестеренчатого привода для оценки ирригационного насоса

Опубликовано в мае. 2018 | Id: BAE-1292

От Дивья Ханда, Салех Тагвэян, Р. Скотт Фрейзер

Электрические оросительные насосы широко используются в США.S. В 2013 г. почти 428 000 ирригационные насосы приводились в действие электродвигателями в США (орошение на фермах и ранчо опрос, 2013). Таким образом, существуют значительные возможности для экономии энергии, которые может быть достигнуто за счет повышения производительности оросительных насосных станций. Проведение Исследования энергоаудита помогают оценить эффективность этих систем. Один из Наиболее важные первые шаги - это точная идентификация установленного оборудования.Оригинал примечания по установке или руководства часто теряются, оставляя это на усмотрение энергоаудитора для определения марки, модели и серийных номеров компонентов системы насосной станции. В случае электродвигателей и редукторов паспортные таблички часто остаются нетронутыми. и прикреплены к оборудованию, предоставляя аудитору широкий спектр важной информации для точной оценки эффективности системы.

На рисунке 1 показан полный список различных интересующих параметров шестерни. привод и типичный трехфазный асинхронный двигатель переменного тока. Это самый распространенный мотор встречается в ирригационных системах и большей части промышленности в целом.

Рисунок 1. Общая информация на паспортных табличках корпусов редукторов и двигателей переменного тока.

Базовые знания терминов, перечисленных на паспортной табличке, позволяют аудитору лучше понимать пределы производительности двигателя и редуктора, а также их совокупный КПД.Цель этого информационного бюллетеня - объяснить значение и назначение паспортной таблички. информацию и покажите, как использовать заводскую табличку и измеренную скорость двигателя для расчета двигателя. загрузка.

Информация на паспортной табличке

дает аудитору моментальное представление о нескольких важных эксплуатационные ограничения.Например, если на паспортной табличке двигателя значение тока полной нагрузки (FLA) равно 45 и аудитор измеряет 50, тогда очень вероятно чрезмерное усилие или нагрузка. В качестве альтернативы, если измеряется 15 А на двигателе 45 FLA, двигатель очень недогружен и работает. неэффективно. Значительные отклонения измеренных рабочих уровней от паспортной таблички информация определяет конкретные проблемные области.

Не все производители двигателей наносят всю информацию, приведенную на рис. 1, на паспортную табличку.По мере увеличения федеральных нормативов энергоэффективности двигателей (Закон об энергетической политике) 1975), информация на паспортной табличке стала более полной. Следовательно, старые двигатели могут иметь только основную информацию; и только потому, что паспортная табличка все еще прикреплена к оборудованию не гарантирует его читаемость. При проведении ирригационных аудитов оборудование может быть старым. и обветшалые из-за постоянного воздействия погодных условий.

Обычно есть два способа отображения информации на паспортной табличке. Первый - это штамповка металлическая пластина (рисунок 2). Этот метод обычно предотвращает передачу информации о компонентах. исчезают со временем. Иногда описательное имя, на котором расположены штампованные данные не могут быть прочитаны, но если кто-то знаком с полями данных, легко догадаться, что категория данных.Второй способ - информация нарисована на металле или пластике. пластина приклепана к компоненту. Это становится проблемой со старым оборудованием, потому что Окрашенные данные выцветают под солнечным светом, стираются растворителями или стираются. В этом В этом случае аудитору не с чего начать.

Рисунок 2. Штампованная металлическая табличка.

Заводская табличка электродвигателя

Расшифровка сокращений и терминов на паспортной табличке двигателя приведена ниже:

Номер модели и серийный номер
Модель и серийный номер обычно представляют собой последовательность букв и цифр. от производителя.Наличие только номера модели может помочь аудитору отследить характеристики двигателя, даже если вся остальная информация отсутствует.

Вес двигателя
Вес двигателя должен указываться в фунтах или килограммах. Электродвигатели большего размера (например, 100 л.с.) используемый для орошения, может легко весить 1300 фунтов.

Рейтинг или AMB
AMB означает температуру окружающей среды.Рейтинг или AMB - максимальная температура в помещении. или воздушное пространство, в котором расположен двигатель, и время, когда он может безопасно работать под этими условия. Общий рейтинг 40C-AMB-CONT означает непрерывную работу при 40 C. Срок службы двигателя увеличивается при более низких температурах окружающей среды.

FLA, напряжение и Гц
FLA - это сокращение от номинального тока полной нагрузки.Двигатели предназначены для работы от 50 до 100 процентов их номинальной нагрузки. В FLA двигатель работает на 100 процентов его номинальная нагрузка, а на этикетке указан ток, который он будет потреблять. Многие электрические компоненты как и проводка, автоматический выключатель и стартер рассчитаны на основе FLA.

Большинство электродвигателей предназначены для работы при определенном напряжении.Двигатели могут работать безопасно при ± 10% номинального напряжения. Превышение указанного диапазона может вызвать непоправимый ущерб. Некоторые двигатели предназначены для работы при двойном напряжении, т. Е. 230 В. и 460В, в зависимости от выбранной проводки. Для двигателя с двумя напряжениями питания паспортная табличка информация о проводке для желаемого напряжения должна быть внизу паспортной таблички. (Рисунок 3).

Аббревиатура Hz - это частота в герцах или входном напряжении двигателя.Скорость мотора напрямую зависит от частоты входного напряжения сети. В США 60 Гц - это стандартная частота, в то время как 50 Гц распространены в других местах.

Рисунок 3. Паспортная табличка двигателя с двойным напряжением и схемами подключения высокого и низкого напряжения.

л.с., фаза и об / мин

Выходная мощность в лошадиных силах или л.с. - это мощность двигателя при номинальной нагрузке.Это зависит от киловатты или кВт, требуемые двигателем вместе с КПД, коэффициентом мощности и фактическая нагрузка. В энергоаудитах, проводимых в центральном, северо-западном и Панхандлском регионах. Оклахомы, мощность ирригационных насосов с электродвигателем варьировалась от От 14 до 100. По мере увеличения глубины грунтовых вод (глубины откачки) мощность двигателя увеличивается. требуется. Глубину грунтовых вод легко определить с помощью измерителя уровня воды, затем определите требуемую мощность двигателя.Для получения дополнительной информации о том, как измерить грунтовые воды глубину, см. Информационный бюллетень по расширению кооператива Оклахомы BAE-1538, «Измерение глубины до грунтовых вод в ирригационных колодцах» (Frazier et al., 2017).

Обычно электродвигатели бывают однофазными или трехфазными. Двигатели больше, чем около 30 л.с. обычно трехфазные.Трехфазные двигатели обычно могут быть подключены к различные напряжения и силы тока, описанные выше.

об / мин обозначает число оборотов в минуту и ​​представляет собой скорость вала двигателя при номинальном значении. Нагрузка HP. В зависимости от количества полюсов, частоты, конструкции и скольжения двигателя (описано ниже), частота вращения будет незначительно отличаться для каждого производителя.Для четырехполюсного двигателя, работающего при 60 Гц частота вращения (без нагрузки) составит 1800.

Конструкция, рама и тип
Конструкция классифицирует пусковой крутящий момент двигателя с помощью букв B, C и D для соответствия с нормальным, высоким и очень высоким пусковым моментом соответственно. Асинхронные двигатели переменного тока испытывают высокие пусковые моменты при переходе из состояния покоя в режим FLA RPM.Это связаны с током заторможенного ротора, или LRA, где пусковой ток может составлять от четырех до восьми раз выше, чем FLA на несколько секунд. LRA может иметь отдельную маркировку на паспортной табличке.

Национальная ассоциация производителей электрооборудования (NEMA) определила размеры корпуса. используя комбинацию цифр и букв.Есть две категории размеров кадра. в зависимости от того, какой это двигатель: дробный или интегральный. Дробные размеры включают 42, 48 и 56; тогда как двигатели 140, 180 и больше являются двигателями интегрального типа. Если новый мотор размер рамы отличается от старого мотора, может не поместиться должным образом.

«Тип» относится к категории корпуса двигателя, защищающего обмотки, подшипники, и другие уязвимые части.NEMA перечисляет множество типов корпусов, но наиболее распространенными являются Open Drip Proof или ODP и Totally Enclosed Fan Cooled, или TEFC. Двигатели ODP имеют открытый корпус, поэтому воздух может свободно входить, но жидкости и твердые частицы не могут попасть в двигатель под углом от 0 до 15 градусов. Корпус ODP - это не является водонепроницаемым и лучше подходит для внутреннего применения.

Напротив, корпус двигателя TEFC полностью закрыт и поставляется с внешним охлаждающий вентилятор.Правильный выбор кожуха двигателя очень важен, потому что он должны обеспечивать круглосуточную охрану вне зависимости от ситуации. Двигатели TEFC обычно встречаются на ирригационных участках, потому что они предназначены для работы на открытом воздухе. Корпус TEFC также необходим при наличии взрывоопасных паров.

Сервисный коэффициент
Сервисный коэффициент или SF - это число, которое указывает, насколько сильно может перегрузить двигатель. обрабатывать, не вызывая необратимых повреждений.Например, 1,15 SF означает, что двигатель может быть нагруженным на 15 процентов сверх максимальной номинальной нагрузки в течение короткого времени, пока его внутренняя температура становится чрезмерной. Это означает, что двигатель мощностью 100 л.с. с SF 1,15 может работать. при нагрузке 115 л.с. некоторое время до перегрева. Постоянно работающий двигатель при его SF отрицательно скажется на его эффективности и сократит срок полезного использования.

Номинальный КПД и гарантированный КПД NEMA
КПД двигателя - это отношение производимой выходной механической мощности к входной электрической. мощность.Номинальный КПД NEMA - это средний КПД двигателя, полученный при испытании. представительная группа моторов. Минимальный или гарантированный КПД двигателя позволяет потери до 20 процентов больше номинального КПД. Он учитывает изменение производительности среди моторов. Снижение эффективности приведет к увеличению затрат на перекачку. Со временем, федеральные правила требовали, чтобы новые двигатели были более эффективными. Безопасно предполагаем, что более новые двигатели более эффективны из-за отсутствия деградации и более низкого прошлого стандарты эффективности.Экономический анализ может помочь пользователям решить, подойдет ли новый двигатель. окупить себя в течение срока полезного использования.

PF и максимальное значение KVAR
Все индуктивные устройства в цепи переменного тока имеют номинальный коэффициент мощности или PF. Это отношение активной или реальной мощности к общей мощности (Рисунок 4), а «kVAR» - это количество реактивной мощности, не производящей практической работы.Коэффициент мощности, равный единице, означает реактивную мощность. (кВАр) равно нулю, и двигатель использует всю передаваемую мощность.

КПД двигателя увеличивается с увеличением коэффициента мощности, поскольку двигатель лучше использует подаваемую мощность. Низкий коэффициент мощности (обычно менее 0,80) может привести к снижению коэффициента мощности энергокомпании. на счет за электроэнергию клиента.Недогруженный двигатель может привести к падению коэффициента мощности ниже. чем значение PF, указанное для номинальной нагрузки на паспортной табличке. Фактическая нагрузка двигателя может быть рассчитана с помощью метод, описанный в разделе «Расчет нагрузки двигателя с использованием информации с паспортной таблички».

Рисунок 4. Треугольник коэффициента мощности.

Ct и Vt
Метка Ct означает постоянный крутящий момент, а Vt - переменный крутящий момент.Присутствие аббревиатур на паспортной табличке двигателя указывает на то, что он рассчитан на вариатор. Это важно для клиентов, желающих модернизировать электронные устройства. заезжает на существующие двигатели.

Обязанность, изоляция и код
Обязанность - это продолжительность безопасной работы двигателя.Большинство двигателей работают непрерывно без требующий периода охлаждения. Другие работают с перебоями и требуют периода охлаждения. между циклами включения / выключения. Для двигателей большего размера обычно используется непрерывный режим.
Класс изоляции NEMA описывает способность двигателя работать с максимально допустимыми рабочая температура с течением времени. Рабочая температура складывается из температуры окружающей среды. и повышение температуры двигателя.Обычными дескрипторами класса изоляции являются B, F и H, указывающие температуры 130 C, 155 C и 180 C соответственно, которые выдерживает двигатель.

При полном напряжении пусковой ток при запуске в четыре-восемь раз больше, чем FLA. Буква кода NEMA обозначает величину пускового тока. Дополнительная информация около 15 типов кода NEMA можно найти по адресу: https: // www.engineeringtoolbox.com/locked-rotor-code-d_917.html

Заводская табличка редуктора

Зубчатые передачи играют важную роль в сельскохозяйственной технике. До переменной скорости приводов, изменение ведущей шестерни или передаточного числа шкивов было единственным способом изменить производительность частота вращения вала и крутящий момент. Зубчатые передачи используются не только для передачи и изменения обоих, но и также для изменения ориентации (угла) подачи мощности.Например, угловая передача привод передает мощность от горизонтально установленного двигателя на вертикальный карданный вал турбинного насоса.На шестеренчатых приводах паспортные таблички не так подробны, как на электрических мотор. Рисунки 5 и 6 иллюстрируют этот факт.

Серийный номер (рисунок 5) зубчатой ​​передачи часто выражается комбинацией букв и цифр.Они будут отличаться от компании к компании, в зависимости от тип зубчатой ​​передачи. Буквы S, SH и SL обозначают три разных типа передач. приводы: стандартный привод с полым валом со стандартной осевой нагрузкой, стандартный полый карданный вал с большой осевой нагрузкой и стандартный привод с полым валом с противоположным тяги соответственно.

Рисунок 5. Заводская табличка зубчатой ​​передачи.

Передаточное число
Указанное передаточное число представляет собой отношение входной скорости к выходной скорости шестерни. привод.Соотношение 1: 1 означает, что частота вращения вала двигателя и насоса идентична (Рисунок 6). А 1: 1,5 передаточное число для двигателя, работающего со скоростью 1770 об / мин, означает, что скорость привода насоса будет: 1780 об / мин (1 / 1,5) = 1190 об. / Мин. Скорость вывода важна при определении пригодности конкретного насос для заданного набора условий глубины, расхода и давления.

Рисунок 6.Заводская табличка Gear Drive для передаточного числа 1: 1 (без редуктора).

Технические характеристики масла
Требования к маслу и смазке часто указываются на паспортной табличке зубчатой ​​передачи.Используйте только рекомендованные тип и марку масла. Расход масла, рекомендованный производителем следует соблюдать. Обычно смазка подает капельную систему смазки. Следующий рекомендации производителя предотвратят чрезмерное смазывание, которое приведет к загрязнению грунтовые воды или недостаточное количество масла, ведущее к преждевременному износу.

об / мин
об / мин - рекомендуемые обороты зубчатой ​​передачи в минуту.Скорость вращения редукторный привод пропорционален оборотам присоединенного мотора. Входная частота вращения зубчатая передача должна соответствовать выходной частоте вращения двигателя. Несоответствующий мотор / редукторный привод об / мин (например, 1800 против 3600 об / мин) может привести к преждевременному выходу из строя зубчатой ​​передачи.

Некоторые из дополнительных спецификаций, уникальных для производителя и общих такие требования, как объем масла, часто можно найти на паспортной табличке.

Расчет нагрузки двигателя с использованием данных паспортной таблички

В этом разделе приведен пример использования информации с паспортной таблички для определения двигателя. загрузка или проскальзывание, также известное как расчет проскальзывания. Фактическая эффективность индукции переменного тока двигатель зависит от нагрузки двигателя. Максимальная эффективность достигается при работающем двигателе. около 75 процентов или более от его максимальной номинальной нагрузки.Напротив, реальная эффективность значительно уменьшается, когда нагрузка падает ниже 50 процентов от максимальной номинальной нагрузки (Вызов, М., 1997). Один из самых простых способов определить нагрузку - это вычислить «скольжение». Проскальзывание при полной или расчетной нагрузке - это разница между скоростью при полной нагрузке и скоростью без нагрузки. Скорость при полной нагрузке - это об / мин двигателя при номинальном напряжении и максимальной номинальной нагрузке. Нет скорости загрузки скорость выше, чем при полной нагрузке, потому что сопротивление движению минимальное.Нет загрузки синхронные скорости 3600; 1800; 1200 и 900 об / мин соответствуют 2-, 4-, 6- и Двигатели 8 полюсные соответственно. Скорость холостого хода обратно пропорциональна количеству полюсов. мотора. Чем больше число полюсов, тем меньше обороты. Информация данные об оборотах при полной нагрузке и расчетной мощности указаны на паспортной табличке. Иногда обороты холостого хода не указаны. Однако при полной нагрузке об / мин будет около 1800 или 3600 об. / Мин.Фактическая нагрузка - это отношение истинного скольжения к расчетному. Истинный промах - это разница между синхронными и измеренными оборотами. Тахометр используется для измерения фактическая скорость. Ниже приведен пример расчета нагрузки.

Дано:
об / мин при полной нагрузке (FLRPM) = 1,770
об / мин без нагрузки (NLRPM) = 1,800
Измеренное об / мин = 1,780
Расчетная л.с. = 60

Требуется: Рассчитайте а) расчетное скольжение, б) истинное скольжение, в) процентную нагрузку и г) истинную нагрузку.Решение:

  1. Расчетная квитанция = NLRPM –FLRPM
  2. True Slip = NLRPM - Измеренная частота вращения
  3. Нагрузка
  4. % = Истинное скольжение ÷ Расчетное скольжение = 20 ÷ 30 = 0,67 или 67%
  5. Истинная нагрузка = расчетная л.с. x% нагрузки

В этом конкретном случае двигатель будет работать эффективно, поскольку он загружен выше 50 процентов.

Благодарность
Этот материал основан на работе, выполненной при поддержке Службы охраны природных ресурсов (NRCS), Министерство сельского хозяйства США (USDA), номер 69-3A75-16-013. Финансирование также был предоставлен Службой сельскохозяйственных исследований Министерства сельского хозяйства США под номером 3070-13000-011-47S.Авторы благодарны доктору Дону Стерницке, специалисту по водному хозяйству с Государственному офису NRCS в Оклахоме за ценные комментарии.

Список литературы

Вызов, М. (1997). Определение нагрузки и КПД электродвигателя. Программа Министерство энергетики США.

Закон об энергетической политике (1975 г.). Правила для электродвигателей.

Обследование орошения ферм и ранчо (2013 г.). По состоянию на февраль 2018 г.


Frazier, R.S., Taghvaeian, S., Handa, D. (2017) Измерение глубины грунтовых вод в Ирригационные колодцы.Информационный бюллетень о расширении кооператива Оклахомы BAE-1583.

Дивья Ханда
Ассистент-исследователь

Салех Тагваян
Доцент и специалист по распространению знаний, Водные ресурсы

р.Скотт Фрейзер
Доцент и специалист по распространению знаний,
Энергетический менеджмент

Была ли эта информация полезной?
ДА НЕТ

Кто изобрел асинхронный двигатель

Асинхронный двигатель - одно из важнейших изобретений в современной истории.Он повернул колеса прогресса с новой скоростью и официально положил начало второй промышленной революции, резко повысив эффективность производства энергии и сделав возможным распределение электроэнергии на большие расстояния. Сегодня машины не только включают свет в вашем доме, но и приводят в действие многие механические устройства, которые люди считают само собой разумеющимися, от пылесосов и электрических зубных щеток до стильной Tesla Motors Model S.

. Один из оригинальных электромоторов Tesla 1888 года выпуска. По сей день эта конструкция является основным генератором энергии для промышленности и бытовой техники.Предоставлено: Wikimedia Commons

. Первый асинхронный двигатель был изобретен знаменитым Никола Тесла в 1887 году в его мастерской на улице Либерти, 89 в Нью-Йорке. Говорят, что этот одаренный изобретатель однажды в солнечный день в Будапеште 1882 года увидел свой двигатель переменного тока, читая строфы из «Фауста» Гете.

«В том возрасте я знал наизусть целые книги, слово в слово. Одним из них был «Фауст» Гете. Солнце только что садилось и напомнило мне о великолепном отрывке «Sie ruckt und weicht, der Tag ist uberlebt, Dort eilt sie hin und fordert neues Leben».Oh da kein Flugel mich vom Boden hebt Ihr nach und immer nach zu streben! Ein schöner Traum indessen sie entweicht, Ach, au des Geistes Flügeln wird so leicht Kein körperlicher Flügel sich gesellen! »Когда я произнес эти вдохновляющие слова, идея возникла, как вспышка молнии, и в одно мгновение правда открылась. Я нарисовал палкой на песке схему, показанную шесть лет спустя в моем выступлении перед Американским институтом инженеров-электриков, и мой напарник прекрасно их понял.

Изображения, которые я видел, были удивительно резкими и четкими и имели твердость металла и камня, настолько, что я сказал ему: «Посмотри здесь мой мотор; смотри, как я перевернул это.«Я не могу описать свои эмоции. Пигмалион, увидев, что его статуя оживает, не мог быть более тронутым. Тысячу тайн природы, на которые я мог наткнуться случайно, я отдал бы за ту, которую я вырвал у нее вопреки всему и с риском для моего существования… »

Летом 1883 года, находясь в Париже, Тесла построил свой первый настоящий асинхронный двигатель и увидел, как он работает. Тесла отплыл в Америку в 1884 году и прибыл в Нью-Йорк с четырьмя центами в кармане, несколькими своими стихами и расчетами для летательного аппарата.После нескольких случайных заработков он устроился на работу к Томасу Эдисону, который поручил ему улучшить динамо-машину для его двигателя постоянного тока. Ни Эдисон, ни инвесторы Эдисона не интересовались планами Tesla относительно переменного тока.

Как работает двигатель постоянного тока

В двигателе постоянного тока магнит, который создает магнитное поле, закреплен на месте и образует внешнюю статическую часть двигателя. Это называется статором. Катушка с проволокой подвешена между полюсами магнита и подключена к источнику постоянного тока, например, к батарее.Ток, протекающий через провод, создает временное магнитное поле (это электромагнит), которое отталкивает поле от постоянного магнита, заставляя провод перевернуться.

Обычно провод останавливается после одного поворота и снова переворачивается, однако ключевой компонент, называемый коммутатором, меняет направление тока каждый раз, когда провод переключается. Таким образом, провод может вращаться в одном направлении до тех пор, пока течет ток.

Двигатель постоянного тока был изобретен Майклом Фарадеем в 1820-х годах, а десять лет спустя Уильям Стерджен превратил его в практическое изобретение.

После борьбы с американским изобретателем Тесла покинул лабораторию Эдисона и в 1888 году стал партнером Джорджа Вестингауза, которому он продал патент на технологию многофазного переменного тока Теслы. Их партнерство стало очень прибыльным, и было заключено множество контрактов, в том числе контракт на поставку электроэнергии на Всемирную ярмарку в Чикаго 1893 года.

Однако первый большой прорыв в области двигателей переменного тока произошел, когда в том же году была выбрана конструкция многофазного переменного тока Tesla, чтобы использовать мощность Ниагарского водопада.

С самого детства Тесла мечтал обуздать силу великого чуда природы. В автобиографии «Мои изобретения» он сказал:

«В классе было несколько механических моделей, которые меня заинтересовали и обратили мое внимание на водяные турбины».

После описания великого Ниагарского водопада:

«Я представил в своем воображении большое колесо, которое движется у водопада».

Он объявил своему дяде, что однажды «он поедет в Америку и осуществит этот план.”

Патент США 382 279 на Электромагнитный двигатель выдан Николе Тесле в 1888 году.

Несмотря на пропаганду Эдисона, направленную на дискредитацию Теслы как изобретателя и альтернативного тока как жизнеспособной технологии - такие вещи, как публичные демонстрации, в которых животных жестоко избивали электрическим током, - разработки Теслы последовали. естественный ход прогресса. Поскольку постоянный ток проходит по линиям передачи, накопленное сопротивление в проводах значительно снижает электрическую мощность, подаваемую потребителю.AC, с другой стороны, не несет таких же потерь и может преодолевать большие расстояния с гораздо меньшей потерей потенциала. Напряжение переменного тока также может увеличиваться или уменьшаться с помощью трансформаторов, поэтому электроэнергия может производиться с высокой мощностью на генерирующих станциях, а затем снижаться прямо в точке местного распределения.

Как работает электродвигатель переменного тока

Альтернативный ток меняет свое направление примерно 50 раз в секунду (~ 50 Гц), поэтому электродвигатель требует совершенно иной конструкции, чем электродвигатель постоянного тока.

В двигателе переменного тока статор состоит из кольца пар электромагнитов, которые создают вращающееся магнитное поле. В отличие от двигателя постоянного тока, где мощность передается на внутренний ротор, в двигателе переменного тока мощность подводится к этим электромагнитам, чтобы навести поле. Гениальный трюк состоит в том, чтобы подавать питание на электромагниты попарно. Когда одна пара полностью активна, другая полностью отключается.

Когда катушки находятся под напряжением, они создают магнитное поле, которое индуцирует электрический ток в роторе, который является электрическим проводником согласно закону Фарадея.Новый ток создает собственное магнитное поле, которое пытается противодействовать полю, в первую очередь создавшему его, согласно закону Ленца. Эта игра в ловушку между двумя магнитными полями и есть то, что в конечном итоге вращает ротор.

В ХХ веке распределение электроэнергии во всем мире резко расширилось. В первом десятилетии века, например, большой считался энергоблок мощностью 25 000 киловатт. Но к 1930 году самая большая установка в Соединенных Штатах имела мощность 208 000 киловатт, а давление превышало 1 200 фунтов на квадратный дюйм.Из-за экономии на масштабе цена за киловатт-час электроэнергии резко упала, что в конечном итоге помогло электрифицировать всю страну. И с таким количеством энергии в нашем распоряжении неожиданно мир был готов к технологическому расцвету.

Асинхронный двигатель

против синхронного: в чем разница?

Все вращающиеся электродвигатели переменного и постоянного тока работают за счет взаимодействия двух магнитных полей.Один из них стационарный и (обычно) связан с внешним кожухом двигателя. Другой вращается и связан с вращающимся якорем двигателя (также называемым его ротором). Вращение вызвано взаимодействием двух полей.

В простом двигателе постоянного тока есть вращающееся магнитное поле, полярность которого меняется каждые пол-оборота с помощью комбинации щеточного коммутатора. Щетки - в основном проводящие углеродные стержни, которые касаются проводов на роторе при их вращении - также служат для подачи электрического тока во вращающийся якорь.В бесщеточном двигателе постоянного тока ситуация несколько иная. Вращающееся поле все еще меняется на противоположное, но посредством коммутации, которая происходит в электронном виде.

Асинхронный двигатель обладает уникальным качеством, заключающимся в отсутствии электрического соединения между неподвижной и вращающейся обмотками. Сетевой переменный ток подается на клеммы двигателя и питает неподвижные обмотки.

Все асинхронные двигатели являются асинхронными двигателями. Асинхронное название возникает из-за разницы между скоростью вращения поля статора и несколько меньшей скоростью ротора.

Ротор с короткозамкнутым ротором от асинхронного двигателя. Этот пример взят из небольшого вентилятора.

Большинство современных асинхронных двигателей имеют ротор в виде беличьей клетки. Цилиндрическая беличья клетка состоит из тяжелых медных, алюминиевых или латунных стержней, вставленных в канавки и соединенных с обоих концов токопроводящими кольцами, которые электрически замыкают стержни вместе. Твердый сердечник ротора состоит из пакетов листов электротехнической стали.

Также можно найти асинхронные двигатели, содержащие роторы, состоящие из обмоток, а не из короткозамкнутого ротора.Это асинхронные двигатели с фазным ротором. Смысл конструкции состоит в том, чтобы обеспечить средство уменьшения тока ротора, когда двигатель впервые начинает вращаться. Обычно это достигается путем последовательного подключения каждой обмотки ротора к резистору. Обмотки получают ток через некое контактное кольцо. Как только ротор достигает конечной скорости, полюса ротора замыкаются на короткое замыкание, таким образом, электрически становятся такими же, как у ротора с короткозамкнутым ротором.

Стационарная часть обмоток асинхронного двигателя (статор) подключается к источнику переменного тока.Подача напряжения на статор вызывает прохождение переменного тока в обмотках статора. Прохождение тока индуцирует магнитное поле, которое воздействует на ротор, создавая напряжение и ток в элементах ротора.

Северный полюс статора индуцирует южный полюс ротора. Но положение полюса статора меняется при изменении амплитуды и полярности переменного напряжения. Индуцированный полюс в роторе пытается следовать за вращающимся полюсом статора. Однако закон Фарадея гласит, что электродвижущая сила генерируется, когда петля из проволоки перемещается из области с низкой напряженностью магнитного поля в область с высокой напряженностью магнитного поля, и наоборот.Если бы ротор точно следовал за движущимся полюсом статора, напряженность магнитного поля не изменилась бы. Таким образом, ротор всегда отстает от вращения поля статора, потому что поле ротора всегда на некоторую величину отстает от поля статора. Это отставание заставляет ротор вращаться со скоростью, несколько меньшей, чем скорость поля статора. Разница между ними называется скольжением.

Размер скольжения может быть разным. Это зависит, главным образом, от нагрузки двигателя, но также зависит от сопротивления цепи ротора и напряженности поля, создаваемого магнитным потоком статора.Скольжение в двигателе конструкции B составляет от 0,5% до 5%.

Когда двигатель остановлен, обмотки ротора и статора фактически являются первичной и вторичной обмотками трансформатора. Когда к статору изначально подается переменный ток, ротор не движется. Таким образом, индуцированное в роторе напряжение имеет ту же частоту, что и на статоре. Когда ротор начинает вращаться, частота индуцируемого в нем напряжения f r падает. Если f - частота напряжения статора, то скольжение s связывает их через f r = sf.Здесь s выражается в виде десятичной дроби.

Поскольку асинхронный двигатель не имеет щеток, коллектора или подобных движущихся частей, его производство и обслуживание дешевле, чем другие типы двигателей.

Для сравнения, рассмотрим синхронный двигатель. Здесь ротор вращается с той же скоростью, то есть синхронно, с магнитным полем статора. Как и асинхронный двигатель, синхронный двигатель переменного тока также содержит статор и ротор. Обмотки статора также подключаются к сети переменного тока, как в асинхронном двигателе.Магнитное поле статора вращается синхронно с частотой сети.

Обмотка ротора синхронного двигателя может получать ток разными способами, но обычно не за счет индукции (за исключением некоторых конструкций, только для обеспечения пускового момента). Тот факт, что ротор вращается синхронно с частотой сети переменного тока, делает синхронный двигатель полезным для управления высокоточными часами.

Следует подчеркнуть, что ротор синхронного двигателя переменного тока вращается синхронно с целым числом циклов переменного тока.Это не то же самое, что сказать, что он вращается со скоростью, равной частоте сети. Частота вращения ротора двигателя, то есть синхронная скорость N, составляет:

N = 120 футов / P = 60 кадров

Где f - частота сети переменного тока в Гц, P - количество полюсов (на фазу), а p - количество пар полюсов на фазу.

Соответственно, чем больше полюсов, тем медленнее вращается синхронный двигатель. При равной мощности дороже построить более медленный двигатель. При 60 Гц:

  • Двухполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 3600 об / мин.
  • Четырехполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 1800 об / мин.
  • Шестиполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 1200 об / мин.
  • Восьмиполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 900 об / мин
  • Десятиполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 720 об / мин.
  • Двенадцатиполюсный / фазный синхронный двигатель переменного тока вращается со скоростью 600 об / мин.
Промышленный синхронный двигатель. Синхронные двигатели переменного тока

малой мощности полезны там, где требуется точное время.Синхронные двигатели переменного тока высокой мощности, хотя и более дорогие, чем трехфазные асинхронные двигатели, обладают двумя дополнительными качествами. Несмотря на более высокую начальную стоимость, они могут окупиться в долгосрочной перспективе, поскольку они более энергоэффективны, чем другие типы двигателей. Во-вторых, иногда одновременно, они могут работать с опережающим или единичным коэффициентом мощности, поэтому один или несколько синхронных двигателей переменного тока могут обеспечивать коррекцию коэффициента мощности, а также выполнять полезную работу.

Существует несколько различных типов синхронных двигателей переменного тока.Их обычно классифицируют по способам создания магнитного поля. Двигатели с независимым возбуждением имеют магнитные полюса, питаемые от внешнего источника. Напротив, магнитные полюса возбуждаются самим двигателем в самовозбуждаемой (также иногда называемой невозбужденной и непосредственно возбужденной) машине. Типы без возбуждения включают реактивные двигатели, двигатели с гистерезисом и двигатели с постоянными магнитами. Кроме того, существуют двигатели с возбуждением постоянным током.

Синхронные двигатели без возбуждения имеют стальные роторы.В процессе работы ротор намагничивается необходимыми магнитными полюсами аналогично тому, как это происходит в асинхронном двигателе. Но ротор вращается с той же скоростью и синхронно с вращающимся магнитным полем статора. Причина в том, что в роторе есть прорези. Двигатели запускаются как асинхронные. Когда они приближаются к синхронной скорости, прорези позволяют синхронному магнитному полю фиксироваться на роторе. Затем двигатель вращается с синхронной скоростью до тех пор, пока требуемый крутящий момент низкий.

В реактивном электродвигателе ротор имеет выступающие полюса, напоминающие отдельные зубцы.Ротора меньше, чем полюсов статора, что препятствует совмещению полюсов статора и ротора, и в этом случае вращения не будет. Реактивные двигатели не запускаются автоматически. По этой причине в ротор часто встраиваются специальные обмотки (так называемые обмотки с короткозамкнутым ротором), поэтому реактивный двигатель запускается как асинхронный.

В двигателе с гистерезисом используется широкая петля гистерезиса в высококоэрцитивном роторе из кобальтовой стали. Из-за гистерезиса фаза намагничивания в роторе отстает от фазы вращающегося магнитного поля статора.Эта задержка создает крутящий момент. При синхронной скорости поля ротора и статора блокируются для обеспечения непрерывного вращения. Одним из преимуществ гистерезисного двигателя является то, что он самозапускается.

Синхронный двигатель переменного тока с постоянными магнитами имеет постоянные магниты, встроенные в ротор. Последние лифты приводятся в действие этими двигателями, и коробка передач не требуется.

Пример двигателя с постоянными магнитами с электронной коммутацией, в данном случае от небольшого воздушного вентилятора. Этот стиль называется аутраннером, потому что ротор находится вне статора и встроен в лопасти вентилятора.Это четырехполюсный двигатель, о чем свидетельствуют четыре обмотки статора (внизу). Также виден датчик Холла, который обеспечивает часть электронной коммутации.

Синхронный двигатель с прямым возбуждением может называться различными именами, включая ECPM (постоянный магнит с электронной коммутацией), BLDC (бесщеточный двигатель постоянного тока) или просто бесщеточный двигатель с постоянным магнитом. Ротор содержит постоянные магниты. Магниты могут устанавливаться на поверхности ротора или вставляться в узел ротора (в этом случае двигатель называется внутренним двигателем с постоянными магнитами).

Пример того, как на катушки двигателя постоянного тока подается питание в последовательности, которая приводит в движение ротор.

Компьютер управляет последовательным включением питания обмоток статора в нужное время с помощью твердотельных переключателей. Питание подается на катушки, намотанные на зубья статора, и если выступающий полюс ротора идеально совмещен с зубом статора, крутящий момент не создается. Если зуб ротора находится под некоторым углом к ​​зубу статора, по крайней мере некоторый магнитный поток пересекает зазор под углом, не перпендикулярным поверхностям зуба.В результате возникает крутящий момент на роторе. Таким образом, переключение мощности на обмотки статора в нужное время вызывает структуру магнитного потока, которая приводит к движению либо по часовой стрелке, либо против часовой стрелки.

Еще один тип синхронного двигателя - это реактивный двигатель с регулируемым сопротивлением (SR).
Его ротор состоит из уложенных друг на друга стальных пластин с рядом зубцов. Зубы магнитопроницаемы, а окружающие их области слабо проницаемы из-за прорезанных в них пазов.

В отличие от асинхронных двигателей, здесь нет стержней ротора, и, следовательно, в роторе отсутствует ток, создающий крутящий момент.Отсутствие проводов какой-либо формы на роторе SR означает, что общие потери в роторе значительно ниже, чем в других двигателях, в которых роторы имеют проводники.

Крутящий момент, создаваемый двигателем SR, регулируется путем регулировки величины тока в электромагнитах статора. Затем скорость регулируется путем регулирования крутящего момента (через ток в обмотке). Этот метод аналогичен способу регулирования скорости с помощью тока якоря в традиционном щеточном двигателе постоянного тока.

Двигатель SR создает крутящий момент, пропорциональный величине тока, подаваемого на его обмотки.На производство крутящего момента не влияет скорость двигателя. Это отличается от асинхронных двигателей переменного тока, в которых при высоких скоростях вращения в области ослабления поля ток ротора все больше отстает от вращающегося поля по мере увеличения числа оборотов двигателя.

И, наконец, синхронный двигатель переменного тока с возбуждением постоянным током. Для создания магнитного поля требуется выпрямленный источник питания. Эти двигатели обычно имеют мощность, превышающую одну лошадиную силу.

.