Как узнать мощность тэна зная сопротивление: Как рассчитать мощность нагревателя — Дальтэн производство и продажа электронагревательных элементов

Содержание

Как определить сопротивление тэна | Магнитогорск

В каких случаях нужно определять сопротивление ТЭНа, технология проверки трубчатого электронагревателя. Как использовать мультиметр, способы проверки работоспособности нагревательного элемента без тестера.

Причин неполадок электроприборов, в которых установлены трубчатые электронагреватели, довольно много. И не всегда это выход из строя ТЭНа. Чтобы исключить этот вариант, может потребоваться его тестирование при помощи специального прибора – мультиметра.

Когда может потребоваться определение сопротивления ТЭНа

Знать, как измерить сопротивление ТЭНа, потребуется во многих случаях. Обычно – если бытовое устройство, которое использует ТЭН, начало функционировать неверно. В частности, тревожными симптомами могут быть:

  • Отказ устройства включаться;
  • Нарушение температурного режима работы устройства;
  • Слишком сильное и быстрое нагревание;
  • Появление искр или даже дыма;
  • Так называемый «пробой» на корпус, а также неисправности иного рода.

Не обязательно они связаны с выходом из строя ТЭНа: причины могут быть самыми разными. Поэтому не будет лишним знать, как проверить сопротивление ТЭНа.

Если вдруг бытовое оборудование стало вести себя подозрительно, необходимо немедленно отключить его от электросети и приступить к диагностике возможных неполадок.

Что нужно выполнить перед проверкой

Перед тем, как измерить сопротивление ТЭНа мультиметром, можно рассчитать значение его сопротивления на бумаге. Для этого потребуется определить мощность устройства. Как правило, данный параметр указан в эксплуатационном паспорте. В крайнем случае можно всегда просмотреть нужную информацию на сайте производителя или поискать данные в Интернете.

Зная значение мощности, нужно сначала рассчитать протекающий через нагреватель ток. Любой, кто знаком со школьным курсом физики за 8 класс, ответит, что сила тока в данном случае будет равна отношению мощности к напряжению (обычно это 220 вольт):

I=P/U, Ампер

После этого можно будет по Закону Ома (все тот же 8 класс физики) высчитать и значение сопротивления – разделив напряжение на силу тока:

R=U/I, Ом

Как вариант – воспользоваться другой формулой:

R=U²/P, Ом

В качестве примера: перед тем, как определить сопротивление ТЭНа рассчитывается его теоретический показатель при мощности в 2 киловатта (2 000 ватт) при стандартном напряжении в 220 вольт:

R=(220 В)²/2 000 Вт = 24.2 Ом.

Это и будет искомое теоретическое сопротивление. Часто мастера и электрики, тестируя ТЭН мультиметром, просто придерживаются показателей в промежутке между 20 и 30 омами. Это будет не совсем верно: все-таки, чем точнее измеренный показатель будет совпадать с теоретическим, тем лучше.

Технология проверки ТЭНа

Перед тем как проверить сопротивление ТЭНа, устройство необходимо отключить от электропитания. Это обязательно! При необходимости, пользуясь специальными инструкциями, ТЭН извлекается из своего посадочного гнезда в приборе. Как это сделать – зависит от каждого конкретного устройства и его модели, а также от производителя.

После того как ТЭН извлечен и отсоединен от проводов, нужно включить мультиметр в режиме замера сопротивления и выставить диапазон до 200 Ом. Щупами устройства нужно прикоснуться к выводным контактам ТЭНа.

Использование измерительного прибора

Собственно, это и есть проверка сопротивления ТЭНа. Мультиметр может показать разные значения. Возможно три варианта развития событий:

  • На дисплее показывается точно такое же значение, какое было рассчитано выше, по формуле. Если это так – ТЭН исправен, причина неполадки бытового прибора кроется в чем-то ином;
  • Дисплей показывает нулевое значение. Пользоваться таким ТЭНом категорически запрещается! Ноль свидетельствует о наличии короткого замыкания. Поможет лишь замена нагревателя;
  • Если высвечивается значение – единица или знак бесконечности, то где-то в цепи имеет место разрыв. Например, произошло механическое разрушение ТЭНа. Соответственно, его также потребуется заменить.

Кроме как измерить сопротивление ТЭНа мультиметром, можно проверить, нет ли утечки тока. Чтобы это сделать, мультиметр переводится в режим зуммирования, после чего один из его щупов подводится к контакту вывода, а другой – к корпусу ТЭНа. Если зуммер издал сигнал – имеет место пробой. В этом случае нагреватель также подлежит замене.

Можно провести проверку сопротивления изоляционного слоя ТЭНа при помощи мегаомметра. Чтобы это сделать, на приборе выставляется диапазон до 500 В. Один из щупов подводится к выводному контакту ТЭНа, а другой – к корпусу прибора. Считается нормальным показание от 0.5 Ома.

Перед тем, как определить сопротивление ТЭНа посредством прозвона, нужно его внимательно осмотреть. На нем не должно присутствовать механических повреждений. Причиной неисправности может стать накипь. В случае с явными повреждениями – вздутие, трещины (пусть и самые незначительные), сколы и т.д. – ТЭН просто подлежит замене. Можно даже не проводить никаких замеров. Накипь устраняется через вымачивание в течение двух суток элемента в растворе уксуса или лимонной кислоты.

Утечка тока на корпус

Бывает и так, что с течением времени изоляционный слой ТЭНа изнашивается. При этом наблюдается так называемая утечка тока на корпус оборудования. Определить это можно уже описанным выше способом – посредством мегаомметра.

Если в доме стоит УЗО, то из-за износа изоляционного слоя автоматика может отключаться. Происходит это при достижении половины значения от номинального отключающего дифференциального тока. Мультиметром определить этот факт будет невозможно, поскольку у него отсутствует короткое замыкание на корпус.

Проверка ТЭНа без мультиметра

Если под рукой нет мультиметра, бывалый мастер может провести проверку нагревателя на предмет обрыва и без него. Для этого потребуется контрольная лампа электрика. Ее можно изготовить самому, но лучше приобрести заводской прибор.

Для проверки нужно один контакт ТЭНа подать на ноль от сети, а другой – фазу через контрольную лампу. Если лампочка загорелась – обрыва в цепи нет. Минус этого способа в том, что полноценная проверка сопротивления ТЭНа таким образом невозможна, однако проконтролировать целостность цепи все-таки получится.

Аналогичными способами можно выполнять проверку ТЭНа во многих электроприборах – начиная от посудомоечной машины, заканчивая обогревателями и электрическими чайниками.

Советы по поводу того, как продлить срок службы ТЭНа

В заключение – немного о том, как продлить срок работы ТЭНа. Нет ничего приятного в том, когда выходит из строя водонагревательное устройство в бытовой технике. Однако существуют некоторые рекомендации, которые позволят отодвинуть это неприятное событие:

  • Необходимо своевременно проводить замену магниевого анода, который защищает ТЭН;
  • Самым главным требованием является использование как можно более качественной воды. При необходимости следует установить на водопровод фильтрующие устройства;
  • Не повредит минимум один раз в год осматривать ТЭН на предмет целостности и образования на нем накипи;
  • Если требуется проводить замену деталей, лучше всего использовать оригинальные комплектующие.

Не нужно без крайней необходимости задавать максимальный нагрев воды в устройстве. Обычно производитель указывает оптимальный температурный режим его работы. Это позволит сэкономить электричество и продлить срок работы ТЭНа.

Ничего особенно сложного в том, как измерить сопротивление ТЭНа, нет. Но только в том случае, если есть полная уверенность в правильности проводимых операций. В противном случае лучшим выходом будет обратиться за помощью к специалисту.

Как проверять тен на исправность мультиметром

В основе многих бытовых и промышленных приборов применяется трубчатый электрический нагреватель, сокращенно ТЭН. Это керамическая, стеклянная или металлическая трубка со спиралью, разогреваемой электрическим током. Внутри трубка заполнена электроизолирующим и теплопроводным материалом. Причиной выхода из строя нагревательного прибора часто является поломка нагревателя. Как быстро проверить ТЭН на исправность измерительным прибором мультиметром рассказано в этой статье.

В каких приборах используется ТЭН и как он работает

Диапазон применения ТЭН очень широк. Жизнь современного человека требует использования разнообразной техники, помогающей экономить время, делающей жизнь удобной и комфортной. Стиральная и посудомоечная машины, электроплиты и духовые шкафы, электробойлеры. Утюги, чайники и кипятильники. Теплые полы. Вот далеко не полный перечень техники бытового назначения, в которой используются электрические нагреватели. Это не считая невообразимо больше количество приборов, которые используются промышленностью.

Вне зависимости от внешнего вида и модели все ТЭНы имеют одинаковые устройство и принцип работы и конструкцию.

При прохождении электрического тока по спирали трубчатого электронагревателя она очень сильно разогревается. Наполнитель трубки, которая является корпусом, защищает от поражения электротоком и эффективно передает полученное тепло окружающей среде, обеспечивая ее достаточный нагрев. Для обеспечения безопасности и повышения комфортности использования многие электрические нагреватели защищены от перегрева с помощью термодатчика отключающего их при достижении заданной температуры и включенные в цепь питания прибора последовательно с нагревательным элементом.

Умение правильно пользоваться мультиметром при проверке работоспособности и ремонте поможет в определении неисправности.

Как проверить ТЭН мультиметром

Обязательно все работы по выявлению неисправности необходимо проводить на отключенном от электропитания приборе. Невыполнение этого требования может привести к поражению электрическим током и повлечь получение травмы с нарушением здоровья. Для того чтобы прозвонить ТЭН на работоспособность, необходимо знать номинально значение электрического сопротивления (R) конкретного нагревателя. Его легко посчитать применяя элементарную формулу из закона Ома. Зная величину напряжения питания (U) и потребляемую прибором из сети мощность (P), по формуле R=U в квадрате/P. Например прибор питается от сети 220 В, мощность его равна 1,5 кВт (1500 Вт). Тогда сопротивление ТЭН равно  220 в квадрате деленное на 1500 и составляет 32,27 Ом. Для практического применения принимаем значение электрического сопротивления нагревательной спирали около 30-35 Ом.

Чтобы проверить ТЭН на целостность действуем в такой последовательности. Убедившись, что устройство отключено от питания разбираем его, для получения свободного доступа к выводам ТЭН, и отключаем их от остальной части прибора, предварительно промаркировав провода.

Маркировка позволит обеспечить правильность подключения при обратной сборке.

Установив на мультиметре необходимый диапазон измерений сопротивления, соединяем щупы с контактами нагревателя.

Показания тестера в районе расчетной цифры (30-35 Ом для приведенного примера) однозначно говорят об отсутствии обрыва или замыкания спирали. Если ТЭН многоконтактный нужно поочередно проверить целостность каждой части спирали, попарно касаясь всех выводов.

Далее нужно убедиться в том, что в процессе эксплуатации не нарушилась изоляция наполнителя трубки и померить ее на пробой. Для этого выбираем режим измерения сопротивления на максимально большом пределе. Установив один щуп на металлическом корпусе, вторым поочередно касаемся всех выводов нагревателя.

Если прибор показывает любое сопротивление ТЭН, значит, имеется серьезная неисправность, требующая замены нагревателя. Дальнейшая эксплуатация может нанести опасна для здоровья.

Как проверить термодатчик водонагревателя

В бойлере конструктивно предусмотрено наличие термореле, устройства отключающего водонагреватель, когда вода нагреется до нужной температуры. После того как вода немножко остынет, бойлер обеспечивает повторное включение на нагрев. Предварительно необходимо проверить ТЭН, убедившись в его исправности. Извлечь терморегулятор из корпуса бойлера, и отсоединить провода. Включив режим прозвонки или измерения минимального сопротивления, одним щупом мультиметра становимся на любую клемму, а вторым дотрагиваемся к оставшейся.

Прибор должен показать наличие контакта между клеммами.

Для проверки работоспособности регулятора нужно к его контактам подсоединить мультиметр. Убедившись по прибору в наличии исправной цепи опустить стержень регулятора в емкость с очень горячей водой. Щелчок контактов и обрыв цепи по мультиметру укажут на срабатывание термодатчика. При извлечении из горячей воды  и остывании датчик должен щелкнуть еще раз и цепь восстановится, что однозначно укажет на исправность.

Водонагреватель питается от сети напряжением 220 В, поэтому, как и при проверке трубки ТЭНа, необходимо проверить датчик на пробой. Для этого проверяем отсутствие контакта любых клемм с металлическими элементами крепления датчика к корпусу.

Как проверить ТЭН стиральной машинки

Проверить ТЭН и термодатчик стиральной машины можно используя уже описанные способы электрической проверки, не забывая об обязательном отключении от сети напряжения 220 В.

Сняв стенку машинки, за которой находится нагреватель, отсоединяем провода и при необходимости извлекаем его из корпуса. Чтобы не перепутать провода предварительно промаркируйте или сфотографируйте их первоначальное расположение. Затем нужно прозвонить ТЭН стиральной машины на целостность спирали и отсутствие пробоя используя соответствующие режимы измерения..

Датчик температуры стиральной машины в зависимости от модели может быть разной конструкции и иметь разные способы проверки.

Методы проверки других приборов

Проверка других устройств, использующих ТЭН, не имеет принципиальных отличий в методах и способах применяемых при их ремонте.

Как узнать сколько киловатт тен — MOREREMONTA

При помощи данного онлайн-калькулятора Вы сможете рассчитать мощность ТЭНа для нагрева заданного объёма воды до необходимой температуры за определённое время. Калькуляция производится без учёта потерь тепла из-за конструктивных особенностей ёмкости водонагревателя, состояния греющей поверхности нагревающего элемента, температуры окружающей среды и т.д.

Для расчёта мощности ТЭНа введите необходимые значения в поля формы ниже и нажмите кнопку "Рассчитать".

*В поле "Начальная температура воды" вводится температура воды из системы водоснабжения, в зимнее время она обычно равна 5-10, летом в интервале от 12 до 18 градусов.

*Ознакомиться с товарными предложениями ТЭНов Вы можете в рубрике Трубчатые электронагреватели Маркета.

Оптимальным источником энергии, для нагрева испарительной емкости, является квартирная электрическая сеть, напряжением 220 В. Можно просто использовать для этих целей бытовую электроплиту. Но, при нагреве на электроплите, много энергии расходуется на бесполезный нагрев самой плиты, а также излучается во внешнюю среду, от нагревательного элемента, не совершая при этом, полезной работы. Эта, понапрасну затрачиваемая энергия, может достигать приличных значений — до 30-50 %, от общей затраченной мощности на нагрев куба. Поэтому использование обычных электроплит, является нерациональным с точки зрения экономии. Ведь за каждый лишний киловатт энергии, приходится платить. Наиболее эффективно использовать врезанные в испарительную емкость эл. ТЭНы. При таком исполнении, вся энергия расходуется только на нагрев куба + излучение от его стенок вовне. Стенки куба, для уменьшения тепловых потерь, необходимо теплоизолировать. Ведь затраты на излучение тепла, от стенок самого куба могут так же, составлять до 20 и более процентов, от всей затрачиваемой мощности, в зависимости от его размеров. Для использования в качестве нагревательных элементов врезанных в емкость, вполне подходят ТЭНы, от бытовых эл.чайников, или другие подходящие по размерам. Мощность таких ТЭНов, бывает разная. Наиболее часто применяются ТЭНы с выбитой на корпусе мощностью 1.0 кВт и 1.25 кВт. Но есть и другие.

Поэтому мощность 1-го ТЭНа, может не соответствовать по параметрам, для нагрева куба и быть больше или меньше. В таких случаях, для получения необходимой мощности нагрева, можно использовать несколько ТЭНов, соединенных последовательно или последовательно-параллельно. Коммутируя различные комбинации соединения ТЭНов, переключателем от бытовой эл. плиты, можно получать различную мощность. Например имея восемь врезанных ТЭНов, по 1.25 кВт каждый, в зависимости от комбинации включения, можно получить следующую мощность.

Такого диапазона вполне хватит для регулировки и поддержания нужной температуры при перегонке и ректификации. Но можно получить и иную мощность, добавив количество режимов переключения и используя различные комбинации включения.

Последовательное соединение 2-х ТЭНов по 1.25 кВт и подключение их к сети 220В, в сумме дает 625 Вт. Параллельное соединение, в сумме дает 2.5 кВт.

Рассчитать можно по следующей формуле.

Мы знаем напряжение, действующее в сети, это 220В. Далее мы так же знаем мощность ТЭН, выбитую на его поверхности допустим это 1,25 кВт, значит, нам нужно узнать силу тока, протекающую в этой цепи. Силу тока, зная напряжение и мощность, узнаем из следующей формулы.

Сила тока = мощность, деленная на напряжение в сети.

Записывается она так: I = P / U.

Где I — сила тока в амперах.

P — мощность в ваттах.

U — напряжение в вольтах.

При подсчете нужно мощность, указанную на корпусе ТЭН в кВт, перевести в ватты.

1,25 кВт = 1250Вт. Подставляем известные значения в эту формулу и получаем силу тока.

I = 1250Вт / 220 = 5,681 А

Далее зная силу тока подсчитываем сопротивление ТЭНа, по следующей формуле.

R = U / I, где

R — сопротивление в Омах

U — напряжение в вольтах

I — сила тока в амперах

Подставляем известные значения в формулу и узнаем сопротивление 1 ТЭНа.

R = 220 / 5.681 = 38,725 Ом.

Далее подсчитываем общее сопротивление всех последовательно соединенных ТЭНов. Общее сопротивление равно сумме всех сопротивлений, соединенных последовательно ТЭНов

Rобщ = R1+ R2 + R3 и т.д.

Таким образом, два последовательно соединенных ТЭНа, имеют сопротивление равное 77,45 Ом. Теперь нетрудно подсчитать мощность выделяемую этими двумя ТЭНами.

P = U 2 / R где,

P — мощность в ваттах

U 2 — напряжение в квадрате, в вольтах

R — общее сопротивление всех посл. соед. ТЭНов

P = 624,919 Вт, округляем до значения 625 Вт.

Далее при необходимости можно подсчитать мощность любого количества последовательно соединенных ТЭНов, или ориентироваться на таблицу.

В таблице 1.1 приведены значения для последовательного соединения ТЭНов.

Кол-во ТЭН Мощность (Вт) Сопротивление (Ом) Напряжение (В) Сила тока (А)
1 1250,000 38,725 220 5,68
Последовательное соединение
2 625 2 ТЭН = 77,45 220 2,84
3 416 3 ТЭН =1 16,175 220 1,89
4 312 4 ТЭН=154,9 220 1,42
5 250 5 ТЭН=193,625 220 1,13
6 208 6 ТЭН=232,35 220 0,94
7 178 7 ТЭН=271,075 220 0,81
8 156 8 ТЭН=309,8 220 0,71

В таблице 1.2 приведены значения для параллельного соединения ТЭНов.

Кол-во ТЭН Мощность (Вт) Сопротивление (Ом) Напряжение (В) Сила тока (А)
Параллельное соединение
2 2500 2 ТЭН=19,3625 220 11,36
3 3750 3 ТЭН=12,9083 220 17,04
4 5000 4 ТЭН=9,68125 220 22,72
5 6250 5 ТЭН=7,7450 220 28,40
6 7500 6 ТЭН=6,45415 220 34,08
7 8750 7 ТЭН=5,5321 220 39,76
8 10000 8 ТЭН=4,840 220 45,45

Еще один немаловажный плюс, который дает последовательное соединение ТЭНов, это уменьшенный в несколько раз протекающий через них ток, и соответственно малый нагрев корпуса нагревательного элемента, тем самым не допускается пригорание браги во время перегонки и не привносит неприятного дополнительного вкуса и запаха в конечный продукт. Так же ресурс работы ТЭНов, при таком включении, будет практически вечным.

Расчеты выполнены для ТЭНов, мощностью 1.25 кВт. Для ТЭНов другой мощности, общую мощность нужно пересчитать согласно закона Ома, пользуясь выше приведенными формулами.

Современные производители в широком ассортименте выпускают электрические водонагреватели, используемые в квартирах и частных домах. Однако нередко возникает необходимость оборудовать на даче или в летнем домике систему нагрева воды с использованием самодельных устройств. В связи с этим приходится выполнять расчет мощности ТЭНа, чтобы водонагреватели, сделанные своими руками, работали максимально эффективно.

Как рассчитать мощность ТЭНа калькулятором онлайн

Расчет мощности ТЭНа с помощью онлайн-калькулятора выполняется учетом объема бака самодельного водонагревателя. Кроме того, учитывается начальная и конечная (требуемая) температура воды, а также предполагаемое время нагрева. На точность результатов оказывает влияние фактическое напряжение электрической сети и особенности конструкции данного ТЭНа. Все эти исходные данные вводятся в онлайн-калькулятор расчета мощности.

Основой всех расчетов служит формула, определяющая математические показатели мощности: P=0,0011m(tk-tн)/T, где:

  • Р – это мощность ТЭНа,
  • m – масса воды, подлежащей нагреву,
  • tk-tн – температура воды в начале и конце нагрева,
  • Т – время, необходимое для нагрева воды.

Калькулятор позволяет вычислить мощность нагревательного элемента без учета потерь тепла, различающихся в соответствии с конструкцией той или иной емкости. Кроме того на тепловые потери влияет температура окружающей среды и другие факторы.

Во время расчетов ТЭНа следует учитывать показатели фактического напряжения электрической сети, значительно отличающиеся от предполагаемого номинала. Например, пониженное напряжение может привести к снижению расчетной температуры рабочей поверхности ТЭНа. Поэтому времени для нагрева одного и того же объема воды потребуется значительно больше.

Во время расчетов в окне калькулятора «Объем нагреваемой воды» может быть вставлено значение массы этой воды с учетом ее удельного веса, составляющего 1 г/см3. Нередко холодная вода для нагрева поступает из городских систем водоснабжения. В этих случаях предусмотрена ее начальная температура, которая рекомендуется в летний период примерно 5-8 градусов, а в зимний период – 13-18 градусов. Конечный результат расчетной мощности Р в формуле подходит не только для одного ТЭНа, но и для нескольких элементов, соединенных параллельно.

ТЭН Электрический Водяной

Отгрузка ТЭН электрический водяной в любой регион России, доставка до транспортной компании бесплатно.

Изготовим ТЭН воздушный по Вашим чертежам и тех.заданию.

 Заказать продукцию ТЭН для воды, ТЭН для масла, ТЭН для воздуха и других сред, узнать о наличии, сроках поставки Вы можете позвонив по телефонам или написать заявку по электронной почте:

 моб. 8(916) 579-74-12

 т.ф.(499)948-03-51

 тел. (495) 545-70-88
E-mail: [email protected]

При заказе стандартного ТЭНа необходимо знать длину, диаметр трубы, мощность, среда, напряжение, форму ТЭНа.

Пример обозначения при заказе:

ТЭН-100 А10/3,15 Р 220 ф.7 R30 Ш.
100 - развернутая длина трубки ТЭН в см.
А - длина контактного стержня в заделке (А=40 мм, В=65 мм, С=100 мм, D=125 мм, Е=160 мм, F=250 мм, G=400 мм, H=630 мм)
10 - диаметр ТЭН в мм.
3,15 - потребляемая мощность в кВт.
P - рабочая среда (O - воздух, движущийся со скоростью не менее 6м/с, S - спокойный воздух, L - для литейных форм, P - вода, Z - масло).
220 - напряжение питания, В.
ф.7 - типовая форма ТЭН.
R30 - радиус изгиба, мм.
Ш - при необходимости оснащение ТЭН штуцером.

ФОРМА ТЭНов.

 

 

При заказе нестандартного ТЭНа ,  отправьте чертеж  чертёж с заданными характеристиками, или запросите опросный лист на ТЭН по электронной почте E-mail: [email protected]

ТЭН Электрический Водяной.

Для применения в качестве нагревательных элементов вмонтированных в емкость, зачастую используются ТЭНы, от мелких бытовых приборов эл.чайников, или другие подходящие по размерам. Мощность таких ТЭНов, может быть различной. Есть стандартные ТЭНы с обозначением на корпусе мощностью 1.0 кВт и 1.25 кВт. Но есть и другие востребованные мощности, которые можно заказать отдельно или добиться желаемой мощности из соединения нескольких ТЭН.

Бывает, что мощность 1-го ТЭНа, может не устраивать нужным параметрам, для нагрева куба и быть больше или меньше. В таких ситуациях, для получения необходимой мощности нагрева, можно использовать несколько ТЭНов, путем соединенных последовательно или последовательно-параллельно. Коммутируя различные варианты соединения ТЭНов, переключателем от бытовой эл, плиты, возможно получать различную мощность. Возьмем например восемь врезанных ТЭН мощностью 1.25 кВт каждый, в зависимости от комбинации включения, можно в результате получить следующую мощность.

  1. 625 Вт
  2. 933 Вт
  3. 1,25 кВт
  4. 1,6 кВт
  5. 1,8 кВт
  6. 2,5 кВт

Этого диапазона будет достаточно для регулировки и поддержания нужной температуры при перегонке и ректификации. Так же можно получить и иную мощность, добавив количество режимов переключения и используя различные комбинации включения.

Последовательное соединение 2-х ТЭНов по 1.25 кВт и подключение их к сети 220В, в сумме дает 625 Вт. Параллельное соединение, в сумме дает 2.5 кВт.

Для расчета можно прибегнуть к следующей формуле:

Зная напряжение, действующее в сети, это 220Вольт. Зная мощность ТЭНа, обозначенную на его поверхности предположим это 1,25 кВт, значит, нам необходимо узнать силу тока, протекающую в этой цепи. Силу тока, зная напряжение и мощность, узнаем из следующей формулы.

Сила тока = мощность, деленная на напряжение в сети.

Записывается она так: I = P / U.

Где I - сила тока указывается в амперах.

P – мощность указывается в ваттах.

U – напряжение указывается в вольтах.

При подсчете необходимо мощность, указанную на корпусе ТЭН в кВт, перевести в ватты.

1,25 кВт = 1250Вт.  Подставляем известные значения в эту формулу и получаем силу тока.

I = 1250Вт / 220 = 5,681 А

В дальнейшем зная силу тока подсчитываем сопротивление ТЭНа, применяя формулу.

R = U / I, где

R - сопротивление в Омах

U - напряжение в вольтах

I - сила тока в амперах

Подставляем известные значения в формулу и узнаем сопротивление 1 ТЭНа.

R = 220 / 5.681 = 38,725 Ом.

В последующем подсчитываем общее сопротивление всех последовательно соединенных ТЭНов. Общее сопротивление будет равно сумме всех сопротивлений, соединенных последовательно ТЭНов

Rобщ = R1+ R2 + R3 и т.д.

В итоге, два последовательно соединенных ТЭНа, имеют сопротивление равное 77,45 Ом. Остается подсчитать мощность выделяемую этими двумя ТЭН.

P = U/ R где,

- мощность в ваттах

U2 - напряжение в квадрате, в вольтах

- общее сопротивление всех посл. соед. ТЭНов

P = 624,919 Вт, округляем до значения 625 Вт.

 

Далее при необходимости можно подсчитать мощность любого количества последовательно соединенных ТЭНов, или ориентироваться на таблицу.

В таблице 1.1 приведены значения для последовательного соединения ТЭНов.

Таблица 1.1

 

Кол-во ТЭН

Мощность (Вт)

Сопротивление (Ом)

Напряжение (В)

Сила тока (А)

1

1250,000

38,725

220

5,68

Последовательное соединение

2

625

2 ТЭН = 77,45

220

2,84

3

416

3 ТЭН =1 16,175

220

1,89

4

312

4 ТЭН=154,9

220

1,42

5

250

5 ТЭН=193,625

220

1,13

6

208

6 ТЭН=232,35

220

0,94

7

178

7 ТЭН=271,075

220

0,81

8

156

8 ТЭН=309,8

220

0,71

В таблице 1.2 приведены значения для параллельного соединения ТЭНов.

Таблица 1.2

 

Кол-во ТЭН

Мощность (Вт)

Сопротивление (Ом)

Напряжение (В)

Сила тока (А)

Параллельное соединение

2

2500

2 ТЭН=19,3625

220

11,36

3

3750

3 ТЭН=12,9083

220

17,04

4

5000

4 ТЭН=9,68125

220

22,72

5

6250

5 ТЭН=7,7450

220

28,40

6

7500

6 ТЭН=6,45415

220

34,08

7

8750

7 ТЭН=5,5321

220

39,76

8

10000

8 ТЭН=4,840

220

45,45

Не маловажное преимущество при последовательном соединении ТЭН это уменьшенный в несколько раз протекающий через них ток, и соответственно небольшой нагрев корпуса нагревательного элемента,

Расчеты выполнены для ТЭНов, мощностью 1.25 кВт. Для ТЭНов другой мощности, общую мощность нужно пересчитать согласно закона Ома, пользуясь выше приведенными формулами.

Если вы заинтересованы что бы тэны были доставлены до терминала вашего города или адресата, укажите это в предварительной заявке и менеджер выставит счет и включит в стоимость продукции доставку тэнов.

При отгрузки продукции Тэн транспортной компанией необходимо указать нужна ли дополнительная упаковка.

Инструкция по эксплуатации ТЭНов электрических.

Данная инструкция по эксплуатации тэн определяет обязательные условия для правильного монтажа и эксплуатации трубчатых электронагревателей (ТЭН) c целью техники безопасности при монтаже, эксплуатации и увеличения ресурса ТЭНов электрических, для различных сред.

1. Подготовка ТЭНа электрического к монтажу.

Перед монтажом ТЭН электрический необходимо: 
1.1. Удалить с оболочки тэн антикоррозионную смазку. 
1.2. Очистить поверхность изоляторов и контактных стержней тэна. 
1.3. Проверить сопротивление изоляции в холодном состоянии. При падении сопротивления изоляции ниже 0,5 МОм, ТЭН нужно просушить при температуре от +120 до +150С в течение 4-6 часов. Допускается сушка нагревателей Тэна путем подключения их на пониженное напряжение или последовательно по несколько штук.

2. Монтаж ТЭН электрический.

2.1. Монтаж электронагревателей ТЭН к нагреваемому устройству нужно осуществлять с помощью крепежной арматуры (штуцеров, зажимов, хомутов, кронштейнов, стяжек, скоб).

2.2. Не разрешается крепление электронагревателей ТЭН за контактные стержни.

2.3. При установке ТЭН на объекте нужно руководствоваться ПУЭ, ПТЭ и ПТБ электроустановок потребителей. Присоединение ТЭН а электрического к питающей сети производится проводниками сечением не менее 1,5 мм2, оснащенными наконечниками по ГОСТ 7386.

2.4. При монтаже тэн нужно учитывать, что тэны электрические при работе не должны соприкасаться друг с другом, минимально допустимое расстояние между тэнами – 5 мм.

2.5. Монтаж тэнов электрических работающих в жидких средах осуществляется таким образом, чтобы активная часть тэна нагревателя полностью находилась в жидкости.

2.6. Все токоведущие детали тэна нужно защитить от случайного прикосновения и от попадания влаги.

2.7. Корпус каждого тэна следует надежно заземлить.

2.8. С целью оперативного выявления выхода из строя любого нагревательного тэна, помещенного в агрегат, рекомендуется подключить тэн к сети через индивидуальные плавкие вставки.

2.9. Все монтажные и демонтажные работы тэном нужно производить при снятом напряжении.

3. Эксплуатационные требования тэна электрического.

3.1. Трубчатые электронагреватели тэн должны работать только в той среде, для нагрева которой были изготовлены.

3.2. Дорабатывать и изменять конструкцию ТЭН у потребителя запрещается.

3.3. При эксплуатации тэна нужно следить за состоянием контактных стержней и токоподводящих проводов, не допуская ослабления соединений.

3.4. Подтягивать контактные гайки следует осторожно, и не допускать проворачивания контактных стержней в корпусе ТЭН.

3.5. Попадание влаги на контактные выводы тэнов не допускается.

3.6. Контактные выводы тэна должны хорошо омываться естественным или искусственным потоком холодного воздуха. Высокая температура в зоне герметика торцов нагревателя (свыше 150 оС) снижает срок службы тэн электрический.

3.7. Активная часть ТЭНа должна полностью находится в рабочей зоне.

3.8. При эксплуатации ТЭНа в жидких средах уровень жидкости должен постоянно находиться выше границы активной части нагревателя, а оболочка ТЭН должна периодически очищаться от накипи.

3.9. При нагревании твердых тел (деталей штампов, пресс-форм, литейных форм) должен быть обеспечен надежный тепловой контакт оболочки электронагревателя тэн с нагреваемой средой.

4. Условия транспортировки и хранения тен электрический.

4.1. Перевозка тэн электрический допускается всеми видами транспорта при условии защиты от влаги и механических повреждений. 4.2. Хранение ТЭН необходимо осуществлять в отапливаемых и вентилируемых помещениях. Температура окружающего воздуха – от +5 до +40 оС. Среднее значение относительной влажности – до 65% при +20 оС.

ТЭН трубчатый.


Время последней модификации 1611822163

ТЭН Для Водонагревателя.

ТЭН Стандартные и Под Заказ.

Заказать продукцию ТЭН, узнать о наличии, сроках поставке Вы можете позвонив по телефонам или написать заявку по электронной почте:

моб. 8(916) 579-74-12

 т.ф.(499)948-03-51

 тел. (495) 545-70-88 
E-mail: [email protected]

 

Отгрузка ТЭН для водонагревателя в любой регион России, доставка до транспортной компании бесплатно.

При заказе ТЭНа необходимо знать длину, диаметр трубы, мощность, среда, напряжение, форму ТЭНа.

 

Развернутая длина оболочки ТЭН, см

Диаметр ТЭН, мм

 

Обогреваемая среда O,L (O - подвижный воздух, L - литейные формы)

 

Напряжение, В

 

 

 

 

 

 

 

 

36

48

55

60

110

127

220

380

ТЭН-32

8

 

 

 

 

 

 

 

 

0,25

0,32

0,32

0,32

0,32

-

-

-

10

 

 

 

 

 

 

 

 

0,4

0,4

0,4

0,4

0,4

0,4

-

-

13

 

 

 

 

 

 

 

 

0,5

0,5

0,5

0,5

0,4

0,5

-

-

 

Пример обозначения при заказе:

ТЭН-100 А10/3,15 Р 220 ф.7 R30 Ш.
100 - развернутая длина трубки ТЭН в см.
А - длина контактного стержня в заделке (А=40 мм, В=65 мм, С=100 мм, D=125 мм, Е=160 мм, F=250 мм, G=400 мм, H=630 мм)
10 - диаметр ТЭН в мм.
3,15 - потребляемая мощность в кВт.
P - рабочая среда (O - воздух, движущийся со скоростью не менее 6м/с, S - спокойный воздух, L - для литейных форм, P - вода, Z - масло)
220 - напряжение питания, В.
ф.7 - типовая форма ТЭН.
R30 - радиус изгиба, мм
Ш - при необходимости оснащение ТЭН штуцером.

Обозначение нагреваемой среды, максимальная ваттная нагрузка, материал оболочки.

 

Условное обозначение

Нагреваемая среда

Характер нагрева

Максимальная ваттная нагрузка, Вт/см2

Материал оболочки

ТЭН 85J

Вода, слабый раствор кислот (pH от 5 до 7)

Нагревание, кипячение с максимальной температурой на оболочке 100°С

15

Нержавеющая сталь

ТЭН 85P

Вода, слабый раствор щелочей (pH от 7 до 9)

Нагревание, кипячение с максимальной температурой на оболочке 100°С

15

Углеродистая сталь

ТЭН 85S

Воздух, газы и смеси газов

Нагрев в спокойной газовой среде до температуры на оболочке ТЭН 450°С

2,2

Углеродистая сталь

ТЭН 85T

Воздух, газы и смеси газов

Нагрев в спокойной газовой среде с температурой на оболочке ТЭН свыше 450°С

5,0

Нержавеющая сталь

ТЭН 85O

Воздух, газы и смеси газов

Нагрев в движущейся со скоростью 6м/с воздушной среде до температуры на оболочке ТЭН 450°С

5,5

Углеродистая сталь

ТЭН 85K

Воздух, газы и смеси газов

Нагрев в движущейся со скоростью не менее 6м/с воздушной среде с температурой на оболочке ТЭН св. 450°С

6,5

Нержавеющая сталь

ТЭН 85L

Литейные формы, пресс-формы

ТЭН вставлен в паз, имеется гарантированный контакт с нагреваемым металлом, температура на оболочке ТЭН до 450 °С

5,0

Углеродистая сталь

ТЭН 85Z

Жиры, масла

Нагрев в ваннах и др. емкостях, температура до 250 °С

3,0

Углеродистая сталь

ТЭН 85W

Легкоплавкие металлы и сплавы

Нагрев и плавление в ваннах и др. емкостях с температурой на оболочке ТЭН до 450°С

3,5

Углеродистая сталь

ТЭН 85D

Селитра (двойная оболочка)

Нагрев до температуры 600°С

3,5

Нержавеющая/черная сталь

ТЭН 85Н

Селитра

Нагрев до температуры 600°С

3,5

Нержавеющая сталь 

ТЭН Для Водонагревателя.

Для применения в качестве нагревательных элементов вмонтированных в емкость, зачастую используются ТЭНы, от мелких бытовых приборов эл.чайников, или другие подходящие по размерам. Мощность таких ТЭНов, может быть различной. Есть стандартные ТЭНы с обозначением на корпусе мощностью 1.0 кВт и 1.25 кВт. Но есть и другие востребованные мощности, которые можно заказать отдельно или добиться желаемой мощности из соединения нескольких ТЭН.

Бывает, что мощность 1-го ТЭНа, может не устраивать нужным параметрам, для нагрева куба и быть больше или меньше. В таких ситуациях, для получения необходимой мощности нагрева, можно использовать несколько ТЭНов, путем соединенных последовательно или последовательно-параллельно. Коммутируя различные варианты соединения ТЭНов, переключателем от бытовой эл, плиты, возможно получать различную мощность. Возьмем например восемь врезанных ТЭН мощностью 1.25 кВт каждый, в зависимости от комбинации включения, можно в результате получить разную мощность.

Этого диапазона будет достаточно для регулировки и поддержания нужной температуры при перегонке и ректификации. Так же можно получить и иную мощность, добавив количество режимов переключения и используя различные комбинации включения.

Последовательное соединение 2-х ТЭНов по 1.25 кВт и подключение их к сети 220В, в сумме дает 625 Вт. Параллельное соединение, в сумме дает 2.5 кВт.

Для расчета можно прибегнуть к следующей формуле:

Зная напряжение, действующее в сети, это 220Вольт. Зная мощность ТЭНа, обозначенную на его поверхности предположим это 1,25 кВт, значит, нам необходимо узнать силу тока, протекающую в этой цепи. Силу тока, зная напряжение и мощность, узнаем из следующей формулы.

Сила тока = мощность, деленная на напряжение в сети.

Записывается она так: I = P / U.

Где I - сила тока указывается в амперах.

P – мощность указывается в ваттах.

U – напряжение указывается в вольтах.

При подсчете необходимо мощность, указанную на корпусе ТЭН в кВт, перевести в ватты.

1,25 кВт = 1250Вт.  Подставляем известные значения в эту формулу и получаем силу тока.

I = 1250Вт / 220 = 5,681 А

В дальнейшем зная силу тока подсчитываем сопротивление ТЭНа, применяя формулу.

R = U / I, где

R - сопротивление в Омах

U - напряжение в вольтах

I - сила тока в амперах

Подставляем известные значения в формулу и узнаем сопротивление 1 ТЭНа.

R = 220 / 5.681 = 38,725 Ом.

В последующем подсчитываем общее сопротивление всех последовательно соединенных ТЭНов. Общее сопротивление будет равно сумме всех сопротивлений, соединенных последовательно ТЭНов

Rобщ = R1+ R2 + R3 и т.д.

В итоге, два последовательно соединенных ТЭНа, имеют сопротивление равное 77,45 Ом. Остается подсчитать мощность выделяемую этими двумя ТЭН.

P = U/ R где,

- мощность в ваттах

U2 - напряжение в квадрате, в вольтах

- общее сопротивление всех посл. соед. ТЭНов

P = 624,919 Вт, округляем до значения 625 Вт.

 Далее при необходимости можно подсчитать мощность любого количества последовательно соединенных ТЭНов, или ориентироваться на таблицу.

В таблице 1.1 приведены значения для последовательного соединения ТЭНов.

Таблица 1.1

Кол-во ТЭН

Мощность (Вт)

Сопротивление (Ом)

Напряжение (В)

Сила тока (А)

1

1250,000

38,725

220

5,68

Последовательное соединение

2

625

2 ТЭН = 77,45

220

2,84

3

416

3 ТЭН =1 16,175

220

1,89

4

312

4 ТЭН=154,9

220

1,42

5

250

5 ТЭН=193,625

220

1,13

6

208

6 ТЭН=232,35

220

0,94

7

178

7 ТЭН=271,075

220

0,81

8

156

8 ТЭН=309,8

220

0,71

 

В таблице 1.2 приведены значения для параллельного соединения ТЭНов.

Таблица 1.2

 

Кол-во ТЭН

Мощность (Вт)

Сопротивление (Ом)

Напряжение (В)

Сила тока (А)

Параллельное соединение

2

2500

2 ТЭН=19,3625

220

11,36

3

3750

3 ТЭН=12,9083

220

17,04

4

5000

4 ТЭН=9,68125

220

22,72

5

6250

5 ТЭН=7,7450

220

28,40

6

7500

6 ТЭН=6,45415

220

34,08

7

8750

7 ТЭН=5,5321

220

39,76

8

10000

8 ТЭН=4,840

220

45,45

 

Не маловажное преимущество при последовательном соединении ТЭН это уменьшенный в несколько раз протекающий через них ток, и соответственно небольшой нагрев корпуса нагревательного элемента,

Расчеты выполнены для ТЭНов, мощностью 1.25 кВт. Для ТЭНов другой мощности, общую мощность нужно пересчитать согласно закона Ома, пользуясь выше приведенными формулами.

Если вы заинтересованы что бы тэны были доставлены до терминала вашего города или адресата, укажите это в предварительной заявке и менеджер выставит счет и включит в стоимость продукции доставку тэнов.

При отгрузки продукции Тэн транспортной компанией необходимо указать нужна ли дополнительная упаковка.

Инструкция по эксплуатации ТЭНов электрических.

Данная инструкция по эксплуатации тэн определяет обязательные условия для правильного монтажа и эксплуатации трубчатых электронагревателей (ТЭН) c целью техники безопасности при монтаже, эксплуатации и увеличения ресурса ТЭНов электрических, для различных сред.

1. Подготовка ТЭНа водонагревательного электрического к монтажу.

Перед монтажом ТЭН для водонагревателя электрический необходимо: 
1.1. Удалить с оболочки тэн антикоррозионную смазку. 
1.2. Очистить поверхность изоляторов и контактных стержней тэна. 
1.3. Проверить сопротивление изоляции в холодном состоянии. При падении сопротивления изоляции ниже 0,5 МОм, ТЭН нужно просушить при температуре от +120 до +150С в течение 4-6 часов. Допускается сушка нагревателей Тэна путем подключения их на пониженное напряжение или последовательно по несколько штук.

2. Монтаж ТЭН электрический.

2.1. Монтаж электронагревателей ТЭН водяной к нагреваемому устройству нужно осуществлять с помощью крепежной арматуры (штуцеров, зажимов, хомутов, кронштейнов, стяжек, скоб).

2.2. Не разрешается крепление электронагревателей ТЭН за контактные стержни.

2.3. При установке ТЭН для водонагревателя на объекте нужно руководствоваться ПУЭ, ПТЭ и ПТБ электроустановок потребителей. Присоединение ТЭН а электрического к питающей сети производится проводниками сечением не менее 1,5 мм2, оснащенными наконечниками по ГОСТ 7386.

2.4. При монтаже тэн нужно учитывать, что тэны электрические при работе не должны соприкасаться друг с другом, минимально допустимое расстояние между тэнами – 5 мм.

2.5. Монтаж тэнов электрических работающих в жидких средах осуществляется таким образом, чтобы активная часть тэна нагревателя полностью находилась в жидкости.

2.6. Все токоведущие детали тэна нужно защитить от случайного прикосновения и от попадания влаги.

2.7. Корпус каждого тэна следует надежно заземлить.

2.8. С целью оперативного выявления выхода из строя любого нагревательного тэна, помещенного в агрегат, рекомендуется подключить тэн к сети через индивидуальные плавкие вставки.

2.9. Все монтажные и демонтажные работы тэном нужно производить при снятом напряжении.

3. Эксплуатационные требования тэна электрического.

3.1. Трубчатые электронагреватели  должны работать только в той среде, для нагрева которой были изготовлены.

3.2. Дорабатывать и изменять конструкцию ТЭН у потребителя запрещается.

3.3. При эксплуатации тэна нужно следить за состоянием контактных стержней и токоподводящих проводов, не допуская ослабления соединений.

3.4. Подтягивать контактные гайки следует осторожно, и не допускать проворачивания контактных стержней в корпусе ТЭН.

3.5. Попадание влаги на контактные выводы тэнов не допускается.

3.6. Контактные выводы тэна должны хорошо омываться естественным или искусственным потоком холодного воздуха. Высокая температура в зоне герметика торцов нагревателя (свыше 150 оС) снижает срок службы тэн электрический.

3.7. Активная часть ТЭНа должна полностью находится в рабочей зоне.

3.8. При эксплуатации ТЭНа в жидких средах уровень жидкости должен постоянно находиться выше границы активной части нагревателя, а оболочка ТЭН должна периодически очищаться от накипи.

3.9. При нагревании твердых тел (деталей штампов, пресс-форм, литейных форм) должен быть обеспечен надежный тепловой контакт оболочки электронагревателя тэн с нагреваемой средой.

4. Условия транспортировки и хранения тен электрический.

4.1. Перевозка тэн электрический допускается всеми видами транспорта при условии защиты от влаги и механических повреждений. 4.2. Хранение ТЭН необходимо осуществлять в отапливаемых и вентилируемых помещениях. Температура окружающего воздуха – от +5 до +40 оС. Среднее значение относительной влажности – до 65% при +20 оС.

Электронагреватели промышленные, трубчатый ТЭН, водяной, воздушный, на 2квт.


Время последней модификации 1615802585

Особенности эксплуатации регуляторов мощности РМ-2 • AKIP-DON

Многолетний опыт успешной эксплуатации регуляторов мощности РМ-2 производства компании АКИП-ДОН показал, что значительная часть потребителей не знакомы с теоретическими основами электротехники, или мало знакомы, или трактуют законы природы на свой лад. В связи с этим из-за дефицита специальных знаний у некоторых потребителей возникают “непонятки”. Ниже дается ответ на основные вопросы как это работает.

Теоретические основы регулирования мощности

В технологических процессах (например, дистилляция, ректификация, и др.) часто необходимо поддерживать заданную интенсивность нагрева для точного и равномерного поддержания нужной температуры. Такой процесс называется “регулирование мощности”, хотя на самом деле осуществляется управление напряжением, а уже через него – мощностью. Согласно закону Ома, на мощность имеют влияние напряжение и сопротивление:  P=U2/R (где P – мощность, U – напряжение, R – электрическое сопротивление). Сопротивление проводника R в готовой собранной системе является величиной неизменной – по сути, это постоянная характеристика имеющегося ТЭНа, зависящая от его размера и материала. Для изменения мощности нагрева остается только изменять напряжение U, что и осуществляется прибором РМ-2 посредством симистора. Таким образом, регулятор-стабилизатор мощности РМ-2 фактически регулирует напряжение, поступающее на нагрузку, вследствие чего регулируется мощность.

Следует отметить, что на практике значение мощности P не имеет особой необходимости. В технологическом процессе важно добиться его стабильности, и не важно, что при этом отображают цифры на экране – мощность в Ваттах, или напряжение в Вольтах. Часто можно встретить формулировки и рекомендации “работа где-то в половину мощности”, “рабочая мощность 1000 Вт”, и т.д. Однако они все достаточно условны. С одной стороны, не может быть каких-то универсальных рекомендуемых значений, поскольку они зависят от множества индивидуальных факторов – начиная от номинальной мощности ТЭНов, их количества, конфигурации и размещения, от объема бака, его теплоизолированности, заканчивая качеством и характеристиками сырья, температурой окружающей среды и атмосферным давлением. С другой стороны, неточный выбор, установка напряжения на 3-4 вольта выше требуемого, может привести, например, ректификационную колонну к захлебу, либо к попаданию в отбор ненужных фракций, либо к замедлению процесса. Таким образом, как правило при эксплуатации регулятора мощности сначала экспериментально подбираются нужные значения подаваемого напряжения (на разных этапах технологического процесса, с конкретным оборудованием), а потом эти значения запоминаются и используются в следующих процессах. То есть, для управления интенсивностью процесса нет необходимости знать и видеть значение мощности – вместо этого нужно регулировать значение напряжения.

Какое напряжение необходимо подать на ТЭН, чтобы получить мощность X Ватт?

Если же по какой-то причине все-таки имеется необходимость в расчете именно значения мощности, то это легко сделать, используя закон Ома. Для начала нужно омметром замерять сопротивление ТЭНа.

Но если нет возможности замерить сопротивление, то можно воспользоваться другим, менее точным способом. Как правило, на всех ТЭНах есть маркировка такого типа: “230 Вольт 3000 Ватт”. Это его номинальные мощность и напряжение, которые можно использовать в расчетах (причем номинальному напряжению следует также уделять внимание, так как в зависимости от производителя оно может варьироваться).

Далее, зная сопротивление ТЭНа или его номинальные мощность и напряжение, по закону Ома можно вычислить искомое напряжение:

, где U1 – искомое напряжение; Uном – номинальное напряжение; P1 – мощность, которую нужно получить; Pном – номинальная мощность; R – сопротивление ТЭНа или другой подключаемой нагрузки.

ПРИМЕР. Есть ТЭН 220V 2500W, необходимо получить мощность 1000W. Искомое напряжение U=220*√1000/2500 =139 V.

Данная формула используется только для расчета мощности активных нагрузок (ТЭНы, нагревательные элементы, и т.д.). При расчете мощности реактивных нагрузок (например, электродвигатели) следует пользоваться документацией соответствующего оборудования, либо подбирать экспериментально.

Еще раз отметим, что на практике необходимости в подобных расчетах не возникает: нужное напряжение подбирается экспериментально исходя из интенсивности протекания процесса.

Зачем стабилизировать мощность и как это происходит?

Большинство регуляторов напряжения являются простыми делителями: они уменьшают входящее напряжение в n раз. При этом изменение входного напряжения приводит к пропорциональному изменению выходного. А в таких технологических процессах, как дистилляция и ректификация, это недопустимо, ведь они должны протекать с постоянной интенсивностью. На практике процесс может длиться более суток, а напряжение в сети всегда нестабильно: могут присутствовать как резкие кратковременные скачки, так и волнообразное изменение в зависимости от времени суток. Именно поэтому необходим именно регулятор-стабилизатор мощности, который будет на выходе всегда выдавать стабильное напряжение.

Принцип работы регулятора-стабилизатора мощности РМ-2

Оцифровка амплитудного значения входящего напряжения производится 256 раз за период с измерением положительной и отрицательной полуволн. Далее по классической формуле вычисляется среднеквадратичное значение напряжения (оно же действующее или эффективное). Затем, предполагая что значение напряжения следующего периода будет таким же, как и предыдущего, специальная математика вычисляет угол отсечки для положительной и отрицательной полуволн таким образом, чтобы площадь обрезанных полуволн была равна среднеквадратичному напряжению на нагрузке, заданному потребителем в настройках прибора. Таким образом происходит и стабилизация выходного напряжения вне зависимости от входного, если заданное напряжение ниже входного. Если входное напряжение оказывается меньше заданного, оно попадает на нагрузку транзитом без изменений.

Почему напряжение на выходе РМ-2 не соответствует показаниям другого вольтметра?

Большинство недорогих вольтметров измеряет полное напряжение, считая что форма сигнала представляет собой правильную синусоиду 50 Гц. Однако отрегулированное напряжение на выходе из РМ-2 имеет неправильную форму, и для его адекватного измерения необходимо мерить среднеквадратичное, эффективное значение (True RMS), что могут только высококачественные приборы. РМ-2 отображает на экране и устанавливает именно эффективное напряжение, которое подается на нагрузку, и которое следует использовать в расчетах.

Подробнее об измерении напряжения TrueRMS
Регуляторы мощности РМ-2 измеряют и поддерживают на нагрузке среднеквадратичное (RMS) значение напряжения. Синонимы – эффективное значение или действующее. Это напряжение вычисляется микроконтроллером по классической формуле вычисления эффективного значения напряжения с дискретизацией 10 килогерц, что в новых моделях  позволяет получить точность большую, чем один разряд после запятой.

Несмотря на то, что в основном режиме исправный прибор показывает с высокой степенью точности напряжение (RMS), измеренное на нагрузке, люди пытаются проверять это с помощью мультимеров и получают результаты очень далекие от ожидаемых. Дело в том, что большинство мультимеров не измеряют RMS-значений, когда выбран режим переменного тока. Тем не менее, они дают эффективные значения при измерениях переменного напряжения и тока. Но отображаемые значения действительны только для измерения синусоидального сигнала.

Простой прибор сначала выпрямляет измеряемый сигнал. Затем RC-фильтр нижних частот выделяет среднее значение, которое масштабируется таким образом, что прибор показывает эффективное значение. В виде уравнения:

Недостатком является то, что это подходит только для синусоидальных сигналов. Для любой другой формы сигнала будет получено ошибочное действующее значение. В нашем случае управление симистором фазовое, и соответственно напряжение на нагрузку поступает непредсказуемой формы, с бесчисленным количеством гармоник, и весьма далекое от синусоидального.

Таким образом, простым мультимером можно измерить только входное напряжение источника питания на клеммах прибора, а также калибровать прибор при условии, что входное напряжение синусоида, что на практике не всегда так. Чтобы узнать эффективное значение напряжения на нагрузке обычно необходим специальный прибор, имеющий функцию True RMS (истинное среднеквадратичное значение) или, что гораздо проще и точнее, посмотреть на показания индикатора РМ-2.

Если же показаниям эталонного вольтметра не соответствуют показания входящего напряжения, то необходимо откалибровать вольтметр РМ-2 по известному напряжению.

Вся теоретическая информация, представленная выше, актуальна для всех регуляторов мощности серии РМ-2: РМ-2, РМ-2-мини, РМ-2-16А, РМ-2-32А, РМ-2-16А в боксе.

Как правильно прозвонить ТЭН в домашних условиях


Калькулятор расчета мощности тэна для нагрева воды

Предложенный калькулятор, исходя из емкости бака водонагревателя, начальной и конечной (требуемой) температуры воды и времени нагрева позволяет выполнить расчет необходимой электрической мощности ТЭНа с достаточной степенью точности, на которую влияет конструктивные особенности ТЭНа и фактическое напряжение электросети.

При напряжении в сети ниже Uраб нагревателя (например, в результате падения напряжения в линии) очевидно, что его работа будет менее эффективна и снижение температуры греющей поверхности увеличит длительность нагрева воды до требуемой температуры.

Результат расчета не означает, что обязательного использования ТЭНа такого номинала: полученная мощность может быть набрана несколькими параллельно соединенными нагревательными элементами.

Обратите внимание, что расчет производится без учета возможных потерь тепла электроводонагревателей в окружающую среду, возникающих ввиду самых разных факторов, начиная от конструкции бойлера и заканчивая состоянием (наличием) теплоизоляции

Как рассчитывается сопротивление ТЭНа

Чтобы проверить нагревательный элемент в стиральной машине, необходимо знать не только, как правильно прозванивать ТЭН мультиметром, но и показатель его сопротивления. Прежде всего, следует вычислить эту величину. Вам потребуются определенные данные:

  1. Напряжение, которое подается на водонагреватель. В данном случае показатель U равен – 220 В. Это напряжение, которое присутствует в бытовой сети.
  2. Мощность ТЭНа – Р. Определить данный показатель не составит особого труда. Достаточно заглянуть в инструкцию. Зная модель стиральной машины, мощность нагревательного элемента можно посмотреть в интернете.

Узнав все необходимые показатели, можно рассчитать сопротивление – R. Для этого существует формула:

Это сопротивление возникает в ТЭНе в процессе его использования. Измеряется показатель R в Омах. Если нагревательный элемент стиральной машины исправен, то мультиметр должен показать полученную цифру.

Как проверить ТЭН мультиметром самостоятельно

Основной поломкой бытовой техники считается выход из строя нагревательного элемента. Если стиральная машина не греет воду при стирке или не нагревается спираль утюга, тогда тэн нужно прозвонить с помощью мультиметра. В этой статье мы представили вашему вниманию информацию о том, как проверить ТЭН мультиметром в домашних условиях.

Также в нашей статье вы найдете подробные картинки и видео, которые подробно объяснят каждый процесс. Если вам будет интересно, тогда можете прочесть про то, как правильно слить воду с бойлера.

Как проверить ТЭН

Сначала необходимо рассмотреть, как выполняется прозвонка нагревательного элемента. Чтобы вам было понятно мы постарались углубиться в практические моменты. Проверить ТЭН можно по следующей схеме:

  1. Перед проведением проверки, вам необходимо постараться рассчитать сопротивление. Для выполнения расчета можно использовать формулу R=U2/P. В этой формуле U будет означать напряжение в вашей статье. Показатель P – это номинальная мощность ТЭНа, которые можно найти в паспорте прибора.
  2. Перед проведением проверки устройство обязательно необходимо отключить от питания. Только после этого можно приступать к выполнению проверки.
  3. Теперь включите мультиметр в режиме проверки сопротивления.

Если вы не умеете использовать мультиметр, тогда не переживайте. На нашем сайте уже есть информация о том, как правильно использовать мультиметр. Если вы щупами дотронетесь до вывода, тогда можете столкнуться со следующими ситуациями:

  1. Если значение на вашем экране будет примерно таким же, как и на картинке, тогда это означает что ТЭН работоспособный.
  2. Если отображается «0», тогда это означает, что необходимо выполнить замену устройства.
  3. Показатель «1» будет означать, что во время проверки произошел обрыв сети.

Также с помощью мультиметра, вам необходимо проверить ТЭН на пробой. Для подобной работы устройство необходимо перевести в режим зуммера. Одним щупов вам необходимо дотронуться до вывода, а вторым до нагревательного элемента. На фото ниже вы можете увидеть, как правильно проверить ТЭН на пробой.

Важно знать! Если зуммер запищит, тогда необходимо выполнять замену детали. При необходимости вы также можете выполнить проверку на сопротивление изоляции

Сделать это просто и для этого вам необходимо перевести устройство в диапазон «500 В». Нормальное сопротивление будет иметь показатель в 0.5 Мом. Подробную информацию о том, как проверить ТЭН мегаомметром и мультиметром можно увидеть на видео ниже:

При необходимости вы также можете выполнить проверку на сопротивление изоляции. Сделать это просто и для этого вам необходимо перевести устройство в диапазон «500 В». Нормальное сопротивление будет иметь показатель в 0.5 Мом. Подробную информацию о том, как проверить ТЭН мегаомметром и мультиметром можно увидеть на видео ниже:

Перед проведением проверки проведите визуальный осмотр. Для этого очистите устройство от накипи, а затем выполните прозвонку элемента. Если вы обнаружите визуальные повреждения, тогда следует выполнить замену устройства.

Проверить нагреватель на обрыв также можно с помощью контрольной лампы электрика. Если лампочка будет гореть, тогда обрыв отсутствует. Сделать подобную лампу можно из подручных материалов и у нас есть статья, как сделать контрольку своими руками. Это все способы проверки устройства.

В некоторых ситуациях вы также можете проверить устройство и без мультиметра. Ниже вы также можете найти видео, которые позволяют понять о том, как проверить ТЭН в стиральной машине, бойлере или посудомоечной машине.

Видеоуроки

Если бойлер не греет воду, тогда необходимо проверить ТЭН водонагревателя по следующей инструкции:

Если у вас появилась необходимость прозвонить ТЭН стиральной машины, тогда следует перейти к изучению инструкции ниже:

Чтобы вы могли проверить утюг мулььтиметром нужно разобрать корпус устройства и дотронуться до его выводов:

Если вы не знаете, как прозвонить чайник, тогда инструкцию можно увидеть ниже:

Как видите, выполнить проверку достаточно просто. Видео, которые мы предоставили вашему вниманию помогут все сделать правильно. Надеемся, что информация была полезной и информативной.

Проверка ТЭНа стиральной машины

Перед тем, как проверить ТЭН стиральной машины мультиметром, его еще необходимо отыскать – с этим у многих людей возникают определенные сложности, что особенно касается современных моделей машин с хитрым внутренним устройством. В большинстве случаев нагреватель в стиральной машине располагается несколько ниже ее бака ближе к задней крышке.

В некоторых моделях он установлен со стороны передней крышки. Стиральные машины с вертикальной загрузкой могут снабжаться элементами, расположенными с одного из боков.

При проверке следует знать, к каким именно контактам ТЭНа необходимо подключаться. Дело в том, что трубчатый электронагревательный элемент стиральной машины имеет три выхода, из которых для тестирования нужны только два. Как правило, в центре расположен заземляющий контакт, тогда как два крайних (ноль и фаза) – необходимые для проверки клеммы.

Для тестирования ТЭНа стиральной машины необходимо следовать приведенной ранее инструкции. Нормальный показатель сопротивления для нагревательного элемента стандартной стиральной машины варьируется в пределах 25-60 Ом, возможны малые отклонения.

Нагревательный элемент в стиральной машинке является одной из основных деталей. Внешне он напоминает трубу небольшого диаметра из металла, внутри которой располагается своеобразная спираль. Именно она и нагревается в результате воздействия тока. Происходит это из-за сопротивления, которым обладает спираль. Свободное пространство внутри ТЭНа заполнено диэлектриком, который обладает высоким показателем теплопроводности.

ТЭН в процессе стирки часто нагревается, а затем остывает. В результате этого спираль, расположенная внутри металлической трубки постепенно изнашивается и начинает терять свои качества. Все это приводит к тому, что нагревательный элемент просто перестает работать. Деталь либо замыкается на корпусе, либо перегорает. Вода в процессе стирки не нагревается. Если ТЭН пришел в негодность, то элемент следует заменить. Восстановить работоспособность детали просто невозможно. Однако каждый сможет проверить мультиметром ТЭН стиральной машины.

Количество электроэнергии кВтч и стоимость нагрева воды.

Калькулятор высчитает время нагрева воды в накопительных водонагревателях в зависимости от ёмкости бака, мощности ТЭНов, температуры нагрева и температуры входящей воды.

Вы можете указать КПД накопительного водонагревателя (обычно 95-99%).

Калькулятор взят с сайта: https://nagrev24.ru/voda

Электроэнергия преобразуется в тепло и КПД зависит от материала нагревательного элемента (от потерь электроэнергии в нем и от теплопроводности), от площади соприкосновения элемента с водой, переходных сопротивлениях контактов и потерь в шнуре электропитания. На каждом этапе теряется некоторая часть энергии. В зависимости от типа прибора, КПД находится в пределах 95-99%.

Чем эффективнее теплоизоляционные свойства материала, отделяющего внутренний бак от окружающей среды, и толще его слой, тем экономичнее водонагреватель. Современные бойлеры гарантируют снижение температуры воды не более 0,25 — 0,5 градуса в час и расход электроэнергии менее 1 кВт/ч в сутки в дежурном режиме.

Наиболее оптимальным температурным режимом работы водонагревателя 55-60°С. Это снижает электропотребление на поддержания температуры горячей воды, уменьшает образование накипи, обеспечивает более щадящий режим для внутреннего бака.

Общие данные, необходимые для вычислений

Чем мощнее электрообогреватель, тем быстрее он подогревает заданное количество воды. Поэтому приборы по этому параметру подбирается в соответствии с задачами, необходимым объёмом и допустимым временем ожидания. Так, например, нагрев до 60°С 15 литров с нагревателем в 1,5 кВт займёт около полутора часов. Однако для больших объёмов (например, для наполнения 100-литровой ванны) при разумном времени ожидания (до 3 часов) для доведения жидкости до комфортной температуры понадобится устройство на 3 кВт мощнее.

Для полноценного вычисления расчётной мощности необходимо учесть ряд параметров:

Как проверить ТЭН мультиметром и без тестера

Популярной неисправностью бытовой техники и обогревателей является выход из строя нагревательного элемента. Если у вас дома стиральная машина не греет воду при стирке либо не нагревается спираль утюга, обязательно нужно прозвонить данный элемент цепи тестером. В этой статье мы расскажем, как проверить ТЭН мультиметром в домашних условиях, а также предоставим несколько полезных видео инструкций по теме.

Технология проверки

Первым делом рассмотрим, как выполняется прозвонка нагревательного элемента, после чего больше углубимся в практически моменты, связанные с ремонтом бытовой техники. Итак, проверить ТЭН можно по следующей схеме:

  1. Рассчитайте сопротивление нагревателя. Для этого используйте формулу: R=U2/P, где U – напряжение в сети (220 вольт), а P – номинальная мощность ТЭНа, которую можно найти в паспорте прибора.
  2. Далее обязательно отключите от электросети проверяемое устройство, доберитесь до нагревательного элемента и отсоедините от него провода.
  3. Включите мультиметр в режим измерения сопротивления (диапазон 200 Ом) и прикоснитесь щупами к выводам, как показано на фото ниже:

  • Значение на табло примерно такое же, как и расчетное, что свидетельствует о работоспособности ТЭНа.
  • Отображается «0», что означает замыкание, потребуется замена.
  • Отображается «1» или бесконечность – произошел обрыв в цепи, нагреватель нужно заменить.

Также нужно проверить ТЭН на пробой (утечку тока) с помощью мультиметра. Для этого переводим прибор в режим зуммера, одним щупом дотрагиваемся до вывода, а другим до корпуса нагревательного элемента, как показано на фото ниже:

Зуммер запищал – пробой есть, а это значит, что без замены детали не обойтись.

Также желательно проверить сопротивление изоляции ТЭН мегаомметром. Для этого нужно включить его в диапазон измерений «500 В». Одним щупом дотрагиваетесь до контакта нагревателя, вторым до корпуса электроприбора. Нормальным считается сопротивление изоляции более 0,5 МОм.

Более подробно узнать о том, как проверить ТЭН мегаомметром и мультиметром, вы можете, просмотрев данные видео:

Работа мастера

Схема прозвонки

Кстати, также, перед тем как осуществлять прозвонку, нужно визуально проверить состояние нагревательного элемента. Для этого удалите с ТЭНа накипь и осмотрите поверхность на предмет вздутий, трещин и остальных механических повреждений. Если такие есть, деталь подлежит замене.

Еще один способ проверить нагреватель на обрыв – использовать контрольную лампу электрика. Для этого на один контакт ТЭНа подается ноль от сети, а на второй фаза через эту лампу. Если лампочка горит, значит обрыва нет. Сделать контрольную лампу сможет любой желающий из подручных средств, об этом мы подробно написали в статье, на которую сослались.

Вот, собственно, и все способы проверки целостности ТЭНа. Как вы видите, в некоторых случаях можно проверить нагревательный элемент даже без мультиметра. Ниже мы рассмотрим видео, в которых доходчиво объясняется, как прозвонить нагреватель стиральной машины, бойлера, посудомойки, чайника и других электроприборов, применяемых в быту.

Наглядные видеоуроки

Если бойлер не греет воду или же выбивает УЗО при его включении, проверить ТЭН водонагревателя можно следующим образом:

Проверяем исправность нагревателя в бойлере

Причина, по которой водонагреватель может биться током

Если же вы хотите прозвонить ТЭН стиральной машины, перед этим придется добраться до него. Вся инструкция предоставлена пошагово в этом видео:

Разбираем корпус стиральной машины и прозваниваем ТЭН

https://youtube.com/watch?v=5oV3E7b08Xc

Чтобы проверить утюг мультиметром, достаточно разобрать корпус и дотронуться щупами до выводов, как показано здесь:

Ремонтируем утюг

https://youtube.com/watch?v=KnTYT_qWeXA

Что касается чайника, его прозвонить можно по следующей методике:

Ремонт электрочайника своими руками

https://youtube.com/watch?v=KC7cdowo8P0

Аналогичным образом можно выполнить проверку исправности нагревательного элемента в посудомоечной машине, обогревателе (к примеру, в спирали тепловой пушки) или другом бытовом электроприборе. Надеемся, наши инструкции вам помогли и теперь понятно, как проверить ТЭН мультиметром в домашних условиях!

Проверка обыкновенного ТЭНа

Теперь, когда вы знаете, как определить сопротивление ТЭНа и зачем это нужно делать, можно приступать непосредственно к самому тестированию, которое выполняется в несколько шагов.

Перед тем, как проверить ТЭН мультиметром, отсоедините нагревательный элемент от питания.

В дальнейших действиях руководствуйтесь приведенной ниже инструкцией правильной проверки:

  • Сопротивление равняется рассчитанному – исправность прибора и пригодность к работе.
  • Табло показывает значение 0 – короткое замыкание спирали внутри трубки.
  • Табло показывает значение 1 (или бесконечность) – обрыв нагревательной спирали.

После завершения процедуры проверки необходимо заняться прозваниванием, которое позволяет определить, происходит ли электрический пробой на корпус прибора. Прозвон осуществляется также при помощи тестера следующим образом:

Если в момент прикосновения щупов к контактам зуммер начинает издавать высокочастотные сигналы, значит происходит электрический пробой на корпус прибора, что может привести к поражению током с серьезными последствиями для здоровья и жизни.

Проточные водонагреватели

В расчете количества тепла для нагрева проточной воды надо учитывать разницу в стандартах напряжения России (220 В) и Европы (230 В), так как значительная часть электроводонагревателей изготовляется западноевропейскими компаниями. Благодаря этой разнице номинальный показатель в 10 кВт в таком приборе при подключении к российской сети в 220В будет на 8,5% меньше – 9,15.

Максимальный гидропоток V (в литрах за минуту) с заданными мощностными характеристиками W (в киловаттах) рассчитывается по формуле: V= 14,3*(W/t 2 -t 1), в которой t 1 и t 2 – температуры на входе в нагреватель и в результате подогрева соответственно.

Ориентировочные мощностные характеристики электроводонагревателей применительно к бытовым потребностям (в киловаттах):

  • 4−6 – только для мытья рук и посуды,
  • 6−8 – для принятия душа,
  • 10−15 – для мойки и душа,
  • 15−20 – для полного водоснабжения квартиры или частного дома.

Выбор затрудняет то, что нагреватели выпускаются в двух вариантах подключения: к однофазной (220 В) и трёхфазной (380 В) сети. Однако нагреватели для однофазной сети, как правило, не выпускаются выше 10 киловатт.

Возможные неисправности

ТЭН – это наиболее уязвимый элемент в бойлере. Причина в том, что он является самым эксплуатируемым элементом, а кроме того, подвергается воздействию накипи. Для продления срока службы рекомендуется периодически проводить его очистку. Это можно сделать, не разбирая полностью корпус с помощью специальных средств. Но я рекомендую провести полный набор процедур по очистке не только нагревателя, но и самого бака от накипи и грязи.

Если же узел сломался, то его придется менять, но прежде проверить что именно вышло из строя. Различают несколько видов неисправностей:

  • Перегорела накаливающая нить внутри ТЭНа.
  • Накаливающий провод на корпусе нагревателя перегорел. Это может привести к удару током, если водонагреватель не оснащен УЗО. В противном случае защитный механизм будет постоянно отключать технику.
  • Появление накипи.

Какие бывают неисправности ТЭНов

Наиболее часто ТЭНы отказывают из-за обрыва нити нихромовой спирали, который происходит по причине расплавления нихромовой нити из-за ее перегрева. Перегрев случается если на ТЭНе образовался толстый слой накипи или ТЭН, предназначенный для работы в жидкой среде, включен без нее. Перегореть спираль может из-за исходного низкого качества ТЭНа.

Спираль по центру трубки ТЭНа удерживается за счет плотного ее наполнения песком. Если при засыпке песка его плохо уплотнили или спираль сместилась от центра к стенке трубки, то со временем от вибрации спираль может переместиться и прикоснуться к внутренней поверхности трубки. Если спираль прикоснется только в одной точке, то при отсутствии подключения заземляющего провода и УЗО в квартирной электропроводке работоспособность ТЭН не потеряет и электрочайник или любой другой нагревательный прибор будет продолжать работать. Но при этом возникает вероятность попадания фазы на корпус изделия и если он металлический, то и вероятность поражения током человека при прикосновении к корпусу.

В случае если электроприбор заземлен, то в результате укорочения спирали выделяемая мощность существенно возрастет и если не сработает автомат защиты , спираль расплавится и ТЭН выйдет из строя окончательно. Если в квартирной проводке на входе установлено УЗО, то оно при включении электрочайника будет срабатывать и обесточивать всю квартиру.

Если спираль прикоснется к трубке одновременно в двух и более местах, как на фотографии, то при отсутствии заземления и УЗО, если не успеет сработать автоматический выключатель, спираль сразу же перегорит.

Таким образом, ТЭНы могут иметь одну из двух неисправностей – обрыв нихромовой спирали или короткое замыкание ее на металлическую трубчатую оболочку. Любой из этих отказов устранить невозможно и ТЭН, если это возможно, подлежит замене. В современных электрочайниках из-за их конструкции при выходе ТЭНа из строя приходится покупать новый чайник, так как ТЭН выполнен заодно с дном.

Электрический котел отопления расчет мощности

» Отопление » Электрический котел отопления расчет мощности

Котёл – это основной агрегат отопительной системы, от производительности которого зависит возможность инженерной сети обеспечивать строение требуемым количеством тепла. Грамотный предварительный расчёт мощности отопительной установки гарантирует комфортный микроклимат в помещении и поможет исключить лишние затраты при её покупке.

Основной расчёт мощности электрического теплогенератора

Определение! Мощность электрического отопительного агрегата должна полностью восполнять теплопотери всех помещений. При необходимости – учитывается мощность, которая будет расходоваться на нагрев воды.

Профессиональный расчёт мощности электрического отопительного оборудования учитывает следующие факторы:

  • Среднестатистическую температуру в наиболее холодный период года.
  • Изоляционные характеристики материалов, использованных при сооружении ограждающих конструкций домостроения.
  • Тип разводки отопительного контура.
  • Отношение суммарной площади дверных и оконных проёмов и площади несущих конструкций.
  • Конкретные сведения о каждом отапливаемом помещении – количество угловых стен, предполагаемое число радиаторов и прочее.

Внимание! Для выполнения особо точных расчётов принимают во внимание бытовую технику, количество компьютеров и видеотехники, которые также вырабатывают тепловую энергию. Обычно профессиональные вычисления проводят редко, а при покупке выбирают агрегат, мощность которого превышает приблизительно рассчитанную величину

Обычно профессиональные вычисления проводят редко, а при покупке выбирают агрегат, мощность которого превышает приблизительно рассчитанную величину.

Для примерного расчёта мощности (W) применяют следующую формулу:

W=S*Wуд/10м2, где S – площадь отапливаемого строения в м2.

Wуд – это удельная мощность агрегата, величина которой индивидуальна для каждого региона:

  • для холодного климата – 1,2-2,0;
  • для средней полосы – 1,0-1,2;
  • для южных районов – 0,7-0,9.

Определение мощности, необходимой для снабжения горячей водой

Мощность, необходимая для нагрева воды для технических нужд, определяется количеством постоянных потребителей, точек водоразбора, общего количества используемой тёплой воды.

Совет! Для приблизительного определения мощности отопительного агрегата, работающего одновременно на нагрев воды, следует к расчётной мощности для обогрева помещения добавить 20%. В случаях частого водоразбора мощность увеличивают на 25%.

Расчёт объёма накопительного водонагревателя

Если планируется в комплексе с электрической отопительной установкой использовать ёмкостный водонагреватель, то его объём (Vв) можно рассчитать по следующей формуле:

Vв=V*(T-T’)*( T”-T’), где V – требуемое количество подогретой воды, T – требуемая температура подогретой воды, T’ – температура воды, к которой подмешивают горячую воду из нагревателя, T”– температура подогретой в водонагревателе воды.

Выбрав мощность электрической отопительной установки, и определив объём водонагревателя, по формуле можно рассчитать, за какое время (Т, сек) будет нагрета вода:

Т=m*CB*(t2-t1)/P, где m – масса (кг) воды в накопителе, CB – это удельная теплоёмкость воды, которая принимается равной 4,2 кДж/(кг*К), t2 и t1 – конечная и исходная температура воды в бойлере соответственно, P – мощность отопительного агрегата, кВт.

Дополнительные факторы, учитываемые при расчёте мощности электрокотла

Эксплуатация любого теплогенератора, в том числе, электрического, может сопровождаться дополнительными потерями:

  • Если домостроение проветривается слишком интенсивно, то из-за ускоренного воздухообмена помещения будут терять примерно 15% тепла.
  • Слабое утепление стен может стать причиной потери 35% тепловой энергии.
  • Через оконные рамы уходит примерно 10% тепла, а если окна старые, то это количество может быть ещё больше.
  • Неутеплённые полы снизят теплоснабжение комнат ещё примерно на 15%.
  • Через неправильно устроенную конструкцию крыши может уйти примерно четвёртая часть тепла.

Внимание! Если в отапливаемом помещении присутствует хотя бы один из факторов непроизводительных тепловых потерь, то его обязательно необходимо учитывать при расчётах мощности. https://www.youtube.com/embed/_n_cZSAT4ZE

При желании расчёт требуемой мощности и необходимого объема можно осуществить с помощью онлайн калькулятора, максимально учитывающего все характеристики отапливаемого объекта.

kotel-otoplenija.ru

Учебное пособие по физике: новый взгляд на электрическую энергию

В предыдущем разделе Урока 3 подробно рассказывалась о зависимости тока от разности электрических потенциалов и сопротивления. Ток в электрическом устройстве прямо пропорционален разности электрических потенциалов, приложенной к устройству, и обратно пропорционален сопротивлению устройства. Если это так, то скорость, с которой это устройство преобразует электрическую энергию в другие формы, также зависит от тока, разности электрических потенциалов и сопротивления.В этом разделе Урока 3 мы вернемся к концепции мощности и разработаем новые уравнения, которые выражают мощность через ток, разность электрических потенциалов и сопротивление.

Новые уравнения мощности

В Уроке 2 было введено понятие электроэнергии. Электрическая мощность была определена как скорость, с которой электрическая энергия подается в цепь или потребляется нагрузкой. Уравнение для расчета мощности, подаваемой в цепь или потребляемой нагрузкой, было получено равным

.

P = ΔV • I

(Уравнение 1)

Две величины, от которых зависит мощность, связаны с сопротивлением нагрузки по закону Ома.Разность электрических потенциалов ( ΔV ) и ток ( I ) могут быть выражены в терминах их зависимости от сопротивления, как показано в следующих уравнениях.

ΔV = (I • R) I = ΔV / R

Если выражения для разности электрических потенциалов и тока подставить в уравнение мощности, можно вывести два новых уравнения, которые связывают мощность с током и сопротивлением, а также с разностью электрических потенциалов и сопротивлением.Эти выводы показаны ниже.

Уравнение 2:

P = ΔV • I

P = (I • R) • I

P = I 2 • R

Уравнение 3:

P = ΔV • I

P = ΔV • (ΔV / R)

P = ΔV 2 / R

Теперь у нас есть три уравнения для электрической мощности, два из которых получены из первого с использованием уравнения закона Ома.Эти уравнения часто используются в задачах, связанных с вычислением мощности на основе известных значений разности электрических потенциалов (ΔV), тока (I) и сопротивления (R). Уравнение 2 связывает скорость, с которой электрическое устройство потребляет энергию, с током в устройстве и сопротивлением устройства. Обратите внимание на двойную важность тока в уравнении, обозначенную квадратом тока. Уравнение 2 можно использовать для расчета мощности при условии, что известны сопротивление и ток.Если одно из них неизвестно, то необходимо будет либо использовать одно из двух других уравнений для расчета мощности, либо использовать уравнение закона Ома для расчета количества, необходимого для использования уравнения 2.

Уравнение 3 связывает скорость, с которой электрическое устройство потребляет энергию, с падением напряжения на устройстве и сопротивлением устройства. Обратите внимание на двойную важность падения напряжения, обозначенную квадратом ΔV. Уравнение 3 можно использовать для расчета мощности при условии, что известны сопротивление и падение напряжения.Если одно из них неизвестно, то важно либо использовать одно из двух других уравнений для расчета мощности, либо использовать уравнение закона Ома для расчета количества, необходимого для использования уравнения 3.

Концепции на первом месте

Хотя эти три уравнения предоставляют удобные формулы для вычисления неизвестных величин в физических задачах, нужно быть осторожным, чтобы не использовать их неправильно, игнорируя концептуальные принципы, касающиеся схем.Чтобы проиллюстрировать это, предположим, что вам задали такой вопрос: если бы 60-ваттную лампу в бытовой лампе заменить на 120-ваттную лампу, то во сколько раз ток в цепи этой лампы был бы больше? Используя уравнение 2, можно предположить (ошибочно), что удвоение мощности означает, что количество I 2 должно быть удвоено. Таким образом, ток должен увеличиться в 1,41 раза (квадратный корень из 2). Это пример неправильного рассуждения, поскольку он удаляет математическую формулу из контекста электрических цепей.Принципиальное различие между лампочкой на 60 Вт и лампой на 120 Вт заключается не в токе в лампочке, а в ее сопротивлении. У этих двух лампочек разные сопротивления; разница в токе - это просто следствие этой разницы в сопротивлении. Если лампы находятся в патроне лампы, который подключен к розетке в США, то можно быть уверенным, что разность электрических потенциалов составляет около 120 вольт. ΔV будет одинаковым для каждой лампы.Лампа мощностью 120 Вт имеет меньшее сопротивление; и, используя закон Ома, можно было бы ожидать, что он также имеет более высокий ток. Фактически, 120-ваттная лампа будет иметь ток 1 А и сопротивление 120 Ом; 60-ваттная лампа будет иметь ток 0,5 А и сопротивление 240 Ом.

Расчеты для 120-ваттной лампы

P = ΔV • I

I = P / ΔV

I = (120 Вт) / (120 В)

I = 1 А

ΔV = I • R

R = ΔV / I

R = (120 В) / (1 А)

R = 120 Ом

Расчеты для 60-ваттной лампы

P = ΔV • I

I = P / ΔV

I = (60 Вт) / (120 В)

I = 0.5 ампер

ΔV = I • R

R = ΔV / I

R = (120 В) / (0,5 А)

R = 240 Ом

Теперь, правильно используя уравнение 2, можно понять, почему удвоение мощности означает, что будет удвоенный ток, поскольку сопротивление также изменяется при замене лампочки. Расчет тока ниже дает тот же результат, что и выше.

Расчеты для 120-ваттной лампы

P = I 2 • R

I 2 = P / R

I 2 = (120 Вт) / (120 Ом)

I 2 = 1 Вт / Ом

I = SQRT (1 Вт / Ом)

I = 1 А

Расчеты для 60-ваттной лампы

P = I 2 • R

I 2 = P / R

I 2 = (60 Вт) / (240 Ом)

Я 2 = 0.25 Вт / Ом

I = SQRT (0,25 Вт / Ом)

I = 0,5 А


Проверьте свое понимание


1. Что будет толще (шире) - нить накала 60-ваттной лампочки или 100-ваттная? Объяснять.

2.Вычислите сопротивление и силу тока ночной лампочки 7,5 Вт, подключенной к розетке в США (120 В).

3. Рассчитайте сопротивление и силу тока электрического фена мощностью 1500 Вт, подключенного к домашней розетке в США (120 В).

4. Коробка на настольной пиле показывает, что сила тока при запуске составляет 15 ампер. Определите сопротивление и мощность двигателя за это время.

5. На наклейке на проигрывателе компакт-дисков написано, что он потребляет ток 288 мА при питании от 9-вольтовой батареи. Какая мощность (в ваттах) у проигрывателя компакт-дисков?

6. Тостер на 541 Вт подключается к бытовой розетке на 120 В. Какое сопротивление (в Ом) тостера?

7.Цветной телевизор имеет ток 1,99 А при подключении к 120-вольтовой электросети. Какое сопротивление (в Ом) у телевизора? А какая мощность (в ваттах) у телевизора?

Калькулятор расчета закона Ома расчет мощности формулы математический закон Ома круговая диаграмма электрическое падение напряжения электрический ток формула сопротивления закон Ватта ЭДС магический треугольник подсказка онлайн напряжение вольты сопротивление резистора амперы аудиотехника EV = IR - P = VI calc проводимость связь удельное сопротивление соотношение

Калькулятор расчета закона Ома рассчитать формулы мощности математический закон Ома круговая диаграмма падение электрического напряжения формула сопротивления электрическому току закон Ватта ЭДС магический треугольник уравнение подсказка онлайн напряжение вольт сопротивление резистора амперы аудиотехника EV = IR - P = VI calc проводимость связь удельное сопротивление связь - sengpielaudio Sengpiel Берлин


= сбросить.

Формулы: V = I R I = V / R R = V / I

Математические формулы закона Ома

Закон

Ома можно переписать тремя способами для расчета тока, сопротивления и напряжения.
Если ток I должен протекать через резистор R , можно рассчитать напряжение В .
Первая версия формулы (напряжения): V = I × R

Если есть напряжение В на резисторе R , через него протекает ток I . I можно вычислить.
Вторая версия (текущей) формулы: I = V / R

Если через резистор протекает ток I , а на резисторе имеется напряжение В, . R можно рассчитать.
Третья версия формулы (сопротивления): R = V / I

Все эти вариации так называемого «Закона Ома» математически равны друг другу.

Имя Знак формулы Установка Символ
напряжение V или E вольт В
текущий Я ампер (ампер) А
сопротивление р Ом Ом
мощность п. ватт Вт

Какая формула для электрического тока?
При постоянном токе:
I = Δ Q / Δ t
I - ток в амперах (A)
Δ Q - электрический заряд в кулонах (C),
, который течет во время продолжительности Δ t в секундах (с).

Напряжение В = ток I × сопротивление R

Мощность P = напряжение В × ток I

В электрических проводниках, в которых ток и напряжение пропорциональны
друг другу, применяется закон Ома: В ~ I или В I = const.

Проволока из константана или другая металлическая проволока, выдерживаемая при постоянной температуре, хорошо соответствует закону Ома.

" V I = R = const." ist не закон Ома. Это определение сопротивления.
После этого в каждой точке, даже с изогнутой кривой, можно рассчитать значение сопротивления.

Для многих электрических компонентов, например диодов, закон Ома не применяется.

«Закон Ома» не был изобретен господином Омом

" U I = R = конст."- это , а не закон Ома или закон Ома. Это определение сопротивления.
После этого в каждой точке - даже с изогнутой кривой - значение сопротивления может быть вычислено.
Закон Ома" постулирует "следующие отношения: Когда к объекту прикладывается напряжение, электрический ток
, протекающий через него, изменяет силу, пропорциональную напряжению. Другими словами, электрическое сопротивление
, определяемое как отношение напряжения к току, является постоянным, и оно равно
независимо от напряжения. и ток.Название закона «почитает» Георга Симона Ома, который смог
доказать эту взаимосвязь для некоторых простых электрических проводников в качестве одного из первых исследователей.
«Закон Ома» действительно не был изобретен Омом.


Совет: магический треугольник Ома

Волшебный треугольник V I R можно использовать для расчета всех формулировок закона Ома.
Используйте палец, чтобы скрыть вычисляемое значение. Два других значения
показывают, как производить расчет.

Обозначение I или J = латиница: приток, международный ампер и R = сопротивление. В = напряжение или
разность электрических потенциалов, также называемая падением напряжения, или E = электродвижущая сила (ЭДС = напряжение).
Расчет падения напряжения - постоянный / однофазный расчет
Падение напряжения В в вольтах (В) равно току в проводе I в амперах (А), умноженных на два
длина провода L в футах (футах), умноженном на сопротивление провода на 1000 футов R в омах (Ом / кфут)
деленное на 1000:
В падение (В) = I провод (A) × R провод (Ом)
= I провод (A) × (2 × L (фут) × R провод (Ом / kft) / 1000 (ft / kft))

Падение напряжения В в вольтах (В) равно току провода I в амперах (А), умноженному на два
, длина провода L в метрах (м), умноженная на сопротивление провода на 1000 метров R в омах
(Ом / км) разделить на 1000:
В падение (В) = I провод (A) × R провод (Ом)
= I провод (A) × (2 × L (м) × R провод (Ом / км) / 1000 (м / км))

Если требуется блок питания P = I × V и напряжения V = I · R ,
ищите Формулы большой мощности »:
Расчеты: мощность (ватт), напряжение, ток, сопротивление

Некоторые думают, что Георг Симон Ом рассчитал «удельное сопротивление».
Поэтому они думают, что только следующее может быть истинным законом Ома.

Количество сопротивления
R = сопротивление Ом
ρ = удельное сопротивление Ом × м
l = двойная длина кабеля м
A = поперечное сечение мм 2

Электропроводность (проводимость) σ (сигма) = 1/ ρ
Удельное электрическое сопротивление (удельное сопротивление) 9025 rho3 = 1/ σ

Разница между удельным электрическим сопротивлением и электропроводностью

Проводимость в сименсах обратно пропорциональна сопротивлению в омах.

Просто введите значение слева или справа.
Калькулятор работает в обоих направлениях знака .
Значение электропроводности (проводимости) и удельного электрического сопротивления
(удельное сопротивление) зависит от температуры материала постоянной. Чаще всего его дают при 20 или 25 ° C.
Сопротивление R = ρ × ( л / A ) или R R σ × A )

Для всех проводников удельное сопротивление изменяется в зависимости от температуры.В ограниченном диапазоне температур
это примерно линейно:
где α - температурный коэффициент, T - температура и T 0 - любая температура,
, например, T 0 = 293,15 K = 20 ° C, при котором удельное электрическое сопротивление ρ ( T 0 ) известен.

Площадь поперечного сечения - поперечное сечение - плоскость среза

Теперь возникает вопрос:
Как можно рассчитать площадь поперечного сечения (плоскость среза) A
из диаметра проволоки d и наоборот?

Расчет поперечного сечения A (плоскость среза) от диаметра d :

r = радиус проволоки
d = диаметр проволоки

Расчетный диаметр d из поперечного сечения A (плоскость среза ) :

Поперечное сечение A провода в мм 2 , вставленное в эту формулу, дает диаметр d в мм.

Расчет - Круглые кабели и провода:
• Диаметр к поперечному сечению и наоборот •

Электрическое напряжение В = I × R (закон Ома VIR)
Электрическое напряжение = сила тока × сопротивление (закон Ома)
Введите два значения , будет рассчитано третье значение.
Электроэнергия P = I × В (степенной закон PIV)
Электроэнергия = сила тока × напряжение (закон Ватта)
Введите два значения , будет рассчитано третье значение.
Закон Ома. В = I × R , где В, - это потенциал на элементе схемы, I - это ток
через него, а R - его сопротивление. Это не общеприменимое определение сопротивления
. Это применимо только к омическим резисторам, сопротивление которых R равно
постоянным во всем интересующем диапазоне, а В, подчиняется строго линейной зависимости от I . Материалы
называются омическими, если V линейно зависит от R .Металлы являются омическими, пока
поддерживает их постоянную температуру. Но изменение температуры металла немного меняет R
. Когда ток изменяется быстро, например, при включении света или при использовании источников переменного тока
, может наблюдаться слегка нелинейное и неомическое поведение. Для неомических резисторов
R зависит от тока, и определение R = d V / d I является гораздо более полезным. Это значение
, которое иногда называют динамическим сопротивлением.Твердотельные устройства, такие как термисторы,
неомичны и нелинейны. Сопротивление термистора уменьшается по мере его нагрева, поэтому его динамическое сопротивление
отрицательно. Туннельные диоды и некоторые электрохимические процессы
имеют сложную кривую от I до В с областью действия с отрицательным сопротивлением. Зависимость сопротивления
от тока частично связана с изменением температуры устройства
с увеличением тока, но другие тонкие процессы также способствуют изменению сопротивления
в твердотельных устройствах.

Расчет: калькулятор параллельного сопротивления (резистора)

Калькулятор цветовой кодировки резисторов

Электрический ток, электрическая мощность, электричество и электрический заряд

Колесо формул - формулы электротехники

In acoustics используйте «закон Ома в качестве акустического эквивалента »



Как работает электричество.
Закон Ома ясно объяснен.

[начало страницы]

Тепловые агрегаты

Bel - Технические характеристики

Определение размера воздуховода

Нагреватель мощностью 1 кВт будет производить 3 413 БТЕ в час. Если вы знаете CFM вашего воздухообрабатывающего агрегата и необходимое повышение температуры, вы можете использовать приведенную ниже таблицу, чтобы приблизительно оценить мощность канального нагревателя в киловаттах, необходимую для вашего применения.

Например: если вам требуется повышение температуры на 40 градусов, а ваш кондиционер производит 2000 кубических футов в минуту, определите точку, в которой линия повышения температуры на 40 градусов пересекается с линией 2000 кубических футов в минуту, и вы увидите, что необходим нагреватель мощностью 25 кВт. делать работу.

Номинальное напряжение

Большинство нагревателей рассчитаны на номинальное напряжение. Если на вашем объекте напряжение выше или ниже номинального (обычно оно ниже номинального напряжения), ваш обогреватель будет генерировать другую мощность.

Номинальное напряжение 240 В Нагреватель с питанием 230 В обеспечит выход только 92% своей номинальной мощности.
Нагреватель с номинальным напряжением 240 В и питанием 220 В обеспечит выход только 84% своей номинальной мощности.
Нагреватель с номинальным напряжением 240 В и питанием 208 В обеспечит выход только 75% своей номинальной мощности.

Электронагреватели представляют собой чисто резистивные нагрузки, сила тока будет уменьшаться с увеличением приложенного напряжения.

МИНИМАЛЬНЫЕ ТРЕБОВАНИЯ К ВОЗДУШНОМУ ПОТОКУ

Для правильной работы канальным обогревателям требуется минимальный поток воздуха. Температура воздуха на входе 77 ° F потребует примерно 65 кубических футов в минуту воздушного потока на кВт, что типично для прямого охлаждения. При работе теплового насоса с температурой воздуха на входе 110F потребуется примерно 120 кубических футов в минуту воздушного потока на кВт. См. Наше руководство по установке для окончательного определения расхода воздуха.(Вышесказанное является консервативным «практическим правилом», если обогреватель заполняет воздуховод).

ХАРАКТЕРИСТИКИ ОБОГРЕВАТЕЛЯ

МНОЖИТЕЛИ ДЛЯ ОПРЕДЕЛЕНИЯ РАСШИРЕНИЯ РАСХОДА КАНАЛОВЫХ НАГРЕВАТЕЛЕЙ
1 фаза при 120 В кВт, умноженная на 8,333 1 фаза при 208 В кВт, умноженная на 4,808
1 фаза при 220 В кВт, умноженная на 4,545 1 фаза при 230 В кВт, умноженная на 4,348
1 фаза при 240 В, кВт, умноженная на 4.167 1 фаза при 277 В кВт, умноженная на 3,610
1 фаза при 480 В кВт, умноженная на 2,083 1 фаза при 600 В кВт, умноженная на 1,667
3 фазы при 208 В, умножить на 2,776 3 фазы при 220 В кВт, умноженное на 2,624
3 фазы при 230 В кВт, умноженное на 2,510 3 фазы при 240 В кВт, умноженное на 2,406
3 фазы, 480 В, кВт, раз 1,203 3 фазы при 600 вольт умножить на 0,962

МАКСИМАЛЬНАЯ КВТ НА ЦЕПЬ И НАЧАЛО РЕМОНТА ПЕРЕГРУЗОЧНОГО ТОКА
Напряжение 120 В 208В 220 В 230 В 240 В
1 фаза 5.76 9,98 10,56 11,04 11,52
3 фазы ------ 17,29 18,29 19,12 19,95

Напряжение 277В 460 В 480 В 550 В 600 В
1 фаза 13,29 22,08 23,04 26,40 28.80
3 фазы ------ 38,24 39,90 45,72 49,88

Примечание: В каждой группе в прайс-листах указана самая высокая кВт для определенного напряжения и фазы без предохранителя цепи, непосредственно перед нагревателем со звездочкой после цены.

ВНИМАТЕЛЬНО ВЫБИРАЙТЕ И СОХРАНИТЕ !!!
Значительное увеличение стоимости возникает, когда требуются дополнительные элементы, средства управления и / или схемы.Мы не предлагаем вам покупать меньше мощности, чем вам нужно, но иногда более низкая кВт будет вполне достаточной и сэкономит вам кучу денег !!!

Пример : Если нагреватель мощностью 11,5 кВт при 240 В 1 @ справится с этой задачей, зачем использовать нагреватель на 12 кВт при 240 В, который стоит как минимум на 40% дороже, поскольку он превышает допустимые 48 А на цепь и требует дорогостоящей защиты от перегрузки по току.

Пример : Если ситуация правильная и можно выполнить хорошую безопасную работу, было бы хорошо рассмотреть возможность установки отдельных нагревателей, каждый с номиналом менее 48 А и не требующих заводской защиты от перегрузки по току.Возможно, можно использовать нагреватель в каждом ответвлении воздуховода или более одного нагревателя в главном воздуховоде. Наши нагреватели внесены в список, так что это может быть выполнено групповым способом для заполнения площади поперечного сечения или один за другим, если вход в любой нагреватель имеет температуру 110 ° F или меньше.

ПОЛЕВЫЕ ПОДКЛЮЧЕНИЯ НАГРЕВАТЕЛЕЙ КАНАЛОВ
Полевые провода к отсекам управления нагревателем или панелям предохранителей должны быть из меди, подходящей для температуры 75 ° C (167 ° F). В следующей таблице мы показываем фактическую максимально допустимую нагрузку, которая составляет 80% от общей допустимой нагрузки провода, когда в кабеле 6 или менее проводников, и 70%, когда количество проводников превышает 6.У.Л. требует, чтобы нейтраль считалась проводником в устройствах с номинальным напряжением 120 или 277 В. Однако они не требуют подсчета заземляющих проводов.

Примечание:
Нагреватели со встроенным предохранителем предназначены для работы с полевыми источниками электропитания следующим образом:

1 фаза от 20 до 48 А при 208 до 600 В-1 питание
1 фаза от 49 до 144 А при от 208 до 240 В-1 питание
3 фазы от 24 до 48 А при 208 до 600 В-1 питание
3 фазы от 49 до 96 А при От 208 до 240 В-1 Питание
3 фазы.От 97 до 144 А при 208 до 240 В - 1 или 3 источника питания
3 фазы от 49 до 96 А при 300 до 600 В - 1 или 2 источника питания

Опция: Пункт чуть выше - 1 Питание Большинство других нагревателей имеют возможность подключения нескольких цепей питания 48A или 96A. Нагреватели, требующие предохранителя цепи, также доступны с меньшими блоками управления и отдельным U.L. Перечисленная панель удаленных предохранителей. За дополнительной информацией обращайтесь на завод.

ТАБЛИЦА ТЕМПЕРАТУРНОГО ЭКВИВАЛЕНТА

Для других эквивалентов, не указанных в таблице, используйте следующие формулы:

Fº = Cº X 1,8 + 32º
Cº = Fº - 32º / 1,8

Электрическое сопротивление Тепловые значения можно найти путем прямого применения закона Ома и других известных электрических величин или уравнений. Рассматриваемые формулы и приложения ограничиваются теми, которые полезны для людей, занимающихся продажей или обслуживанием электрических воздухонагревателей.

В формулах и приложениях, рассматриваемых ниже: квадратный корень из 3 (3) = 1,732

P = Вт
E = Вольт
кВт = 1000 Вт
I = А
R = Ом
1 кВт = 3,413 BTUH

ФОРМУЛЫ И ПРИМЕНЕНИЕ:

I = P / E или Ампер = Ватты + Вольт

ПРИМЕР: Чтобы определить потребляемую мощность нагревателя 9,8 кВт при однофазном напряжении 208 В, разделите ватты на вольты по формуле.(9800 + 208 = 47,1 А) Для трехфазного нагревателя со сбалансированной нагрузкой однофазный ответ делится на 43. (47,1 + 1,732 = 27,2 А)

P = EI или Ватт = Вольт X Ампер

ПРИМЕР: Чтобы определить киловаттную мощность однофазного нагревателя на 240 В, потребляемого 40 А, умножьте Вольт на Ампер согласно формуле (240 X 40 - 9600 Вт или 9,6 кВт). Для трехфазного нагревателя со сбалансированной нагрузкой однофазный ответ умножается на @ (9,6 X 1,732 - 16,63 кВт).

ПОЛЕЗНО ПРИ ВЫБОРЕ НАГРЕВАТЕЛЯ: чтобы определить, сколько кВт вы можете подключить к ограниченному доступному току и / или размеру провода.Возможно, вы не захотите превысить схему на 48 А, что приведет к значительным расходам на схему Fusirig, требуемую U.L. и Национальный электротехнический кодекс.

ПРИМЕР: Вам нужен нагреватель не более 48 А при однофазном напряжении 240 В. Умножьте вольт на ампер по формуле (240 X 48 - 11500 Вт или 11,5 кВт). Для трехфазного нагревателя со сбалансированной нагрузкой однофазный ответ умножается на iq (1 1,5 X 1,732 - 19,9 кВт).

P = E² / R или Ватт = Вольт в квадрате @ Ом

Эта формула используется для снижения выходной мощности нагревателя (ватт) при подаче более низкого напряжения.Сопротивление элемента (Ом) остается неизменным, поэтому уменьшенная мощность напрямую связана с квадратом изменения напряжения.

ПРИМЕР: У вас есть нагреватель мощностью 19,6 кВт, трехфазный, 24V, 47,2 А. и хотите подключить R к источнику питания 208 В и определить новую мощность в кВт. Предлагаемые вольт в квадрате, разделенные на номинальные вольт в квадрате = множитель. 208 x 208 _ 43,264 _ 0,75 Это 0,75 x 19,6 кВт при 240 В - 14,7 кВт при 208 В. 240 x при 40 57,600

Обратите внимание, что при пониженном напряжении токи падают.Используя первую формулу выше для трех фаз, 14,700 разделить на 208 В - 70,7 А и это число разделить на il (1,732) - 40,8 А.

Дополнительные примеры подключения нагревателей к более низким напряжениям см. В таблице на обратной стороне этой страницы. Вы также заметите, что мощность и связанный с ней BTUH падают быстрее, чем сила тока.

ПОДКЛЮЧЕНИЕ К НИЖНЕМУ НАПРЯЖЕНИЮ
Когда нагреватель с фиксированным сопротивлением в Ом подключен к напряжению ниже номинального, мощность и выходная мощность BTUH, а также ток будут уменьшены, как показано в таблице ниже.

ПОДКЛЮЧЕНИЕ К ВЫСОКОМУ НАПРЯЖЕНИЮ
НИКОГДА не подключайте нагреватель к более высокому напряжению, чем указано на паспортной табличке. Так же, как выходное напряжение падает при более низком приложенном напряжении, оно увеличивается еще быстрее при более высоком напряжении.

Нагреватель
Номинальное
Напряжение
Нижнее
Приложенное напряжение
% нагревателя
Мощность и BTUH
% усилителей с паспортной табличкой нагревателя
.
600 575
550
92%
84%
96%
92%
480 460
440
92%
84%
96%
92%
277 265
254
92%
84%
96%
92%
240 230
220
208
201
92%
84%
75%
70%
96%
92%
87%
84%
208 200
190
92%
84%
96%
92%
120 115
110
92%
84%
96%
92%

ПРИМЕР: Подключите 240 В к нагревателю на 208 В, 17.25 кВт, 3 фазы, 47,9 А.
РЕЗУЛЬТАТ: Мощность нагревателя увеличивается до 23 кВт, потребляя 55,3 А при 240 В.

  1. Потребление усилителей теперь превышает 48 на цепь, разрешенную UL и NEC
  2. Выход элемента теперь на 1/3 больше заводского предела.
  3. Возможности контактора и других компонентов могут быть превышены.
  4. Теперь возможно превышение безопасной плотности мощности и короткие циклы нагревателя.
  5. Этикетка UL и гарантия недействительны!
  6. Ответственность за качество продукции переходит к нам! У ВАС БУДУТ ПРОБЛЕМЫ !!!

СОПРОТИВЛЕНИЕ В ОМ, РАСЧЕТНОЕ ДЛЯ РАЗЛИЧНЫХ НАГРЕВАТЕЛЕЙ

Обычно не требуется знать сопротивление элементов в нагревателе, если вам не нужна замена (и), и даже в этом случае вы должны указать кВт, напряжение, фазу и т. Д.из паспортной таблички нагревателя с указанием мощности в кВт на элемент, определяемой делением общей мощности в кВт на количество элементов. Иногда необходимо знать сопротивления для замены, особенно для трехфазных нагревателей. Вы можете измерить общее сопротивление двух или более частей и, если возможно, предоставить данные с паспортной таблички, наружный диаметр катушки элемента. и т.д. Обзор некоторых примеров формул, приведенных ниже, покажет, что важно уметь различать трехфазную конструкцию треугольником или звездой (звезда).

R = E / I или Сопротивление в Ом = Вольт, разделенное на Ампера.Вы можете применить эту формулу, когда у вас есть одноэлементный нагреватель или когда у вас есть показания усилителя только одного элемента одно- или трехфазного нагревателя с треугольным соединением. Каждый элемент рассчитывается как однофазный. См. Примечание ниже, чтобы получить холодное сопротивление.
R - E2 / P или Сопротивление в Ом - вольты в квадрате, разделенные на вафты. Эта формула может использоваться за исключением трехфазных элементов, соединенных звездой. См. «Основные схемы электрических нагревателей», чтобы определить звездообразные (звездообразные) элементы.В наборе элементов, соединенных звездой, вы делите напряжение на V7 (1,732), а затем переходите к вычислению сопротивления по формуле. ПРИМЕР: Возьмите нагреватель мощностью 20 кВт, трехфазный на 240 В. с 6 элементами, по 3333 вафта каждый, которые спроектированы как два комплекта по 10 кВт, соединенных звездой. 240 В, разделенное на 1,732 = 138,6 В для использования при применении формулы. 138,6 в квадрате = 19210. Это делится на 3333 = 5,76 горячего ома каждый. ПРИМЕЧАНИЕ: Ом, рассчитанный по формуле, необходимо уменьшить на 5–10 процентов, чтобы учесть дополнительное сопротивление, которое будет иметь элемент при нагревании R.Теперь этот ответ - холодное сопротивление, которое мы используем в дизайне элементов. Необходимо выбрать подходящий калибр проволоки, чтобы обеспечить достаточную площадь поверхности для рассеивания тепла и избежать преждевременного выхода из строя.

Основы: Рассеивание мощности и электронные компоненты

Постоянно существующей проблемой в проектировании электронных схем является выбор подходящих компонентов, которые не только выполняют свои намеченные задачи, но и выживут в предсказуемых условиях эксплуатации.Большая часть этого процесса - убедиться, что ваши компоненты будут оставаться в пределах своих безопасных рабочих ограничений с точки зрения тока, напряжения и мощности. Из этих трех «силовая» часть часто является самой сложной (как для новичков, так и для экспертов), потому что безопасная рабочая зона может очень сильно зависеть от особенностей ситуации.

Далее мы познакомим вас с некоторыми основными концепциями рассеяния мощности в электронных компонентах, чтобы понять, как выбирать компоненты для простых схем с учетом ограничений мощности.

- НАЧАЛО ПРОСТОГО -

Давайте начнем с одной из самых простых схем, которую только можно вообразить: батарея, подключенная к единственному резистору:

Здесь у нас одна батарея на 9 В и одна батарея на 100? (100 Ом) резистор, соединенный проводами, чтобы сформировать полную цепь.

Достаточно просто, правда? Но теперь вопрос: если вы действительно хотите построить эту схему, насколько «большой» из 100? резистор нужно ли использовать, чтобы убедиться, что он не перегревается? То есть, можем ли мы просто использовать «обычный» резистор ¼ W, как показано ниже, или нам нужно увеличить?

Чтобы это выяснить, нам необходимо рассчитать мощность, рассеиваемую резистором.
Вот общее правило расчета рассеиваемой мощности:

Правило питания: P = I × В
Если ток I протекает через данный элемент в вашей цепи, теряя при этом напряжение В , то мощность, рассеиваемая этой цепью Элемент является произведением этого тока и напряжения: P = I × V .

В сторону :
Каким образом ток, умноженный на напряжение, может дать нам измерение «мощности»?

Чтобы понять это, нам нужно помнить, что физически представляют ток и напряжение.

Электрический ток - это скорость протекания электрического заряда через цепь, обычно выражаемая в амперах, где 1 ампер = 1 кулон в секунду. (Кулон - это единица измерения электрического заряда в системе СИ.)

Напряжение или, более формально, электрический потенциал - это потенциальная энергия на единицу электрического заряда через рассматриваемый элемент схемы. В большинстве случаев вы можете думать об этом как о количестве энергии, которое «расходуется» в элементе на единицу проходящего заряда.Электрический потенциал обычно измеряется в вольтах, где 1 вольт = 1 джоуль на кулон. (Джоуль - единица энергии в системе СИ.)

Итак, если мы возьмем ток, умноженный на напряжение, это даст нам количество энергии, которое «израсходовано» в элементе на единицу заряда, умноженное на количества этих единиц заряда, проходящих через элемент в секунду. :

1 ампер × 1 вольт =
1 (кулон / секунда) × 1 (джоуль / кулон) =
1 джоуль / секунда

Результирующая величина выражается в единицах один джоуль в секунду: скорость потока энергии, более известная как мощность.Единица измерения мощности в системе СИ - ватт, где 1 ватт = 1 джоуль в секунду.

Итак, у нас есть

1 ампер × 1 вольт = 1 ватт

Снова на нашу трассу! Чтобы использовать правило мощности ( P = I × V ), нам нужно знать как ток через резистор, так и напряжение на резисторе.

Во-первых, мы используем закон Ома ( В = I × R ), чтобы найти ток через резистор.
• Напряжение на резисторе В = 9 В.
• Сопротивление резистора R = 100 Ом.

Следовательно, ток через резистор равен:

I = В / R = 9 В / 100? = 90 мА

Затем мы можем использовать правило мощности ( P = I × V ), чтобы найти мощность, рассеиваемую резистором.
• Ток через резистор I = 90 мА.
• Напряжение на резисторе В = 9 В.

Следовательно, мощность, рассеиваемая в резисторе, составляет:

P = I × В = 90 мА × 9 В = 0,81 Вт

Так вы можете использовать резистор на 1/4 Вт?

Нет, потому что он, скорее всего, выйдет из строя из-за перегрева.
100? резистор в этой схеме должен быть рассчитан не менее чем на 0,81 Вт. Обычно выбирается следующий больший доступный размер, в данном случае 1 Вт.

Резистор мощностью 1 Вт обычно поставляется в гораздо более крупном физическом корпусе, как показано здесь:

(1 Вт, резистор 51 Ом, для сравнения размеров.)

Поскольку резистор на 1 Вт физически намного больше, он должен быть в состоянии справиться с рассеиванием большего количества энергии за счет большей площади поверхности и более широких выводов. (Он все еще может сильно нагреваться на ощупь, но не должен нагреваться настолько, чтобы выйти из строя.)

Вот альтернативное расположение, которое работает с четырьмя 25? резисторы в серии (а в сумме все равно 100?).В этом случае ток через каждый резистор по-прежнему составляет 90 мА. Но поскольку на каждом резисторе имеется только четверть напряжения, на каждом резисторе рассеивается только четверть меньшей мощности. Для этой схемы достаточно, чтобы четыре резистора были рассчитаны на 1/4 Вт.

В сторону: прорабатываем этот пример.

Поскольку четыре резистора включены последовательно, мы можем сложить их значения, чтобы получить их общее сопротивление, равное 100 Ом. Использование закона Ома с этим общим сопротивлением снова дает нам ток 90 мА.И снова, поскольку резисторы включены последовательно, одинаковый ток (90 мА) должен течь через каждый обратно к батарее. Напряжение через каждые 25? резистор тогда В = I × R , или 90 мА × 25? = 2,25 В. (Чтобы еще раз убедиться, что это разумно, обратите внимание, что напряжения на четырех резисторах в сумме составляют 4 × 2,25 В = 9 В.)

Мощность на каждого человека 25? резистор P = I × В = 90 мА × 2,25 В? 0,20 Вт, безопасный уровень для использования с резистором 1/4 Вт.Интуитивно понятно, что если разделить 100? резистор на четыре равные части, каждая из которых должна рассеивать четверть общей мощности.

- ЗА РЕЗИСТОРАМИ -

Для нашего следующего примера давайте рассмотрим следующую ситуацию: предположим, что у вас есть схема, которая принимает входной сигнал от источника питания 9 В и имеет встроенный линейный регулятор для понижения напряжения до 5 В, где все работает. Ваша нагрузка на конце 5 В может достигать 1 А.

Как выглядит мощность в этой ситуации?

Регулятор, по сути, действует как большой переменный резистор, который регулирует свое сопротивление по мере необходимости для поддержания постоянного выходного напряжения 5 В. Когда выходная нагрузка составляет 1 А, выходная мощность, выдаваемая регулятором, составляет 5 В × 1 А = 5 Вт, а мощность, потребляемая в цепи источником питания 9 В, составляет 9 Вт. Напряжение, падающее на стабилизаторе. составляет 4 В, а при 1 А, это означает, что 4 Вт рассеивается линейным регулятором - также разница между входной и выходной мощностью.

В каждой части этой схемы соотношение мощности задается следующим образом: P = I × V . Две части - регулятор и нагрузка - это места, где рассеивается мощность. А в части цепи, подключенной к источнику питания, P = I × V описывает подачу мощности в систему - напряжение увеличивается на по мере прохождения тока по источнику питания.

Кроме того, стоит отметить, что мы, , не сказали, , какая нагрузка тянет этот 1 А.Энергия потребляется, но это не обязательно означает, что она преобразуется в (просто) тепловую энергию - например, это может быть питание двигателя или набора зарядных устройств для аккумуляторов.

В сторону:
Хотя такая установка линейного регулятора напряжения, как эта, является очень распространенной схемой для электроники , стоит отметить, что это также невероятно неэффективная схема : 4/9 входной мощности просто сгорает. как тепло, даже при работе на более низких токах.

- КОГДА НЕТ ПРОСТОЙ СПЕЦИФИКАЦИИ «МОЩНОСТЬ» -

Далее, немного более сложная часть: убедиться, что ваш регулятор может справиться с мощностью. В то время как на резисторах четко указана их мощность, на линейных регуляторах это не всегда. В приведенном выше примере регулятора предположим, что мы используем регулятор L7805ABV от ST (техническое описание здесь).


(Фото: типичный корпус TO-220, тип, который обычно используется для линейных регуляторов средней мощности)

L7805ABV - линейный стабилизатор 5 В в корпусе TO-220 (аналогичный показанному выше), рассчитанный на 1.Выходной ток 5 А и входное напряжение до 35 В.

Наивно, вы можете предположить, что вы можете подключить это прямо к входу 35 В и рассчитывать на выход 1,5 А, что означает, что регулятор будет излучать мощность 30 В * 1,5 А = 45 Вт. Но это крошечный пластиковый пакет; на самом деле он не может справиться с такой большой мощностью. Если вы посмотрите таблицу данных в разделе «Абсолютные максимальные характеристики», чтобы попытаться определить, с какой мощностью он может справиться, все, что там написано, является «внутренне ограниченным», что само по себе далеко не ясно.

Оказывается, существует фактическая номинальная мощность, но обычно она несколько «спрятана» в таблице данных. Вы можете понять это, просмотрев пару связанных спецификаций:

• T OP , Диапазон рабочих температур перехода: от -40 до 125 ° C

• R thJA , Термическое сопротивление переход-окружающая среда: 50 ° C / Вт

• R thJC , Термическое сопротивление переходной коробки: 5 ° C / Вт

Рабочий диапазон температур перехода, T OP , определяет, насколько горячим может быть «переход» - активная часть интегральной схемы регулятора, прежде чем он перейдет в режим теплового отключения.(Тепловое отключение - это внутренний предел, который делает мощность регулятора «внутренне ограниченной».) Для нас это максимум 125 ° C.

Тепловое сопротивление переход-окружающая среда R thJA (часто обозначается как? JA ), сообщает нам, насколько нагревается переход, когда (1) регулятор рассеивает заданное количество мощности и (2) регулятор находится внутри на открытом воздухе при заданной температуре окружающей среды. Предположим, нам нужно спроектировать наш регулятор для работы только в скромных коммерческих условиях, температура которых не превышает 60 ° C.Если нам нужно поддерживать температуру перехода ниже 125 ° C, то максимальное повышение температуры, которое мы можем допустить, составляет 65 ° C. Если у нас есть R thJA 50 ° C / Вт, то максимальная рассеиваемая мощность, которую мы можем допустить, составляет 65/50 = 1,3 Вт, если мы хотим предотвратить переход регулятора в состояние теплового отключения. Это значительно ниже 4 Вт, которые можно было бы ожидать при токе нагрузки 1 А. Фактически, мы можем выдержать только 1,3 Вт / 4 В = 325 мА среднего выходного тока, не отправляя регулятор в состояние теплового отключения.

Это, однако, относится к случаю, когда ТО-220 излучает в окружающий воздух - почти наихудшая ситуация. Если мы сможем добавить радиатор или иным образом охладить регулятор, мы сможем добиться большего.

Противоположный конец спектра представлен другой термической спецификацией: корпус с термическим сопротивлением, R thJC . Это указывает, какую разницу температур можно ожидать между переходом и внешней стороной корпуса TO-220: всего 5 ° C / Вт. Это соответствующий номер , если вы можете быстро отвести тепло от корпуса, например, если у вас есть очень хороший радиатор, подключенный к внешней стороне корпуса TO-220.С большим радиатором и идеальным соединением с этим радиатором при мощности 4 Вт температура перехода повысится всего на 20 ° C по сравнению с температурой вашего радиатора. Это представляет собой абсолютный минимум нагрева, который можно ожидать в идеальных условиях.

В зависимости от технических требований вы можете начать с этого момента, чтобы построить полный бюджет мощности, чтобы учесть теплопроводность каждого элемента вашей системы, от самого регулятора до термоинтерфейса между ним и радиатором, к тепловой связи радиатора с окружающим воздухом.Затем вы можете проверить соединения и относительную температуру каждого компонента с помощью бесконтактного инфракрасного термометра с точечным считыванием. Но часто бывает лучше переоценить ситуацию и посмотреть, есть ли лучший способ сделать это.

В данной ситуации можно подумать о переходе на стабилизатор для поверхностного монтажа, который обеспечивает лучшую управляемую мощность (за счет использования печатной платы в качестве радиатора), или, возможно, стоит подумать о добавлении силового резистора (или стабилитрона) до стабилизатор для снижения большей части напряжения за пределами блока регулятора , уменьшая нагрузку на него.Или, что еще лучше, посмотрите, есть ли способ построить вашу схему без каскада линейного регулятора с потерями.

- ПОСЛЕ СЛОВА -

Мы рассмотрели основы понимания рассеиваемой мощности в нескольких простых схемах постоянного тока.

Принципы, которые мы рассмотрели, являются довольно общими и могут использоваться для понимания энергопотребления в большинстве типов пассивных элементов и даже в большинстве типов интегральных схем. Однако существуют реальные ограничения, и можно потратить всю жизнь на изучение нюансов энергопотребления, особенно при более низких токах или высоких частотах, когда малые потери, которыми мы пренебрегли, становятся важными.

В цепях переменного тока многие вещи ведут себя по-разному, но правило мощности все еще сохраняется в большинстве случаев: P (t) = I (t) × В (t) для изменяющихся во времени тока и напряжения. И не все регуляторы работают с потерями: импульсные источники питания могут преобразовывать (например) 9 В постоянного тока в 5 В постоянного тока с КПД 90% или выше - это означает, что при хорошем дизайне может потребоваться всего около 0,6 А при 9 В для производят 5 В при 1 А. Но это уже отдельная история.

Как работает нагревательный элемент

11 дек. Как работает нагревательный элемент?

(Последнее обновление: 11 декабря 2018 г.)

Одним из самых влиятельных изобретений в современном отоплении и электричестве является нагревательный элемент.Например, электрические обогреватели, тостеры, души, сушилки и многое другое полагаются на нагревательные элементы. Но что такое нагревательный элемент и как он работает?

Что такое нагревательный элемент?

Нагревательный элемент преобразует электрическую энергию в тепло за счет резистивного процесса (также известного как джоулев нагрев). Электрический ток, проходящий через элемент, встречает сопротивление, которое выделяет тепло.

Обычно нагревательные элементы изготавливаются из катушки, ленты или полоски проволоки, которые выделяют тепло (например, нить накаливания лампы).Нагревательные элементы содержат электрический ток, который проходит через катушку, ленту или провод и становится очень горячим. Элемент преобразует проходящую через него электрическую энергию в тепло, которое распространяется во всех направлениях.

Как работает нагревательный элемент?

Нагревательные элементы помогают преобразовывать электричество в тепло. Однако, чтобы понять, как работает нагревательный элемент, мы должны помнить несколько основных уроков по электричеству.

Во-первых, проводники - хорошие носители электричества.И наоборот, изоляторы - плохие переносчики электричества. И проводники, и изоляторы обеспечивают сопротивление протекающим по ним электрическим токам, хотя и в разной степени. Проводники обладают низким сопротивлением, а изоляторы - высоким. Итак, электронные схемы включают резисторы, которые контролируют протекание тока. Наконец, как работает нагревательный элемент?

«Резисторы работают путем преобразования электрической энергии в тепловую; Другими словами, они нагреваются, когда через них проходит электричество.Но это делают не только резисторы. Даже тонкий кусок проволоки нагреется, если вы пропустите через него достаточное количество электричества. Это основная идея ламп накаливания (старомодных ламп в форме лампочек). Внутри стеклянной колбы находится очень тонкий моток проволоки, называемый нитью накала. Когда через него проходит достаточно электричества, он становится раскаленным добела, очень ярко - так что он действительно излучает свет, выделяя тепло ».

В результате нагревательные элементы представляют собой прочный электрический компонент, который выделяет тепло, когда через него протекает большой электрический ток.

Типы нагревательных элементов

Многие приборы содержат нагревательные элементы, что означает, что существует несколько типов нагревательных элементов.

Металлические нагревательные элементы обычно изготавливаются из нихрома, который состоит из 80% никеля и 20% хрома. Из нихрома 80/20 получаются отличные нагревательные элементы, потому что этот материал имеет довольно высокое сопротивление.

Другие типы металлических нагревательных элементов включают резистивную проволоку, которая обычно используется в тостерах, фенах, печах и подогреве полов.Кроме того, протравленная фольга, которая также сделана из тех же материалов, что и проволока сопротивления, и обычно используется в системах прецизионного нагрева.

Нагревательные элементы

PTC, которые сделаны из проводящей резины PTC, увеличивают удельное сопротивление экспоненциально с повышением температуры. Эти элементы работают с нагревателями, вырабатывающими большое количество энергии на холоде. В результате они быстро нагреваются и поддерживают постоянную температуру.

  • Композитные нагревательные элементы

В композитных нагревательных элементах трубчатые элементы или элементы в оболочке образуют тонкую спираль из проволоки из стойкого к нимрому нагревательного сплава.Композитные нагревательные элементы могут быть встроены в такие приборы, как тостер, в виде прямого стержня. И наоборот, композитные элементы можно гнуть и использовать в таких приборах, как электрические плиты, духовки или кофеварки.

Как починить или отремонтировать ТЭНы?

Многие нагревательные элементы имеют номер детали на самом элементе. Это помогает идентифицировать деталь, которая помогает при замене. Например, знание точной детали помогает техническим специалистам решать любые проблемы с нагревательными элементами (в частности, в печи).

«Номер детали нагревательного элемента указан на нагревательном элементе. На всех печах указаны модель и серийный номер на видном месте, чтобы облегчить поиск запасных частей. Если печь установлена ​​поставщиком услуг, поставщик услуг также размещает наклейку с контактной информацией на внешней стороне печи для получения помощи и услуг по ремонту. Если номер недоступен, производитель печи, также четко обозначенный на внешней стороне печи, предоставит нужный элемент для замены нагревательного элемента.”

Тем не менее, домашние мастера должны учитывать, что для замены нагревательных элементов требуется опытный подрядчик по HVAC. Как правило, компания, которая установила вашу печь, лучше всего подходит для ремонта, но любой подрядчик по качественному отоплению знает, как исправить проблемы с нагревательным элементом.

По любым вопросам или помощи с вашей системой отопления или нагревательными элементами SolvIt имеет опыт и персонал для решения любых проблем!

НАГРЕВАТЕЛЬНЫЙ ЭФФЕКТ ЭЛЕКТРИЧЕСКОГО ТОКА

Введение

Когда ток течет по проводнику, в проводнике генерируется тепловая энергия.Нагревательный эффект электрического тока зависит от трех факторов:

  • Сопротивление R проводника. Чем выше сопротивление, тем больше тепла.
  • Время t, в течение которого течет ток. Чем больше время, тем больше выделяется тепла
  • Величина тока I. Чем выше сила тока, тем больше выделяется тепла.

Следовательно, эффект нагрева, создаваемый электрическим током I через проводник сопротивления R в течение некоторого времени, t определяется как H = I 2 Rt.Это уравнение называется уравнением Джоуля электрического нагрева.

Электроэнергия и мощность

Работа, выполняемая при проталкивании заряда по электрической цепи, определяется выражением w.d = VIt

.

Таким образом, мощность, P = w.d / t = VI

Электрическая мощность, потребляемая электроприбором, определяется как P = VI = I 2 R = V 2 / R

Пример

  1. Электрическая лампочка имеет маркировку 100 Вт, 240 В.Вычислить:
а) Ток через нить накала при нормальной работе лампы
б) Сопротивление нити накала, используемой в лампе.

Решение

  1. I = P / V = ​​100/240 = 0,4167A
  2. R = P / I 2 = 100 / 0,4167 2 = 576,04 Ом или R = V 2 / P = 240 2 /100 = 576 Ом
  1. Найдите энергию, рассеиваемую за 5 минут электрической лампочкой с нитью накала 500 Ом, подключенной к источнику питания 240 В.{ ANS. 34,560J }

Решение

E = Pt = V2 / R * t = (240 2 * 5 * 60) / 500 = 34,560 Дж

  1. Для нагрева воды используется погружной нагреватель мощностью 2,5 кВт. Вычислить:
  1. Рабочее напряжение нагревателя при сопротивлении 24 Ом
  2. Электрическая энергия, преобразованная в тепловую за 2 часа.

{ ANS. 244,9488 В, 1,8 * 10 7 Дж }

Решение

  1. P = VI = I 2 R

I = (2500/24) 1/2 = 10.2062A

В = ИК = 10,2062 * 24 = 244,9488 В

  1. E = VIt = Pt = 2500 * 2 * 60 * 60 = 1,8 * 10 7 J

ИЛИ E = VIt = 244,9488 * 10,2062 * 2 * 60 * 60 = 1,8 * 10 7 Дж

Электрическая лампочка имеет маркировку 100W, 240V. Вычислить:
Ток через нить накала
Сопротивление нити накала, используемой в лампе.

Решение

P = VI I = P / V = ​​100/240 = 0,4167A
Согласно закону Ома, V = IR R = V / I = 240 / 0,4167 = 575,95 Ом

Применение нагревающего эффекта электрического тока

Большинство бытовых электроприборов таким образом преобразуют электрическую энергию в тепло.К ним относятся лампы накаливания, электрический нагреватель, электрический утюг, электрический чайник и т. Д.

В осветительных приборах

  1. Лампы накаливания - изготовлены из вольфрамовой проволоки, заключенной в стеклянную колбу, из которой удален воздух. Это связано с тем, что воздух окисляет нить накала. Нить нагревается до высокой температуры и становится раскаленной добела. Вольфрам используется из-за его высокой температуры плавления; 3400 0 Колба заполнена неактивным газом, например. аргон или азот при низком давлении, что снижает испарение вольфрамовой проволоки.Однако одним из недостатков инертного газа является то, что он вызывает конвекционные токи, которые охлаждают нить накала. Эта проблема сводится к минимуму за счет наматывания проволоки таким образом, чтобы она занимала меньшую площадь, что снижает потери тепла за счет конвекции.
  2. Люминесцентные лампы - эти лампы более эффективны по сравнению с лампами накаливания и служат намного дольше. У них есть пары ртути в стеклянной трубке, которая при включении испускает ультрафиолетовое излучение. Это излучение заставляет порошок в трубке светиться (флуоресцировать) i.е. излучает видимый свет. Из разных порошков получаются разные цвета. Обратите внимание, что люминесцентные лампы дороги в установке, но их эксплуатационные расходы намного меньше.

В электрическом обогреве

  1. Электрические плиты - электрические плиты раскалены докрасна, и произведенная тепловая энергия поглощается кастрюлей за счет теплопроводности.
  2. Электронагреватели - лучистые обогреватели становятся красными при температуре около 900 0 C, а испускаемое излучение направляется в комнату с помощью полированных отражателей.
  3. Электрические чайники - нагревательный элемент размещается внизу чайника так, чтобы нагреваемая жидкость покрывала его. Затем тепло поглощается водой и распределяется по всей жидкости за счет конвекции.
  4. Электрические утюги - при прохождении тока через нагревательный элемент выделяемая тепловая энергия передается на основание из тяжелого металла, повышая его температуру. Затем эта энергия используется для прессования одежды. Температуру утюга можно контролировать с помощью термостата (биметаллической планки).

Нагреватель переменного тока Norcold | Нагревательный элемент Norcold

Эта страница поможет вам устранить неполадки сопротивления нагревателя Norcold для нагревательного элемента, который питает холодильник при работе от берега.


Содержание

Инструкции: предметы перечислены слева. Щелкните ссылку справа, чтобы перейти непосредственно к теме на этой странице.


О нагревателях и холодильниках Norcold без охлаждения

На первом фото провода нагревателя переменного тока Norcold 1200, синяя стрелка указывает на желтый и черный. провода, идущие к двум нагревателям на 120 В переменного тока.Если один обогреватель выйдет из строя, то холодильник не будет должным образом охлаждаться. в режиме переменного тока (береговое питание). Выход из строя одного обогревателя может привести к опасной ситуации. из-за перегрева котла только Fridge Defend by ARP может обнаружить эту ситуацию и помочь предотвратить то, что может стать угрозой безопасности.

Хорошие новости! Fridge Defend может легко обнаружить эту ситуацию. Температура вашего котла - это сердцебиение вашего котла холодильной установки, нажмите здесь, чтобы узнать больше! Измеряя температуру котла, вы можете сразу определить, работает ли нагреватель переменного тока. провалился.Нажмите центральную кнопку, когда в режиме ARP холодильник Defend отобразит котел температура. Если у вас нет Fridge Defend by ARP, приобретите его! Fridge Defend не только помогает в устранении неполадок, Если поможет уберечь холодильник от поломки и повысит безопасность.


Как проверить нагреватели Norcold

На этом рисунке показано, как проверить электрические нагреватели для Norcold 1200.Если ARP Система управления обнаруживает перегрев, когда холодильник работает от берегового питания. (AC) может потребоваться определить, вышел ли из строя один нагреватель? Почему? Один нагреватель не будет подавать достаточно тепла для работы системы. В результате весь аммиак в котле будет израсходован без привод пекулянтного насоса ( Нажмите здесь, чтобы увидеть, как работает пекулянтный насос ), это приводит к перегреву. Проверка между каждым из выводов нагревателя после удаления их из контроллера Norcold, как показано на этом рисунке.Используя таблицу выше, мы видим, что сопротивление каждого нагревателя составляет около 64 Ом. Затем проверьте каждый провод к корпусу или заземлению нагревателя. Это значение должно быть либо разомкнутым (OL), либо находиться в мегаомном диапазоне.

Также см. «Что делать, если один нагреватель выходит из строя» ниже:

Если, прочитав, как проверить свои электрические обогреватели, вы определили необходима замена нагревателя, рекомендуем заменить нагреватели с парой штатных отопителей.


Как рассчитать сопротивление нагревателя холодильника

Сопротивление любого нагревательного элемента можно рассчитать, если вам известна мощность в ваттах (Вт).Этот информацию обычно можно найти в технических характеристиках холодильника, которые обычно находятся на дверце холодильника. клетка. Следующая формула даст вам сопротивление в два этапа:

Мы знаем, что вы будете рассчитывать нагревательный элемент на 12 В постоянного или 120 В переменного тока, поэтому мы знаем напряжение.