Особенности теплопроводности физика: Урок 02. теплопроводность. конвекция. излучение — Физика — 8 класс

Содержание

Урок 02. теплопроводность. конвекция. излучение — Физика — 8 класс

Конспект объясняющего модуля

Цели урока:

– познакомить с тремя способами теплопередачи, сформировать представление о механизмах и особенностях передачи энергии путём теплопроводности, конвекции и излучения;

– научить наблюдать, описывать и объяснять физические явления на основе представлений об изменении внутренней энергии при теплопередаче.

Планируемые результаты обучения учащегося:

– даёт определения теплопроводности, конвекции и излучения, приводит примеры передачи энергии перечисленными способами;

– демонстрирует знание механизмов и особенностей передачи энергии путём теплопроводности, конвекции и излучения;

– сравнивает значения теплопроводности различных веществ;

– приводит примеры и объясняет физические явления на основе полученных знаний о различных способах теплопередачи.

В окружающем нас мире происходят различные физические явления, некоторые из них связаны с изменением внутренней энергии тел.

Внутреннюю энергию можно изменить за счет совершения механической работы и теплопередачи.

Рассмотрим способ изменения внутренней энергии тела путем теплопередачи. Введем определение. Теплопередача – это процесс изменения внутренней энергии без совершения работы над телом или самим телом.

У теплопередачи есть три разновидности: теплопроводность, конвекция, излучение. Каждый вид теплопередачи имеет свои особенности, присущие только ему. Рассмотрим первый вид- теплопроводность.

Теплопроводность – это явление, при котором энергия передаётся от одной части тела к другой посредством движения частиц или при непосредственном контакте двух тел.

Разные тела обладают разной теплопроводностью, так как молекулярное строение и скорость движения молекул в разных веществах разная.

У металлов самая высокая (хорошая) теплопроводность, у жидкостей меньше, а у газов самая маленькая ( плохая) теплопроводность.

Важно отметить, что при теплопроводности не происходит переноса вещества и если нет частиц, то нет теплопроводности. Следующий вид теплопередачи- конвекция.

Конвекция – это явление переноса энергии слоями жидкостей или газов.

Конвекция , что следует из определения, может быть только при наличии вещества, а конкретно — жидкости или газа, если же вещества нет, то и не имеет смысла говорить о явлении конвекции. Конвекцией, например, объясняются бризы — ночные и дневные ветры, возникающие на берегах морей и больших озер.

В летние дни суша прогревается солнцем быстрее, чем вода, поэтому и воздух над сушей нагревается больше, чем над водой. При этом воздух над сушей расширяется, после чего его давление становится меньше давления более холодного воздуха над морем. В результате холодный воздух понизу с моря (где давление больше) перемещается к берегу (где давление меньше) -дует ветер. Это и есть дневной (или морской) бриз.

Ночью вода охлаждается медленнее, чем суша, и над сушей воздух становится более холодным, чем над водой. Теперь более высокое давление оказывается над сушей, и потому воздух начинает перемещаться от берега к морю. Это ночной (или береговой) бриз.

Различают два вида конвекции: естественная и вынужденная.

Естественная конвекция происходит сама по себе без внешнего воздействия.

В вынужденной перемещение вещества обусловлено действием внешних сил (насос, лопасти вентилятора и т. п.). Рассмотрим еще один вид теплопередачи- излучение, который может осуществляться в вакууме.

Под излучением, понимают перенос энергии в виде электромагнитных волн.

У излучения есть свои особенности- темные тела быстрее поглощают и излучают энергию, у светлых поглощение и испускание энергии происходит гораздо медленнее.

Кроме того, все нагретые тела, по сравнению с температурой окружающего пространства, испускают энергию. Чем сильнее нагрето тело, тем больше энергии оно испускает.

Это можно увидеть с помощью термоскопа.

100 ballov.kz образовательный портал для подготовки к ЕНТ и КТА

В 2021 году казахстанские школьники будут сдавать по-новому Единое национальное тестирование. Помимо того, что главный школьный экзамен будет проходить электронно, выпускникам предоставят возможность испытать свою удачу дважды. Корреспондент zakon.kz побеседовал с вице-министром образования и науки Мирасом Дауленовым и узнал, к чему готовиться будущим абитуриентам.

— О переводе ЕНТ на электронный формат говорилось не раз. И вот, с 2021 года тестирование начнут проводить по-новому. Мирас Мухтарович, расскажите, как это будет?

— По содержанию все остается по-прежнему, но меняется формат. Если раньше школьник садился за парту и ему выдавали бумажный вариант книжки и лист ответа, то теперь тест будут сдавать за компьютером в электронном формате. У каждого выпускника будет свое место, огороженное оргстеклом.

Зарегистрироваться можно будет электронно на сайте Национального центра тестирования. Но, удобство в том, что школьник сам сможет выбрать дату, время и место сдачи тестирования.

Кроме того, в этом году ЕНТ для претендующих на грант будет длиться три месяца, и в течение 100 дней сдать его можно будет два раза.

— Расскажите поподробнее?

— В марте пройдет тестирование для желающих поступить на платной основе, а для претендующих на грант мы ввели новые правила. Школьник, чтобы поступить на грант, по желанию может сдать ЕНТ два раза в апреле, мае или в июне, а наилучший результат отправить на конкурс. Но есть ограничение — два раза в один день сдавать тест нельзя. К примеру, если ты сдал ЕНТ в апреле, то потом повторно можно пересдать его через несколько дней или в мае, июне. Мы рекомендуем все-таки брать небольшой перерыв, чтобы еще лучше подготовиться. Но в любом случае это выбор школьника.

— Система оценивания останется прежней?

— Количество предметов остается прежним — три обязательных предмета и два на выбор. Если в бумажном формате закрашенный вариант ответа уже нельзя было исправить, то в электронном формате школьник сможет вернуться к вопросу и поменять ответ, но до того, как завершил тест.

Самое главное — результаты теста можно будет получить сразу же после нажатия кнопки «завершить тестирование». Раньше уходило очень много времени на проверку ответов, дети и родители переживали, ждали вечера, чтобы узнать результат. Сейчас мы все автоматизировали и набранное количество баллов будет выведено на экран сразу же после завершения тестирования.
Максимальное количество баллов остается прежним — 140.

— А апелляция?

— Если сдающий не будет согласен с какими-то вопросами, посчитает их некорректными, то он сразу же на месте сможет подать заявку на апелляцию. Не нужно будет ждать следующего дня, идти в центр тестирования, вуз или школу, все это будет электронно.

— С учетом того, что школьникам не придется вручную закрашивать листы ответов, будет ли изменено время сдачи тестирования?

— Мы решили оставить прежнее время — 240 минут. Но теперь, как вы отметили, школьникам не нужно будет тратить час на то, чтобы правильно закрасить лист ответов, они спокойно смогут использовать это время на решение задач.

— Не секрет, что в некоторых селах и отдаленных населенных пунктах не хватает компьютеров. Как сельские школьники будут сдавать ЕНТ по новому формату?

— Задача в том, чтобы правильно выбрать время и дату тестирования. Центры тестирования есть во всех регионах, в Нур-Султане, Алматы и Шымкенте их несколько. Школьники, проживающие в отдаленных населенных пунктах, как и раньше смогут приехать в город, где есть эти центры, и сдать тестирование.

— На сколько процентов будет обновлена база вопросов?

— База вопросов ежегодно обновляется как минимум на 30%. В этом году мы добавили контекстные задания, то что школьники всегда просили. Мы уделили большое внимание истории Казахстана и всемирной истории — исключили практически все даты. Для нас главное не зазубривание дат, а понимание значения исторических событий. Но по каждому предмету будут контекстные вопросы.

— По вашему мнению система справится с возможными хакерскими атаками, взломами?

— Информационная безопасность — это первостепенный и приоритетный вопрос. Центральный аппарат всей системы находится в Нур-Султане. Связь с региональными центрами сдачи ЕНТ проводится по закрытому VPN-каналу. Коды правильных ответов только в Национальном центре тестирования.

Кроме того, дополнительно через ГТС КНБ (Государственная техническая служба) все тесты проходят проверку на предмет возможного вмешательства. Здесь все не просто, это специальные защищенные каналы связи.

— А что с санитарными требованиями? Нужно ли будет школьникам сдавать ПЦР-тест перед ЕНТ?

— ПЦР-тест сдавать не нужно будет. Требование по маскам будет. При необходимости Центр национального тестирования будет выдавать маски школьникам во время сдачи ЕНТ. И, конечно же, будем измерять температуру. Социальная дистанция будет соблюдаться в каждой аудитории.

— Сколько человек будет сидеть в одной аудитории?

— Участники ЕНТ не за семь дней будут сдавать тестирование, как это было раньше, а в течение трех месяцев. Поэтому по заполняемости аудитории вопросов не будет.

— Будут ли ужесточены требования по дисциплине, запрещенным предметам?

— Мы уделяем большое внимание академической честности. На входе в центры тестирования, как и в предыдущие годы, будут стоять металлоискатели. Перечень запрещенных предметов остается прежним — телефоны, шпаргалки и прочее. Но, помимо фронтальной камеры, которая будет транслировать происходящее в аудитории, над каждым столом будет установлена еще одна камера. Она же будет использоваться в качестве идентификации школьника — как Face ID. Сел, зарегистрировался и приступил к заданиям. Мы применеям систему прокторинга.

Понятно, что каждое движение абитуриента нам будет видно. Если во время сдачи ЕНТ обнаружим, что сдающий использовал телефон или шпаргалку, то тестирование автоматически будет прекращено, система отключится.

— А наблюдатели будут присутствовать во время сдачи тестирования?

— Когда в бумажном формате проводили ЕНТ, мы привлекали очень много дежурных. В одной аудитории было по 3-4 человека. При электронной сдаче такого не будет, максимум один наблюдатель, потому что все будет видно по камерам.

— По вашим наблюдениям школьники стали меньше использовать запрещенные предметы, к примеру, пользоваться телефонами?

— Практика показывает, что школьники стали ответственнее относиться к ЕНТ. Если в 2019 году на 120 тыс. школьников мы изъяли 120 тыс. запрещенных предметов, по сути у каждого сдающего был телефон. То в прошлом году мы на 120 тыс. школьников обнаружили всего 2,5 тыс. телефонов, и у всех были аннулированы результаты.

Напомню, что в 2020 году мы также начали использовать систему искусственного интеллекта. Это анализ видеозаписей, который проводится после тестирования. Так, в прошлом году 100 абитуриентов лишились грантов за то, что во время сдачи ЕНТ использовали запрещенные предметы.

— Сколько средств выделено на проведение ЕНТ в этом году?

Если раньше на ЕНТ требовалось 1,5 млрд тенге из-за распечатки книжек и листов ответов, то сейчас расходы значительно сокращены за счет перехода на электронный формат. Они будут, но несущественные.

— Все-таки почему именно в 2021 году было принято решение проводить ЕНТ в электронном формате. Это как-то связано с пандемией?

— Это не связано с пандемией. Просто нужно переходить на качественно новый уровень. Мы апробировали данный формат на педагогах школ, вы знаете, что они сдают квалификационный тест, на магистрантах, так почему бы не использовать этот же формат при сдаче ЕНТ. Тем более, что это удобно, и для школьников теперь будет много плюсов.

Физика 8 класс.

Теплопередача. Виды теплопередачи. Теплопроводность :: Класс!ная физика


Физика 8 класс. ТЕПЛОПЕРЕДАЧА

(или теплообмен)

— один из способов изменения внутренней энергии тела (или системы тел), при этом внутренняя энергия одного тела переходит во внутреннюю энергию другого тела без совершения механической работы.

Существует 3 вида теплопередачи:

Теплообмен между двумя средами происходит через разделяющую их твердую стенку или через поверхность раздела между ними.
Теплота способна переходить только от тела с более высокой температурой к телу менее нагретому.

Теплообмен всегда протекает так, что убыль внутренней энергии одних тел всегда сопровождается таким же приращением внутренней энергии других тел, участвующих в теплообмене.
Это является частным случаем закона сохранения энергии.

ИНТЕРЕСНО

Куропатки, утки и другие птицы зимой не мерзнут потому, что температура лап у них может отличаться от температуры тела более чем на 30 градусов.
Низкая температура лап сильно понижает теплоотдачу. Таковы защитные силы организма!
|

— перенос энергии от более нагретых участков тела к менее нагретым за счет теплового движения и взаимодействия микрочастиц (атомов, молекул, ионов и т.п.), который приводит к выравниванию температуры тела.
Не сопровождается переносом вещества!

Этот вид передачи внутренней энергии характерен как для твердых веществ, так и для жидкостей и газов.
Теплопроводность различных веществ разная.
Металлы обладают самой высокой теплопроводностью,

причем у разных металлов теплопроводность отличается.

Жидкости обладают меньшей теплопроводностью, чем твердые тела, а газы меньшей, чем жидкости.

При нагревании верхнего конца закрытой пальцем пробирки с воздухом внутри можно не бояться обжечь палец, т.к. теплопроводность газов очень низкая.
Интересно, что можно было бы поднести руку почти вплотную к пламени, например, газовой горелки (температура больше 1000 градусов) и не обжечь ее, если бы …

А что если бы?

Газ, как правило, очень плохой проводник тепла, поэтому достаточно было бы лишь небольшой прослойки воздуха между рукой и пламенем. Но!
Но существует такое явление, как конвекция в газах, поэтому вблизи пламени руку сильно жжет.

Устали? — Отдыхаем!

теплопроводность, конвекция, излучение – FIZI4KA

1. Существуют три вида теплопередачи: теплопроводность, конвекция и излучение.

Теплопроводность можно наблюдать на следующем опыте. Если к металлическому стержню с помощью воска прикрепить несколько гвоздиков (рис. 68), закрепить один конец стержня в штативе, а другой нагревать на спиртовке, то через некоторое время гвоздики начнут отпадать от стержня: сначала отпадет тот гвоздик, который ближе к спиртовке, затем следующий и т.д.

Это происходит потому, что при повышении температуры воск начинает плавиться. Поскольку гвоздики отпадали не одновременно, а постепенно, можно сделать вывод, что температура стержня повышалась постепенно. Следовательно, постепенно увеличивалась и внутренняя энергия стержня, она передавалась от одного его конца к другому.

2. Передачу энергии при теплопроводности можно объяснить с точки зрения внутреннего строения вещества. Молекулы ближнего к спиртовке конца стержня получают от неё энергию, их энергия увеличивается, они начинают более интенсивно колебаться и передают часть своей энергии соседним частицам, заставляя их колебаться быстрее. Те, в свою очередь передают энергию своим соседям, и процесс передачи энергии распространяется по всему стержню. Увеличение кинетической энергии частиц приводит к повышению температуры стержня.

Важно, что при теплопроводности не происходит перемещения вещества, от одного тела к другому или от одной части тела к другой передается энергия.

Процесс передачи энергии от одного тела к другому или от одной части тела к другой благодаря тепловому движению частиц называется теплопроводностью.

3. Разные вещества обладают разной теплопроводностью. Если на дно пробирки, наполненной водой, положить кусочек льда и верхний её конец поместить над пламенем спиртовки, то через некоторое время вода в верхней части пробирки закипит, а лёд при этом не растает. Следовательно, вода, так же как и все жидкости, обладает плохой теплопроводностью.

Ещё более плохой теплопроводностью обладают газы. Возьмём пробирку, в которой нет ничего, кроме воздуха, и расположим её над пламенем спиртовки. Палец, помещённый в пробирку, не почувствует тепла. Следовательно, воздух и другие газы обладает плохой теплопроводностью.

Хорошими проводниками теплоты являются металлы, самыми плохими — сильно разреженные газы. Это объясняется особенностями их строения. Молекулы газов находятся друг от друга на расстояниях, больших, чем молекулы твёрдых тел, и значительно реже сталкиваются. Поэтому и передача энергии от одних молекул к другим в газах происходит не столь интенсивно, как в твёрдых телах. Теплопроводность жидкости занимает промежуточное положение между теплопроводностью газов и твёрдых тел.

4. Как известно, газы и жидкости плохо проводят теплоту. В то же время от батарей парового отопления нагревается воздух. Это происходит благодаря такому виду теплопроводности, как конвекция.

Если на дно колбы с водой аккуратно через трубочку опустить кристаллик марганцево-кислого калия и нагревать колбу снизу так, чтобы пламя касалось её в том месте, где лежит кристаллик, то можно увидеть, как со дна колбы будут подниматься окрашенные струйки воды. Достигнув верхних слоёв воды, эти струйки начнут опускаться.

Объясняется это явление так. Нижний слой воды нагревается от пламени спиртовки. Нагреваясь, вода расширяется, её объём увеличивается, а плотность соответственно уменьшается. На этот слой воды действует архимедова сила, которая выталкивает нагретый слой жидкости вверх. Его место занимает опустившийся вниз холодный слой воды, который, в свою очередь, нагреваясь, перемещается вверх и т. д. Следовательно, энергия в данном случае переносится поднимающимися потоками жидкости (рис. 69).

Подобным образом осуществляется теплопередача и в газах. Если вертушку, сделанную из бумаги, поместить над источником тепла (рис. 70), то вертушка начнёт вращаться. Это происходит потому, что нагретые менее плотные слои воздуха под действием выталкивающей силы поднимаются вверх, а более холодные движутся вниз и занимают их место, что и приводит к вращению вертушки.

Теплопередача, которая осуществляется в этом опыте и в опыте, изображенном на рисунках 69, 70, называется конвекцией.

Конвекция — вид теплопередачи, при котором энергия передаётся слоями жидкости или газа.

Конвекция связана с переносом вещества, поэтому она может осуществляться только в жидкостях и газах; в твёрдых телах конвекция не происходит.

5. Третий вид теплопередачи — излучение. Если поднести руку к спирали электроплитки, включённой в сеть, к горящей электрической лампочке, к нагретому утюгу, к батарее отопления и т.п., то можно явно ощутить тепло.

Если закрепить металлическую коробочку (теплоприёмник), одна сторона которой блестящая, а другая чёрная, в штативе, соединить коробочку с манометром, а затем налить в сосуд, у которого одна поверхность белая, а другая чёрная, кипяток, то, повернув сосуд к чёрной стороне теплоприёмника сначала белой стороной, а затем чёрной, можно заметить, что уровень жидкости в колене манометра, соединённом с теплоприёмником, понизится. При этом он сильнее понизится, когда сосуд обращён к теплоприёмнику чёрной стороной (рис. 71).

Понижение уровня жидкости в манометре происходит потому, что воздух в теплоприёмнике расширяется, это возможно при нагревании воздуха. Следовательно, воздух получает от сосуда с горячей водой энергию, нагревается и расширяется. Поскольку воздух обладает плохой теплопроводностью и конвекция в данном случае не происходит, т. к. плитка и теплоприёмник располагаются на одном уровне, то остаётся признать, что сосуд с горячей водой излучает энергию.

Опыт также показывает, что чёрная поверхность сосуда излучает больше энергии, чем белая. Об этом свидетельствует разный уровень жидкости в колене манометра, соединённом с теплоприёмником.

Чёрная поверхность не только излучает больше энергии, но и больше поглощает. Это можно также доказать экспериментально, если поднести включённую в сеть электроплитку сначала к блестящей стороне тенлоприёмника, а затем к чёрной. Во втором случае жидкость в колене манометра, соединённом с теплоприёмником, опустится ниже, чем в первом.

Таким образом, чёрные тела хорошо поглощают и излучают энергию, а белые или блестящие плохо испускают и плохо поглощают её. Они хорошо энергию отражают. Поэтому понятно, почему летом носят светлую одежду, почему дома на юге предпочитают красить в белый цвет.

Путём излучения энергия передаётся от Солнца к Земле. Поскольку пространство между Солнцем и Землёй представляет собой вакуум (высота атмосферы Земли много меньше расстояния от неё до Солнца), то энергия не может передаваться ни путём конвекции, ни путём теплопроводности. Таким образом, для передачи энергии путём излучения не требуется наличия какой-либо среды, эта теплопередача может осуществляться и в вакууме.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. В твёрдых телах теплопередача может осуществляться путём

1) конвекции
2) излучения и конвекции
3) теплопроводности
4) конвекции и теплопроводности

2. Теплопередача путём конвекции может происходить

1) только в газах
2) только в жидкостях
3) только в газах и жидкостях
4) в газах, жидкостях и твёрдых телах

3. Каким способом можно осуществить теплопередачу между телами, разделёнными безвоздушным пространством?

1) только с помощью теплопроводности
2) только с помощью конвекции
3) только с помощью излучения
4) всеми тремя способами

4. Благодаря каким видам теплопередачи в ясный летний день нагревается вода в водоёмах?

1) только теплопроводность
2) только конвекция
3) излучение и теплопроводность
4) конвекция и теплопроводность

5. Какой вид теплопередачи не сопровождается переносом вещества?

1) только теплопроводность
2) только конвекция
3) только излучение
4) только теплопроводность и излучение

6. Какой(-ие) из видов теплопередачи сопровождается(-ются) переносом вещества?

1) только теплопроводность
2) конвекция и теплопроводность
3) излучение и теплопроводность
4) только конвекция

7. В таблице приведены значения коэффициента, который характеризует скорость процесса теплопроводности вещества, для некоторых строительных материалов.

В условиях холодной зимы наименьшего дополнительного утепления при равной толщине стен требует дом из

1) газобетона
2) железобетона
3) силикатного кирпича
4) дерева

8. Стоящие на столе металлическую и пластмассовую кружки одинаковой вместимости одновременно заполнили горячей водой одинаковой температуры. В какой кружке быстрее остынет вода?

1) в металлической
2) в пластмассовой
3) одновременно
4) скорость остывания воды зависит от её температуры

9. Открытый сосуд заполнен водой. На каком рисунке правильно изображено направление конвекционных потоков при приведённой схеме нагревания?

10. Воду равной массы нагрели до одинаковой температуры и налили в две кастрюли, которые закрыли крышками и поставили в холодное место. Кастрюли совершенно одинаковы, кроме цвета внешней поверхности: одна из них чёрная, другая блестящая. Что произойдёт с температурой воды в кастрюлях через некоторое время, пока вода не остыла окончательно?

1) Температура воды не изменится ни в той, ни в другой кастрюле.
2) Температура воды понизится и в той, и в другой кастрюле на одно и то же число градусов.
3) Температура воды в блестящей кастрюле станет ниже, чем в чёрной.
4) Температура воды в чёрной кастрюле станет ниже, чем в блестящей.

11. Учитель провёл следующий опыт. Раскалённая плитка (1) размещалась напротив полой цилиндрической закрытой коробки (2), соединённой резиновой трубкой с коленом U-образного манометра (3). Первоначально жидкость в коленах находилась на одном уровне. Через некоторое время уровни жидкости в манометре изменились (см. рисунок).

Выберите из предложенного перечня два утверждения, которые соответствуют результатам проведённых экспериментальных наблюдений. Укажите их номера.

1) Передача энергии от плитки к коробке осуществлялась преимущественно за счёт излучения.
2) Передача энергии от плитки к коробке осуществлялась преимущественно за счёт конвекции.
3) В процессе передачи энергии давление воздуха в коробке увеличивалось.
4) Поверхности чёрного матового цвета по сравнению со светлыми блестящими поверхностями лучше поглощают энергию.
5) Разность уровней жидкости в коленах манометра зависит от температуры плитки.

12. Из перечня приведённых ниже высказываний выберите два правильных и запишите их номера в таблицу.

1) Внутреннюю энергию тела можно изменить только в процессе теплопередачи.
2) Внутренняя энергия тела равна сумме кинетической энергии движения молекул тела и потенциальной энергии их взаимодействия.
3) В процессе теплопроводности осуществляется передача энергии от одних частей тела к другим.
4) Нагревание воздуха в комнате от батарей парового отопления происходит, главным образом, благодаря излучению.
5) Стекло обладает лучшей теплопроводностью, чем металл.

Ответы

Виды теплопередачи: теплопроводность, конвекция, излучение

3.5 (69.09%) 22 votes

«Особенности различных способов теплопередачи.

Примеры теплопередачи в природе и технике»

Предисловие.

Предисловие Пособие составлено в соответствии с новой программой по физике для 8 классов общеобразовательных учебных заведений и предназначено для текущего и тематического контроля учебных достижений учащихся.

Подробнее

Оборудование и оснащение урока:

Конспект открытого урока 4 по физике. 8 класс. Раздел : «Тепловые явления». Тема урока: Виды теплопередачи: конвекция, излучение. Учитель: Пучкина Е.В. Дата проведения урока Цель урока: продолжить знакомство

Подробнее

Познавательные опыты для дошкольников

Познавательные опыты для дошкольников 2011-2012гг Дорогие друзья! Если вы любите все таинственное и необычное, если вы любите наблюдать и размышлять, доверяете своим глазам и опыту, значит у вас душа экспериментатора

Подробнее

«В чем секрет термоса»

Научно-исследовательская работа «В чем секрет термоса» Выполнили: Перелыгина Варвара Алексеевна Скорницкая Юлия Сергеевна учащиеся 5 «А» класса МБОУ «Пятницкая СОШ» Руководители: Шамраева С.Н.,учитель

Подробнее

12.1 Фазовые превращения

12. Фазовые превращения 12.1 Фазовые превращения В стеклянном стакане с водой находится включенный в сеть электрокипятильник. Мы измеряем температуру воды, рис. 12.1. Электрокипятильник поставляет в воду

Подробнее

ПЛАН — КОНСПЕКТ УРОКА ФИЗИКИ

Учитель Мартасова Электра Георгиевна Класс — 8 ПЛАН — КОНСПЕКТ УРОКА ФИЗИКИ Место проведения — МБОУ Школа 65 г. Самары Тема урока — «Передача теплоты» Цели урока: Образовательные: Рассмотреть виды теплопередач,

Подробнее

ПОДГОТОВКА к ОГЭ ЧАСТЬ 1

ПОДГОТОВК к ОГЭ ЧСТЬ 1 ТЕПЛОВЫЕ ЯВЛЕНИЯ 1.В твёрдых телах теплопередача может осуществляться путём 1.конвекции 2.излучения и конвекции 3.теплопроводности 4.конвекции и теплопроводности 2.Внутренняя энергия

Подробнее

Тема урока: «Плавления и отвердевания тел»

ФИЗИКА 8 класс Тема урока: «Плавления и отвердевания тел» Цели урока: Предметные: обеспечить закрепление основных понятий и применение знаний и способов действий по теме; организовать деятельность по самостоятельному

Подробнее

Инструкция по выполнению работы

Инструкция по выполнению работы На выполнение контрольной работы по физике отводится 1 урок (45 минут). Работа состоит из 3 частей и включает 11 заданий. Часть 1 содержит 7 заданий (1 7). К каждому заданию

Подробнее

Циркуляция воды в котле

Циркуляция воды в котле Значение циркуляции Циркуляция воды обеспечивает прочность металлических поверхностей нагрева и тем самым надежность, работы котла путем интенсивного охлаждения стенок обогреваемых

Подробнее

Научно исследовательская работа

Научно исследовательская работа Тема работы: «Исследование теплопроводности различных веществ» Выполнил: Беляевский Иван Андреевич Учащийся 8/1 взвода Университетского казачьего кадетского корпуса-интерната

Подробнее

Раздел 1. ТЕПЛОВЫЕ ЯВЛЕНИЯ

Раздел 1. ТЕПЛОВЫЕ ЯВЛЕНИЯ 1. ТЕМПЕРАТУРА. ИЗМЕРЕНИЕ ТЕМПЕРАТУРЫ 1-й уровень сложности? 1. 1. В ведро с холодной водой бросили кирпич, который перед этим некоторое время находился в костре. Как будут изменяться

Подробнее

Строение вещества. Тепловые явления

Физика. 9 класс. Тренинг «Строение вещества. Тепловые явления» 1 Строение вещества. Тепловые явления Вариант 1 1 В одинаковые сосуды с равными массами воды при одинаковой температуре погрузили латунный

Подробнее

УДК :53 ББК 22.3я72 С47

УДК 373.167.1:53 ББК 22.3я72 С47 С47 Слепнева, Н. И. Физика. 8 класс : тесты к учебнику А. В. Перышкина / Н. И. Слепнева. 4-е изд., стереотип. М. : Дрофа, 2018. 110, [2] с. : ил. ISBN 978-5-358-20060-9

Подробнее

Будем изучать физику вместе

Расскажи мне и я забуду, Покажи мне и я запомню, Вовлеки меня и я научусь! Конфуций (6-й век до нашей эры) Будем изучать физику вместе Учебник реализует системно-деятельностный поход к изучению физики.

Подробнее

Тема 1.2. Теплопередача и её виды.

Тема 1.. Теплопередача и её виды. 1. Физическая сущность теплопередачи.. Теплопроводность. 3. Конвективная теплопередача. 4. Тепловое излучение. 1. Физическая сущность теплопередачи. Согласно молекулярной

Подробнее

Виктория Наседкина. Введение

Охлаждение помещений с помощью гидротермальных источников энергии Виктория Наседкина Введение В настоящее время можно заметить, что даже в средней полосе России лето становится очень жарким. Перегрев помещений,

Подробнее

Материал для портфолио учеников

Материал для портфолио учеников Г. Г. Цыбульская, учитель физики высшей категории гимназии 1 г. Березовки Памятка для учащихся (8 класс) Алгоритм решения задач на уравнение теплового баланса 1. Прочитай

Подробнее

Авторский урок «Тепловые двигатели»

Авторский урок «Тепловые двигатели» Выборных Ирина Валентиновна, учитель физики. Цель урока: 1. Сформировать у обучающихся следующие понятия: тепловой двигатель, КПД теплового двигателя, КПД идеальной

Подробнее

8 класс «а», «с», «н» 1 триместр

Основные понятия: Тепловые явления Обязательный минимум по предмету физика 8 класс «а», «с», «н» 1 триместр Тепловое движение. Внутренняя энергия. Два способа изменения внутренней энергии: работа и теплопередача.

Подробнее

Водяное отопление частного дома

Водяное отопление частного дома более удобное по сравнению с обычным печным (без водяного контура), особенно если необходимо отапливать сразу несколько комнат. К тому же, такое отопление позволяет вынести

Подробнее

8 класс. ТЕМА 1. ТЕПЛОВЫЕ ЯВЛЕНИЯ (23 ч)

8 класс урока Название темы учебника Тип урока Основное содержание Демонстрации Дата проведения ТЕМА 1. ТЕПЛОВЫЕ ЯВЛЕНИЯ (23 ч) Факт. дата Примечание 1/1 Тепловое движение. Техника безопасности (Т/б) в

Подробнее

Сценарий реализации целей обучения

Сценарий реализации целей обучения Урок с использованием интерактивной доски и программного комплекса «ОС3. Интерактивная доска» может проходить по стандартному плану урока, но с использованием значительно

Подробнее

Олимпиада «Физтех» по физике 2018

Олимпиада «Физтех» по физике 8 Класс Билет — Шифр (заполняется секретарём) Систему из бруска массой и доски массой, находящихся на горизонтальном столе, приводят в движение, прикладывая к доске горизонтальную

Подробнее

Урок в 8 классе по теме «Влажность».

Урок в 8 классе по теме «Влажность». Цели: Развивающая: умение находить решение проблемы, применять знания в различных областях, активизировать мышление; обучающая: повторить основные формулы раздела агрегатные

Подробнее

«Атмосферное давление» в 7 классе

Урок усвоения новых знаний: «Атмосферное давление» в 7 классе Учитель физики ГБОУ СОШ 8 п.г.т. Алексеевка г.о. Кинель Кулагина О.Ю. Атмосферное давление От греческого атмос пар сфера шар hатм = неск. тыс.

Подробнее

УДК :53 ББК 22.3я721 Ф48 Авторы: А.В. Грачёв, В.А. Погожев, П.Ю. Боков, В.М. Буханов, Е.В. Лукашёва, Н.И. Чистякова

УДК 373.167.1:53 ББК 22.3я721 Ф48 Авторы: А.В. Грачёв, В.А. Погожев, П.Ю. Боков, В.М. Буханов, Е.В. Лукашёва, Н.И. Чистякова Ф48 Физика : 10 класс: углублённый уровень : рабочая тет радь 4 для учащихся

Подробнее

С1 «МКТ и термодинамика»

С1 «МКТ и термодинамика» Три одинаковых сосуда, содержащих разреженный газ, соединены друг с другом трубками малого диаметра: первый сосуд со вторым, второй с третьим. Первоначально давление газа в сосудах

Подробнее

Теплопроводность, конвекция, излучение.. — физика, уроки

Предмет: Физика и астрономия

Класс: 8 рус

Тема: Теплопроводность, конвекция, излучение.

Тип урока: Комбинированный

Цель занятия:

Учебная: познакомить с понятием теплопередачи, с видами теплопередачи, объяснить, что передача теплоты при любом из видов теплопередачи всегда идет в одном направлении; что в зависимости от внутреннего строения теплопроводность различных веществ(твердых, жидких и газообразных) различна, что черная поверхность лучший излучатель и лучший поглотитель энергии.

Развивающая: развить познавательный интерес к предмету.

Воспитательная : воспитать чувство ответственности, способность грамотно и четко  выражать свои мысли, уметь держать себя и работать в коллективе

Межпредметная связь: химия, математика

Наглядные пособия: 21-30 рисунки, таблица теплопроводности

Технические средства обучения: проектор, компьютер

 

Структура урока

1.Организация урока(2 мин.)

— приветствие учащихся

— проверка явки учащихся и готовности класса к уроку.

2. Опрос домашнего задания(15 мин) Тема: Внутренняя энергия. Способы изменения внутренней энергии.

3. Объяснение нового материала. (15 мин)

            Способ изменения внутренней энергии при котором частицы более нагретого тела, имея большую кинетическую энергию, при контакте с менее нагретым телом передают энергию непосредственно частицам менее нагретого тела называют теплопередачей Существуют три способа теплопередачи: теплопроводность, конвекция и излучение.

Эти виды теплопередачи имеют свои особенности, однакопередача теплоты при каждом из них всегда идет в одном направлении:от более нагретого тела к менее нагретому. При этом внутренняя энергия более нагретого тела уменьшается, а более холодного –увеличивается.

            Явление передачи энергии от более нагретой части тела к менее нагретой или от более нагретоготела к менее нагретому через непосредственный контакт или промежуточные тела называется теплопроводностью.

В твердом теле частицы постоянно находятся в колебательном движении, но не изменяют своего равновесного состояния. По мере роста температуры тела при его нагревании молекулы начинают колебаться интенсивнее, так как увеличивается их кинетическая энергия. Часть этой увеличившейся энергии постепенно передается от одной частицы к другой, т. е. от одной части тела к соседнтм частям тела и т.д. Но не все твердые тела одинаково передают энергию. Среди них есть так называемые изоляторы, у которых механизм теплопроводности происходит достаточно медленно. К ним относятся асбест, картон, бумага, войлок, нранит, дерево, стекло и ряд других твердых тел. Большую теплопроводность имеют медб, серебро. Они являются хорошими проводниками тепла.

Ужидкостей теплопроводность невелика. При нагревании жидкости внутренняя энергия переносится из более нагретой области в менее нагретую при соударениях молекул и частично за счет диффузии: юолее быстрые молекулы проникают в менее нагретую область.

Вгазах, особенно в разреженных, молекулы находятся на достаточно больших расстояниях друг от друга, поэтому их теплопроводность еще меньше, чем у жидкостей.

            Совершенным изолятором является вакуум, поптому что в нем отсутствуют частицы для передачи внутренней энергии.

Взависимости от внутреннего состояния теплопроводность разных веществ(твердых, жидуих и газообразных) различна.

Теплопроводность зависит от характера переноса энергии в веществе и не связана перемещением самого вещества в теле.

Известно, что теплопроводность воды мала, и при нагревании верхнего слоя  воды нижний слой остается холдным. Воздух еще хуже, чем вода, проводит тепло.

Конвекцияэто процесс теплопередачи, при котором энергия переносится струями жидкости или газа.Конвекция в переводе с латинского означает «перемешивание». Конвекция отсутствует в твердых телах и не имеет места в вакууме.

Широко используемая в быту и технике ковекция является естественной или свободной.

Когда для равномерного перемешивания жидкостей или газов их перемешивают насосом или мешалкой конвекция называется вынужденной.

            Теплоприемник –это прибор, представляющий собойплоскую цилиндрическую емкость из металла, одна сторона которой черная, а другая блестящая. Внутри нее имеется воздух , который при нагревании может расширяться и выходить наружу через отверстие.

В случае , когда теплота передается от нагретого тела к теплоприемнику с помощью невидимых глазом тепловых лучей вид теплопередачи называется излучением или лучистым теплообменом

Поглощением называетсяпроцесс превращения энергии излучения во внутреннюю энергию тела

Излучением(или лучистым теплообменом)- называется процесс передачи энергии от одного тела к другому с помощью электромагнитных волн.

Чем больше температура тела, тем выше интенсивность излучения. Передача энергии излучением не нуждается в среде: тепловые  лучи могут распространяться и через вакуум.

Черная поверхность-лучший излучатель и лучший  поглотитель, а затем следуют грубая, белая и полированная поверхности.

Хорошие поглотители энергии- хорошие излучатели, а плохие поглотители- плохие излучатели энергии.

4. Закрепление: (10 мин) вопросы для самопроверки, задания и упражнения

5. Задание на дом(2 мин) прочитать  и пересказ темы, Домашние эксперименталь

ные задания:1)Сравнение теплопроводности металла и стекла, воды и воздуха, 2)Наблюдение конвекции в жилом помещении.

6. Оценка знаний учащихся.(1 мин)

Основная литература: Физика и астрономия 8 класс

Дополнительная литература: Н. Д. Бытько «Физика» части 1 и 2

 

 

 

Просмотр содержимого документа
«Теплопроводность, конвекция, излучение.. »

Предмет: Физика и астрономия

Класс: 8 рус

Тема: Теплопроводность, конвекция, излучение.

Тип урока: Комбинированный

Цель занятия:

Учебная: познакомить с понятием теплопередачи, с видами теплопередачи, объяснить, что передача теплоты при любом из видов теплопередачи всегда идет в одном направлении; что в зависимости от внутреннего строения теплопроводность различных веществ(твердых, жидких и газообразных) различна, что черная поверхность лучший излучатель и лучший поглотитель энергии.

Развивающая: развить познавательный интерес к предмету.

Воспитательная : воспитать чувство ответственности, способность грамотно и четко выражать свои мысли, уметь держать себя и работать в коллективе

Межпредметная связь: химия, математика

Наглядные пособия: 21-30 рисунки, таблица теплопроводности

Технические средства обучения: __________________________________________________

_______________________________________________________________________

Структура урока

1.Организация урока(2 мин.)

— приветствие учащихся

— проверка явки учащихся и готовности класса к уроку.

2. Опрос домашнего задания(15 мин) Тема: Внутренняя энергия. Способы изменения внутренней энергии.

3. Объяснение нового материала. (15 мин)

Способ изменения внутренней энергии при котором частицы более нагретого тела, имея большую кинетическую энергию, при контакте с менее нагретым телом передают энергию непосредственно частицам менее нагретого тела называют теплопередачей Существуют три способа теплопередачи: теплопроводность, конвекция и излучение.

Эти виды теплопередачи имеют свои особенности, однакопередача теплоты при каждом из них всегда идет в одном направлении:от более нагретого тела к менее нагретому. При этом внутренняя энергия более нагретого тела уменьшается, а более холодного –увеличивается.

Явление передачи энергии от более нагретой части тела к менее нагретой или от более нагретоготела к менее нагретому через непосредственный контакт или промежуточные тела называется теплопроводностью.

В твердом теле частицы постоянно находятся в колебательном движении, но не изменяют своего равновесного состояния. По мере роста температуры тела при его нагревании молекулы начинают колебаться интенсивнее, так как увеличивается их кинетическая энергия. Часть этой увеличившейся энергии постепенно передается от одной частицы к другой, т.е. от одной части тела к соседнтм частям тела и т.д. Но не все твердые тела одинаково передают энергию. Среди них есть так называемые изоляторы, у которых механизм теплопроводности происходит достаточно медленно. К ним относятся асбест, картон, бумага, войлок, нранит, дерево, стекло и ряд других твердых тел. Большую теплопроводность имеют медб, серебро. Они являются хорошими проводниками тепла.

Ужидкостей теплопроводность невелика. При нагревании жидкости внутренняя энергия переносится из более нагретой области в менее нагретую при соударениях молекул и частично за счет диффузии: юолее быстрые молекулы проникают в менее нагретую область.

Вгазах, особенно в разреженных, молекулы находятся на достаточно больших расстояниях друг от друга, поэтому их теплопроводность еще меньше, чем у жидкостей.

Совершенным изолятором является вакуум, поптому что в нем отсутствуют частицы для передачи внутренней энергии.

Взависимости от внутреннего состояния теплопроводность разных веществ(твердых, жидуих и газообразных) различна.

Теплопроводность зависит от характера переноса энергии в веществе и не связана перемещением самого вещества в теле.

Известно, что теплопроводность воды мала, и при нагревании верхнего слоя воды нижний слой остается холдным. Воздух еще хуже, чем вода, проводит тепло.

Конвекцияэто процесс теплопередачи, при котором энергия переносится струями жидкости или газа.Конвекция в переводе с латинского означает «перемешивание». Конвекция отсутствует в твердых телах и не имеет места в вакууме.

Широко используемая в быту и технике ковекция является естественной или свободной.

Когда для равномерного перемешивания жидкостей или газов их перемешивают насосом или мешалкой конвекция называется вынужденной.

Теплоприемник –это прибор, представляющий собойплоскую цилиндрическую емкость из металла, одна сторона которой черная, а другая блестящая. Внутри нее имеется воздух , который при нагревании может расширяться и выходить наружу через отверстие.

В случае , когда теплота передается от нагретого тела к теплоприемнику с помощью невидимых глазом тепловых лучей вид теплопередачи называется излучением или лучистым теплообменом

Поглощением называетсяпроцесс превращения энергии излучения во внутреннюю энергию тела

Излучением(или лучистым теплообменом)- называется процесс передачи энергии от одного тела к другому с помощью электромагнитных волн.

Чем больше температура тела, тем выше интенсивность излучения. Передача энергии излучением не нуждается в среде: тепловые лучи могут распространяться и через вакуум.

Черная поверхность-лучший излучатель и лучший поглотитель, а затем следуют грубая, белая и полированная поверхности.

Хорошие поглотители энергии- хорошие излучатели, а плохие поглотители- плохие излучатели энергии.

4. Закрепление: (10 мин) вопросы для самопроверки, задания и упражнения

5. Задание на дом(2 мин) прочитать и пересказ темы, Домашние эксперименталь

ные задания:1)Сравнение теплопроводности металла и стекла, воды и воздуха, 2)Наблюдение конвекции в жилом помещении.

6. Оценка знаний учащихся.(1 мин)

Основная литература: Физика и астрономия 8 класс

Дополнительная литература: Н. Д. Бытько «Физика» части 1 и 2

Проект » Виды теплопередачи в быту и технике» физика 8 класс | Проект по физике (8 класс):

КРАЕВОЕ ГОСУДАРСТВЕННОЕ КАЗЕННОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

«ВЕЧЕРНЯЯ (СМЕННАЯ) ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №1»

ПРОЕКТ

ВИДЫ ТЕПЛОПЕРЕДАЧИ В БЫТУ И ТЕХНИКЕ

                                                                     

                                                                      Авторы проекта:

                                                                       учащиеся 8 класса               

                                                        Голейников Иван

                                           Егоров Ян

                                                           Кондратьев Степан

                                                          Марчченко Сергей

                                                                    Колединцев Константин

                                                          Мельников Роман

                                                              Решетников Рустам                

                                                          Суховской Рустам

                                                           Теленчинов Юрий

 

                                                                            Руководитель проекта:      

                                                          учитель физики

                                                                                            Добровольский Анатолий Андреевич

Рубцовск

2019

СОДЕРЖАНИЕ

Введение …. ………………………………………………………………………………………………………. . 3

1. Теплопередача и ее виды

     1.1 Что такое теплопередача ……………………………………………………………………….. … 4

     1.2  Виды теплопередачи ………………………………………………………………………………..  4

     1.3  Теплопроводность ………………………………………………………………………………….. . 4

     1.4  Излучение ………………………………………………………………………………………………..  5

     1.5  Конвекция ………… …………………………………………………………………………………….  8

     1.6  Все виды теплопередачи одновременно …………………………………………………….  9

 2. Заключение …………………………………………………………………………………………………….. 11

 3. Информационные ресурсы ………………………………………………………………………………. 13

2

ВВЕДЕНИЕ.

   

   В нашей повседневной жизни мы привыкли пользоваться бытовой техникой, различной аппаратурой и гаджетами, жить в комфортных условиях. Однако, мы практически не задумываемся над тем благодаря каким закона физики работают наши  «помощники» и самое главное не представляют ли они опасность для человека и окружающей среды. Поэтому изучение данной темы актуально.

  Проблема — изучить насколько воздействие бытовых приборов, аппаратуры и гаджетов опасно для человека и способах снижения вреда от этого воздействия. 

   Объект исследования — теплопередача.

   Предмет исследования — причины возникновения  и последствия воздействия теплопередачи на организм человека.  

 Цель — всесторонне изучить информацию по видам теплопередачи, использованию излучения, теплопроводности и конвекции в быту и технике, выявить влияние теплопередачи на организм человека.  

   Задачи:

      1.   Изучить явление теплопередачи.

  1. Рассмотреть виды теплопередачи и их применение в быту и технике.
  2. Проанализировать насколько воздействие теплопередачи опасно для человека.
  3. Определить способы снижения вреда от этого воздействия.

   Гипотезы:

  1. явление теплопередачи не имеет применения в быту и технике;
  1. возможно, что виды теплопередачи имеют широкое применение в нашей жизни.
  2. оно влияет на организм человека и может быть смертельно опасно.

   Методы исследования – поиск, изучение источников информации (книги, статьи, сайты), наблюдение, анализ.

 Теоретическая значимость нашей исследовательской работы заключается в том, что результаты исследования могут быть использованы  для снижения влияния явления теплопередачи на организм человека.

  Практическая значимость исследования состоит в том, что оно может быть использовано школьниками для повышения образовательного уровня, учителем биологии и физики для объяснения тем и проведения занимательного урока охраны здоровья.

   Этапы работы:

подготовительный (сентябрь 2019 г.) – сбор информации по теме исследования из различных источников, планирование работы;

проведение наблюдений (сентябрь-октябрь 2019 г.) – проведение наблюдений за применением данного явления в быту и технике;

подведение итогов эксперимента (октябрь 2019 г.) – анализ собранных данных, выводы.

   Тип проекта — информационный.

3

ОСНОВНАЯ ЧАСТЬ

1. ТЕПЛОПЕРЕДАЧА И ЕЕ ВИДЫ

1.1 Что такое теплопередача

   Процесс передачи тепла от более нагретого тела к менее нагретому  называется теплопередачей.

       Каждый предмет может служить «мостиком», по которому перейдет тепло от тела более нагретого к телу менее нагретому. Таким «мостиком» может быть ложка, опущенная в стакан с горячим чаем. Металлические предметы очень хорошо проводят тепло. Конец ложки в стакане становится теплым уже через секунду. Если нужно перемешать какую-либо горячую смесь, то ручку у мешалки делают из дерева или пластмассы. Эти тела проводят тепло во много раз хуже, чем металлы. «Мостиком» для перехода тепла могут быть и жидкости. Но они проводят тепло хуже твердых тел.

1.2 Виды теплопередачи

    Существуют три вида теплопередачи: теплопроводность, конвекция и излучение. (Слайд 2). Эти виды теплопередачи имеют свои особенности, однако передача теплоты при каждом из них всегда идет в одном направлении: от более нагретого тела к менее нагретому. При этом внутренняя энергия более нагретого тела уменьшается, а более холодного — увеличивается.. Внутренняя энергия может передаваться не только непосредственно от одного тела к другому, как, например, от горячей воды к опущенной в нее холодной ложке, но и через промежуточные тела. Так, через стенку чайника часть внутренней энергии от горячей электроплиты передается воде; через металлические трубы отопительной системы тепло передается воздуху, находящемуся в помещении и т.д. Внутренняя энергия может передаваться и от более нагретой части одного и того же тела к другой его части, менее нагретой.

1.3 Теплопроводность

   Явление передачи энергии от более нагретой части тела к менее нагретой или от более нагретого тела к менее нагретому через непосредственный контакт или промежуточные тела называется теплопроводностью. (Слайд 3).  

  Металлы имеют большую теплопроводность, особенно медь, серебро. Они являются хорошими проводниками тепла. Это происходит из-за того, что молекулы, обладающие большей энергией, передают часть своей энергии соседним молекулам. В результате все тело постепенно нагревается. Само вещество при этом не перемещается [1].

  Нагревание металлического стержня, к которому с помощью пластилина прикреплены гвоздики. (Слайд 4). При нагревании конца стержня пламенем свечи гвоздики начинают последовательно отпадать. Это происходит потому, что молекулы, находящиеся у конца стержня приобретают при нагревании большую энергию и передают ее соседним молекулам. Постепенно эта энергия передается следующим молекулам и стержень нагревается.

  В жидкостях внутренняя энергия переносится из более нагретой области в менее нагретую при соударениях молекул и частично за счет диффузии: более быстрые молекулы проникают в менее нагретую область. У жидкостей, за исключением расплавленных металлов, например ртути, теплопроводность невелика. (Слайд 5). 

     В газах, особенно разреженных, молекулы находятся на достаточно больших

расстояниях друг от друга, поэтому их теплопроводность еще меньше, чем у жидкостей.

4

Явление диффузии при теплопередаче в газах проявляется больше, чем в жидкостях. Совершенным изолятором является вакуум, потому что в нем отсутствуют частицы для передачи внутренней энергии.  (Слайд 6).

    В зависимости от внутреннего строения теплопроводность разных веществ (твердых, жидких, газообразных) различна.  (Слайд 7).

Примеры:

1. Птицы зимой сидят нахохлившись. Перья задерживают воздух, а он обладает плохой теплопроводностью. Снег, особенно рыхлый, обладает очень плохой теплопроводностью. Этим объясняется то, что сравнительно тонкий слой снега предохраняет озимые посевы от вымерзания.  Погреба утепляют соломой. Мех животных из-за плохой теплопроводности предохраняет их от охлаждения зимой и перегрева летом. Люди зимой носят шубы. 

2. Ручки чайников, сковородок и т.д. из пластмассы, т.к. она плохо нагревается; корпус посуда из металла – он лучше проводит тепло и еда быстрее нагревается. в момент прикосновения к железной ручке кастрюли с кипящей водой можно получить ожог.

3. Пористые вещества (пенопласт, минеральная вата, паралон и т.д.) – хорошая теплоизоляция, т.к. воздух обладает плохой теплопроводностью. Тонкий слой воздуха между оконными стеклами предохраняет наше жилище от холода так хорошо, как и кирпичная стена. У термоса внутренняя поверхность зеркальная, а между внутренним и внешним сосудами пустота. (слайд 8)

1.4  Излучение

 

   Когда вы сидите перед костром, вас согревает исходящее от него тепло. То же самое происходит, если поднести ладонь к горящей лампочке, не дотрагиваясь до нее. Вы тоже почувствуете тепло. Самые крупные примеры теплопередачи в быту и природе возглавляет солнечная энергия. Каждый день тепло солнца проходит через 146 млн. км пустого пространства вплоть до самой Земли. Это движущая сила для всех форм и систем жизни, которые существуют на нашей планете сегодня. Без этого способа передачи мы были бы в большой беде, и мир был бы совсем не тот, каким мы его знаем. Излучение — это передача тепла с помощью электромагнитных волн, будь то радиоволны, инфракрасные, рентгеновские лучи или даже видимый свет. Все объекты излучают и поглощают лучистую энергию, включая самого человека, однако не все предметы и вещества справляются с этой задачей одинаково хорошо. (Слайд 9).

   Излучение — это разница между поглощенным и отраженным количеством тепла. Эта способность сильно зависит от цвета, черные объекты поглощают больше тепла, чем светлые.

   

     Виды излучения. (Слайд 10).

1.Тепловое. При столкновении быстрых атомов (или молекул) друг с другом часть их кинетической энергии превращается в энергию возбуждения атомов, которые затем излучают свет (Солнце, лампа накаливания, пламя и др.) (Слайд 11).

2.Электролюминесценция. При разряде в газе электрическое поле увеличивает кинетическую энергию электронов. Быстрые электроны возбуждают атомы в результате неупругого ударения с ними. Возбужденные атомы отдают энергию в виде световых волн. (трубки для рекламных надписей, северное сияние и др.) (Слайд 12).

 Способность тел по-разному поглощать энергию излучения используется человеком.

5

Например: — воздушные шары и крылья самолетов красят серебристой краской, чтобы они не нагревались солнцем. — если же нужно использовать солнечную энергию для нагревания некоторых приборов на искусственных спутниках Земли, то эти части окрашивают в темный

цвет. Люди зимой носят темные одежды (черного, синего, коричного цвета) в них теплее, а летом светлые (бежевые, белые цвета). Грязный снег в солнечную погоду тает быстрее, чем чистый, потому что тела с темной поверхностью лучше поглощают солнечное излучение и быстрее нагреваются. Созданы материалы, с помощью которых можно превращать тепловое излучение в видимое. Их используют при изготовлении специальной фотопленки для съемки в абсолютной темноте и в приборах ночного видения — тепловизорах. (Слайд 13) 

    Электромагнитное поле всегда возникает при движении свободных электронов в проводнике, поэтому передача электрической энергии сопровождается интенсивным электромагнитным излучением (ЭМИ).

    К настоящему времени, по данным экологов и врачей-гигиенистов известно, что все диапазоны электромагнитного излучения оказывают влияние на здоровье и работоспособность людей и имеют определенные последствия [8]. Воздействие электромагнитных полей на человека в силу их большой распространенности более опасна, чем радиация. Особенно опасно действие электромагнитных излучений на детей, подростков, беременных женщин и лиц с ослабленным здоровьем [9].

  Наиболее быстро реагирующими на излучение являются ткани организма, которые подвержены интенсивному клеточному делению. Вследствие облучения такие ткани, как правило, либо мутируют, либо подвергаются интенсивному разрушению. В организме человека такие ткани — это, прежде всего гонады (половые железы), красный костный мозг, щитовидная железа, слизистые оболочки. А также такие клетки (ткани) имеются в мышцах, хрусталиках глаз и так далее [8,10].

  1.  Результаты измерений ЭМИ от бытовых приборов

            Название электроприбора                                    Уровень излучения

Расстояние от электроприбора, при котором ЭМИ в норме (м)

Электрическое          (норма 25В/м)

      Магнитное                 (норма 250 нТл)

Микроволновая печь               2992

                                                   13240                         2,5 м

Кухонная плита                        1540

(индукционная)                         10955                         1 м

Компьютер                                196

                                                    790                            0,7 м

Чайник                                       218

                                                    3643                          0,5м

6

Стиральная машина                 210

                                                    420                            1 м

Телевизор                                  37

                                                    967                            1,5 м

  1. Утюг                                           656
  2.                                                     2359                          0,5 м
  3. Вывод: на основании проделанных измерений видно, что у всех бытовых электроприборов при работе превышается норма ЭМИ, причем в рейтинге самых опасных является микроволновая печь, при этом безопасное расстояние от нее является целых 2,5 метра.

Меры предосторожности

  • включать электроприборы по очереди, а не все разом: мобильный телефон, компьютер, СВЧ-печь, телевизор должны работать в разное время,
  • не группировать электроприборы в одном месте, распределить их так, чтобы они не усиливали ЭМП друг друга,
  • не располагать эти приборы рядом с обеденным, рабочим столом, местами отдыха, сна

      Пожалуй, одним из самых распространенных электроприборов в повседневности является сотовый телефон. При работе сотовой связи ее основные компоненты – сотовый телефон и базовая станция – создают электромагнитное поле. И владелец сотового телефона, и человек, не имеющий его, но живущий вблизи объектов сотовой связи, находятся в этом электромагнитном поле. Во время работы, когда связь с абонентом установлена, мобильный телефон окружен довольно мощным электромагнитным полем. Оно проникает в тело человека и поглощается, прежде всего, тканями головы – кожным покровом, ухом, частью головного мозга, включая зрительный анализатор.

Сотовый телефон марки Soni

  1. Уровень излучения
  2. Расстояние от электроприбора, при котором ЭМИ в норме (м)
  3. Электрическое      (норма 25В/м)
  4.   Магнитное           (норма 250 нТл)
  5. Входящий вызов                                          1857
  6.                       7600                    0,7 м
  7. Исходящий вызов                                        2756
  8.                       9360                    0,8 м
  9. Телефонный разговор                                 1750
  10.                        6430                    0,7 м
  11. СМС сообщение                                           326
  12.                        877                      0,5 м

7

Вывод: Проанализировав результаты таблицы видно, что ЭМИ от сотового телефона превышает норму, причем значение исходящего вызова больше, чем входящего.  это связанно с поиском базовой станции во время исходящего вызова. Наименее опасным является СМС связь. ( Слайд 14,15).

  1. Применение рентгеновских лучей  (слайд 16)

Медицинская диагностика.
Досмотр багажа и грузов.
Дефектоскопия изделий и материалов.
Рентгеноспектральный анализ.
Рентгеноструктурный анализ.

Рентгеновская микроскопия.
Рентгеновская астрономия.
Рентгеновские лазеры.

  1.  Конвекция

   Конвекция (от лат. Convectiō — «перенесение») — вид теплообмена (теплопередачи), при котором внутренняя энергия передается струями и потоками. Существует так называемая естественная конвекция, которая возникает в веществе самопроизвольно при его неравномерном нагревании в поле тяготения. При такой конвекции нижние слои вещества нагреваются, молекулы в нижней части набирают энергию и начинают двигаться быстрее, что приводит к уменьшению плотности, становятся легче и всплывают, а верхние слои, наоборот, остывают, становятся тяжелее и опускаются вниз,(более плотная жидкость) начинает тонуть, после чего процесс повторяется снова и снова.  Цикл продолжается до тех пор, пока существует источник тепла в нижней части.

    Естественной конвекции обязаны многие атмосферные явления, в том числе, образование облаков. Благодаря тому же явлению движутся тектонические плиты. Конвекция ответственна за появление гранул на  Солнце. 

  При вынужденной (принудительной) конвекции перемещение вещества обусловлено действием внешних сил (насос, лопасти вентилятора и т. п.). Она применяется, когда естественная конвекция является недостаточно эффективной.

    Конвекцией также называют перенос теплоты, массы или электрических зарядов движущейся средой.     (Слайд 17).

    Движение молекул в противоположных направлениях под воздействием нагревания – это именно то, на чем основывается конвекция. Конвекция невозможна при нагревании твердых тел. Всему виной достаточно сильное взаимное притяжение при колебании их твердых частиц. В результате нагрева тел твердой структуры не возникают конвекция, излучение. Теплопроводность заменяет указанные явления в таких телах и способствует передаче тепловой энергии. Яркие примеры конвекции – перемещение теплого воздуха в середине помещения с отопительными приборами, когда нагретые потоки движутся под потолок, а холодный воздух опускается к самой поверхности пола. Именно поэтому при включенном отоплении вверху комнаты воздух заметно теплее по сравнению с нижней частью помещения. (слайд 18).

   Наиболее простым и доступным для понимания примером конвекции может послужить процесс работы обыкновенного холодильника. Циркуляция охлажденного газа фреона по трубам холодильной камеры приводит к снижению температуры верхних пластов воздуха.

8

Соответственно, замещаясь более теплыми потоками, холодные опускаются вниз, охлаждая, таким образом, продукты. Расположенная на тыльной панели холодильника решетка играет роль элемента, способствующего отводу теплого воздуха, образованного в компрессоре агрегата во время сжатия газа.

  Охлаждение решетки также основывается на конвективных механизмах. Именно по этой причине не рекомендуется загромождать пространство позади холодильника. Ведь только в таком случае охлаждение может происходить без затруднений. (Слайд 19).

   Другие примеры конвекции можно заметить, наблюдая за таким природным явлением, как движение ветра. Нагреваясь над засушливыми континентами и охлаждаясь над местностью с более суровыми условиями, потоки воздуха начинают вытеснять друг друга, что приводит к их движению, а также перемещению влаги и энергии. На конвекции завязана возможность парения птиц и планеров. Менее плотные и более теплые воздушные массы при неравномерном нагревании у поверхности Земли приводят к образованию восходящих

 потоков, что способствует процессу парения. Для преодоления максимальных расстояний без затраты сил и энергии птицам требуется умение находить подобные потоки. Хорошие примеры конвекции – образование дыма в дымоходах и вулканических кратерах. Перемещение дыма вверх основано на его более высокой температуре и низкой плотности по сравнению с окружающей средой. При остывании дым постепенно оседает в нижние слои атмосферы. Именно по этой причине промышленные трубы, посредством которых происходит выброс вредных веществ в атмосферу, делают максимально высокими.

   Среди наиболее простых, доступных для понимания примеров, которые можно наблюдать в природе, быту и технике, следует выделить:

  1. движение воздушных потоков во время работы бытовых батарей отопления;
  2.  образование и движение облаков;
  3. процесс движения ветра, муссонов и бризов;
  4. смещение тектонических земных плит;
  5. процессы, которые приводят к свободному газообразованию. (Сдайд 20)

  Приготовление пищи. Все чаще явление конвекции реализуется в современных бытовых приборах, в частности в духовых шкафах. Газовый шкаф с конвекцией позволяет готовить разные блюда одновременно на отдельных уровнях при различной температуре. При этом полностью исключается смешение вкусов и запахов. Нагрев воздуха в традиционном духовом шкафу основывается на работе единственной горелки, что приводит к неравномерному распределению тепла. За счет целенаправленного перемещения горячих потоков воздуха при помощи специализированного вентилятора блюда в конвекционном духовом шкафу получаются более сочными, лучше пропекаются. Такие устройства быстрее нагреваются, что позволяет уменьшить время, требуемое на приготовление пищи. Естественно, для хозяек, которые готовят в духовом шкафу всего лишь несколько раз в год, бытовой прибор с функцией конвекции нельзя назвать техникой первой необходимости. Однако для тех, кто не может жить без кулинарных экспериментов, такое устройство станет просто незаменимым на кухне. (Слайд 21).

  1.6  Все виды теплопередачи одновременно

  

   В нашей жизни все способы теплопередачи работают одновременно. Редко бывает, когда эти способы действуют отдельно. Типичный пример — термос. Теплопередача от более нагретого тела к более холодному приводит к выравниванию их температур. Поэтому, например, горячий чайник, снятый с плиты, при соприкосновении с окружающим

9

воздухом через некоторое время остывает. Чтобы помешать телу остывать (или нагреваться), нужно предотвратить возможный теплообмен, причем во всех его трех проявлениях (при конвекции, теплопроводности и излучении). Это достигается путем помещения тела в специальный сосуд — сосуд Дьюара, который был изобретен в 1892 г. английским ученым Джеймсом Дьюаром. Сосуды Дьюара вначале применялись лишь для хранения легкоиспаряющихся сжиженных газов (например, жидкого гелия). Впоследствии их стали применять и в бытовых целях — для сохранения при неизменной температуре помещаемых в них пищевых продуктов. Такие сосуды Дьюара стали называть термосами. Термоса, предназначенный для хранения жидкостей, состоит из стеклянного сосуда с двойными стенками. Внутренняя поверхность этих стенок покрыта блестящим металлическим слоем, а из пространства между стенками выкачан воздух. Чтобы защитить стеклянный корпус термоса от повреждений, его помещают в картонный или металлический футляр. Сосуд закупоривают пробкой, а сверху футляра навинчивают колпачок. Термос устроен таким образом, что теплообмен его содержимого с окружающей средой сведен до минимума. Отсутствие воздуха между его стенками препятствует переносу энергии путем конвекции и теплопроводности, а блестящий слой на внутренней поверхности термоса препятствует передаче энергии излучением. 

(Слайд 22)

   Это можно доказать, нагревая воду в кастрюле. Сначала от горелки нагревается кастрюля (теплопроводность), затем начинает нагреваться вода (теплопроводность и конвекция). Тепло от кастрюли и воды передается по всем направлениям (излучение). (Слайд 23).

10

2.ЗАКЛЮЧЕНИЕ

  2.1 В самом начале нашего проекта мы поставили перед собой цель — всесторонне изучить информацию по видам теплопередачи, использованию излучения, теплопроводности и конвекции в быту и технике, выявить влияние теплопередачи на организм человека. В связи с этим было выдвинуто три гипотезы:

  1.  явление теплопередачи не имеет применения в быту и технике;
  1. возможно, что виды теплопередачи имеют широкое применение в нашей жизни.
  2. теплопередача влияет на организм человека и может быть смертельно опасна.

  2.2 Наша работа в рамках проекта позволяет сделать вывод о том что  явление теплопередачи имеет широкое применения в быту и технике.

    Так явления теплопроводности широко используется в строительстве. Пористые вещества (пенопласт, минеральная вата, паралон и т.д.) – хорошая теплоизоляция, т.к. воздух обладает плохой теплопроводностью. Тонкий слой воздуха между оконными стеклами предохраняет наше жилище от холода так хорошо, как и кирпичная стена.  Ручки чайников, сковородок и т.д. из пластмассы, т.к. она плохо нагревается; корпус посуды из металла – он лучше проводит тепло и еда наоборот быстрее нагревается. Люди зимой носят шубы.

   Способность тел по-разному поглощать энергию излучения используется человеком. Например: — воздушные шары и крылья самолетов красят серебристой краской, чтобы они не нагревались солнцем. — если же нужно использовать солнечную энергию для нагревания некоторых приборов на искусственных спутниках Земли, то эти части окрашивают в темный цвет. Люди зимой носят темные одежды (черного, синего, коричного цвета) в них теплее, а летом светлые (бежевые, белые цвета).  Созданы материалы, с помощью которых можно превращать тепловое излучение в видимое. Их используют при изготовлении специальной фотопленки для съемки в абсолютной темноте и в приборах ночного видения — тепловизорах.  

    Наиболее простым и доступным для понимания примером конвекции может послужить процесс работы обыкновенного холодильника. Все чаще явление конвекции реализуется в современных бытовых приборах, в частности в духовых шкафах.

       В нашей жизни все способы теплопередачи работают одновременно. Редко бывает, когда эти способы действуют отдельно. Типичный пример — термос. Это, так-же, можно доказать, нагревая воду в кастрюле. Сначала от горелки нагревается кастрюля (теплопроводность), затем начинает нагреваться вода (теплопроводность и конвекция). Тепло от кастрюли и воды передается по всем направлениям (излучение).

     2.3 В процессе нашего исследования мы выяснили что излучение является самым опасным видом теплопередачи для организма человека. Все диапазоны электромагнитного излучения оказывают влияние на здоровье и работоспособность людей и имеют определенные последствия. Воздействие электромагнитных полей на человека в силу их большой распространенности более опасна, чем радиация. Особенно опасно действие электромагнитных излучений на детей, подростков, беременных женщин и лиц с ослабленным здоровьем. У всех бытовых электроприборов при работе превышается норма ЭМИ, причем в рейтинге самых опасных является микроволновая печь, при этом безопасное расстояние от нее является целых 2,5 метра. ЭМИ от сотового телефона превышает норму, причем значение исходящего вызова больше, чем входящего.  это связанно с поиском базовой станции во время исходящего вызова. Наименее опасным является СМС связь.

11

Меры предосторожности

 1) включать электроприборы по очереди, а не все разом: мобильный телефон, компьютер, СВЧ-печь, телевизор должны работать в разное время.

 2) не группировать электроприборы в одном месте, распределить их так, чтобы они не усиливали ЭМП друг друга.

 3) не располагать эти приборы рядом с обеденным, рабочим столом, местами отдыха, сна. (Слайд 24)

  2.4 Практическая значимость исследования состоит в том, что оно может быть использовано школьниками для повышения образовательного уровня, учителем физики для объяснения тем «Виды теплопередачи. Теплопроводность. Конвекция. Излучение» и проведения занимательного урока охраны здоровья.

    Таким образом, мы считаем, что поставленная нами цель достигнута, задачи решены.

  2.5 За время работы над проектом, нами была изучена лишь небольшая часть практического применения теплопередачи в быту и технике. В дальнейшем, мы продолжим наши исследования в этом направлении при более детальном изучении в старших классах электромагнитных волн.

12

3.  ИНФОРМАЦИОННЫЕ РЕСУРСЫ

 

1. Горев Л.А. Занимательные опыты по физике. – М.: Издательство «Просвещение», 1977.

2. http://уроки.мирфизики.рф

3. https://infourok.ru/

4. https://fb.ru/

5. https://fb.ru/article/303040/primeryi-teploperedachi-v-prirode-v-byitu

6. http://class-fizika.ru/u8-5.html

7. http://900igr.net/prezentacija/fizika/shkala-elektromagnitnykh-voln-196339/vidy-izluchenija-2.html

8. Влияние электромагнитного излучения на живые организмы [Электронный ресурс]. Режим доступа: http://doza.net.ua/pages/ru_ref_emf.htm.

9. Воздействие электромагнитного излучения электроприборов на человека [Электронный ресурс]. Режим доступа: http://malahit-irk.ru/index.php/2011-01-13-09-04-43/119-2011-05-06-12-21-20.html.

10. Общие показатели самочувствия и возникающие симптомы при воздействии ЭМП [Электронный ресурс]. Режим доступа: http://www.libma.ru/zdorove/mobilnik_ubiica/p3.php#metkadoc12.

11. http://yandex.ru/clck/jsredir?from=yandex.ru

12. https://ru.wikipedia.org/wiki

13.https://fb.ru/article/177287/yavlenie-konvektsii-i-primeryi-konvektsii 

14.http://obuchonok.ru/znachimost» target=»_blank»>Практическая значимость работы 

13

Что такое теплопроводность? Обзор

Вариация теплопроводности

Теплопроводность конкретного материала сильно зависит от ряда факторов. К ним относятся температурный градиент, свойства материала и длина пути, по которому следует тепло.

Теплопроводность окружающих нас материалов существенно различается: от материалов с низкой проводимостью, таких как воздух со значением 0,024 Вт / м • К при 0 ° C, до металлов с высокой проводимостью, таких как медь (385 Вт / м • К).

Теплопроводность материалов определяет то, как мы их используем, например, материалы с низкой теплопроводностью отлично подходят для изоляции наших домов и предприятий, в то время как материалы с высокой теплопроводностью идеально подходят для приложений, где необходимо быстро и эффективно отводить тепло из одной области. к другому, например, в кухонных принадлежностях и системах охлаждения в электронных устройствах. Выбирая материалы с теплопроводностью, подходящей для области применения, мы можем достичь наилучших возможных характеристик.

Теплопроводность и температура

Из-за того, что движение молекул является основой теплопроводности, температура материала имеет большое влияние на теплопроводность. Молекулы будут двигаться быстрее при более высоких температурах, и поэтому тепло будет передаваться через материал с большей скоростью. Это означает, что теплопроводность одного и того же образца может резко измениться при повышении или понижении температуры.

Способность понимать влияние температуры на теплопроводность имеет решающее значение для обеспечения ожидаемого поведения продуктов при воздействии термического напряжения. Это особенно важно при работе с продуктами, выделяющими тепло, например электроникой, и при разработке материалов для защиты от огня и тепла.

Теплопроводность и структура

Значения теплопроводности существенно различаются в зависимости от материала и сильно зависят от структуры каждого конкретного материала.Некоторые материалы будут иметь разные значения теплопроводности в зависимости от направления распространения тепла; это анизотропные материалы. В этих случаях тепло легче перемещается в определенном направлении из-за того, как устроена конструкция.

При обсуждении тенденций теплопроводности материалы можно разделить на три категории; газы, неметаллические твердые тела и металлические твердые тела. Различия в способностях этих трех категорий к теплопередаче можно объяснить различиями в их структурах и молекулярных движениях.

Газы имеют более низкую относительную теплопроводность, поскольку их молекулы не так плотно упакованы, как в твердых телах, и поэтому теплопередача сильно зависит от свободного движения молекул и скорости молекул.

Газы — плохие передатчики тепла. Напротив, молекулы в неметаллических твердых телах связаны в сетку решетки, и поэтому теплопроводность в основном происходит за счет колебаний в этих решетках. Непосредственная близость этих молекул по сравнению с молекулами газов означает, что неметаллические твердые тела имеют более высокую теплопроводность по сравнению с двумя, однако в этой группе есть большие различия.

Это изменение частично объясняется количеством воздуха, присутствующего в твердом теле, материалы с большим количеством воздушных карманов являются отличными изоляторами, тогда как те, которые более плотно упакованы, будут иметь более высокое значение теплопроводности.

Теплопроводность металлических твердых тел еще раз отличается от предыдущих примеров. Металлы обладают самой высокой теплопроводностью среди любых материалов, за исключением графена, и обладают уникальной комбинацией теплопроводности и электропроводности.Оба эти атрибута передаются одними и теми же молекулами, и связь между ними объясняется законом Видемана-Франца. Этот закон свидетельствует о том, что при определенной температуре электропроводность будет пропорциональна теплопроводности, однако при повышении температуры теплопроводность материала будет расти, а электропроводность — уменьшаться.

Тестирование и измерение теплопроводности

Теплопроводность — важнейший компонент взаимоотношений между материалами, и способность понимать это позволяет нам добиться наилучших характеристик материалов, которые мы используем во всех аспектах нашей жизни.Эффективное испытание и измерение теплопроводности имеют решающее значение для этих усилий. Методы измерения теплопроводности можно разделить на установившиеся или переходные. Это разграничение является определяющей характеристикой того, как работает каждый метод. Методы установившегося состояния требуют, чтобы образец и образец сравнения находились в тепловом равновесии до начала измерений. Для переходных методов это правило не требуется, поэтому результаты выдаются быстрее.

Исследования

Получение пористой муллитовой керамики с низкой теплопроводностью

В этом исследовании анализируется муллитовая керамика, образованная в результате вспенивания и отверждения крахмала муллитового порошка, а также то, как ее теплопроводность изменяется в зависимости от пористости керамики.Теплопроводность измерялась методом источника переходной плоскости Hot Disc (TPS) с TPS 2500 S. По мере увеличения пористости муллитовой керамики увеличивается и теплопроводность.

Материал с фазовым переходом нанографит / парафин с высокой теплопроводностью

Композиты нанографит (NG) / парафин были приготовлены в качестве композитных материалов с фазовым переходом. Добавление NG увеличило теплопроводность композитного материала. Материал, содержащий 10% NG, имел теплопроводность 0.9362 Вт / м • K

Артикул:

Нейв Р. Гиперфизика. «Теплопроводность». Государственный университет Джорджии.
Доступно по адресу: http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/thercond.html#c1

Материалы курса по неразрушающему контролю. «Теплопроводность». Ресурсный центр по неразрушающему контролю.
Доступно по адресу: https://www.ndeed.org/EducationResources/CommunityCollege/Materials/Physical_Chemical/ThermalConductivity.htm

Уильямс, М. «Что такое теплопроводность?». Phys.Org. 9 декабря 2014 г.
Доступно по адресу: http://phys.org/news/2014-12-what-is-heat-conduction.html

Что вы подразумеваете под теплопроводностью? Получено из определения теплопроводности

Thermtest База данных термических свойств материалов. Список значений теплопроводности

Теплопроводность: определение, единицы, уравнения и пример

Обновлено 28 декабря 2020 г. Ваши ноги.Однако стоило вам ступить на кафельный пол в ванной, и ваши ноги мгновенно похолодели. На двух этажах как-то различаются температуры?

Вы, конечно, не ожидали бы этого, учитывая то, что вы знаете о тепловом равновесии. Так почему же они такие разные? Причина в теплопроводности.

Теплообмен

Тепло — это энергия, которая передается между двумя материалами из-за разницы температур. Тепло течет от объекта с более высокой температурой к объекту с более низкой температурой, пока не будет достигнуто тепловое равновесие.Методы передачи тепла включают теплопроводность, конвекцию и излучение.

Тепловая проводимость — это режим, который более подробно обсуждается далее в этой статье, но вкратце это теплопередача посредством прямого контакта. По сути, молекулы более теплого объекта передают свою энергию молекулам более холодного объекта посредством столкновений, пока оба объекта не достигнут одинаковой температуры.

В конвекции тепло передается посредством движения. Представьте себе воздух в вашем доме в холодный зимний день.Вы заметили, что большинство обогревателей обычно располагаются около пола? Когда обогреватели нагревают воздух, он расширяется. Когда он расширяется, он становится менее плотным и поднимается над более прохладным воздухом. В этом случае более холодный воздух находится рядом с обогревателем, поэтому воздух может нагреваться, расширяться и т. Д. Этот цикл создает конвекционные потоки и заставляет тепловую энергию рассеиваться по воздуху в комнате, смешивая воздух по мере его нагрева.

Атомы и молекулы испускают электромагнитное излучение , которое представляет собой форму энергии, которая может перемещаться в космическом вакууме.Вот как тепловая энергия от теплого огня достигает вас, и как тепловая энергия от солнца попадает на Землю.

Определение теплопроводности

Теплопроводность — это мера того, насколько легко тепловая энергия проходит через материал или насколько хорошо этот материал может передавать тепло. Насколько хорошо происходит теплопроводность, зависит от тепловых свойств материала.

Рассмотрим плиточный пол в примере в начале. Это лучший проводник, чем ковер.Вы можете сказать просто наощупь. Когда ваши ноги стоят на кафельном полу, тепло уходит намного быстрее, чем на ковре. Это связано с тем, что плитка позволяет теплу от ваших ног гораздо быстрее проходить через нее.

Так же, как удельная теплоемкость и скрытая теплота, проводимость — это свойство конкретного материала. Он обозначается греческой буквой κ (каппа) и обычно ищется в таблице. Единицы проводимости в системе СИ — ватт / метр × Кельвин (Вт / мК).

Объекты с высокой теплопроводностью являются хорошими проводниками, а объекты с низкой теплопроводностью — хорошими изоляторами. Здесь представлена ​​таблица значений теплопроводности.


Как видите, предметы, которые часто кажутся «холодными» на ощупь, например, металлы, являются хорошими проводниками. Отметим также, насколько хорош воздух изолятор. Вот почему большие пушистые куртки согревают зимой: они задерживают большой слой воздуха вокруг вас. Пенополистирол также является отличным изолятором, поэтому его используют для сохранения тепла или холода в еде и напитках.

Как тепло перемещается через материал

По мере того, как тепло распространяется через материал, существует градиент температуры по всему материалу от конца, ближайшего к источнику тепла, к концу, наиболее удаленному от него.

По мере прохождения тепла через материал и до достижения равновесия конец, ближайший к источнику тепла, будет самым теплым, а температура будет линейно снижаться до самого низкого уровня на дальнем конце. Однако по мере того, как материал приближается к равновесию, этот градиент выравнивается.

Теплопроводность и тепловое сопротивление

Насколько хорошо тепло может перемещаться через объект, зависит не только от его проводимости, но и от размера и формы объекта. Представьте себе длинный металлический стержень, проводящий тепло от одного конца к другому. Количество тепловой энергии, которое может пройти за единицу времени, будет зависеть от длины стержня, а также от размера стержня вокруг стержня. Здесь в игру вступает понятие теплопроводности.

Теплопроводность материала, такого как железный стержень, определяется по формуле:

C = \ frac {\ kappa A} {L}

, где A — площадь поперечного сечения материал, L — длина, а κ — теплопроводность.Единицы проводимости в системе СИ — Вт / К (ватт на кельвин). Это позволяет интерпретировать κ как теплопроводность единицы площади на единицу толщины.

И наоборот, тепловое сопротивление определяется по формуле:

R = \ frac {L} {\ kappa A}

Это просто величина, обратная проводимости. Сопротивление — это мера сопротивления проходящей через него тепловой энергии. Термическое сопротивление также определяется как 1 / κ.

Скорость, с которой тепловая энергия Q перемещается по длине L материала, когда разница температур между концами составляет ΔT , определяется по формуле:

\ frac {Q } {t} = \ frac {\ kappa A \ Delta T} {L}

Это также можно записать как:

\ frac {Q} {t} = C \ Delta T = \ frac {\ Delta T} {R}

Обратите внимание, что это прямо аналогично тому, что происходит с током при электрической проводимости.В электрической проводимости ток равен напряжению, деленному на электрическое сопротивление. Электропроводность и электрический ток аналогичны теплопроводности и току, напряжение аналогично разнице температур, а электрическое сопротивление аналогично тепловому сопротивлению. Применяется все та же математика.

Применения и примеры

Пример: Полусферическое иглу из льда имеет внутренний радиус 3 м и толщину 0.4 мес. Тепло уходит из иглу со скоростью, зависящей от теплопроводности льда κ = 1,6 Вт / мК. С какой скоростью должна непрерывно генерироваться тепловая энергия внутри иглу, чтобы поддерживать температуру 5 градусов по Цельсию внутри иглу, когда на улице -30 ° C?

Решение: Правильным уравнением для использования в этой ситуации является уравнение из предыдущего:

\ frac {Q} {t} = \ frac {\ kappa A \ Delta T} {L}

Вы учитывая κ, ΔT — это просто разница в температурном диапазоне между внутренней и внешней средой, а L — толщина льда.2

Включение всего в уравнение дает:

\ frac {Q} {t} = \ frac {\ kappa A \ Delta T} {L} = \ frac {1,6 \ times 64,34 \ times 35} {0,4} = 9,000 \ text {Watts}

Применение: Радиатор — это устройство, передающее тепло от объектов при высоких температурах воздуху или жидкости, которая затем уносит избыточную тепловую энергию. У большинства компьютеров к процессору прикреплен радиатор.

Радиатор сделан из металла, который отводит тепло от процессора, а затем небольшой вентилятор циркулирует воздух вокруг радиатора, заставляя тепловую энергию рассеиваться.Если все сделано правильно, радиатор позволяет процессору работать в стабильном состоянии. Насколько хорошо работает радиатор, зависит от проводимости металла, площади поверхности, толщины и поддерживаемого температурного градиента.

Теплопроводность и закон Видемана-Франца

Теплопередача за счет теплопроводности включает передачу энергии внутри материала без какого-либо движения материала в целом. Скорость теплопередачи зависит от температурного градиента и теплопроводности материала.Теплопроводность — это довольно простое понятие, когда вы обсуждаете потери тепла через стены вашего дома, и вы можете найти таблицы, которые характеризуют строительные материалы и позволяют делать разумные расчеты.

Более фундаментальные вопросы возникают, когда вы исследуете причины значительных колебаний теплопроводности. Газы передают тепло путем прямых столкновений между молекулами, и, как и следовало ожидать, их теплопроводность низкая по сравнению с большинством твердых тел, поскольку они являются разбавленными средами.Неметаллические твердые тела передают тепло посредством колебаний решетки, так что нет чистого движения среды при прохождении энергии. Такой перенос тепла часто описывают в терминах «фононов», квантов колебаний решетки. Металлы являются гораздо лучшими проводниками тепла, чем неметаллы, потому что те же самые подвижные электроны, которые участвуют в электропроводности, также участвуют в передаче тепла.

Концептуально теплопроводность можно рассматривать как контейнер для зависящих от среды свойств, которые связывают скорость потери тепла на единицу площади со скоростью изменения температуры.

Для идеального газа скорость теплопередачи пропорциональна средней молекулярной скорости, длине свободного пробега и молярной теплоемкости газа.

Для неметаллических твердых тел теплопередача рассматривается как передача посредством колебаний решетки, поскольку атомы, колеблющиеся более энергично в одной части твердого тела, передают эту энергию менее энергичным соседним атомам. Это может быть усилено совместным движением в форме распространяющихся решеточных волн, которые в квантовом пределе квантуются как фононы.На практике неметаллические твердые тела настолько изменчивы, что мы обычно просто характеризуем вещество с помощью измеренной теплопроводности при выполнении обычных расчетов.

У металлов достаточно высокая теплопроводность, и те металлы, которые являются лучшими электрическими проводниками, также являются лучшими проводниками тепла. При заданной температуре теплопроводность и электрическая проводимость металлов пропорциональны, но повышение температуры увеличивает теплопроводность при одновременном уменьшении электропроводности.Это поведение количественно выражено в законе Видеманна-Франца:

.

, где коэффициент пропорциональности L называется числом Лоренца. Качественно это соотношение основано на том факте, что и тепло, и электрический перенос связаны со свободными электронами в металле. Теплопроводность увеличивается со средней скоростью частиц, поскольку это увеличивает прямой перенос энергии. Однако электропроводность уменьшается с увеличением скорости частиц, потому что столкновения отвлекают электроны от прямого переноса заряда.Это означает, что отношение теплопроводности к электрической проводимости зависит от квадрата средней скорости, который пропорционален кинетической температуре.

4.3: Теплопроводность — Physics LibreTexts

На рисунке IV.1 показано тепловое течение со скоростью dQ / dt вдоль полосы материала площадью поперечного сечения A . По длине планки наблюдается перепад температур (поэтому по ней течет тепло). На расстоянии x от конца стержня температура составляет T ; на расстоянии x + δ x это T + δ T .Обратите внимание, что если тепло течет в положительном направлении, как показано, δ T должно быть отрицательным. То есть, ближе к правому концу планки холоднее. Температурный градиент dT / dx отрицательный. Тепло течет в направлении, противоположном градиенту температуры.

Отношение скорости теплового потока на единицу площади к отрицательному градиенту температуры называется теплопроводностью материала:

\ [\ frac {dQ} {dt} = -KA \ frac {dT} {dx}. \]

Я использую символ K для обозначения теплопроводности.Другие часто встречающиеся символы — это k или λ. Его единица СИ — Вт · м −1 K −1 .

Я определил это в одномерной ситуации и для изотропной среды, в этом случае тепловой поток противоположен градиенту температуры. Можно представить, что в анизотропной среде скорость теплового потока и градиент температуры могут быть разными параллельно разным кристаллографическим осям. В этом случае тепловой поток и температурный градиент не могут быть строго антипараллельными, а теплопроводность является тензорной величиной.Такая ситуация не будет касаться нас в этой главе.

Если в нашем одномерном примере нет утечки тепла по сторонам стержня, то скорость потока тепла вдоль стержня должна быть одинаковой по всей длине стержня, что означает, что градиент температуры является однородным. по длине проволоки. Возможно, проще представить отсутствие потерь тепла с боков, чем добиться этого на практике. Если бы стержень был расположен в вакууме, не было бы потерь на теплопроводность или конвекцию, а если бы стержень был очень блестящим, потери на излучение были бы незначительными. 2 = 2.{-1}. \]

Здесь k — постоянная Больцмана, а e — заряд электрона. Было обнаружено, что это предсказание хорошо выполняется при комнатной температуре и выше, но при низких температурах электропроводность быстро увеличивается с понижением температуры, и отношение начинает падать значительно ниже значения, предсказанного уравнением 4.2.2, приближаясь к нулю при 0 К.

Читатель может быть знаком со следующими терминами в области электричества

Электропроводность σ

Электропроводность G

Удельное сопротивление ρ

Сопротивление R

Они связаны соотношением G = 1/ R , σ = 1 / ρ, R = ρ l / A , G = σ A / l ,

, где l и A — длина и площадь поперечного сечения проводника.Читатель, вероятно, также знает, что сопротивления складываются последовательно, а проводимости складываются параллельно. Мы можем определить некоторые аналогичные величины, относящиеся к тепловому потоку. Таким образом, удельное сопротивление обратно пропорционально проводимости, сопротивление в л / А в раз больше удельного сопротивления, проводимость составляет А / л в раз больше проводимости и так далее. Эти концепции могут пригодиться в следующем жанре задач, любимых экзаменаторами.

Помещение имеет стены площадью A 1 , толщина d 1 , теплопроводность K 1 , дверь площадью A 2 , толщина d 2 , теплопроводность K 2 , а площадь окна A 3 , толщина d 3 , теплопроводность K 3 , Температура внутри T 1 и температура снаружи T 2 .Какова скорость потери тепла из помещения?

У нас есть три параллельных проводимости: \ (\ frac {K_1 A_1} {d_1}, ~ \ frac {K_2 A_2} {d_2}, \) и \ (\ frac {K_3 A_3} {d_3} \), и так что у нас

\ [\ frac {dQ} {dt} = \ left (\ frac {K_1 A_1} {d_1} + \ frac {K_2 A_2} {d_2} + \ frac {K_3 A_3} {d_3} \ right) (T_2 — Т_1). \]

Конечно, проблема не должна быть именно такой. Возможно, вам задали показатель теплопотерь и попросили найти площадь окна. Но вы поняли общую идею и, вероятно, сможете сами придумать несколько примеров.Скорость теплового потока аналогична току, а разница температур подобна ЭДС батареи.

Теплопроводность — Энциклопедия Нового Света

Испытание на огнестойкость, используемое для проверки передачи тепла через противопожарные заглушки и пенетранты, используемые в строительных списках и одобрении использования и соответствия.

В физике теплопроводность , k {\ displaystyle k}, это свойство материала, указывающее на его способность проводить тепло. Он появляется прежде всего в законе Фурье для теплопроводности.

Проводимость — наиболее важное средство передачи тепла в твердом теле. Зная значения теплопроводности различных материалов, можно сравнить, насколько хорошо они проводят тепло. Чем выше значение теплопроводности, тем лучше материал проводит тепло. В микроскопическом масштабе проводимость возникает, когда горячие, быстро движущиеся или колеблющиеся атомы и молекулы взаимодействуют с соседними атомами и молекулами, передавая часть своей энергии (тепла) этим соседним атомам.В изоляторах тепловой поток почти полностью переносится фононными колебаниями.

Математический фон

Во-первых, теплопроводность можно определить по формуле:

H = ΔQΔt = k × A × ΔTx {\ displaystyle H = {\ frac {\ Delta Q} {\ Delta t}} = k \ times A \ times {\ frac {\ Delta T} {x} }}

где ΔQΔt {\ displaystyle {\ frac {\ Delta Q} {\ Delta t}}} — скорость теплового потока, k — теплопроводность, A — общая площадь поверхности Δ T — разность температур, а x — толщина проводящей поверхности, разделяющей две температуры.

Таким образом, преобразование уравнения дает теплопроводность,

k = ΔQΔt × 1A × xΔT {\ displaystyle k = {\ frac {\ Delta Q} {\ Delta t}} \ times {\ frac {1} {A}} \ times {\ frac {x} {\ Delta T}}}

(Примечание: ΔTx {\ displaystyle {\ frac {\ Delta T} {x}}} — это градиент температуры)

Другими словами, он определяется как количество тепла Δ Q , переданное за время Δ t через толщину x в направлении, нормальном к поверхности площадью A , из-за разность температур Δ T , в установившемся режиме и когда теплопередача зависит только от температурного градиента.

С другой стороны, это можно представить как поток тепла (энергия на единицу площади в единицу времени), деленный на градиент температуры (разность температур на единицу длины).

k = ΔQA × Δt × xΔT {\ displaystyle k = {\ frac {\ Delta Q} {A \ times {} \ Delta t}} \ times {\ frac {x} {\ Delta T}}}


Типичными единицами являются СИ: Вт / (м · К) и английские единицы: БТЕ · фут / (ч · фут² · ° F). Для преобразования между ними используйте соотношение 1 Британские тепловые единицы · фут / (ч · фут² · ° F) = 1,730735 Вт / (м · К). [1]

Примеры

В металлах теплопроводность приблизительно соответствует электропроводности в соответствии с законом Видемана-Франца, поскольку свободно движущиеся валентные электроны переносят не только электрический ток, но и тепловую энергию. Однако общая корреляция между электропроводностью и теплопроводностью не сохраняется для других материалов из-за повышенного значения фононных носителей для тепла в неметаллах. Как показано в таблице ниже, серебро с высокой электропроводностью менее теплопроводно, чем алмаз, который является электрическим изолятором.

Теплопроводность зависит от многих свойств материала, особенно от его структуры и температуры. Например, чистые кристаллические вещества демонстрируют очень разную теплопроводность вдоль разных осей кристалла из-за различий в фононной связи вдоль данной оси кристалла. Сапфир является ярким примером переменной теплопроводности в зависимости от ориентации и температуры, для которой в справочнике CRC указана теплопроводность 2,6 Вт / (м · К) перпендикулярно оси c при 373 K, но 6000 Вт / ( м · К) на 36 градусах от оси c и 35 К (возможна опечатка?).

Воздух и другие газы, как правило, являются хорошими изоляторами при отсутствии конвекции. Следовательно, многие изоляционные материалы функционируют просто за счет наличия большого количества заполненных газом карманов, которые предотвращают крупномасштабную конвекцию. Их примеры включают вспененный и экструдированный полистирол (обычно называемый «пенополистиролом») и аэрогель кремнезема. Природные биологические изоляторы, такие как мех и перья, достигают аналогичного эффекта, резко подавляя конвекцию воздуха или воды возле кожи животного.

Теплопроводность важна для теплоизоляции зданий и смежных областей. Однако материалы, используемые в таких отраслях, редко подвергаются стандартам химической чистоты. Значения k некоторых строительных материалов перечислены ниже. Их следует считать приблизительными из-за неопределенностей, связанных с определениями материалов.

Следующая таблица предназначена в качестве небольшой выборки данных для иллюстрации теплопроводности различных типов веществ. Более полные списки измеренных значений k см. В справочных материалах.

Список коэффициентов теплопроводности

Это список приблизительных значений теплопроводности, k , для некоторых распространенных материалов. Пожалуйста, обратитесь к списку значений теплопроводности для получения более точных значений, справочных материалов и подробной информации.

Измерение

Вообще говоря, существует ряд возможностей для измерения теплопроводности, каждая из которых подходит для ограниченного диапазона материалов, в зависимости от тепловых свойств и температуры среды.Можно провести различие между установившимся и переходным режимами.

Обычно методы установившегося режима выполняют измерение, когда температура измеряемого материала не изменяется со временем. Это упрощает анализ сигналов (устойчивое состояние подразумевает постоянные сигналы). Обычно недостатком является то, что для этого требуется хорошо спроектированная экспериментальная установка. Разделенный стержень (различных типов) — это наиболее распространенное устройство, используемое для консолидированных проб горных пород.

Переходные методы выполняют измерения в процессе нагрева.Преимущество в том, что измерения можно проводить относительно быстро. Переходные методы обычно выполняются с помощью игольчатых зондов (вставленных в образцы или погруженных на дно океана).

Для хороших проводников тепла можно использовать метод стержня Серла. Для плохих проводников тепла можно использовать дисковый метод Лиза. Также можно использовать альтернативный традиционный метод с использованием настоящих термометров. Тестер теплопроводности, один из инструментов геммологии, определяет, являются ли драгоценные камни настоящими алмазами, используя уникально высокую теплопроводность алмаза.

Стандартные методы измерения

  • Стандарт IEEE 442-1981, «Руководство IEEE по измерениям теплового сопротивления почвы», см. Также gradient_thermal_properties. [4]
  • Стандарт IEEE 98-2002, «Стандарт подготовки процедур испытаний для термической оценки твердых электроизоляционных материалов» [5]
  • Стандарт ASTM D5470-06, Стандарт Метод испытания теплопроводных свойств теплопроводных электроизоляционных материалов « [6]
  • Стандарт ASTM E1225-04,» Стандартный метод испытания теплопроводности твердых тел с помощью метода контролируемого сравнительного продольного теплового потока » [7]
  • Стандарт ASTM D5930-01, «Стандартный метод испытания теплопроводности пластмасс с помощью метода нестационарного линейного источника» [8]
  • Стандарт ASTM D2717-95, » Стандартный метод испытаний теплопроводности жидкостей » [9]

Разница между американскими и европейскими обозначениями

В Европе коэффициент k строительных материалов (например,грамм. оконное стекло) называется λ-значением.

U-значение раньше называлось k-значением в Европе, но теперь его также называют U-значением.

Значение K (с большой буквы) относится в Европе к общей стоимости изоляции здания. K-значение получается путем умножения форм-фактора здания (= общая внутренняя поверхность внешних стен здания, деленная на общий объем здания) на среднее значение U внешних стен здания. . Таким образом, значение K выражается как (m 2 .m -3 ). (W.K -1 .m -2 ) = W.K -1 .m -3 . Таким образом, для дома объемом 400 м³ и коэффициентом К 0,45 (новая европейская норма. Его обычно называют K45) теоретически потребуется 180 Вт для поддержания внутренней температуры на 1 градус К выше наружной температуры. Итак, для поддержания температуры в доме при 20 ° C при морозах на улице (0 ° C) требуется 3600 Вт постоянного обогрева.

Связанные термины

Обратная величина теплопроводности равна , удельное тепловое сопротивление измеряется в кельвин-метрах на ватт (К · м · Вт -1 ).

При работе с известным количеством материала можно описать его теплопроводность и взаимное свойство тепловое сопротивление . К сожалению, у этих терминов есть разные определения.

Первое определение (общее)

Для общего научного использования, теплопроводность — это количество тепла, которое проходит за единицу времени через пластину с определенной площадью и толщиной , когда ее противоположные стороны отличаются по температуре на один градус.Для пластины с теплопроводностью к , площадью A и толщиной L это составляет кА / л , измеренное в Вт · К -1 (эквивалент: Вт / ° C). Теплопроводность и проводимость аналогичны электрической проводимости (А · м -1 · В -1 ) и электрической проводимости (А · В -1 ).

Существует также мера, известная как коэффициент теплопередачи: количество тепла, которое проходит за единицу времени через единицы площади пластины определенной толщины, когда ее противоположные стороны различаются по температуре на один градус.Обратное значение — , теплоизоляция . В итоге:

  • теплопроводность = кА / L , измеренная в Вт · К -1
    • тепловое сопротивление = L / кА , измеренное в К · Вт -1 (эквивалент до: ° C / Вт)
  • коэффициент теплопередачи = k / L , измеряется в Вт · K -1 · м -2
    • теплоизоляция = L / k , измеряется в K · м² · W -1 .

Коэффициент теплопередачи также известен как теплопроводность

Термическое сопротивление

Когда термические сопротивления возникают последовательно, они складываются. Таким образом, когда тепло проходит через два компонента, каждый с сопротивлением 1 ° C / Вт, общее сопротивление составляет 2 ° C / Вт.

Общая проблема инженерного проектирования включает выбор радиатора подходящего размера для данного источника тепла. Работа в единицах теплового сопротивления значительно упрощает расчет конструкции.Для оценки производительности можно использовать следующую формулу:

Rhs = ΔTPth − Rs {\ displaystyle R_ {hs} = {\ frac {\ Delta T} {P_ {th}}} — R_ {s}}

где:

  • R hs — максимальное тепловое сопротивление радиатора окружающей среде, ° C / Вт
  • ΔT {\ displaystyle \ Delta T} — разница температур (падение температуры), ° C.
  • P th — тепловая мощность (тепловой поток), в ваттах
  • R s — тепловое сопротивление источника тепла в ° C / Вт

Например, если компонент выделяет 100 Вт тепла и имеет тепловое сопротивление 0.5 ° C / Вт, какое максимальное тепловое сопротивление радиатора? Допустим, максимальная температура составляет 125 ° C, а температура окружающей среды — 25 ° C; тогда ΔT {\ displaystyle \ Delta T} равно 100 ° C. В этом случае тепловое сопротивление радиатора окружающей среде должно составлять 0,5 ° C / Вт или меньше.

Второе определение (здания)

При работе со зданиями термическое сопротивление или R-value означает то, что описано выше как теплоизоляция, а теплопроводность , означает обратное.Для материалов, соединенных последовательно, эти тепловые сопротивления (в отличие от проводимости) можно просто добавить, чтобы получить тепловое сопротивление для всего.

Третий член, коэффициент теплопередачи , включает теплопроводность конструкции наряду с теплопередачей за счет конвекции и излучения. Он измеряется в тех же единицах, что и теплопроводность, и иногда известен как композитный коэффициент теплопроводности . Еще одним синонимом является термин U-значение .

Таким образом, для пластины с теплопроводностью k (значение k [10] ), площадь A и толщина L :

  • теплопроводность = k / L , измеренная в Вт · K −1 · м −2 ;
  • термическое сопротивление (значение R) = L / k , измеряется в К · м² · Вт −1 ;
  • Коэффициент теплопередачи (значение U) = 1 / (Σ ( L / k )) + конвекция + излучение, измеряется в Вт · К −1 · м −2 .

Текстильная промышленность

В текстильных изделиях значение tog может указываться как мера теплового сопротивления вместо меры в единицах СИ.

Истоки

Теплопроводность системы определяется тем, как взаимодействуют атомы, составляющие систему. Простых и правильных выражений для теплопроводности не существует. Существует два разных подхода к расчету теплопроводности системы.

Первый подход использует отношения Грина-Кубо.Хотя здесь используются аналитические выражения, которые в принципе могут быть решены, для расчета теплопроводности плотной жидкости или твердого тела с использованием этого соотношения требуется использование компьютерного моделирования молекулярной динамики.

Второй подход основан на подходе времени релаксации. Известно, что из-за ангармонизма внутри кристаллического потенциала фононы в системе рассеиваются. Существует три основных механизма рассеяния (Шривастава, 1990):

  • Граничное рассеяние, попадание фонона на границу системы;
  • Рассеяние на дефекте массы, удары фонона о примесь внутри системы и рассеяние;
  • Фонон-фононное рассеяние, фонон распадается на два фонона с более низкой энергией или фонон сталкивается с другим фононом и сливается с одним фононом с более высокой энергией.

См. Также

Банкноты

  1. ↑ Perry’s Chemical Engineers ‘Handbook, 7-е изд., Таблица 1-4.
  2. 2,0 2,1 Теплопроводность некоторых распространенных материалов Проверено 26 мая 2008 г.
  3. ↑ Теплопроводность металлов Проверено 26 мая 2008 г.
  4. ↑ Руководство IEEE по измерениям термического сопротивления почвы Проверено 26 мая 2008 г.
  5. ↑ Стандарт подготовки процедур испытаний для термической оценки твердых электроизоляционных материалов, последнее обращение 26 мая 2008 г.
  6. ↑ Стандартный метод испытаний теплопроводных свойств теплопроводных электроизоляционных материалов, последнее обращение 26 мая 2008 г.
  7. ↑ Стандартный метод испытаний теплопроводности твердых тел с помощью метода ограниченного сравнительного продольного теплового потока. Проверено 26 мая 2008 г.
  8. ↑ Стандартный метод испытаний теплопроводности пластмасс с помощью нестационарного метода линейного источника. Проверено 26 мая 2008 г.
  9. ↑ Стандартный метод испытаний теплопроводности жидкостей, получено 26 мая 2008 г.
  10. ↑ Определение значения k из Plastics New Zealand Получено 26 мая 2008 г.

Список литературы

  • Байерлейн, Ральф. 2003. Теплофизика . Кембридж: Издательство Кембриджского университета. ISBN 0521658381
  • Хэллидей, Дэвид, Роберт Резник и Джерл Уокер. 1997. Основы физики , 5 изд. Нью-Йорк: Вили. ISBN 0471105589
  • Serway, Raymond A. и John W. Jewett. 2004. Физика для ученых и инженеров. Бельмонт, Калифорния: Томсон-Брукс / Коул. ISBN 0534408427
  • Шривастава Г. П. 1990. Физика фононов. Бристоль: А. Хильгер. ISBN 0852741537
  • Янг, Хью Д. и Роджер А. Фридман. 2003. Физика для ученых и инженеров . Сан-Франциско, Калифорния: Пирсон. ISBN 080538684X

Внешние ссылки

Все ссылки получены 6 февраля 2020 г.

Кредиты

New World Encyclopedia писатели и редакторы переписали и завершили статью Wikipedia в соответствии со стандартами New World Encyclopedia .Эта статья соответствует условиям лицензии Creative Commons CC-by-sa 3.0 (CC-by-sa), которая может использоваться и распространяться с указанием авторства. Кредит предоставляется в соответствии с условиями этой лицензии, которая может ссылаться как на участников Энциклопедии Нового Света, участников, так и на самоотверженных добровольцев Фонда Викимедиа. Чтобы процитировать эту статью, щелкните здесь, чтобы просмотреть список допустимых форматов цитирования. История более ранних публикаций википедистов доступна исследователям здесь:

История этой статьи с момента ее импорта в New World Encyclopedia :

Примечание. Некоторые ограничения могут применяться к использованию отдельных изображений, на которые распространяется отдельная лицензия.

Conduction — The Physics Hypertextbook

Обсуждение

Теплопроводность (в отличие от электропроводности) — это поток внутренней энергии из области с более высокой температурой в область с более низкой температурой за счет взаимодействия соседних частиц (атомов, молекул, ионов, электронов и т. Д.) В промежуточном пространстве. .

Примечание: это скорость ( P или Φ), с которой передается тепло, а не количество ( Q ) переданного тепла.



Вт = Дж

с

Факторы, влияющие на скорость теплопередачи за счет теплопроводности.

  1. разница температур
  2. длина
  3. площадь поперечного сечения
  4. материал

Закон Фурье (сравните с законом Ома).

φ = п. = Q = — к T
А A т

Значения проводимости различаются для материалов: наибольшая для металлических твердых тел, более низкая для неметаллических твердых веществ, очень низкая для жидкостей и чрезвычайно низкая для газов. Лучшие обычные металлические проводники — это (в порядке убывания) серебро, медь, золото, алюминий, бериллий и вольфрам.Алмаз побеждает их всех, а графит побеждает алмаз, только если тепло может проходить в направлении, параллельном слоям кристалла. Материал с наибольшей теплопроводностью представляет собой сверхтекучую форму жидкого гелия под названием гелий II, которая существует только при температурах ниже 2,17 К. Поскольку маловероятно, что вы встретите это вещество, об этом не стоит думать, за исключением того факта, что это — исключительный материал.

Теплопроводность для выбранных материалов (~ 300 K, если не указано иное)
материал к (Вт / м К) материал к (Вт / м К)
воздух, уровень моря 0.025 неопрен 0,15–0,45
воздух, 10 000 м 0,020 никель 90,7
алюминий 237 ДСП 0,15
асбест 0,05–0,15 бумага 0,04–0,09
асфальт 0.15–0,52 гипс 0,15–0,27
латунь (273 К) 120 платина 71,6
кирпич 0,18 плутоний 6,74
бронза (273 К) 110 фанера 0,11
карбон, алмаз 895 полиэстер 0.05
углерод, графит (∥) 1950 пенополистирол 0,03–0,05
углерод, графит (⊥) 5,7 пенополиуретан 0,02–0,03
ковер 0,03–0,08 песок 0,27
хром 93.7 аэрогель кремнезема 0,026
бетон 0,05–1,50 серебро 429
медь 401 стиральный порошок 0,11
хлопок 0,04 снег (<273 K) 0,16
перья 0.034 сталь, гладкая (273 K) 45–65
стекловолокно 0,035 сталь, нержавеющая (273 K) 14
фреон 12 жидкий 0,0743 солома 0,05
фреон 12 пар 0,00958 тефлон 0.25
войлок 0,06 банка 66,6
стекло 1,1–1,2 титан 21,9
золото 317 вольфрам 174
гранит 2,2 уран 27.6
газообразный гелий 0,152 вакуум 0
гелий I (<4,2 К) 0,0307 вода, лед (223 К) 2,8
гелий II (<2,2 K) ~ 100 000? вода, лед (273 К) 2,2
порошковое мороженое 0.05 вода, жидкость (273 К) 0,561
утюг 80,2 вода, жидкость (373 К) 0,679
свинец 35,3 вода, пар (273 К) 0,016
известняк 1 вода, пар (373 К) 0.025
мрамор 1,75 дерево 0,09–0,14
ртуть 8,34 шерсть 0,03–0,04
слюда 0,26 цинк 116
майлар 0,0001? диоксид циркония 0.056?

Мысли о проводимости…

  • Предпочтительным инструментом для изготовления конфет является деревянная ложка. Металлическая посуда отводит тепло и мешает контролируемой кристаллизации.
  • Почему сиденья унитаза холодные, даже если в ванной нет воздуха?
  • Почему некоторые инуиты строят убежища (иглу) из снега? Разве снег не холодный?

Связанные величины: r значение .

Q = кА Т
т

Сравнение.

clo . Исследования одежды привели к определению единицы одежды, которая соответствует изолирующей способности одежды, необходимой для поддержания субъекту комфортного сидения в состоянии покоя в комнате при температуре 21 ° C (70 ° F) и движении воздуха на 0,1 м. / с и влажностью менее 50%. Один кусок утеплителя эквивалентен легкому деловому костюму. Половина планеты, вероятно, не согласится с актуальностью этого подразделения.

Закон охлаждения Ньютона Q / t ∝ ∆ T .Из прохладного дома тепло уходит быстрее, чем из теплого. Таким образом, экономически выгоднее выключать кондиционер, когда вас нет рядом, чем оставлять его включенным в надежде сохранить прохладу в доме.

Библиотека

TLP Введение в термическую и электрическую проводимость

Щелкните здесь, чтобы просмотреть актуальные (непечатаемые) страницы TLP.

Примечание. Пакеты обучения и обучения DoITPoMS предназначены для интерактивного использования на компьютере! Эта версия TLP для печати предназначена для удобства, но не отображает все содержимое TLP.Например, отсутствуют какие-либо видеоклипы и ответы на вопросы. Форматирование (разрывы страниц и т. Д.) Печатной версии непредсказуемо и сильно зависит от вашего браузера.

Содержание

  • Цели
  • Перед тем, как начать
  • Введение
  • Введение в проводимость
  • Металлы: модель электропроводности Друде
  • Факторы, влияющие на электрическую проводимость
  • Металлы теплопроводные
  • Электропроводность: неметаллы
  • Неметаллы: тепловые фононы
  • Приложения
  • Сводка
  • Вопросы
  • Идем дальше

Цели

По завершении этого пакета TLP вам необходимо:

  • Понимать основные механизмы и модели теплопроводности и теплопроводности металлов и неметаллов.
  • Помните о некоторых факторах, которые влияют на оба типа проводимости.
  • Знайте некоторые области применения обоих типов проводников и изоляторов.

Перед тем, как начать

Этот TLP является введением, поэтому никаких специальных знаний не требуется. Однако есть и другие TLP, которые охватывают более сложные темы, такие как полупроводники, ссылки на которые приведены в разделе для дальнейшего чтения.

Введение

Электропроводность охватывает невероятно большой порядок величин (30!) От изоляторов до металлов и даже может быть бесконечным в сверхпроводниках.Знание того, как управлять им, привело к компьютерной революции и постоянно увеличивающейся миниатюризации

Теплопроводность, хотя для известных материалов она составляет всего около 10 порядков величины, по-прежнему имеет решающее значение для многих важных технологических достижений, от реактивных турбин и космических путешествий до USB-холодильников для напитков.

Чтобы по-настоящему оценить эти достижения, важно понимать, как возникает проводимость в материалах. Существуют простые модели, которые можно использовать для прогнозирования поведения многих материалов; между теплопроводностью и электропроводностью в металлах существуют близкие параллели, в то время как механизмы проводимости в неметаллах совершенно разные.

Введение в проводимость

Электропроводность

Важно не запутаться в проводимости, проводимости, сопротивлении и удельном сопротивлении.

Свойства материалов: электропроводность σ и удельное электрическое сопротивление ρ

Электропроводность материала определяется как количество электрического заряда, переносимого в единицу времени через единицу площади под действием единичного градиента потенциала: J = σ E

где J — плотность тока (ток на единицу площади), а E — градиент потенциала.Это еще один способ выражения закона Ома, который чаще выражается как \ (V = I R \).

Для изотропного материала:

\ [\ sigma = \ frac 1 \ rho \]

Единицами измерения удельного электрического сопротивления являются омметр ( Ом · м ), а для проводимости — обратная величина ( Ом -1 м -1 ). Для фактического образца длиной l и площадью поперечного сечения A сопротивление R рассчитывается по формуле:

\ [R = \ rho \ frac l A \]

Электрические сигналы распространяются со скоростью, близкой к скорости света, хотя , а не означает, что сами электроны движутся так быстро.Вместо этого типичная дрейфовая скорость электронов (их средняя скорость) намного ниже: менее 1 мм с -1 . Это подробно описано в разделе моделей Друде.

Еще одно уместное напоминание о потенциале и токе: ток — это поток электронов, а потенциал — это движущая сила, заставляющая их течь. Обладая достаточным потенциалом, электроны могут переносить заряд через любой материал, включая вакуум (см. ЭЛТ), хотя они бессильны без какого-либо чистого тока.

Лучшие электрические проводники (кроме сверхпроводников) — это чистая медь и чистое серебро с удельным сопротивлением 16,78 и 15,87 нОм соответственно. Для сравнения, полистирол имеет удельное сопротивление до 10 28 нОм, что на 27 порядков отличается!

Теплопроводность:

Чтобы понять теплопроводность материалов, важно знать концепцию теплопередачи, которая представляет собой движение тепловой энергии от более горячего тела к более холодному.Это происходит при нескольких обстоятельствах:

  • Когда объект имеет температуру, отличную от окружающей его температуры;
  • Когда объект имеет температуру, отличную от температуры другого объекта, контактирующего с ним;
  • Если внутри объекта существует температурный градиент.

Направление теплопередачи определяется вторым законом термодинамики, который гласит, что энтропия изолированной системы, которая не находится в тепловом равновесии, будет со временем увеличиваться, приближаясь к максимальному значению в состоянии равновесия.Это означает, что передача тепла всегда происходит от тела с более высокой температурой к телу с более низкой температурой и будет продолжаться до тех пор, пока не будет достигнуто тепловое равновесие.

Передача тепловой энергии происходит только через 3 режима: теплопроводность, конвекция и излучение. Каждый режим имеет свой механизм и скорость передачи тепла, и, таким образом, в любой конкретной ситуации скорость передачи тепла зависит от того, насколько преобладает определенный режим.

Проводимость включает передачу тепловой энергии за счет комбинации диффузии электронов и фононных колебаний — применимо к твердым телам.

Конвекция связана с передачей тепловой энергии в движущейся среде — горячий газ / жидкость движется через более холодную среду (обычно из-за разницы в плотности).

Излучение включает передачу тепловой энергии электромагнитным излучением. Солнце — хороший пример передачи энергии через (близкий) вакуум.

Этот TLP фокусируется на проводимости в кристаллических твердых телах.

Теплопроводность, Κ, — это свойство материала, которое указывает на способность проводить тепло.Согласно первому закону Фурье тепловой поток пропорционален разности температур, площади поверхности и длине образца:

\ [H = \ frac {\ Delta Q} {\ Delta t} = \ kappa A \ frac {\ Delta T} {l} \]

где ΔQ / Δt — скорость теплопередачи, A — площадь поверхности, а l — длина.

Лучшие металлические теплопроводники — это чистая медь и серебро. При комнатной температуре технически чистая медь обычно имеет проводимость около 360 Вт · м -1 K -1 (хотя теплопроводность монокристалла меди была измерена при 12 200 Вт · м -1 K -1 при температура 20.8 К). В металлах движение электронов преобладает над теплопроводностью.

Основной материал с самой высокой теплопроводностью (помимо сверхтекучего гелия II), что, возможно, удивительно, является неметаллом: чистый монокристаллический алмаз, который имеет теплопроводность при комнатной температуре около 2200 Вт · м -1 K -1 . Высокая проводимость используется даже для проверки подлинности алмаза. Сильные ковалентные связи внутри молекулы ответственны за высокую проводимость, хотя свободных электронов нет, тепло передается фононами.Большинство природных алмазов также содержат атомы бора, которые заменяют атомы углерода в кристаллической матрице, которые также обладают высокой теплопроводностью.

Металлы: модель электропроводности Друде

Из-за квантово-механической природы электронов полное моделирование движения электронов в твердом теле (т. Е. Проводимости) потребует рассмотрения не только всех ядер положительных ионов, взаимодействующих с каждым электроном, , но также каждого электрона с каждым другим электроном .Даже с продвинутыми моделями это быстро становится слишком сложным для адекватного моделирования материала макроскопического масштаба.

Модель Друде значительно упрощает ситуацию за счет использования классической механики и рассматривает твердое тело как фиксированный массив ядер в «море» несвязанных электронов. Кроме того, электроны движутся по прямым линиям, не взаимодействуют друг с другом и случайным образом рассеиваются ядрами.

Вместо моделирования всей решетки используются два статистически полученных числа:
τ , среднее время между столкновениями (время рассеяния , ) и
l , среднее расстояние, пройденное между столкновениями (среднее свободное расстояние ). путь )

Под действием поля E электроны испытывают силу –e E, и, таким образом, ускорение от F = m a

Для электрона, выходящего из столкновения со скоростью v 0 , скорость по истечении времени t определяется как:

\ [v = v_ {0} — \ frac {eEt} {m} \]

Конечно, если электроны рассеиваются случайным образом при каждом столкновении, v 0 будет равно нулю.{2} \ tau E} {m} \]

Проводимость σ = n e μ, где μ — подвижность , которая определяется как

\ [\ mu = \ frac {| v |} {E} = \ frac {eE \ tau} {mE} = \ frac {e \ tau} {m} \]

Конечный результат всей этой математики — разумное приближение проводимости ряда одновалентных металлов. При комнатной температуре, используя кинетическую теорию газов для оценки скорости дрейфа, модель Друде дает σ ~ 10 6 Ом -1 м -1 .Это примерно правильный порядок величины для многих одновалентных металлов, таких как натрий ( σ ~ 2,13 × 10 5 Ом -1 м -1 ).

Модель Друде можно визуализировать с помощью следующего моделирования. В отсутствие приложенного поля видно, что электроны перемещаются беспорядочно. Используйте ползунок, чтобы применить поле, чтобы увидеть его влияние на движение электронов.

Примечание. Для этой анимации требуется Adobe Flash Player 8 и более поздних версий, который можно скачать здесь.

Однако важно отметить, что для неметаллов, многовалентных металлов и полупроводников модель Друде с треском проваливается. Чтобы иметь возможность более точно предсказать проводимость этих материалов, требуются квантово-механические модели, такие как модель почти свободных электронов. Это выходит за рамки настоящего TLP

. Сверхпроводники

также не объясняются такими простыми моделями, хотя дополнительную информацию можно найти на сайте Superconductivity TLP.

Факторы, влияющие на электрическую проводимость

Электропроводность большинства металлических проводников (не полупроводников!) Легко определить.Есть три важных случая:

Чистые и почти чистые металлы

Для чистых металлов при температуре около комнатной удельное сопротивление линейно зависит от температуры.

\ [\ rho_2 = \ rho_1 [1 + \ alpha (T_2 — T_1)] \]

Однако при низких температурах проводимость перестает быть линейной (сверхпроводники рассматриваются отдельно), а удельное сопротивление связано с температурой по правилу Маттизена:

\ [\ rho (T) = {\ rho _ {{\ rm {defect}}}} + {\ rho _ {{\ rm {Thermal}}}} \]

Низкотемпературное удельное сопротивление (\ ({\ rho _ {{\ rm {defect}}}} \)) зависит от концентрации дефектов решетки, таких как дислокации, границы зерен, вакансии и межузельные атомы.Следовательно, оно ниже в отожженных металлических образцах с крупными кристаллами и выше в сплавах и закаленных металлах. Вы можете подумать, что при более высоких температурах электроны будут иметь больше энергии, чтобы двигаться через материал, поэтому, возможно, довольно удивительно, что удельное сопротивление увеличивается (а, следовательно, и проводимость уменьшается) с увеличением температуры. Причина этого в том, что с повышением температуры электроны все чаще рассеиваются на колебаниях решетки или фононах, что приводит к увеличению удельного сопротивления.Этот вклад в удельное сопротивление описывается ρ термическим .

Температурная зависимость проводимости чистых металлов схематично проиллюстрирована в следующем моделировании. Используйте ползунок для изменения температуры, чтобы увидеть, как это влияет на движение электронов через решетку. Вы также можете ввести межузельные атомы, щелкнув мышью внутри решетки.

Примечание. Для этой анимации требуется Adobe Flash Player 10 или более поздней версии, который можно загрузить здесь.

Сплавы — твердый раствор

Как и раньше, добавление примеси (в данном случае другого элемента) снижает проводимость. Для твердого раствора изменение удельного сопротивления в зависимости от состава определяется правилом Нордхейма:

\ [\ rho = \ chi _ {\ alpha} \ rho _ {\ alpha} + \ chi _ {\ beta} \ rho _ {\ beta} + C \ chi _ {\ alpha} \ chi _ {\ beta} \]

, где C — постоянная величина, CA и CB — атомные доли металлов A и B, удельные сопротивления которых равны ρA и ρB соответственно.2 \]

, где ΔZ — разность валентностей растворенного вещества и растворителя.

Таким образом, растворенные атомы с более высоким (или более низким) зарядом, чем решетка, будут иметь большее влияние на удельное сопротивление.

Сплавы — многофазные

Для сплава, в котором есть две или более различных фаз, вклады просто линейно влияют на общее удельное сопротивление (хотя влияние многих границ зерен немного увеличивает удельное сопротивление).

\ [\ rho = \ chi_ \ alpha \ rho_ \ alpha + \ chi_ \ beta \ rho_ \ beta \]

Следующая анимация иллюстрирует правило Маттейзена, правило Нордхейма и правило смешения.

Примечание. Для этой анимации требуется Adobe Flash Player 8 и более поздних версий, который можно скачать здесь.

Металлы теплопроводности

Металлы обычно имеют относительно высокую концентрацию свободных электронов проводимости, и они могут передавать тепло при движении через решетку. Фононная проводимость также имеет место, но эффект перекрывается электронной проводимостью.

Следующая симуляция показывает, как электроны могут проводить тепло, сталкиваясь с ядрами и передавая тепловую энергию.Нажмите кнопку «источник», чтобы приложить источник тепла к одной стороне образца. График покажет температурный градиент внутри образца, и вы также можете применить радиатор к противоположной стороне образца, используя кнопку «сток».

Примечание. Для этой анимации требуется Adobe Flash Player 10 или более поздней версии, который можно загрузить здесь.

Закон Видеманна-Франца

Так как преобладающий метод теплопроводности у металлов одинаковый для теплопроводности и электропроводности (т.{- 2}} \]

Этот закон можно объяснить тем фактом, что свободные электроны в металле участвуют в механизмах переноса тепла и электричества. Теплопроводность увеличивается со средней скоростью электронов, так как это увеличивает прямой перенос энергии. Однако электропроводность уменьшается с увеличением скорости частиц, поскольку столкновения отвлекают электроны от прямого переноса заряда.

Электропроводность: неметаллы

Хотя модель Друде достаточно хорошо работает для одновалентных металлов, она не предсказывает свойства полупроводников, сверхпроводников или неметаллических проводников.

Сверхпроводники и полупроводники лучше всего объясняются в их собственных TLP.

Ионная проводимость

Для некоторых материалов нет чистого движения электронов, но они по-прежнему проводят электричество.

Это механизм ионной проводимости, при котором некоторые заряженные ионы могут перемещаться через объемную решетку (с помощью обычных механизмов диффузии, за исключением движущей силы электрического поля).

Такие ионные проводники используются в твердооксидных топливных элементах, хотя, например, для оксида циркония, стабилизированного оксидом иттрия (YZT), рабочие температуры находятся в пределах от 500 до 1000 градусов C.Поскольку они действуют по механизму, подобному диффузии, более высокие температуры приводят к более высокой проводимости, что противоположно тому, что предсказывала бы простая модель Друде.

Напряжение пробоя

Существует важный и потенциально смертельный механизм, благодаря которому изолятор может стать проводящим. В воздухе это обычно распознается как молния. Следует отметить, что механизм может ионизировать «изолятор», делая его временно более проводящим.

Газы обычно ионизируются в бытовых осветительных приборах.Наиболее распространены люминесцентные лампы и неоновые лампы.

Для первоначального возбуждения паров ртути в свете люминесцентной лампы необходим всплеск напряжения, превышающий напряжение пробоя. Это можно заметить при включении такого света, как внезапное возгорание с соответствующим всплеском радиопомех. Неисправная трубка может не полностью ионизироваться, что приводит к небольшому свечению на концах.

Под высоким напряжением может проводиться даже оргстекло. Временно ионизированный путь непрозрачен при охлаждении, что в данном случае дает фигуру Лихтенберга. Изображение «Фигура Лихтенберга» от Берт Хикман

Более подробную информацию можно найти на странице Dielectrics TLP по разбивке

.

Неметаллы: тепловые фононы

Как упоминалось ранее, металлы имеют два режима теплопроводности: на основе электронов и на основе фононов. Для неметаллов имеется относительно мало свободных электронов, поэтому преобладает фононный метод.

Тепло можно рассматривать как меру энергии колебаний атомов в материале.Как и все вещи в атомном масштабе, здесь есть квантово-механические соображения; энергия каждой вибрации квантована (и пропорциональна частоте). Фонон — это квант колебательной энергии, и за счет комбинации (суперпозиции) многих фононов тепло наблюдается макроскопически.

Энергия данного колебания решетки в жесткой кристаллической решетке квантована в квазичастицу, называемую фононом . Это аналог фотона в электромагнитной волне; тепловые колебания в кристаллах можно описать как термически возбужденные фононы, которые можно отнести к термически возбужденным фотонам.Фононы являются основным фактором, определяющим электрическую и теплопроводность материала.

Фонон — это квантово-механическая адаптация нормальной модальной вибрации в классической механике. Ключевым свойством фононов является дуальность волна-частица; нормальные моды имеют волновые явления в классической механике, но приобретают поведение, подобное частицам в квантовой механике.

Энергия фонона пропорциональна его угловой частоте ω:

\ [\ varepsilon = (n + \ frac {1} {2}) \ hbar \ omega \]

с квантовым числом n .Член \ (\ frac {1} {2} \ hbar \ omega \) — это энергия нулевой точки моды. Это определяется как минимально возможная энергия, которой обладает система, и является энергией основного состояния.

Если твердое тело имеет более одного типа атомов в элементарной ячейке, будет два возможных типа фононов: «акустические» и «оптические» фононы. Частота акустических фононов примерно равна частоте звука, а частота оптических фононов близка к частоте инфракрасного света. Их называют оптическими, поскольку в ионных кристаллах они легко возбуждаются электромагнитным излучением.

Если кристаллическая решетка имеет нулевую температуру, она находится в основном состоянии и не содержит фононов. Когда решетку нагревают и поддерживают при ненулевой температуре, ее энергия не постоянна, а колеблется случайным образом около некоторого среднего значения. Эти флуктуации энергии вызваны случайными колебаниями решетки, которую можно рассматривать как газ фононов. Поскольку температура решетки порождает эти фононы, их иногда называют тепловыми фононами . Тепловые фононы могут создаваться или разрушаться случайными колебаниями энергии.

Принято считать, что фононы тоже имеют импульс и, следовательно, могут проводить энергию через решетку. В отличие от электронов, существует чистое движение фононов — от более горячей части решетки к более холодной, где они разрушаются. Электроны должны сохранять нейтральность заряда в решетке, поэтому нет чистого движения электронов во время теплопроводности.

Следующая симуляция показывает схематические оптические и акустические фононы в двумерной решетке и дает возможность анимировать двумерный волновой вектор, определяемый щелчком внутри зеленого поля.

Примечание. Для этой анимации требуется Adobe Flash Player 10 или более поздней версии, который можно загрузить здесь.

Рассеяние Umklapp

Когда два фонона сталкиваются, образующийся фонон имеет векторную сумму их импульсов. Способ обработки частиц, движущихся в решетке квантово-механическим способом в рамках схемы редуцированных зон (которая выходит за рамки данной TLP, но более подробно исследуется в TLP зон Бриллюэна), приводит к концептуально странному эффекту. Если импульс слишком велик (за пределами первой зоны Бриллюэна), то образующийся фонон движется почти в противоположном направлении.Это Umklapp scattering , и оно преобладает при более высоких температурах, снижая теплопроводность при повышении температуры.

Приложения

Кремниевые чипы

Поскольку электрические свойства меняются в зависимости от микроструктуры, был разработан тип компьютерной памяти, называемый памятью с произвольным доступом с фазовым переходом (PC-RAM). Используемый материал представляет собой халькогенид, обозначаемый как GST (Ge 2 Sb 2 Te 5 ).

Аморфное состояние является полупроводником, а в (поли) кристаллической форме — металлическим.При нагревании выше точки стеклования, но ниже точки плавления кристаллизуется ранее полупроводниковая аморфная ячейка. Точно так же, полностью расплавившись, а затем быстро охлаждая клетку, она остается в металлическом кристаллическом состоянии.

Это изменение удельного сопротивления в зависимости от микроструктуры имеет решающее значение для работы таких устройств. Варьируя условия нагрева, различная пропорция каждой ячейки GST может быть кристаллической и аморфной — правило смеси применяется, поскольку фактически это две фазы.Это позволяет использовать несколько различимых уровней сопротивления для каждой ячейки, увеличивая плотность хранения и снижая стоимость мегабайта.

Наиболее распространенной проблемой кремниевых устройств является рассеивание тепла.

Современный процессор имеет расчетную тепловую мощность более 70 Вт (Intel i7 3770, процесс 22 нм). Охладитель должен отводить указанное количество тепла с поверхности кристалла, которое обычно составляет менее 10 см 2 . Обычно радиаторы имеют медный блок, прикрепленный к корпусу микропроцессора с помощью термопасты и давления.Основная часть радиатора обычно делается из гораздо более дешевого алюминия, хотя для интерфейса необходима высокая теплопроводность меди. Термопаста, хотя и является лучшим проводником тепла, чем воздух, намного хуже, чем большинство металлов, поэтому ее используют только в качестве тонкого слоя для замены воздушных зазоров.

Электропроводность — не самый эффективный метод отвода тепла к отдельному радиатору, поэтому можно использовать конвекцию и скрытую теплоту испарения. Тепловые трубы, обычно сделанные из меди, заполнены жидкостью с низкой температурой кипения, которая кипит на горячем конце и конденсируется на холодном конце трубы.Это гораздо более быстрый способ передачи тепла на большие расстояния.

Космос

Теплоизоляторы находят множество применений, разработка которых связана с попытками улучшить объемные механические свойства при сохранении изоляционных свойств (т.е. не пропускает тепло, но не плавится)

Особенно известное применение теплоизоляции — это (ныне списанные) плитки космических челноков, которые отвечают за защиту челнока во время повторного входа в атмосферу.Они такие хорошие изоляторы, что снаружи они могут раскалиться докрасна, а внутри шаттла астронавты еще живы.

Одним из лучших теплоизоляторов является кремнеземный аэрогель.

Аэрогель — это твердотельный материал с чрезвычайно низкой плотностью, сделанный из геля, в котором жидкая фаза геля заменена газом. В результате получается твердое тело чрезвычайно низкой плотности, что делает его эффективным теплоизолятором.

Одно применение аэрогелей — легкий коллектор микрометеоритов, аэрогель был использован.Хотя он очень легкий, он достаточно силен, чтобы улавливать микрометеоры.

Спички остаются холодными в миллиметрах от паяльной лампы, большой массив аэрогелевых кирпичей готов к запуску в космос, а образовавшаяся космическая пыль фотографируется по возвращении на Землю

Aerogels могут изготавливаться из различных материалов, но имеют универсальную структуру. (аморфные «нано-пены» с открытыми ячейками). Однако чаще всего используется силикат. Аэрогели кремнезема были впервые открыты в 1931 году.

Аэрогели обладают экстремальной структурой и экстремальными физическими свойствами. Высокопористая природа структуры аэрогеля обеспечивает низкую плотность. Процент открытого пространства в структуре аэрогеля составляет около 94% для геля плотностью 100 кг. М 3 .

Аэрогели являются хорошими теплоизоляционными материалами, поскольку они исключают три метода передачи тепла (конвекцию, теплопроводность и излучение). Они являются хорошими конвективными изоляторами благодаря тому, что воздух не может циркулировать по решетке.Кремнеземный аэрогель является особенно хорошим проводящим изолятором, потому что диоксид кремния плохо проводит тепло — металлический аэрогель, с другой стороны, был бы менее эффективным изолятором. Углеродный аэрогель является эффективным изолятором излучения, потому что углерод способен поглощать инфракрасное излучение, которое передает тепло. Следовательно, для максимальной теплоизоляции лучший аэрогель — это кремнезем, легированный углеродом.

Трансмиссия

Одно из самых масштабных применений электрических проводников — передача энергии.

К сожалению, свойства, которые желательны для прочного кабеля, кажутся противоположными свойствам хорошего проводника.

Алюминиевые сплавы могут быть очень прочными из-за своей плотности, но, согласно правилу Нордхейма, они намного хуже проводят.

Существует огромное множество сталей, но, опять же, межузельные атомы углерода увеличивают сопротивление по сравнению с чистым железом. Это означает, что необходим кабель большего диаметра, который из-за плотности стали оказывается очень тяжелым и дорогим.Более тяжелый кабель также означает, что мы должны построить дополнительные пилоны, что составляет значительную часть стоимости.

Медь, хотя и подходит для домашней электропроводки, является плотной и все более дорогой.

Примечание. Для этой анимации требуется Adobe Flash Player 10 или более поздней версии, который можно загрузить здесь.

Для большинства воздушных силовых кабелей решением является использование двух материалов — стальной жилы, окруженной множеством отдельных алюминиевых жил. Это позволяет получить легкие, высокопрочные кабели с приемлемой проводимостью.

Сверхпроводники

были испытаны для передачи энергии, но только под землей, и при значительно более высокой стоимости (и эффективности!).

Термоэлектрический эффект

Термоэлектрический эффект — это прямое преобразование разницы температур в электрическое напряжение и наоборот. Проще говоря, термоэлектрическое устройство создает напряжение, когда на каждой стороне устройства разная температура. Он также может работать «в обратном направлении», поэтому, когда на него подается напряжение, создается разница температур.Этот эффект можно использовать для выработки электричества, измерения температуры, охлаждения объектов или их нагрева. Поскольку знак приложенного напряжения определяет направление нагрева и охлаждения, термоэлектрические устройства представляют собой очень удобные регуляторы температуры.

Эффект Пельтье заключается в том, что когда (постоянный) ток течет через переход металл-полупроводник, тепло либо поглощается, либо выделяется. Это связано с тем, что средняя энергия электронов в двух материалах различается, и это различие компенсируется теплом.

Для более полного понимания требуется знание зонной структуры, более подробно рассмотренной в TLP по полупроводникам.

Примечание. Для этой анимации требуется Adobe Flash Player 10 или более поздней версии, который можно загрузить здесь.

Сводка

Мы рассмотрели основы электрической и теплопроводности, а также некоторые из наиболее распространенных приложений. Вы должны понимать роль электронов и фононов в теплопроводности, а также то, как взаимодействия между ними приводят к изменению электропроводности в зависимости от температуры.Вы должны понимать, что металлы имеют больше механизмов теплопередачи, чем их неметаллические аналоги, что объясняет, почему они имеют более высокую теплопроводность. Кроме того, этот TLP должен был затронуть некоторые из основных применений тепловых и электрических проводников и изоляторов. Наконец, была установлена ​​связь между теплопроводностью и электропроводностью металлов, включая закон Видемана-Франца.

Суммируя факторы, влияющие на проводимость:

  • Температура — при повышении температуры увеличивается средняя энергия, приходящаяся на один фонон, и благодаря механизму рассеяния с перебросом тепла теплопроводность уменьшается.Фононы также больше рассеивают электроны.
  • Плотность электронов (в металлах) — если электроны являются проводниками, большее количество (валентных) электронов обычно приводит к лучшей проводимости.
  • Легирование — межузельные частицы рассеивают электроны и уменьшают проводимость. Фазовые границы, примеси, дислокации и т. Д. Снижают проводимость даже при низкой температуре.

Вопросы

Быстрые вопросы

Вы сможете без особого труда ответить на эти вопросы после изучения данного TLP.Если нет, то вам следует пройти через это еще раз!

  1. Для фононов нормальные моды

  2. Каким образом кристаллические решетки влияют на электроны, исходя из предположений модели свободных электронов?

  3. Разброс Umklapp:

  4. Что из следующего верно согласно закону Видемана-Франца?

  5. Какие из следующих утверждений об электропроводности почти чистых материалов верны?

  6. Какой из них является правильным с точки зрения электропроводности от лучшей к худшей (предполагается, что это чистые материалы)?

    Nb 3 Sn при 4K, Ag при 300K, Au при 300K, Nb 3 Sn при 300K, Cu при 300K.
    b Ag при 300K, Cu при 300K, Nb 3 Sn при 4K, Au при 300K, Nb 3 Sn при 300K.
    с Nb 3 Sn при 4K, Ag при 300K, Cu при 300K, Au при 300K, Nb 3 Sn при 300K.
    d Nb 3 Sn при 300K, Cu при 300K, Ag при 300K, Au при 300K, Nb 3 Sn при 4K.
    e Nb 3 Sn при 4K, Cu при 300K, Nb 3 Sn при 300K, Ag при 300K, Au при 300K.

Далее

Книги

Курс химии A NST IB и / или курс физики NST IB также более подробно рассматривают проведение.

Сайты

Академический консультант: Джесс Гвинн (Кембриджский университет)
Разработка контента: Эндрю Уитти
Фотография и видео:
Веб-разработка: Лианн Саллоус и Дэвид Брук

DoITPoMS финансируется Великобританией Центр материаловедения и кафедра материаловедения и металлургии, Кембриджский университет


.