Тиристор КУ202Н — технические характеристики, схема включения, цоколевка
Технические характеристики кремниевова тиристора КУ202Н, говорят нам что он триодный, не запираемый, изготовлен по планарно-диффузионной технологии. Используется как переключающий элемент в схемах автоматики. Также применяется в управляемых выпрямителях.
Распиновка
Цоколевка КУ202Н выполнена в металлостеклянном корпусе. Он имеет один вывод под резьбу — анод и два вывода под пайку — катод и управляющий электрод. Анодный вывод сделан под гайку М6. Маркировка тиристора нанесена на корпус. Вес — не более 14 грамм.
Характеристики
Все его параметры можно разделить на два типа предельные и электрические. Давайте разберем их подробнее. Обратите внимание, что на указанных ниже предельных значениях устройство работать долгое время не может, это пиковые показатели которое он выдержит за очень маленький период.
Электрические параметры ку202н характеризуют работу тиристора в рабочих условиях. Ниже приведены их значения:
Аналоги
Зарубежными аналогами тиристора КУ202Н являются ВТХ32S100, h30T15CN, 1N4202. Зарубежные производители не выпускают устройств таких же геометрических размеров, что и КУ202Н, поэтому нужно будет изменить место под монтаж устройства. Следует также учитывать, что их параметры могут незначительно отличаться от рассматриваемого тиристора, например, средний ток может быть равен 7,5 А.
Кроме иностранных устройств можно использовать российский аналог — Т112-10. Как и КУ202Н он имеет металлический корпус и анодный выход под резьбу. Однако его размеры меньше, поэтому монтажное место все равно придется изменить.
Схема подключения
Существует стандартная схема включения ку202н которой нужно придерживаться. Согласно ей между катодом и управляющим электродом подключается шунтирующий резистор сопротивлением 51 Ом. Отклонение от номинального значения не должно превышать 5 %.
Чтобы тиристор не вышел из строя не допускается подача управляющего тока, если напряжение на аноде отрицательное. Это может привести к выходу из строя устройства без возможности восстановления.
Особенности монтажа
К катоду и управляющему электроду нельзя прилагать усилие, большее 0,98 Н. Во время крепления прибора к теплоотводу усилие затяжки не должно быть выше 2,45 Нм.
Нельзя паять катод на расстоянии ближе 7 мм. от стеклянного корпуса. Для управляющего электрода допустимое расстояние для пайки 3,5 мм. Температура паяльника не должна быть выше +2600С. Время пайки не более 3 с.
Проверка на исправность
Проверить тиристор ку202н на исправность можно мультиметром, начать ее следует с проверки n-p перехода между анодом и управляющим электродом. Он должен прозваниваться так же, как обычный диод, то есть при прямом подключении (положительное напряжение на управляющий электрод, а отрицательное на катод) сопротивление перехода должно быть небольшим, а при обратном подключении большим.
Для более детальной проверки требуется выполнить такие действия:
- Переключаем мультиметр в положение для измерения сопротивления до 2 кОм. На щупы прибора должно подаваться напряжение от источника питания.
- Теперь нужно подключить щупы мультиметра к аноду и катоду тиристора. При этом прибор должен показывать большое сопротивление, близкое к бесконечности.
- При помощи перемычки соединяем анод и управляющий электрод. Сопротивление между анодом и катодом, показываемое мультиметром, должно упасть.
- Разъединяем анод и управляющий электрод. Сопротивление должно вырасти.
Можно также проверить тиристор при помощи лампочки и блока питания постоянного тока. Лампочка должна быть рассчитана на то напряжение, которое выдает блок питания. Подключаем положительный полюс блока питания на анод, а отрицательный на катод проверяемого тиристора.
При помощи батарейки, или щупов мультиметра включенного в режиме омметра, подаем отпирающее напряжение на управляющий электрод. Для этого подключаем положительное напряжение к аноду, а отрицательное к управляющему электроду. Если тиристор исправен, лампочка должна зажечься.
Если убрать напряжение между анодом и управляющим электродом лампочка должна продолжать гореть.
Существует способ проверить тиристор ку202н, не выпаивая его из схемы. Для этого нужно:
- Отключите плату, на которой находится тиристор, от питания.
- Отключаем от схемы управляющий электрод.
- Один тестер, настроенный на измерение постоянного напряжения, подключаем к аноду и катоду тиристора.
- Второй мультиметр включаем между анодом и управляющим электродом.
- Первый тестер должен показывать небольшое напряжение (десятки милливольт).
Хотя он уже снят с производства, его еще можно купить в некоторых местах. Кроме того он присутствует во многих старых электронных приборах, из которых его при желании можно выпаять. Его DataSheet можно скачать здесь.
Характеристики и схема включения тиристора КУ202Н
Тиристор КУ202Н принадлежит к группе триодных устройств со структурой p — n — p — n . Переходы созданы путем планарной-диффузии кремния. Тиристор предназначен для осуществления коммутации больших напряжений при помощи небольших уровней посредством дополнительного вывода. В зависимости от схемы включения он может открываться или закрываться, обеспечивая требуемые режимы работы устройства. Он применяется в системах блокировки, защиты, следящих приводах, дистанционно управляемых коммутационных системах, зарядных устройствах в качестве коммутатора или регулятора тока заряда.
Тиристор КУ 202Н купить можно еще во многих местах, потому что он является достаточно распространенным компонентом. Тем более его цена намного ниже, чем импортные аналоги. Также его можно найти во многих советских устройствах, начиная от блоков питания, заканчивая коммутационными приборами.
Конструкция
Конструктивно тиристор КУ202Н и вся серия выполнены в металлическом корпусе из медного сплава с покрытием, который имеет выводы под резьбу и два вывода под пайку различной толщины и высоты. Размер резьбового отвода или анода (А) составляет М6 под гайку. Выводы выполнены жесткими путем заливки эпоксидной смолой, но при выполнении монтажа не следует применять усилия более 0,98 Н.
При выполнении пайки силового вывода (К) необходимо соблюдать минимальное расстояние до стекла не менее 7 мм , так как высокой температурой его целостность может нарушиться. При выполнении подключения управляющего вывода (УЭ) следует выдержать расстояние до стекла не менее 3,5 мм по той же причине. При этом общее время удерживания паяльника не рекомендуется превышать более 3 с. Эффективная температура жала паяльного инструмента не должна превышать +260 градусов.
Особенности схемного подключения
Тиристор предназначен для коммутации напряжения в различных устройствах. Но при этом имеется стандартная схема его подключения, которую нарушать крайне не рекомендуется. Например, между катодом (вывод под пайку) и управляющим электродом необходимо подключить резистор в качестве шунтирующего компонента. Благодаря его присутствию управляющая цепь замыкается и обеспечивается насыщение перехода. Его сопротивление должно быть не более и не менее 51 Ом.
Если на аноде присутствует напряжение отрицательной полярности, то управляющий ток должен быть равен нулю. Иначе произойдет электрический пробой перехода, что приведет к неисправности всего устройства в целом. Дальнейшая его работа невозможна, как и обратное восстановление.
Технические параметры тиристора
Тиристор КУ202Н относится к группе высоковольтных устройств, предназначенных для работы при напряжении до 400 В с максимально допустимым прямым током в открытом состоянии не более 10 А. Всего в линейке имеется 12 моделей тиристоров с различными напряжениями в закрытом состоянии. Поэтому при выборе основным параметром является именно оно.
Для использования в цепях с напряжением от 300 и выше вольт предназначены тиристоры с буквенными обозначениями от К до Н. Что касается остальных параметров, то они остаются теми же. Довольно часто новички радиолюбители сталкиваются с такими проблемами, что приводит к дополнительным растратам.
Эти тиристоры довольно часто применяются в построении регуляторов мощности нагрузкой не более 2 кВт. Но крайне не рекомендуется его эксплуатировать в критических режимах. Следует пропускать через устройство ток не более 7-8 А, что будет обеспечивать наиболее эффективные и щадящие режимы.
Проверка тиристора
Многих интересует, тиристор КУ202Н как проверить и как правильно включить в устройстве для проверки его работоспособности. Дело в том, что довольно часто он оказывается неисправен по различным причинам. Притом дефекты встречаются и у новых изделий.
Проверить тиристор можно несколькими способами:
- Использовать специальное устройство, которое анализирует параметры всех переходов.
- Применить мегомметр для проверки состояния основного перехода в обоих направлениях. В обратном направлении должен прозваниваться как обычный диод, в прямом включении он закрыт, в идеальном состоянии его сопротивление должно быть равно бесконечности.
Второй способ применим только к серии устройств с буквенным индексом М и Н. При этом можно устанавливать напряжение прозвонки до 400 В. Устройства с буквами К и Л только до 300 В, Ж и И – до 200 В и так далее. Прежде чем проверять таким способом изделие, необходимо сверить его технические характеристики со справочной таблицей. Иначе можно повредить устройство, даже не использовав его по назначению.
Менее мощные тиристоры могут быть проверены обычным мультиметром в режиме прозвонки (значок диода и звукового сигнала). В обратном направлении он звонится как диод, в прямом – бесконечность.
Важно! При осуществлении проверки тиристора в режиме диода, необходимо УЭ объединить с А.
Проверка в режиме коммутации
Чтобы убедиться в работоспособности тиристора, достаточно собрать небольшую схему включения, состоящую из следующих компонентов:
- лампочки или светодиода с соответствующим резистором, если подключается к питанию 12В;
- источник малого напряжения, например, пальчиковая батарейка типа АА;
- несколько проводников и источник напряжения 12 В.
Для осуществления проверки выполняем следующие шаги:
- Подключаем нагрузку в цепь источник питания 12 В и А-К тиристора.
- Подаем отрицательное напряжение на выводы УЭ и А (+ батарейки должен подключаться к А) на мгновенье.
После чего лампочка или светодиод загорится. Чтобы он потух, необходимо отключить коммутируемую цепь или сменить полярность управляющего напряжения. Такой режим считается нормальным для работы и может применяться при любых постоянных напряжениях коммутации в разрешенных пределах. В случае с тиристором КУ202Н оно не должно превышать 400 В.
Аналоги КУ202Н
Как и любые другие устройства, отечественный тиристор КУ202 имеет зарубежный аналог, который по своим параметрам относится к той же категории компонентов. Зарубежные производители давно ушли от производства такого форм-фактора по мощности тиристоров в металлическом корпусе. На рынке будут доступны только элементы в корпусе транзистора ТО220. Поэтому в любом случае придется внести конструктивные изменения в плату и монтажное место в частности.
К зарубежным аналогам тиристора КУ202Н относятся устройства:
Параметры незначительно отличаются от вышеописанного компонента, и средний ток в том числе, равен 7,5 А. Также можно применить в схемах более новый российский элемент Т112-10. Он имеет также металлический корпус с резьбовым отводом, но его размеры будут несколько меньше.
Простые схемы управления КУ202Н
На тиристор КУ202Н схема управления достаточно простая. Первый вариант был описан в разделе проверки устройства. Она включала батарейку на 1,5 В, лампочку и источник питания 12 В. Но также существует масса других способов элементарного подключения тиристора. Рассмотрим самую простую схему на его базе.
Регулятор мощности
В схеме реализован принцип частотно-импульсного регулирования угла отпирания тиристоров за счет синхронизации с сетью. Такое управление является наиболее эффективным и надежным, так как тиристор работает в нормальных режимах без завышения своих возможностей.
В схеме имеется генератор, который формирует импульсы управления и сдвигает их относительно фронтов импульсов при переходе сетевого напряжения через ноль. Управляющая последовательность импульсов подается на УЭ и К. Напряжение в нагрузке выпрямляется при помощи двухполупериодного выпрямителя. Использование емкостей в схеме в качестве фильтров недопустимо, так как они будут нарушать главный принцип работы устройства. Такой регулятор мощности можно применить для управления температурой жала паяльника путем изменения напряжения его питания. Но если потребуется организоваться управления первичными цепями трансформатора, придется включить нагрузку перед диодным мостом. Ток регулирования должен быть не более 7,5 А.
Параметр | Обозначение | Еди- ница | Тип тиристора | |||
КУ202А | КУ202Б | КУ202В | КУ202Г | |||
Постоянный ток в закрытом состоянии | Iз. с | мА | 10 | 10 | 10 | 10 |
Постоянный обратный ток при Uобр max | Iобр | мА | 10 | 10 | 10 | 10 |
Отпирающий постоянный ток управления | Iу. от | мА | 200 | 200 | 200 | 200 |
Отпирающее постоянное напряжение управления | Uу. от | В | 7 | 7 | 7 | 7 |
Напряжение в открытом состоянии | Uос | В | 1,5 | 1,5 | 1,5 | 1,5 |
Неотпирающее постоянное напряжение управления | Uу. нот | В | 0,2 | 0,2 | 0,2 | 0,2 |
Время включения | tвкл | мкс | 10 | 10 | 10 | 10 |
Время выключения | tвыкл | мкс | 150 | 150 | 150 | 150 |
Предельно допустимые параметры | ||||||
Постоянное напряжение в закрытом состоянии | Uз. с max | В | 25 | 25 | 50 | 50 |
Постоянное обратное напряжение | Uобр max | В | — | — | — | — |
Постоянное обратное напряжение управления | Uу. обр max | В | 10 | 10 | 10 | 10 |
Минимальное прямое напряжение в закрытом состоянии | Uз. с min | В | — | — | — | — |
Постоянный ток в открытом состоянии | Iос min | А | 10 | 10 | 10 | 10 |
Импульсный ток в открытом состоянии | Iос. и min | А | 50 | 50 | 50 | 50 |
Постоянный прямой ток управления | Iу max | А | — | — | — | — |
Импульсная рассеиваемая мощность УЭ | Pу. и max | Вт | — | — | — | — |
Средняя рассеиваемая мощность | Pср max | Вт | 20 | 20 | 20 | 20 |
Максимальная температура окружающей среды | Tmax | °С | +85 | +85 | +85 | +85 |
Минимальная температура окружающей среды | Tmin | °С | -60 | -60 | -60 | -60 |
Параметр | Обозначение | Еди- ница | Тип тиристора | |||
КУ202Д | КУ202Е | КУ202Ж | КУ202И | |||
Постоянный ток в закрытом состоянии | Iз. с | мА | 10 | 10 | 10 | 10 |
Постоянный обратный ток при Uобр max | Iобр | мА | 10 | 10 | 10 | 10 |
Отпирающий постоянный ток управления | Iу. от | мА | 200 | 200 | 200 | 200 |
Отпирающее постоянное напряжение управления | Uу. от | В | 7 | 7 | 7 | 7 |
Напряжение в открытом состоянии | Uос | В | 1,5 | 1,5 | 1,5 | 1,5 |
Неотпирающее постоянное напряжение управления | Uу. нот | В | 0,2 | 0,2 | 0,2 | 0,2 |
Время включения | tвкл | мкс | 10 | 10 | 10 | 10 |
Время выключения | tвыкл | мкс | 150 | 150 | 150 | 150 |
Предельно допустимые параметры | ||||||
Постоянное напряжение в закрытом состоянии | Uз. с max | В | 120 | 120 | 10 | 10 |
Постоянное обратное напряжение | Uобр max | В | — | — | 240 | 240 |
Постоянное обратное напряжение управления | Uу. обр max | В | 10 | 10 | — | — |
Минимальное прямое напряжение в закрытом состоянии | Uз. с min | В | — | — | — | — |
Постоянный ток в открытом состоянии | Iос min | А | 10 | 10 | 10 | 10 |
Импульсный ток в открытом состоянии | Iос. и min | А | 50 | 50 | 50 | 50 |
Постоянный прямой ток управления | Iу max | А | — | — | — | — |
Импульсная рассеиваемая мощность УЭ | Pу. и max | Вт | — | — | — | — |
Средняя рассеиваемая мощность | Pср max | Вт | 20 | 20 | 20 | 20 |
Максимальная температура окружающей среды | Tmax | °С | +85 | +85 | +85 | +85 |
Минимальная температура окружающей среды | Tmin | °С | -60 | -60 | -60 | -60 |
Параметр | Обозначение | Еди- ница | Тип тиристора | |||
КУ202К | КУ202Л | КУ202М | КУ202Н | |||
Постоянный ток в закрытом состоянии | Iз. с | мА | 10 | 10 | 10 | 10 |
Постоянный обратный ток при Uобр max | Iобр | мА | 10 | 10 | 10 | 10 |
Отпирающий постоянный ток управления | Iу. от | мА | 200 | 200 | 200 | 200 |
Отпирающее постоянное напряжение управления | Uу. от | В | 7 | 7 | 7 | 7 |
Напряжение в открытом состоянии | Uос | В | 1,5 | 1,5 | 1,5 | 1,5 |
Неотпирающее постоянное напряжение управления | Uу. нот | В | 0,2 | 0,2 | 0,2 | 0,2 |
Время включения | tвкл | мкс | 10 | 10 | 10 | 10 |
Время выключения | tвыкл | мкс | 150 | 150 | 150 | 150 |
Предельно допустимые параметры | ||||||
Постоянное напряжение в закрытом состоянии | Uз. с max | В | 10 | 10 | 10 | 10 |
Постоянное обратное напряжение | Uобр max | В | 360 | 360 | 480 | 480 |
Постоянное обратное напряжение управления | Uу. обр max | В | — | — | — | — |
Минимальное прямое напряжение в закрытом состоянии | Uз. с min | В | — | — | — | — |
Постоянный ток в открытом состоянии | Iос min | А | 10 | 10 | 10 | 10 |
Импульсный ток в открытом состоянии | Iос. и min | А | 50 | 50 | 50 | 50 |
Постоянный прямой ток управления | Iу max | А | — | — | — | — |
Импульсная рассеиваемая мощность УЭ | Pу. и max | Вт | — | — | — | — |
Средняя рассеиваемая мощность | Pср max | Вт | 20 | 20 | 20 | 20 |
Максимальная температура окружающей среды | Tmax | °С | +85 | +85 | +85 | +85 |
Минимальная температура окружающей среды | Tmin | °С | -60 | -60 | -60 | -60 |
Тиристор КУ202 — DataSheet
Цоколевка тиристора КУ202Описание
Тиристоры кремниевые планарно-диффузионные p—n—p—n. Предназначены для применения в качестве ключевых элементов в схемах автоматики и в управляемых выпрямителях. Выпускаются в металлостеклянном корпусе штыревой конструкции с жесткими выводами. Анодом является основание. Обозначение типономинала приводится на корпусе. Масса не более 14 г.
Указания по монтажу
При эксплуатации тиристоров между катодом и выводом управления должен быть включен резистор сопротивления 51 Ом+ 5%. При Rу>51 Ом норма на неотпирающий ток управления не гарантируется. При отрицательном напряжении на аноде тиристора подача прямого тока управления не допускается. Время пайки выводов при температуре припоя до 260 °С не должно превышать 3 с. Пайка допускается на расстоянии не ближе 7 мм для катодного вывода и 3,5 мм для вывода управления от стеклянного изолятора. Закручивающий момент не более 2,45 Н·м.
Параметр | Обозначение | Маркировка | Значение | Ед. изм. |
Аналоги | КУ202А | 1N4202, NAS4443, NASB | ||
КУ202Б | 1N4202, NAS4443, NASB | |||
КУ202В | 1N4202, NAS4443, NASB | |||
КУ202Г | 1N4202, NAS4443, NASB | |||
КУ202Д | 1N4202, NAS4443, NASB | |||
КУ202Е | 1N4202, NAS4443, NASB | |||
КУ202Ж | 1N4202, NAS4443, NASB | |||
КУ202И | 1N4202, NAS4443, NASB | |||
КУ202К | 1N4202, NAS4443, NASB | |||
КУ202Л | 1N4202, NAS4443, NASB | |||
КУ202М | 1N4202, NAS4443, NASB | |||
КУ202Н | BTX32S100, h20T15CN, 1N4202 | |||
Повторяющееся импульсное напряжение — наибольшее мгновенное значение обратного напряжения, прикладываемого к тиристору, включая только повторяющиеся переходные напряжения. | Uобр,п, U*обр,max | КУ202А | — | В |
КУ202Б | 25* | |||
КУ202В | — | |||
КУ202Г | 50* | |||
КУ202Д | — | |||
КУ202Е | 100* | |||
КУ202Ж | — | |||
КУ202И | 200* | |||
КУ202К | — | |||
КУ202Л | 300* | |||
КУ202М | — | |||
КУ202Н | 400* | |||
Повторяющиеся импульсное напряжение в закрытом состоянии — наибольшее мгновенное значение напряжения в закрытом состоянии, прикладываемого к тиристору, включая только повторяющиеся переходные напряжения. | Uзс,п, U*зс, max | КУ202А | 25* | В |
КУ202Б | 25* | |||
КУ202В | 50* | |||
КУ202Г | 50* | |||
КУ202Д | 100* | |||
КУ202Е | 100* | |||
КУ202Ж | 200* | |||
КУ202И | 200* | |||
КУ202К | 300* | |||
КУ202Л | 300* | |||
КУ202М | 400* | |||
КУ202Н | 400* | |||
Постоянный импульсный ток в открытом состоянии — наибольшее значение тока в открытом состоянии. | Iос, и | КУ202А | 30 | А |
КУ202Б | 30 | |||
КУ202В | 30 | |||
КУ202Г | 30 | |||
КУ202Д | 30 | |||
КУ202Е | 30 | |||
КУ202Ж | 30 | |||
КУ202И | 30 | |||
КУ202К | 30 | |||
КУ202Л | 30 | |||
КУ202М | 30 | |||
КУ202Н | 30 | |||
Cредний ток в открытом состоянии — среднее за период значение тока в открытом состоянии. | Iос, ср, I*ос, п | КУ202А | 10* | А |
КУ202Б | 10* | |||
КУ202В | 10* | |||
КУ202Г | 10* | |||
КУ202Д | 10* | |||
КУ202Е | 10* | |||
КУ202Ж | 10* | |||
КУ202И | 10* | |||
КУ202К | 10* | |||
КУ202Л | 10* | |||
КУ202М | 10* | |||
КУ202Н | 10* | |||
Импульсное напряжение в открытом состоянии — наибольшее мгновенное значение напряжения в открытом состоянии, обусловленное импульсным током в открытом состоянии заданного значения | Uoc, и, U*oc | КУ202А | ≤1.5* | В |
КУ202Б | ≤1.5* | |||
КУ202В | ≤1.5* | |||
КУ202Г | ≤1.5* | |||
КУ202Д | ≤1.5* | |||
КУ202Е | ≤1.5* | |||
КУ202Ж | ≤1.5* | |||
КУ202И | ≤1.5* | |||
КУ202К | ≤1.5* | |||
КУ202Л | ≤1.5* | |||
КУ202М | ≤1.5* | |||
КУ202Н | ≤1.5* | |||
Неотпирающее постоянное напряжение управления — наибольшее постоянное напряжение на управляющем электроде, вызывающее переключение тринистора из закрытого состояния в открытое. | Uу, нот | КУ202А | ≥0.2 | В |
КУ202Б | ≥0.2 | |||
КУ202В | ≥0.2 | |||
КУ202Г | ≥0.2 | |||
КУ202Д | ≥0.2 | |||
КУ202Е | ≥0.2 | |||
КУ202Ж | ≥0.2 | |||
КУ202И | ≥0.2 | |||
КУ202К | ≥0.2 | |||
КУ202Л | ≥0.2 | |||
КУ202М | ≥0.2 | |||
КУ202Н | ≥0.2 | |||
Повторяющийся импульсный ток в закрытом состоянии — импульсный ток в закрытом состоянии, обусловленный повторяющимся импульсным напряжением в закрытом состоянии. | Iзс, п, I*зс | КУ202А | ≤4* | мА |
КУ202Б | ≤4* | |||
КУ202В | ≤4* | |||
КУ202Г | ≤4* | |||
КУ202Д | ≤4* | |||
КУ202Е | ≤4* | |||
КУ202Ж | ≤4* | |||
КУ202И | ≤4* | |||
КУ202К | ≤4* | |||
КУ202Л | ≤4* | |||
КУ202М | ≤4* | |||
КУ202Н | ≤4* | |||
Повторяющийся импульсный обратный ток — обратный ток, обусловленный повторяющимся импульсным обратным напряжением | Iобр, п, I*обр | КУ202А | ≤4* | мА |
КУ202Б | ≤4* | |||
КУ202В | ≤4* | |||
КУ202Г | ≤4* | |||
КУ202Д | ≤4* | |||
КУ202Е | ≤4* | |||
КУ202Ж | ≤4* | |||
КУ202И | ≤4* | |||
КУ202К | ≤4* | |||
КУ202Л | ≤4* | |||
КУ202М | ≤4* | |||
КУ202Н | ≤4* | |||
Отпирающий постоянный ток управления — наименьший постоянный ток управления, необходимый для включения тиристора (из закрытого состояния в открытое) | Iу, от, I*у, з, и | КУ202А | ≤200 | мА |
КУ202Б | ≤200 | |||
КУ202В | ≤200 | |||
КУ202Г | ≤200 | |||
КУ202Д | ≤200 | |||
КУ202Е | ≤200 | |||
КУ202Ж | ≤200 | |||
КУ202И | ≤200 | |||
КУ202К | ≤200 | |||
КУ202Л | ≤200 | |||
КУ202М | ≤200 | |||
КУ202Н | ≤200 | |||
Постоянное отпирающее напряжение управления — напряжение между управляющим электродом и катодом тринистора, соответствующее отпирающему постоянному току управления | Uy, от, U*y, от, и | КУ202А | ≤7 | В |
КУ202Б | ≤7 | |||
КУ202В | ≤7 | |||
КУ202Г | ≤7 | |||
КУ202Д | ≤7 | |||
КУ202Е | ≤7 | |||
КУ202Ж | ≤7 | |||
КУ202И | ≤7 | |||
КУ202К | ≤7 | |||
КУ202Л | ≤7 | |||
КУ202М | ≤7 | |||
КУ202Н | ≤7 | |||
Скорость нарастания напряжения в закрытом состоянии | dUзc/dt | КУ202А | 5 | В/мкс |
КУ202Б | 5 | |||
КУ202В | 5 | |||
КУ202Г | 5 | |||
КУ202Д | 5 | |||
КУ202Е | 5 | |||
КУ202Ж | 5 | |||
КУ202И | 5 | |||
КУ202К | 5 | |||
КУ202Л | 5 | |||
КУ202М | 5 | |||
КУ202Н | 5 | |||
Время включения тиристора — интервал времени, в течение которого тиристор включается отпирающим током управления или переключается из закрытого состояния в открытое импульсным отпирающим током. | t вкл | КУ202А | ≤10 | мкс |
КУ202Б | ≤10 | |||
КУ202В | ≤10 | |||
КУ202Г | ≤10 | |||
КУ202Д | ≤10 | |||
КУ202Е | ≤10 | |||
КУ202Ж | ≤10 | |||
КУ202И | ≤10 | |||
КУ202К | ≤10 | |||
КУ202Л | ≤10 | |||
КУ202М | ≤10 | |||
КУ202Н | ≤10 | |||
Время выключения — наименьший интервал времени между моментом, когда основной ток тиристора после внешнего переключения основных цепей понизится до нуля, и моментом, в который определенное основное напряжение проходит через нулевое значение без переключения тиристора | tвыкл | КУ202А | ≤100 | мкс |
КУ202Б | ≤100 | |||
КУ202В | ≤100 | |||
КУ202Г | ≤100 | |||
КУ202Д | ≤100 | |||
КУ202Е | ≤100 | |||
КУ202Ж | ≤100 | |||
КУ202И | ≤100 | |||
КУ202К | ≤100 | |||
КУ202Л | ≤100 | |||
КУ202М | ≤100 | |||
КУ202Н | ≤100 |
Описание значений со звездочками(*) смотрите в буквенных обозначениях параметров тиристоров.
Максимальное напряжение в закрытом состоянии от температуры корпуса | Ток от напряжения в открытом состоянии |
Средний ток в открытом состоянии от температуры корпуса | Максимальный средний ток в открытом состоянии от температуры корпуса |
Отношение отпирающих тока и напряжения от длительности импульса | Отпирающий ток управления от температуры корпуса |
Отпирающее напряжение управления от температуры корпуса | Время выключения от температуры корпуса |
Время включения от температуры корпуса |
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Поиск по сайту | КУ202 — триодный, диффузионно-планарный, кремниевый тиристор, структуры p-n-p-n, незапираемый. Используется как переключающий элемент узлов аппаратуры, где необходима коммутация значительных напряжений небольшими управляющими напряжениями. Имеет металлостеклянный корпус и жёсткие выводы. Тип тиристора КУ202 нанесён на его корпус. Вес — не более 14 г. (со всеми комплектующими — 18 г.) КУ202 : электрические параметры
КУ202 : цоколёвка
КУ202 : предельные характеристики тиристоров
При эксплуатации тиристоров КУ202 между катодом и управляющим электродом должен быть включён шунтирующий резистор сопротивлением 51 Ом. |
Как проверить тиристор | Практическая электроника
Как проверить тиристор, если вы полный чайник? Итак, обо всем по порядку.
Принцип работы тиристора
Принцип работы тиристора основан на принципе работы электромагнитного реле. Реле – это электромеханическое изделие, а тиристор – чисто электрическое. Давайте же рассмотрим принцип работы тиристора, а иначе как мы его тогда сможем проверить? Думаю, все катались на лифте ;-). Нажимая кнопку на какой-нибудь этаж, электродвигатель лифта начинает свое движение, тянет трос с кабиной с вами и соседкой тетей Валей килограммов под двести и вы перемещаетесь с этажа на этаж. Как же так с помощью малюсенькой кнопочки мы подняли кабину с тетей Валей на борту?
В этом примере и основан принцип работы тиристора. Управляя маленьким напряжением кнопочки мы управляем большим напряжением… разве это не чудо? Да еще и в тиристоре нет никаких клацающих контактов, как в реле. Значит, там нечему выгорать и при нормальном режиме работы такой тиристор прослужит вам, можно сказать, бесконечно.
Тиристоры выглядят как-то вот так:
А вот и схемотехническое обозначение тиристора
В настоящее время мощные тиристоры используются для переключения (коммутации) больших напряжений в электроприводах, в установках плавки металла с помощью электрической дуги ( короче говоря с помощью короткого замыкания, в результате чего происходит такой мощный нагрев, что даже начинает плавиться металл)
Тиристоры, которые слева, устанавливают на алюминиевые радиаторы, а тиристоры-таблетки даже на радиаторы с водяным охлаждением, потому что через них проходит бешеная сила тока и коммутируют они очень большую мощность.
Маломощные тиристоры используются в радиопромышленности и, конечно же, в радиолюбительстве.
Параметры тиристоров
Давайте разберемся с некоторыми важными параметрами тиристоров. Не зная эти параметры, мы не догоним принцип проверки тиристора. Итак:
1) Uy – отпирающее постоянное напряжение управления – наименьшее постоянное напряжение на управляющем электроде, вызывающее переключение тиристора из закрытого состояния в открытое. Короче говоря простым языком, минимальное напряжение на управляющем электроде, которое открывает тиристора и электрический ток начинает спокойно себе течь через два оставшихся вывода – анод и катод тиристора. Это и есть минимальное напряжение открытия тиристора.
2) Uобр max – обратное напряжение, которое может выдержать тиристор, когда, грубо говоря, плюс подают на катод, а минус – на анод.
3) Iос ср – среднее значение тока, которое может протекать через тиристор в прямом направлении без вреда для его здоровья.
Остальные параметры не столь критичны для начинающих радиолюбителей. Познакомиться с ними можете в любом справочнике.
Как проверить тиристор КУ202Н
Ну и наконец-то переходим к самому важному – проверке тиристора. Будем проверять самый ходовый и знаменитый советский тиристор – КУ202Н.
А вот и его цоколевка
Для проверки тиристора нам понадобится лампочка, три проводка и блок питания с постоянным током. На блоке питания выставляем напряжение загорания лампочки. Привязываем и припаиваем проводки к каждому выводу тиристора.
На анод подаем “плюс” от блока питания, на катод через лампочку “минус”.
Теперь же нам надо подать относительно анода напряжение на Управляющий Электрод (УЭ). Для такого вида тиристора Uy – отпирающее постоянное напряжение управления больше чем 0,2 Вольта. Берем полуторавольтовую батарейку и подаем напряжение на УЭ. Вуаля! Лампочка зажглась!
также можно использовать щупы мультиметра в режиме прозвонки, на щупах напряжение тоже больше 0,2 Вольта
Убираем батарейку или щупы, лампочка должна продолжать гореть.
Мы открыли тиристор с помощью подачи на УЭ импульса напряжения. Все элементарно и просто! Чтобы тиристор опять закрылся, нам надо или разорвать цепь, ну то есть отключить лампочку или убрать щупы, или же подать на мгновение обратное напряжение.
Как проверить тиристор мультиметром
Можно также проверить тиристор с помощью мультиметра. Для этого собираем его по этой схемке:
Так как на щупах мультиметра в режиме прозвонки имеется напряжение, то подаем его на УЭ. Для этого замыкаем между собой анод и УЭ и сопротивление через Анод-Катод тиристора резко падает. На мультике мы видим 112 милливольт падение напряжения. Это значит, что он открылся.
После отпускания мультиметр снова показывает бесконечно большое сопротивление.
Почему же тиристор закрылся? Ведь лампочка в прошлом примере у нас горела? Все дело в том, что тиристор закрывается, когда ток удержания стает очень малым. В мультиметре ток через щупы очень малый, поэтому и тиристор закрылся без напряжения УЭ.
Есть также схема отличного прибора для проверки тиристора, ее можно глянуть в этой статье.
Также советую глянуть видео от ЧипДипа про проверку тиристора и ток удержания:
Как проверить тиристор мультиметром на примере прозвона ку202н
Тиристор – это полупроводниковый прибор p-n-p-n структуры, который играет роль ключа в цепях с большими токами, при этом управление им осуществляется слаботочным сигналом. Применяется для включения силовых электроприводов, систем возбуждения генераторов. Коммутируемые токи доходят до 10 кА.
Особенность тиристоров заключается в том, что при подаче управляющего сигнала, они открываются и остаются в этом состоянии, даже если сигнал в последующем будет снят. Единственное требование – протекающий через них ток должен превышать определенное значение, который называется током удержания.
Одни тиристоры пропускают ток только в одну сторону. Это динисторы, срабатывающие от превышения значимого напряжения. Есть также тринисторы, управляемые подачей тока на третий вывод прибора.
Тиристоры пропускающие ток в обе стороны называются симисторы или триаки. Кроме этого, бывают фототиристоры управляемые светом.
Основные характеристики
Для проверки тринистора необходимо знать и понимать, что скрывается за основными параметрами и для чего их нужно измерять.
Отпирающее напряжение управления Uy – это постоянный потенциал на управляющем электроде, вызывающий открывание тиристора.
Uобр max – это максимальное обратное напряжение, при котором тиристор еще находится в рабочем состоянии.
Iос ср – это среднее значение протекающего через тиристор тока в прямом направлении с сохранением его работоспособности.
Определение управляющего напряжения
Теперь можно приступать к тестированию тринистора. Для этого возьмем КУ202Н с рабочим током 10 А и напряжением 400 В.
У большинства радиолюбителей имеется мультиметр и неизбежно возникает вопрос, как проверить тиристор мультиметром, возможно ли это и, что дополнительно может понадобиться. Последовательность действий такая:
- для начала переключаем мультиметр в положение измерения сопротивления с диапазоном 2 кОм. В этом режиме на измерительных щупах будет присутствовать напряжение внутреннего источника питания тестера;
- подключаем щупы к аноду и катоду тринистора. Мультиметр должен показывать сопротивление близкое к бесконечности;
- перемычкой замыкаем анод и управляющий электрод. Сопротивление должно упасть, тринистор открылся;
- убираем перемычку, прибор опять показывает бесконечность. Это произошло из-за того, что удерживающий ток слишком мал.
Так как тиристор управляется как отрицательными, так и положительными сигналами, то его можно открыть, подключая перемычкой управляющий электрод к катоду.
Мультиметр должен находиться в режиме омметра, и щупы подсоединены к аноду и катоду. Так можно определить, каким напряжением управляется тиристор.
Проверка исправности
Второй вариант тестирования заключается в следующем. К блоку питания постоянного тока через тринистор подключается лампа на это же напряжение.
К аноду и катоду подключается мультиметр в режиме измерения постоянного напряжения. Диапазон измерения должен превышать напряжение источника.
Затем на управляющий электрод с помощью батарейки любого номинала и пары проводов подается управляющее напряжение. Тринистор должен открыться, лампочка загореться.
Тестер сначала показывает напряжение источника питания, после воздействия маленького значения, которое соответствует падению потенциалов на тиристоре в открытом состоянии.
После этого можно снять управляющее воздействие, лампа продолжит гореть, так как протекающий через прибор ток больше тока удержания.
Проверка динистора
Для определения работоспособности динистора может потребоваться источник питания с напряжением, превышающим напряжение включения динистора.
Для ограничения тока потребуется резистор на 100-1000 Ом. Теперь можно подключать плюс источника к аноду, а катод к одному из выводов ограничивающего резистора.
Второй конец сопротивления подключается к минусу источника питания. До этого необходимо мультиметр в режиме измерения постоянного напряжения подключить к аноду и катоду.
Значения тестера должны лежать в пределах милливольт. Динистор открылся.
Необычный способ
Есть еще один вариант проверки тиристора мультиметром, без прозвона. Но в этом случае прибор должен быть маломощным, с малым током удержания.
Для проверки используется разъем проверки транзисторов. Обычно он располагается ниже переключателя и представляет собой круглый разъем в диаметре примерно 1 см.
На нем должны быть следующие обозначения: В – означает база транзистора, С – коллектор, Е – эмиттер.
Если тринистор открывается положительным напряжением, то управляющий вывод надо подключить к базе, анод с катодом к коллектору и эмиттеру соответственно.
Так как тестер при проверке транзистора измеряет коэффициент усиления, то и в этом случае он выдаст какие-то значения, которые будут неверные. Но это не важно, главное убедиться в исправности тринистора.
Проверка в схеме
Иногда требуется проверка тиристора, без выпаивания его из схемы. Для этого необходимо отключить управляющий электрод. После этого к аноду и катоду подключается мультиметр в режиме измерения постоянного напряжения.
Вторым тестером подключаются к аноду и управляющему электроду тиристора. Второй прибор должен находиться в режиме омметра.
Если измерительные щупы подсоединены правильно, то показания первого тестера будут лежать в пределах нескольких десятков милливольт.
Если нет, то щупы нужно поменять местами и все повторить. Перед измерениями нужно убедиться, что плата и весь прибор обесточен.
Тестирование высоковольтного тиристора
В случае проверки высоковольтного тиристора потребуется мультиметр с токовыми клещами. И проверка будет производиться при включенном оборудовании, так как сложно создать условия имитирующие рабочие параметры системы.
Все внешние воздействия необходимо делать в соответствии с инструкцией по эксплуатации на оборудование.
Измерения делаются с соблюдением техники безопасности, в остальном все, как и с обычными тиристорами.
Название детали Описание детали | Все manufacturersAATAB SemiconABBAbraconAccutekActelAdaptecA-DataAdvanced Micro SystemsAdvanced PhotonixAeroflexAgereAgilentAHAAICAimtecAKMALDALiAllegroAllianceAlphaAlpha Micro.Alpha & OmegaAlteraAMCCAMDAMEAmerican Яркий LEDAMIAMICCAmplifonixAMSAMSCOAnachipAnadigicsAnadigmAnalog DevicesAnalogicAnalogicTechAnarenAndigilogAnpecApexAPI DelevanAplusA-PowerAPTArizona MicrotekARMArtesynASIAsiliantASIXAstecATMELAudioCodesAUKAurisAustinAuthentecAvalon PhotonicsAverLogicAVGAvicTekAVXAZ DisplaysB & B ElectronicsBarker MicrofaradsBCDBEL FuseBI Tech.BicronBitPartsBivarBocaBookhamBournsBroadcomBSIBurr-BrownBytesC & DCalCrystalCalexCalMicroCalogicCapellaCarlo GavazziCatalystCDI DiodesCDILCELCentilliumCentralCenturyCeramateCermetekCETCherryChinfaChingisChipconChrontelCirrusCITClairexClareC-MediaCMLCML MicroCologneComchipComposite ModulesConexantConnor-WinfieldCOSELCOSMOCreeCrydomCSRCTSCyntecCypressCystechDaesanDaewooDAICODallasData DelayDatelDB LectroDCCOMDeltaDensei-LambdaDialightDigital Голос SysDiodesDionicsDiotecDPACDynexEICEichhoffE-LabElantecElectronic DevicesEliteMTELMElmosElpidaEM MicroelectronicEMCEnpirionE-OECEon SiliconEPCOSEPSONEricssonESS Tech.Е-TechEtronEudynaEupecEverlightExarExcelicsExcelSemiFagorFairchildFCIFiltranFiltronicFitpowerFormosaFox ElectronicsFreescaleFrequency DevicesFrequency ManagementFTDI ChipFujiFujitsuGalaxyGammaGECGeneral SemiconductorGenesis MicrochipGenesys LogicGennumGHzTechGilwayG-LinkGMTGolledgeGOOD-ARKGrayhillGreen PowerGSIHamamatsuHanamicronHanbitHarrisHBHexaWaveHifnHigh Технология ChipsHiroseHi-SincerityHitachiHitachi MetalsHittiteHN ElectronicHoltekHoltICHoneywellHumirelHV ComponentHynixHytekHyundaiIBMIC HausICCI-ChipsICOMICSIICSTIDTIK Полу.IMPImpalaInfineonInitioInnovASICInt Мощность SourcesINTELInterFETInterpionInterpointIntersilIntronicsIOtechIRFIsahayaISDIsocomISSIITEItranITTIXYSJessJGDJiangsuKawasakiKECKemetKentronKing BillionKingbrightKnoxKOAKodakKodenshiKyocera KinsekiLambdaLatticeLedtechLEDtronicsLegerityLEMLeshan RadioLevel OneLGLinearLinear Размеры DesignsLinear ISLite-OnLittelfuseLogic DevicesLSILSI LogicLumexM.S. KennedyM / А-COMMacroblockMacronixMagnaChipMarktechMartek PowerMarvellMAS OyMAXIMMaxwellMAZeTMCCMCE KDIMDTICMelexisMemphisMemsicMicrelMicro ElectronicsMicro LinearMicrochipMicroMetricsMicronMicronasMicronetics WirelessMicropacMicrosemiMimixMindspeedMini-CircuitsMinilogicMinmaxMIPSMitelMitsubishiMitsumiMOSAMoselMospecMoSysMotorolaM-pulseMtronPTIMurataMusicMysonNaisNanoAmpNanyaNational InstrumentsNational SemiconductorNECNELNetLogicNeuriCamNHINichiconNIECNJRCNoise / ComNordic VLSINovalogNovatekNPCNTENTTNVENVIDIAO2MicroOctasicOEIOKIOmniVisionOmronON SemiconductorOPTEKOpto DiodeOptolabOptrexOSRAMOTAXOxford MDiPacific MonoPan JitPanasonicPara LightPatriot ScientificPCAPEAKPeregrinePerformance Технология.PericomPerkinElmerPhaseLinkPhilipsPickerPiximPLXPMC-SierraPMD MotionPolyfetPower InnovationsPower IntegrationsPower SemiconductorsPowerchipPowerexPower-OnePowertipPrecid-DipPromax-JohntonPronicsProtekPTCPulsePyramidQLogicQTQualcommQuantumQuickLogicR & ERaltronRamtronRaytheonRD AlfaRDCRealtekRecomRectronRenesasRF MonolithicsRFERFMDRhopointRichTekRICOHRohmRubyconSaifunSAMESSamHopSamsungSanDiskSankenSanRexSanyoSCBTSeikoSemeLABSemicoaSemikronSemiWellSemtechSensitronSensoryShanghai LunsureShanghai LunsureSHARPShindengenSiemensSiGeSigmaTelSigneticsSilanSilicon ImageSilicon Lab.Кремний PowerSiliconiansSilonexSimtekSipexSirenzaSiRFSitronixSkyworksSLSSmartecSMSCSolid StateSolitronSolomon SystechSONiXSONYSpansionSSDISSESSTStanfordStanleyStansonStatekSTATSSTMicroelectronicsSumidaSummitSunLEDSupertexSurgeSussexSwindonSymmetricomSynergySynsemiSyntecSystem GeneralSystron DonnerTachyonicsTaiyo YudenTalemaTAOSincTDKTeccorTekmosTelComTeledyneTemexTEMICThalerTHATThermtrolTHineTITLSITMTTOKOTontekToproTorexToshibaTotal PowerTracoTransmetaTransys TrinamicTripathTriQuintTriscendTSCTurbo ICUbicomUMCUMSUnisemUnitraUOTUs DigitalUSHAUTCUtronVaishaliValpey-FisherVaritronixVectronVIAVicorVISVishayVitesseVoltage MultipliersWaitronyWDCWEDCWeidaWeitronWeltrendWestcodeWinbondWing ShingWinsonWinstarWisdomWJWolfgang KnapWolfsonWTEXecomXicorXilinxYAMAHAYellow StoneYEONHOZarlinkZ-CommunicationsZenicZetexZettlerZilogZMDZoranZowie | Поиск |
KCD4 202N 2 перфорированных 30 x 22 мм 20A 6-контактный кулисный переключатель ON ON для лодки Выключатель питания серии KCD4 с подсветкой 220 В | контактный переключатель | контактный контактный переключатель серии
Кулисный переключатель серии KCD2 KCD4 с размерами перфорации 30×22 мм
Номер модели и параметры
Номер модели | Та же модель | Метод действия | Форма обратной связи | Рейтинг контактов | Цветовой код | Напряжение лампы | Похожий продукт |
KCD2-201K | КЦД2-202-2П, КР2-12 | Самоблокировка | ВКЛ ВЫКЛ | 16 А при 250 В переменного тока | B | порядок | |
KCD4-201-2 | Самоблокировка | ВКЛ ВЫКЛ | 20 А при 250 В переменного тока | G, Y | порядок | ||
KCD4-201N-2 | Самоблокировка | ВКЛ ВЫКЛ | 20 А при 250 В переменного тока | R, G, Y, А | 220В | порядок | |
KCD4-202-2 | Самоблокировка | ON-ON | 20 А при 250 В переменного тока | G, Y | порядок | ||
KCD4-202N-2 | Самоблокировка | ON-ON | 20 А при 250 В переменного тока | R, G, Y, А | 220В | В гостях… | |
KCD4-201-3 | Самоблокировка | ВКЛ ВЫКЛ | 30 А при 250 В переменного тока | G, Y | порядок | ||
KCD4-201N-3 | Самоблокировка | ВКЛ ВЫКЛ | 30 А при 250 В переменного тока | R, G, Y, А | 220В | порядок | |
KCD4-202-3 | Самоблокировка | ON-ON | 30 А при 250 В переменного тока | G, Y | порядок | ||
KCD4-202N-3 | Самоблокировка | ON-ON | 30 А при 250 В переменного тока | R, G, Y, А | 220В | порядок |
finglaiGeneral
Номер модели | KCD2 KCD4 серии |
Размеры перфорации | 30 0.5 0 x22 0,5 0 мм |
Связаться с сопротивлением | 50 мОм макс. |
Сопротивление изоляции | 100 МОм мин при 500 В постоянного тока |
Диэлектрическая прочность | 1500 В переменного тока, 50 Гц в течение 1 мин. |
Электрическая жизнь | 10000 циклов |
Подходящий штекерный пружинный зажим | 6.Монтажный размер 3 мм с курткой |
Подходящая водонепроницаемая кепка | FJ2622 |
Рабочая Температура | -25-85 ° С |
Шт / сумка | 50 |
чертеж кулисного переключателя finglaiKCD2-201-2
Обратная связь:
Если вы удовлетворены нашими продуктами и услугами, пожалуйста, оставьте положительный отзыв с 5 звездами, мы очень ценим это.В противном случае сначала свяжитесь с нами, мы постараемся решить вашу проблему.
.