Подключение ламп последовательное: Как подключить две лампочки к одному выключателю: схема и инструкция

Содержание

Как подключить две лампочки к одному выключателю: схема и инструкция

Нередко возникает ситуация, когда нужно, чтобы лампочки в одном из помещений включались из разных мест. На лестничных маршах для таких случаев имеются проходные переключатели, которые сложны в установке, поэтому в квартирах такие выключатели ставить обычно нецелесообразно.

Гораздо проще обеспечить включение нескольких лампочек с одного обычного выключателя. О том, как подключить две лампочки к одному выключателю, пойдет речь в этой статье.

к содержанию ↑

Устройство выключателя

Основной элемент переключателя — рабочая часть, монтируемая в подрозетник. Представляет собой конструкцию из металла с прикрепленным приводом. С помощью привода осуществляют включение и отключение устройства. Привод — подвижный контакт, осуществляющий замыкание и размыкание электроцепи между двумя статичными контактами.

Первый контакт называют входящим: соединяется с фазой из электросети. Второй контакт (выходящий) соединяется с фазовым проводником, идущим от осветительного прибора.

При корректном расположении переключателя оба неподвижных контакта изначально находятся в разомкнутом состоянии. При нажатии на кнопку устройства подвижный контакт провоцирует замыкание обоих неподвижных. В результате по замкнутой цепи их электросети к лампочке поступает ток, и та загорается.

Чтобы обеспечить безопасность, рабочая часть переключателя находится в корпусе из материала-диэлектрика. Корпуса изготавливают из пластика или фарфора.

Другие составляющие переключателя — рамка и клавиши. Эти элементы обычно производят из пластика. Клавиши фиксируют на приводе рабочей части. Передвигаясь вследствие нажатия, клавиша изменяет положение контакта, что приводит к включению или выключению света.

Рамка предназначена для предотвращения случайного прикосновения человека с контактами переключателя. Иными словами, рамка выступает в качестве барьера между находящимися под напряжением элементами и человеком. Фиксация рамки осуществляется винтами или защелками, выполненными из пластика.

Единственное отличие двухклавишного устройства от одноклавишного — наличие пары выходящих контактов. Каждый контакт связан с проводником фазы одной из ламп.

к содержанию ↑

Обычный переключатель для одной лампы

На рисунке внизу изображена схема подключения лампочки к обычному переключателю света.

Выключатель устанавливают в фазный разрыв. Ноль направляют на осветительный прибор. Если поставить переключатель на ноль, контакты в скором времени выгорят. Причина в повышенной нагрузке при прохождении электричества на нулевом контакте.

Другая причина для разрыва фазного проводника — необходимость быстрого отключения напряжения от потребителя при возникновении чрезвычайной ситуации. Ноль не позволяет обесточить систему, а лишь размыкает цепь.

Обратите внимание! Электромонтажные работы должны проводится только в обесточенной электросети. При отсутствии возможности определения фазного проводника по цветовой схеме разрешается подача тока для проведения «прозвона». До проверки нужно удостовериться в отсутствии замыканий оголенной проводки.

к содержанию ↑

Две лампы на один переключатель

Схема подключения двух ламп к одному переключателю схожа с правилами подключения одной лампы. Нулевой проводник последовательно направляют из распредкоробки через все источники освещения. Фазовый провод, идущий через выключатель, присоединяют ко вторым контактам лампочек.

Контакты должны соединяться максимально надежно. Рекомендуется использовать клеммные колодки. Соединения осуществляют винтами или колодками Wago (проводник прижимается пружинкой).

Обратите внимание! Недопустимо осуществлять скрутку из проводов разных металлов (медные и алюминиевые). В противном случае результатом таких действий станет окислительный процесс, что приведет к разбалтыванию контакта и перегреванию.

На схеме ниже показано подключение двух лампочек к одноклавишному выключателю.

На каждом из источников света есть маркировка, где указан предел нагрузки. Эту информацию нужно иметь в виду при расчете общей мощности подключаемых осветительных приборов.

к содержанию ↑

Двухклавишный выключатель

Двухклавишные переключатели используют в помещениях с раздельным освещением, когда нужно подключить люстру с несколькими рожками. Подобные выключатели применяют в раздельных узлах (устанавливают между дверьми в ванную комнату и туалет).

Двухклавишный выключатель отличается более компактным размером в сравнении с двумя одноклавишными, поэтому его установка оправдана во всех случаях, когда нужно сэкономить место на стене.

к содержанию ↑

Раздельное освещение

Подобная схема часто используется в офисных зданиях, где нужно отдельно освещать множество локальных участков. Схема раздельного освещения не отличается особой сложностью, хотя и требует специальных знаний.

Переключатель ставят в разрыв фазы. Устройства оснащены одним вводным и двумя выходными контактами напряжения. Фазовые провода после выключателя идут к осветительным приборам. Нулевой проводник будет общим для всех источников света в помещении.

В результате нажатие на одну из клавиш приводит к включению лишь подключенных к конкретной фазе приборов. Остальные источники света при этом не включаются.

к содержанию ↑

Люстра с несколькими рожками

Для подключения многорожкового осветительного прибора с помощью двухклавишного переключателя понадобится трехжильный проводник. Одну жилу укорачивают так, чтобы провести ее в распредкоробку, а пара других жил должны доходить до переключателя.

На прерыватель направляют фазовый провод. Отходящие проводники закрепляют в клеммниках переключателя. В комплекте осветительного прибора имеется вывод из трех проводов: нулевой и два фазных. Ноль из распредкоробки направляют на нулевой контакт, а отходящие провода из выключателя соединяют с фазами многорожковой люстры.

Схема подключения люстры с пятью рожками изображена на рисунке ниже.

В результате создается подключение, где нажатие одной клавиши приводит к включению только пары ламп. Другая клавиша управляет тремя лампами. Если нужно включить все лампочки, следует нажать обе клавиши. В конечном счете такая схема обеспечивает выбор из трех вариантов интенсивности света: с двумя, тремя или пятью лампочками.

В торговых сетях имеются переключатели с тремя клавишами. Схема их подключения чуть сложнее, но в целом схожа с приведенными ранее.

к содержанию ↑

Подключение от розетки

В некоторых случаях нужно подключить дополнительный осветительный прибор с выделенным переключателем. В такой ситуации подойдет подключение от существующей розетки.

При монтаже одноклавишного переключателя понадобятся двухжильный провод и устройство включения. Для устанавливаемого над розеткой прерывателя напряжения из нее отводятся ноль и фаза. Фазовый провод прерывается внутри переключателя, а нулевой проводник оставляют в целостности. Прочие осветительные приборы, имеющиеся в схеме, обеспечиваются электропитанием аналогично приведенным выше схемам.

При электромонтажных работах понадобится три жилы (ноль и две фазы). Для трехклавишного выключателя необходимо на одну фазовую жилу больше.

к содержанию ↑

Подключение ламп с преобразователем

Для организации освещения точечными потребителями можно использовать сети 220 Вольт или 12-вольтовые преобразователи. Последние создают задержку включения на несколько секунд, после чего плавно передают ток электроприборам.

Схема позволяет бережно относиться к лампам накаливания или галогенным источникам света, поскольку предохраняет их от перепадов напряжения.

Схема подключения показана на рисунке ниже.

В случае использования преобразователя переключатель устанавливают до него. Для этого есть две важные технологические причины:

  1. Уменьшенное напряжение сопряжено со значительной силой тока. Прерыватели не рассчитаны на такой режим работы, в результате чего возможно выгорание контактов.
  2. Преобразователь позволяет плавно включать лампу. Если поставить прерыватель после преобразователя, плавный пуск обеспечить не получится, и электроэнергия поступит скачкообразно вслед за нажатием клавиши.

Если предстоит установка выключателя с двумя клавишами, понадобится второй преобразователь. Его электропитание будет поступать от второй линии. Нулевой проводник будет общим.

Электромонтаж требует особого отношения к безопасности. Приступать к работе следует только после обесточивания сети. Если нет уверенности в своих силах и хотя бы базовых познаний в электротехнике, лучше обратиться за помощью к квалифицированному электрику.

Как подключить две лампочки к одному выключателю: схема и инструкция

схема, смешанное подключение, плюсы и минусы

Содержание статьи:

При размещении сетевых осветительных приборов (ламп или светодиодных лент) сомнений в том, как подключать их между собой, как правило, не возникает.

Если они рассчитаны на напряжение 220 Вольт, традиционно применяемый способ включения – соединение в параллель. Последовательное подключение лампочек используется лишь в редких случаях, когда на их основе делаются гирлянды, например. Другая распространенная причина применения этого способа – желание повысить срок эксплуатации осветительных изделий, используя их на неполную рабочую мощность.

Последовательное соединение

Последовательная схема подключения

Нетиповое последовательное подключение лампочек к сети 220 Вольт отличается следующими характеристиками:

  • через все включенные в цепь осветительные элементы течет одинаковый ток;
  • распределение падений напряжений на них будет пропорционально внутренним сопротивлениям;
  • соответственно этому распределяется мощность, расходуемая на каждом осветителе.

При последовательном соединении лампочек в схеме с общим выключателем рассчитанные на 220 Вольт осветители будут гореть не в полную силу.

При установке в цепочку двух лампочек накаливания с различной мощностью P ярче горит та из них, что обладает большим сопротивлением, то есть менее энергоемкая. Объясняется это очень просто: из-за большего внутреннего сопротивления напряжение на ней будет более значительным по величине. Поскольку в формулу для P этот параметр входит в квадрате P=U2/R – то при фиксированном сопротивлении на ней рассеивается большая мощность (она горит ярче).

Преимуществом последовательного включения ламп является более щадящий режим работы из-за меньшей мощности, потребляемой на каждой из них. Во всех остальных отношениях такой способ подсоединения нежелателен, поскольку его отличают следующие характерные недостатки:

  • при выходе из строя одной лампы обесточивается вся цепь, так что осветительная линия полностью перестает работать;
  • при установке различных по мощности лампочек они дают разное свечение;
  • невозможность использования последовательной схемы при соединении энергосберегающих ламп (для них нужно полное напряжение 220 Вольт).

Последовательный вариант оптимально подойдет для создания «мягкого света» в светильниках-бра или при изготовлении гирлянд из низковольтных светодиодных элементов.

Параллельное включение

Параллельное соединение лампочек

Классическое параллельное подключение ламп отличается от последовательного способа тем, что в этом случае ко всем осветителям прикладывается полное сетевое напряжение.

При параллельном подключении лампочек через каждое из ответвлений протекает «свой» ток, зависящий от сопротивления данной цепочки.

Проводники, подводимые к цоколям и патронам ламп, подсоединяются к одному проводу в виде параллельной сборки. К бесспорным преимуществам этого метода относят следующие его особенности:

  • при перегорании одной из лампочек остальные продолжают работать;
  • в каждой из ветвей они горят в полную мощность, поскольку ко всем одновременно приложено полное напряжение;
  • допускается использовать энергосберегающие лампочки;
  • для подключения к сети достаточно вывести из комнатной люстры нужное количество фазных проводников и оформить их в виде коммутируемой группы.

Недостатков у этого метода практически нет, за исключением большого расхода проводников при сильно разветвленных цепях. Без проблем можно подключить несколько лампочек к одному проводу за счет использования принципа разводки. Типовая схема параллельного соединения лампочек с выключателем ничем особым не отличается от обычного включения. В этом случае в нее дополнительно вводится клавишный переключатель.

Законы смешанного соединения

Смешанное соединение

Смешанное включение осветителей описывается следующим образом:

  • В его основе лежит параллельное соединение нескольких электрических ветвей.
  • В некоторых из ответвлений нагрузки включаются последовательно в виде ряда лампочек, располагающихся одна за другой.

В отдельные параллельные ветви допускается подключать различные типы потребителей, включая лампы накаливания, а также галогенные или светодиодные источники.

При рассмотрении особенностей смешанного соединения обязательно учитываются следующие закономерности:

  • Через каждый из последовательно включенных участков цепи протекает один и тот же ток.
  • При прохождении через звено с параллельно включенными потребителями он разветвляется, а на выходе снова становится однолинейным.
  • С увеличением количества элементов в рабочей цепи абсолютная величина тока в ней уменьшается.
  • Напряжение на одном звене равно произведению токовой составляющей на общее сопротивление ветви (закон Ома).
  • При росте числа элементов в цепи напряжение на каждом из них соответственно уменьшается.

Смешанный способ подключения имеет ряд преимуществ, определяемых достоинствами каждой из двух основных схем соединения. От последовательного он «унаследовал» его экономичность, а от параллельного – возможность работать даже при выходе из строя элемента в одной из комбинированных цепочек.

Рекомендуется при использовании смешанной схемы группировать в последовательные цепи лампы одинаковой мощности, а в параллельные ветви ставить осветители с различным энергопотреблением.

Типы ламп и схемы подключения

Перед монтажом различных видов осветительных приборов желательно ознакомиться с принципом работы и их внутренним устройством, а также с особенностями схемы включения в питающую сеть. Также важно знать, что каждая из разновидностей способна работать длительное время лишь при строгом соблюдении правил эксплуатации.

Люминесцентные лампы

Люминесцентные лампы часто устанавливают в служебных помещениях

Помимо традиционных ламп накаливания для освещения служебных и частично бытовых пространств нередко применяются их люминесцентные трубчатые аналоги. Они чаще всего устанавливаются на следующих объектах:

  • в цехах и на конвейерных линиях промышленных производств;
  • в административных зданиях и в различных боксах;
  • в гаражах, торговых залах и подобных им местах общественного пользования.

Значительно реже они используются в домашних условиях – иногда ставят на кухне для организации подсветки рабочей зоны.

Особенностью люминесцентных осветителей является невозможность прямого подключения к сети 220 Вольт, так как для пробоя газового столба требуется высокое напряжение. Для их включения используется особая электронная схема, в состав которой входят такие элементы запуска как дроссель, стартер и высоковольтный конденсатор (в некоторых случаях он не обязателен).

В последние годы неэкономичные и сильно гудящие во время работы дроссельные преобразователи заменяются так называемым «электронным балластом». Порядок его подключения обычно указывается в виде схемы, изображенной на корпусе прибора.

При использовании электронного адаптера подключается одна газоразрядная лампа, либо устанавливается сразу две штуки, соединенные последовательно.

Галогенные источники и светодиодные лампы

При монтаже подвесных потолков традиционно устанавливают галогенные лампы

Осветители первого типа традиционно устанавливаются при монтаже подвесных и натяжных потолков. Они также идеально подходят при необходимости освещения зон с повышенной влажностью, так как выпускаются в нескольких модификациях. Одно из них рассчитано на работу от 12-ти Вольт. Для их получения в районе потолочных перекрытий устанавливается преобразователь, рассчитанный на соответствующее выходное напряжение.

Для светодиодных ламп характерно наличие встроенного драйвера, позволяющего получать нужное напряжение питания (12 или 24 Вольта). Образцы светодиодных осветителей, рассчитанные на работу от 220 Вольт, включаются подобно лампам накаливания. Но в отличие от обычных осветителей включать их в виде последовательной цепочки не рекомендуется.

Важно правильно подбирать тип ламп для определения нужного порядка их подключения. Не допускается соединять в последовательную цепочку энергосберегающие осветители, при монтаже люминесцентных и галогенных светильников руководствуются схемами их включения. При пониженном сетевом напряжении энергосберегающие лампы быстро выходят из строя, а люминесцентные осветители могут совсем не загореться.

Схема подключения люминесцентной лампы с дросселем и стартером, с двумя лампами

Содержание статьи:

Качественное равномерное освещение можно создать с помощью разных источников света. В домах, офисах, производствах активно устанавливаются энергосберегающие люминесцентные лампы. Их установка и схема сложнее, чем у лампочек накаливания. Для корректного монтажа мастер должен знать, как функционирует устройство, какие виды бывают и какую схему использовать для подсоединения.

Устройство лампы

Люминесцентные лампы цилиндрической формы

Люминесцентный источник счета – это осветительный прибор, в котором ультрафиолетовое излучение преобразуется в видимый свет определенного спектра. Свечение достигается благодаря электрическому разряду, который появляется при подаче электричества в газовой среде. Образуется ультрафиолет, который воздействует на люминофор. В результате лампочка загорается и начинает светить.

Большая часть люминесцентных ламп изготавливается в форме цилиндрических трубок. Могут встречаться более сложные геометрические формы колбы. По краям трубки располагаются вольфрамовые электроды, которые припаяны к наружным штырькам. Именно к ним подается напряжение.


Колба наполняется смесью инертных газов с отрицательным сопротивлением и парами ртути.

Строение люминесцентной лампы

Стандартная схема лампочки состоит из стартера и дросселя. Дополнительно могут использоваться различные управляющие механизмы. Основной задачей дросселя является образование импульса необходимой величины, которое сможет включить лампу. Стартер представляет собой тлеющий разряд, у которого электроды находятся в инертной среде из газов. Обязательное условие – один электрод должен быть биметаллической пластиной. Если лампа выключена, электроды разомкнуты. При подаче напряжения они замыкаются.

Классификация проводится по разным критериям. Основной из них – свет. Он может быть дневным или белым с разной цветовой температурой. Разделение производится и по ширине трубки. Чем она больше, тем выше мощность лампы и площадь освещаемого участка. Люминесцентные лампы делятся по числу контактов, рабочему напряжению, наличию стартера, форме.

Принцип работы

Принцип работы люминесцентной лампы

Подается питающее напряжение. В начальный момент электрический ток не протекает, так как среда обладает высоким сопротивлением. Ток движется по спиралям, нагревает их и подается на стартер. Появляется тлеющий разряд. После нагрева контактов биметаллические пластины замыкаются. Температура на биметаллической части падает и контакт в сети размыкается. Это приводит к тому, что дроссель создает необходимый импульс в результате самоиндукции, и лампа начинает светить. Дуговой разряд поддерживается за счет термоэлектронной эмиссии, происходящей на на поверхности катода. Электроны разогреваются под действием тока, величину которого ограничивает балласт.

Свет появляется за счет того, что на лампу нанесено специальное вещество – люминофор. Он поглощает ультрафиолетовое излучение и дает свечение определенной гаммы. Цвет можно менять, нанося на колбу различные по составу люминофоры. Они могут быть из галофосфата кальция, ортофосфата кальция-цинка.

Основные преимущества лампы – экономия электроэнергии, долгий срок службы, яркое свечение. Из недостатков можно выделить невозможность прямого подключения к сети и наличие ртути внутри колбы. Лампы стоят дороже лампочек накаливания, но дешевле светодиодных источников света.

Способы подключения

Существуют различные варианты подключения люминесцентной лампы к сети. Самая популярная схема люминесцентного светильника — подсоединение с использованием электромагнитного балласта.

Схема с электромагнитным балластом (ЭмПРА)

Схема с электромагнитным балластом (ЭмПРА)

Принцип работы данной схемы основывается на том, что при подаче напряжения в стартере возникает разряд, приводящий к замыканию биметаллических электродов. Электрический ток в цепи ограничен внутренним дроссельным сопротивлением. Это приводит к тому, что рабочий ток возрастает почти в 3 раза, электроды резко нагреваются, а после уменьшения температуры возникает самоиндукция, приводящая к зажиганию стартерной люминесцентной лампы.

Минусы схемы люминесцентной лампы с ЭмПРА:

  • Высокие затраты на электроэнергию по сравнению с другими способами.
  • Долгое время запуска – примерно 1-3 секунды. Чем выше износ лампочки, тем дольше она будет зажигаться.
  • Не работает при низких температурах. Это приводит к невозможности использования в подвале или гараже, которые не отапливаются.
  • Стробоскопический эффект. Мерцание негативно сказывается на человеческом зрении и психике, поэтому подобное освещение не рекомендуется использовать на производстве.
  • Гудение при работе.

В схеме предусмотрен один дроссель для двух лампочек. Его индуктивности хватает на оба источника света. Напряжение стартера – 127 В, для светильника с одной лампой потребуется напряжение 220 В.

Есть схема люминесцентной лампы на 220 в с бездроссельным подключением. В ней отсутствует стартер. Такое бесстартерное подключение применяется при перегорании нити накала у лампочки. В конструкции также есть трансформатор и конденсатор для ограничения тока. Для ламп с перегоревшей нитью накала существуют переделки схемы и без трансформатора. Это облегчает конструкцию.

Два дросселя и две трубки

Дроссель

Этот метод применяется для двух ламп. Подключать элементы нужно последовательно:

  • Фаза – на вход дросселя.
  • От выхода дросселя один контакт подсоединить к первой лампе, второй – к первому стартеру.
  • С первого стартера провода идут на вторую пару контактов первой лампы, свободный провод нужно подсоединять к нулю.

Аналогичным образом подключается вторая лампа.

Подключение двух ламп от одного дросселя

Схема на две люминесцентные лампы

Этот вариант используется нечасто, но реализовать его несложно. Двухламповое последовательное подсоединение отличается своей экономностью. Для реализации потребуется индукционный дроссель и пара стартеров.

Схема подключения ламп дневного света от одного дросселя:

  • На штыревой выход ламп параллельным соединением подключается стартер.
  • Свободные контакты подсоединяются к электрической сети через дроссель.
  • Параллельно источникам света подключаются конденсаторы.

Бюджетные выключатели периодически могут залипать из-за повышения стартовых токов. В таком случае рекомендуется использовать высококачественные коммутационные устройства. Это обеспечит долгую и стабильную работу люминесцентной лампы.

Схема с электронным балластом

Схема подключения электронного балласта

Все минусы ЭмПРА привели к тому, что пришлось искать другой способ подключения. В результате электромагнитный балласт был заменен на электронный, работающий не на сетевой частоте 59 Гц, а на высокой 20-60 кГц. Благодаря этому решению исключается моргание света. Такие схемы применяются на производствах.

Визуально балласт представляет собой блок с клеммами. Внутри располагается печатная плата, на которой собирается электронная схема. Важное преимущество электронного балласта – миниатюрные размеры. Поместить блок можно даже в небольшой источник света. Также время запуска меньше, а работает устройство беззвучно. Метод с электронным балластом еще называется бесстартерным.


Собрать схему такого устройства несложно. Обычно она размещена на обратной стороне прибора. На схеме обозначается число лампочек для подсоединения, все поясняющие надписи, информация о технических характеристиках.

Как подключить светильник люминесцентный:

  • Контакты 1 и 2 – к паре контактов с лампы.
  • Контакты 3 и 4 – на оставшуюся пару.

На вход необходимо подать питающее напряжение.

Схема с умножителями напряжения

Для увеличения срока действия  может применяться способ без электромагнитного балласта. Время эксплуатации продляется при условии, что мощность лампы не превышает 40 Вт. Нити накала могут быть перегоревшими – их при любой ситуации следует закоротить.

Такая схема позволяет выпрямить напряжение и повысить его в два раза. Лампа загорается сразу же. Для реализации схемы нужно правильно подобрать конденсаторы. 1 и 2 выбираются на 600 В, 3 и 4 – на 1000 В. Недостаток – большие размеры конденсаторов.

Подсоединение без стартера

Стартер вызывает дополнительный нагрев у люминесцентной лампы. Также он часто выходит из строя, из-за чего эту деталь приходится заменять. Существуют схемы, в которых люминесцентный источник света работает без стартера. Электроды подогреваются до нужного уровня при помощи трансформаторных обмоток, выступающих в роли балласта.

При покупке лампочки нужно обратить внимание на надпись RS – быстрый старт. Именно такие изделия работают без стартера.

Схема с последовательным подключением двух ламп

Схема для последовательного подключения двух ламп

Есть две лампы, которые необходимо соединить при помощи одного балласта последовательным образом. Для выполнения подобных работ потребуются следующие компоненты:

  • Индукционный дроссель.
  • Два стартера.
  • Два люминесцентных светильника.

Схема подключения люминесцентной лампы следующая:

  • К каждой лампе подключается стартер параллельно на штыревой вход на торце колбы.
  • Оставшиеся контакты следует подключить в электрическую сеть через дроссель.
  • На контакты лампочек подключаются конденсаторы. Они необходимы для того, чтобы уменьшить интенсивность помех и реактивную мощность.

Конденсаторы выбираются с учетом нагрузки.

Замена люминесцентных ламп

Чтобы снять люминесцентную лампу, необходимо повернуть в том направлении, которое указано на держателе

Люминесцентный источник света отличается от классических галогеновых ламп и изделий с нитью накала длительным сроком службы. Но даже такие надежные лампочки могут выйти из строя, из-за чего их приходится заменять.

Выполнить замену можно следующим образом:

  • Разобрать светильник. Важно аккуратно снимать все детали, чтобы прибор не повредился. Люминесцентные трубки нужно поворачивать вокруг оси в отмеченном направлении. Оно указывается на держателе стрелками.
  • После поворота на 90 градусов трубку следует опустить. Тогда контакты легко выйдут из соответствующего отверстия.
  • Визуально осмотреть целостность лампочки, нитей накала. Если зрительных проблем нет, поломка может быть вызвана внутренними компонентами.
  • Следует взять новый источник света. Его контакты должны находиться в вертикальном положении и помещаться в отверстие. После установки лампочки ее нужно прокрутить в обратном положении.

Снимать прибор нужно аккуратно, чтобы не разбить стеклянную колбу. Внутри находится ртуть, которая опасна для здоровья.

После того как система собрана, можно подавать питающее напряжение, выполнять включение и приступать к тестированию. Финальным шагом будет установка защитного плафона на светильник.

Проверка работоспособности

Прозвонка электродов мультиметром

Выполнить проверку собранной системы можно с помощью тестера, который проверяет нити накала. Его допустимое сопротивление должно составлять 10 Ом.

Если тестирующее устройство показало бесконечное сопротивление, лампочка подходит только для использования в режиме холодного запуска. Также бесконечность может показываться при неисправности источника света. Нормальное сопротивление, которое должен показывать тестер, достигает несколько сотен Ом. Это связано с тем, что в обычном состоянии контакты стартера находятся в разомкнутом виде. При этом конденсатор не пропускает постоянный ток.

Если коснуться щупами мультиметра дроссельных выводов, сопротивление будет постепенно падать до постоянного значения в несколько десятков Ом.

Точное значение определить нельзя при помощи обычного тестера. Но на некоторых приборах есть функция измерения индуктивности. Тогда по данным ЭмПРА можно проверить значения. В случае их несовпадения можно судить о проблемах с прибором.

Как соединены между собой лампы на схемах

Лампы накаливания – это весьма распространенный источник света. В люстрах и других светильниках, так же как в подвесных и натяжных потолках, их может быть три, пять, а то и несколько десятков. Каждый такой источник света – это один из элементов электрической цепи, которые, как нам известно еще из школьной программы, могут по-разному соединяться как между собой, так и с другими элементами на схемах. Далее напомним нашим читателям:

  • на каких схемах лампы соединены параллельно;
  • на каких – последовательно;
  • и в чем суть различных соединений ламп.

Увидев, как соединены между собой лампы на схемах, наши читатели впоследствии смогут сделать оптимальный выбор осветительной системы.

Люстра с большим числом лампочек

Электрическая цепь с последовательным соединением

Элементы электрических цепей могут соединяться либо последовательно, либо параллельно. Точно так же делается последовательное подключение и параллельное подключение ламп. Это совершенно разные соединения, которые приводят к различным результатам их работы. Чтобы наглядно понять детали этих соединений, рассмотрим пример с лампами накаливания. Берем две лампочки, два патрона и присоединяем к их клеммам провода.

Чтобы хорошо различать проводники при соединении, выбираем для них красный и черный цвета. Для ламп накаливания, которые по сути являются резисторами, эти провода будут как бы равноправными. Перемена их местами никак не будет сказываться на работе лампы.

Сделаем последовательное соединение лампочек:

  • укладываем их на стол с расправленными проводами, с концами, зачищенными от изоляции;
  • выбираем произвольно по одному проводу в каждой лампе. Для наглядности выберем оба черных провода;
  • скручиваем концы двух выбранных проводов.

Если свободные концы двух красных проводов присоединить к источнику питания, через лампочки потечет электрический ток. В каждой лампе он будет одинаковым. Причем независимо от того, какие у этой лампы характеристики. Для того чтобы определить мощность лампы накаливания, потребуется узнать как величину тока, так и величину напряжения. В результате последовательного соединения каждая лампа оказывает влияние на работу остальных лампочек.

На лампе, как и на любом резисторе в электрической цепи, получается падение напряжения. Его величина определяется по закону Ома для участка цепи как произведение величин тока и напряжения. При накале спирали, который соответствует правильному режиму работы лампочки, ее сопротивление таково, что выделяемая энергия, включая свет, обеспечивает ее оптимальную яркость и продолжительность работы. Поэтому каждая лампочка может эффективно работать только при определенном напряжении. А ему будет соответствовать сопротивление горячей светящейся спирали.

Чем слабее, тем ярче

При последовательном соединении двух лампочек напряжения на них будут одинаковыми только при одинаковых сопротивлениях их спиралей. А это получится лишь при их одинаковой конструкции. По этой причине перед тем как подключить последовательно соединенные лампы к источнику питания, необходимо обязательно знать их рабочие напряжения (или токи) и мощность. Если этих характеристик нет, правильно оценить на глаз яркость, оптимальную для лампочки, сложно.

Можно, конечно же, подключить каждую лампочку к регулятору напряжения (ЛАТРу или диммеру). Плавно изменяя и при этом измеряя величину напряжения на лампе, получаем более или менее яркое ее свечение. Но лампочка при такой оценке может работать неправильно и, что наиболее опасно, давать слишком много света. Это сократит срок ее службы. Поэтому сделанные замеры тока или напряжения для расчетов параметров других присоединяемых лампочек получатся не такими, какими они должны быть на самом деле.

  • При последовательном соединении лампочек необходимо пользоваться только заводскими данными мощности и напряжения для них.

Особую бдительность надо соблюдать тогда, когда напряжение источника питания заметно больше рабочего напряжения каждой из ламп последовательного соединения. При неоптимально подобранных параметрах некоторые из них могут перегореть по причине неправильного распределения напряжения между ними. В этом легко убедиться, если вкрутить в уже подготовленные нами патроны лампочки разной мощности, но для напряжения 220 В. Что из этого получилось, видно на изображении, которое приведено ниже.

Используя соединительную колодку и проводной выключатель, выполняем монтаж проводов испытуемых лампочек. Подключаем вилку к розетке и включаем выключатель. Мы видим разную яркость источников света. Менее мощная лампочка 40 Вт из-за большего сопротивления работает при более высоком напряжении. Поэтому она светит заметно ярче 60-ваттной. Теперь должно быть понятно, что лампочки остаются работоспособными по причине их более высокого рабочего напряжения. Оно существенно больше падения напряжения питания на каждой из них.

Последовательное соединение и разная яркость лампочек 40 Вт и 60 Вт

Перед последовательным соединением

Если бы лампочки 40 Вт и 60 Вт были, к примеру, подключены на напряжение 127 В, одна из них непременно сгорела бы. Рекомендуется сделать расчет суммы падений напряжения на каждой лампе перед тем как соединить их последовательно. При этом результат меньше напряжения питания соединенных ламп должен быть получен на основании заводских данных.

  • Самым большим неудобством при последовательном соединении большого числа лампочек является перегорание одной из них. После этого перестает работать вся цепочка из ламп. Приходится брать тестер и проверять каждую.

Последовательное соединение других типов ламп также возможно. Однако давать общие рекомендации по этому поводу сложно. Дело в том, что все прочие электрические источники света, а это различные газоразрядные и светодиодные лампы, являются нелинейными элементами, к которым неприменим закон Ома для участка цепи. К тому же их надо подключать через балласты различной конструкции.

Современные электронные балласты работают совершенно иначе, чем традиционные индуктивные. Определить все необходимые параметры расчетным путем не получится. По этой причине для газоразрядных и светодиодных источников света более подходящей будет схема параллельного соединения.

Параллельное соединение лампочек

Лучше соединять параллельно

Когда существует параллельное соединение ламп, напряжение источника питания всегда оказывается на клеммах каждой из них. Между ними могут быть только проводники электрического тока. Их сопротивлением пренебрегают по причине крайне малой величины. Схема параллельного подключения исключает взаимное электрическое влияние между источниками света. Каждый из них светит в полную силу, если подключается к выходу источника питания с напряжением, соответствующим их номинальному значению.

  • Последовательно соединять лампы накаливания и светодиоды рекомендуется только при необходимости подсоединить самый простой и дешевый источник питания для низковольтных источников света – электрическую сеть на 220 вольт. С источниками света, подключенными по такой схеме, сталкивались все. Это елочная гирлянда.
  • Соединение ламп накаливания, а также подключение светильников рекомендуется в основном делать параллельно. Эта схема подключения не оставит совсем без света при перегорании даже нескольких лампочек.

Способы подключения ламп: последовательное, параллельное

Как известно, в быту повсеместно используется параллельное подключение ламп. Однако последовательная схема также может применяться и быть полезна.

Давайте рассмотрим все нюансы обеих схем, ошибки которые можно допустить при сборке и приведем примеры практической их реализации в домашних условиях.

Последовательная схема подключения

В начале рассмотрим простейшую сборку из двух последовательно подключенных лампочек накаливания.

Имеем:

  • две лампы вкрученные в патроны
  • два провода питания выходящие из патронов

Что нужно, чтобы подключить их последовательно? Ничего сложного здесь нет.

Просто берете любой конец провода от каждой лампы и скручивает их между собой.

На два оставшихся конца вам необходимо подать напряжение 220 Вольт (фазу и ноль).

Как будет работать такая схема? При подаче фазы на провод, она пройдя через нить накала одной лампы, через скрутку попадает на вторую лампочку. И далее встречается с нулем.

Почему такое простое соединение практически не применяется в квартирах и домах? Объясняется это тем, что лампы в этом случае будут гореть менее чем в полнакала.

При этом напряжение будет распределяться на них равномерно. К примеру, если это обычные лампочки по 100 Ватт с рабочим напряжением 220 Вольт, то на каждую из них будет приходиться плюс-минус 110 Вольт.

Соответственно и светить они будут менее чем в половину от своей изначальной мощности.

Грубо говоря, если вы подключите параллельно две лампы по 100Вт каждая, то в итоге получите светильник мощностью в 200Вт. А если эту же схему собрать последовательно, то общая мощность светильника будет гораздо меньше, чем мощность всего одной лампочки. Вот результат измерения силы тока такой сборки при фактическом питающем напряжении 240В.

Исходя из формулы расчета получаем, что две лампочки светят с мощностью равной всего: P=I*U=69.6Вт

При этом, падение яркости будет равномерным только при условии, что лампочки у вас одинаковой мощности.

Если они отличаются, допустим одна из них 60Вт, а другая 40Вт, то и напряжение на них будет распределяться уже по другому.

Что это дает нам в практическом смысле при реализации данных схем?

Какая лампочка будет светить ярче и почему

Лучше и ярче будет гореть лампа, у которой нить накала имеет большее сопротивление.

Возьмите к примеру лампочки, кардинально отличающиеся по мощности — 25Вт и 200Вт и соедините последовательно.

Какая из них будет светиться почти в полный накал? Та, что имеет P=25Вт.

Удельное сопротивление ее вольфрамовой нити значительно больше чем у двухсотки, а следовательно падение напряжения на ней сравнимо с напряжением в сети. При последовательном соединении ток будет одинаков в любом участке цепи.

При этом величина силы тока, способная разжечь 25-ти ваттку, никак не способна «поджечь» двухсотку. Грубо говоря, источник света с лампой 200Вт и более, будет восприниматься относительно 25Вт как обычный участок провода, через который течет ток.

Можно увеличить количество ламп и добавить в схему еще одну. Делается это опять все просто.

Два конца питающего провода третьей лампы, скручиваете с любыми концами от первых двух. А на оставшиеся опять подаете 220В.

Как будет светиться в этом случае данная гирлянда? Падение напряжения будет еще больше, а значит лампочки загорятся не то что в полсилы, а вообще будут еле-еле гореть.

Помимо существенного падения напряжения, вторым отрицательным моментом такой схемы, является ее ненадежность.

Если у вас сгорит всего одна из лампочек в этой цепочке, то сразу же потухнут и все остальные.

Еще нужно сделать замечание, что такая последовательная схема будет хорошо работать на обычных лампах накаливания. На некоторых других видах, в том числе светодиодных, никакого эффекта можете и не дождаться.

У них в конструкции может быть заложена электронная схема, которой нужно питание порядка 220В. Безусловно, они могут работать и от пониженных значений в 150-160В, но 90В и менее, для них уже будет недостаточно.

Ошибки при сборке схемы и подключении выключателя

Кстати, некоторые электрики при монтаже освещения в квартире могут совершить случайную ошибку, которая как раз таки связана с последовательным подключением источников освещения.

В результате, у вас будет наблюдаться следующий эффект. При включении выключателя света будет загораться одна лампочка в комнате, а при его выключении — другая.

При этом невозможно будет добиться того, чтобы потухли обе сразу. Как такое возможно?

Ошибка кроется в том, что электрик просто перепутал место присоединения одного из проводов выключателя и воткнул его в разрыв между двух ламп разной мощности. Вот наглядная схема такой неправильной сборки.

Как видно из нее, при включении напряжения, через контакты одноклавишника на второй источник освещения подается напряжение 220V, и он как положено загорается.

При этом первый источник остается без питания, т.к. с обоих сторон к нему подведена «одноименка».

А когда вы разрываете цепь, здесь уже образуется та самая последовательная схема и лампа меньшей мощности будет светиться.

В то время как большей, практически потухнет. Все как и было описано выше.

  • Где же можно в быту, применить такую казалось бы не практичную схему?
  • Самое широко известное использование подобных конструкций — это елочные новогодние гирлянды.
  • Также можно сделать последовательную подсветку в длинном проходном коридоре и без особых затрат получить освещение в стиле лофт.

Постоянно горят лампочки в подъезде или дома из-за большого напряжения? Самый дешевый выход — включить последовательно еще одну.

Вместо одной 60Вт, включаете две сотки и пользуетесь ими практически «вечно». Из-за пониженного напряжения в 110В, вероятность выхода их из строя снижается в сотни раз.

Еще одно оригинальное применение, которым я все таки не рекомендую пользоваться, но отдельные электрики в безвыходных ситуациях к нему прибегают. Это так называемая фазировка трехфазных цепей.

Как выполнить фазировку вводов лампочками накаливания

Допустим, вам нужно подключить параллельно между собой два трехфазных (380В) ввода, от одного источника питания. Вольтметра, мультиметра или тестера у вас под рукой нет. Что делать?

Ведь если перепутать фазы, то запросто можно создать междуфазное КЗ! И здесь вам опять поможет последовательная сборка всего из двух лампочек.

  1. Собираете их по самой первой приведенной схеме и подсоединив один конец провода питания на фазу ввода №1, другим концом поочередно касаетесь жил ввода №2.
  2. При одноименных фазах, лампочки светиться не будут (например фА ввод№1 — фА ввод№2).
  3. А при разных (фА ввод№1 — фВ ввод№2) — они загорятся.

Такой эксперимент только с одной лампой, вам бы никогда не удался, так как она бы моментально взорвалась от повышенного для нее напряжения в 380В.

А в последовательной сборке с двумя изделиями одинаковой мощности, к ним будет приложено напряжение в пределах нормы. Но самое лучшее и практичное применение — это использовать данную схему вовсе не для освещения, а для обогрева.

То есть, ваши источники света в первую очередь будут работать не как светильники, а как обогреватели.

Как сделать такую простую и незамысловатую инфракрасную печку, читайте в статье по ссылке ниже.

Что-то подобное зачастую применяется в инкубаторах.

Схема параллельного подключения

Теперь давайте рассмотрим параллельную схему соединения.

При параллельном включении концы питающих проводов двух лампочек, просто скручиваются между собой. Далее, на них подается напряжение 220V.

Таким образом можно подключить любое количество светильников. Самое главное, чтобы сечение питающих проводников было рассчитано на такую нагрузку.

В этом случае все светиться и гореть у вас будет ровно с такой яркостью, на которую изначально и были рассчитаны светильники.

На практике, конечно в одну кучу все провода не скручиваются, а поступают несколько иначе. Пускают один общий протяженный кабель, а уже к нему, в виде отпаек, подсоединяются отдельные лампочки.

Пи этом схема может быть как шлейфная, так и лучевая. Но обе они являются параллельными.

Данная схема применяется повсеместно — в многорожковых люстрах, в уличных светильниках, в домашних декоративных светильниках и т.д.

  • И если при этом перегорит любая лампочка, остальные как ни в чем ни бывало продолжат светиться.
  • Напряжение на них подается одновременно и всегда составляет номинальные 220В.
  • Но все таки при монтаже освещения у себя дома, используя параллельное подключение, не забывайте и о последовательном.

Как было указано выше, оно тоже имеет свои преимущества в определенных ситуациях и может здорово помочь с решением множества задач (декоративная подсветка, светильники-обогреватели, «вечная» лампочка и т.д).

Источник: https://svetosmotr.ru/posledovatelnoe-i-parallelnoe-soedinenie-lampochek/

Последовательное подключение лампочек: схема, смешанное подключение, плюсы и минусы

При размещении сетевых осветительных приборов (ламп или светодиодных лент) сомнений в том, как подключать их между собой, как правило, не возникает. Если они рассчитаны на напряжение 220 Вольт, традиционно применяемый способ включения – соединение в параллель.

Последовательное подключение лампочек используется лишь в редких случаях, когда на их основе делаются гирлянды, например.

Другая распространенная причина применения этого способа – желание повысить срок эксплуатации осветительных изделий, используя их на неполную рабочую мощность.

Последовательное соединение

Последовательная схема подключения

Нетиповое последовательное подключение лампочек к сети 220 Вольт отличается следующими характеристиками:

  • через все включенные в цепь осветительные элементы течет одинаковый ток;
  • распределение падений напряжений на них будет пропорционально внутренним сопротивлениям;
  • соответственно этому распределяется мощность, расходуемая на каждом осветителе.

При последовательном соединении лампочек в схеме с общим выключателем рассчитанные на 220 Вольт осветители будут гореть не в полную силу.

При установке в цепочку двух лампочек накаливания с различной мощностью P ярче горит та из них, что обладает большим сопротивлением, то есть менее энергоемкая.

Объясняется это очень просто: из-за большего внутреннего сопротивления напряжение на ней будет более значительным по величине.

Поскольку в формулу для P этот параметр входит в квадрате P=U2/R – то при фиксированном сопротивлении на ней рассеивается большая мощность (она горит ярче).

Преимуществом последовательного включения ламп является более щадящий режим работы из-за меньшей мощности, потребляемой на каждой из них. Во всех остальных отношениях такой способ подсоединения нежелателен, поскольку его отличают следующие характерные недостатки:

  • при выходе из строя одной лампы обесточивается вся цепь, так что осветительная линия полностью перестает работать;
  • при установке различных по мощности лампочек они дают разное свечение;
  • невозможность использования последовательной схемы при соединении энергосберегающих ламп (для них нужно полное напряжение 220 Вольт).

Последовательный вариант оптимально подойдет для создания «мягкого света» в светильниках-бра или при изготовлении гирлянд из низковольтных светодиодных элементов.

Параллельное включение

Параллельное соединение лампочек

  • Классическое параллельное подключение ламп отличается от последовательного способа тем, что в этом случае ко всем осветителям прикладывается полное сетевое напряжение.
  • При параллельном подключении лампочек через каждое из ответвлений протекает «свой» ток, зависящий от сопротивления данной цепочки.
  • Проводники, подводимые к цоколям и патронам ламп, подсоединяются к одному проводу в виде параллельной сборки. К бесспорным преимуществам этого метода относят следующие его особенности:
  • при перегорании одной из лампочек остальные продолжают работать;
  • в каждой из ветвей они горят в полную мощность, поскольку ко всем одновременно приложено полное напряжение;
  • допускается использовать энергосберегающие лампочки;
  • для подключения к сети достаточно вывести из комнатной люстры нужное количество фазных проводников и оформить их в виде коммутируемой группы.

Недостатков у этого метода практически нет, за исключением большого расхода проводников при сильно разветвленных цепях. Без проблем можно подключить несколько лампочек к одному проводу за счет использования принципа разводки. Типовая схема параллельного соединения лампочек с выключателем ничем особым не отличается от обычного включения. В этом случае в нее дополнительно вводится клавишный переключатель.

Законы смешанного соединения

Смешанное включение осветителей описывается следующим образом:

  • В его основе лежит параллельное соединение нескольких электрических ветвей.
  • В некоторых из ответвлений нагрузки включаются последовательно в виде ряда лампочек, располагающихся одна за другой.

В отдельные параллельные ветви допускается подключать различные типы потребителей, включая лампы накаливания, а также галогенные или светодиодные источники.

При рассмотрении особенностей смешанного соединения обязательно учитываются следующие закономерности:

  • Через каждый из последовательно включенных участков цепи протекает один и тот же ток.
  • При прохождении через звено с параллельно включенными потребителями он разветвляется, а на выходе снова становится однолинейным.
  • С увеличением количества элементов в рабочей цепи абсолютная величина тока в ней уменьшается.
  • Напряжение на одном звене равно произведению токовой составляющей на общее сопротивление ветви (закон Ома).
  • При росте числа элементов в цепи напряжение на каждом из них соответственно уменьшается.

Смешанный способ подключения имеет ряд преимуществ, определяемых достоинствами каждой из двух основных схем соединения. От последовательного он «унаследовал» его экономичность, а от параллельного – возможность работать даже при выходе из строя элемента в одной из комбинированных цепочек.

Рекомендуется при использовании смешанной схемы группировать в последовательные цепи лампы одинаковой мощности, а в параллельные ветви ставить осветители с различным энергопотреблением.

Типы ламп и схемы подключения

Перед монтажом различных видов осветительных приборов желательно ознакомиться с принципом работы и их внутренним устройством, а также с особенностями схемы включения в питающую сеть. Также важно знать, что каждая из разновидностей способна работать длительное время лишь при строгом соблюдении правил эксплуатации.

Люминесцентные лампы

Люминесцентные лампы часто устанавливают в служебных помещениях

Помимо традиционных ламп накаливания для освещения служебных и частично бытовых пространств нередко применяются их люминесцентные трубчатые аналоги. Они чаще всего устанавливаются на следующих объектах:

  • в цехах и на конвейерных линиях промышленных производств;
  • в административных зданиях и в различных боксах;
  • в гаражах, торговых залах и подобных им местах общественного пользования.

Значительно реже они используются в домашних условиях – иногда ставят на кухне для организации подсветки рабочей зоны.

Особенностью люминесцентных осветителей является невозможность прямого подключения к сети 220 Вольт, так как для пробоя газового столба требуется высокое напряжение. Для их включения используется особая электронная схема, в состав которой входят такие элементы запуска как дроссель, стартер и высоковольтный конденсатор (в некоторых случаях он не обязателен).

В последние годы неэкономичные и сильно гудящие во время работы дроссельные преобразователи заменяются так называемым «электронным балластом». Порядок его подключения обычно указывается в виде схемы, изображенной на корпусе прибора.

При использовании электронного адаптера подключается одна газоразрядная лампа, либо устанавливается сразу две штуки, соединенные последовательно.

Галогенные источники и светодиодные лампы

При монтаже подвесных потолков традиционно устанавливают галогенные лампы

Осветители первого типа традиционно устанавливаются при монтаже подвесных и натяжных потолков. Они также идеально подходят при необходимости освещения зон с повышенной влажностью, так как выпускаются в нескольких модификациях. Одно из них рассчитано на работу от 12-ти Вольт. Для их получения в районе потолочных перекрытий устанавливается преобразователь, рассчитанный на соответствующее выходное напряжение.

Для светодиодных ламп характерно наличие встроенного драйвера, позволяющего получать нужное напряжение питания (12 или 24 Вольта). Образцы светодиодных осветителей, рассчитанные на работу от 220 Вольт, включаются подобно лампам накаливания. Но в отличие от обычных осветителей включать их в виде последовательной цепочки не рекомендуется.

Важно правильно подбирать тип ламп для определения нужного порядка их подключения.

Не допускается соединять в последовательную цепочку энергосберегающие осветители, при монтаже люминесцентных и галогенных светильников руководствуются схемами их включения.

При пониженном сетевом напряжении энергосберегающие лампы быстро выходят из строя, а люминесцентные осветители могут совсем не загореться.

Источник: https://StrojDvor.ru/elektrosnabzhenie/kak-luchshe-podklyuchit-lampochki-posledovatelno-ili-parallelno/

Основные схемы подключения ламп | Полезные статьи — Кабель.РФ

О том, как подключать к электросети обыкновенные лампочки, знают практически все, но вот подключение низковольтных галогенных или люминесцентных ламп часто становится проблемой. В большинстве случаев используется иная схема подключения лампы — сложная, но более экономичная.

Подключение галогенных ламп

Рисунок 1. Схема подключения галогенной лампы через трансформатор В целях повышения безопасности эксплуатации и экономии электроэнергии все чаще применяется схема подключения лампы освещения, предполагающая использование пониженного напряжения. Низковольтные галогенные лампы такие же яркие, как и обычные, но при этом потребление энергии существенно сокращается.

Подключение галогенных ламп осуществляется при помощи специальных источников питания (трансформаторов) на 6 В, 12 В или 24 В. Кроме того, использование такой схемы подключения с применением понижающего трансформатора продлевает жизнь лампочек.

Сама схема подключения довольно проста: галогенные лампы соединяются между собой параллельно и подсоединяются к трансформатору, при этом общая мощность всех ламп не должна превышать мощности используемого трансформатора. Управление освещением осуществляется простым выключателем, подключаемым к трансформатору на стороне 220 В.

Единственное, чем такая схема подключения галогенных ламп неудобна — нужно где-то поместить трансформатор, что не всегда удобно, несмотря на небольшие размеры устройства.

Подключение люминесцентных ламп

Рисунок 2. Схема подключения одной люминесцентной лампы через стартер Рисунок 3. Схема подключения двух люминесцентных ламп через стартер Люминесцентные лампы проще всего включать в электрическую сеть по распространенной стартерной схеме. Такая схема подключения дневной лампы не только проста, но и эффективна. По подобной схеме можно подключать и несколько ламп (тандемная схема).

Здесь применяется специальный «пускатель» — стартер, который представляет собой биметаллический контакт. Есть два распространенных типа стартеров, на которых может базироваться схема подключения люминесцентных ламп: рассчитанных на сетевое напряжение в 127 В и 220 В.

Способы подключения ламп

Рисунок 4. Последовательное подключение ламп Галогенные, люминесцентные и прочие энергосберегающие лампы можно подключать двумя способами: последовательно и параллельно.

Последовательное подключение. Подразумевает подключение нуля и фазы к первой лампе, подключение к ней следующей и т. д. Эта схема применяется довольно редко, так как имеет ряд недостатков: уменьшение яркости ламп, а также тот факт, что если одна лампа в цепи перегорит, все последующие за ней тоже перестают работать.

Рисунок 5. Параллельное подключение ламп Параллельное соединение. Подразумевает, что все элементы электрической цепи будут своими контактами подключены к фазе и нулю. Если в такой схеме перегорит одна лампа, остальные будут и дальше гореть.

Кабельно-проводниковая продукция для подключения ламп

Как правило, для подключения большинства типов ламп вполне достаточно использование медного многожильного провода с сечением жил 0,5–1,5 мм (например, ПВС 2х1,5 или ПВС 3х1,5).

Источник: https://cable.ru/articles/id-404.php

Правила параллельного и последовательного соединения ламп

  • В связи с ростом популярности точечных светильников осветительных приборов в квартирах и частных домах стало больше.
  • При необходимости заменить лампочку проблем не возникает, сложнее добавить дополнительные источники света.
  • Если подобные работы выполняются самостоятельно, требуется умение определять преимущества каждого вида соединения и составлять схемы.

Особенности и характеристики схем подключения ламп

Способ и порядок подключения лампы зависит от ее вида. Методы, используемые для лампочек накаливания, не подойдут для галогенок, люминесцентных светильников или светодиодов.

Параллельной

При использовании схемы параллельного подключения источники света подключаются к фазе и нулю. Например, если нужно соединить 2 лампочки, скручиваются их питающие провода. Важно, чтобы сечение соответствовало нагрузке. Напряжение на всех светильниках одинаковое, они горят с яркостью, установленной производителем.  Перегорание отдельного элемента не влияет на функциональность остальных.

Справка! На практике при наличии нескольких источников света при параллельном соединении провода не скручиваются. Используется кабель, к которому подключаются все элементы.

Параллельное подключение может быть:

  • лучевое – на каждый светильник отдельный кабель;
  • шлейфное – фаза и ноль сначала идут на первый осветительный прибор, потом часть кабеля идет в остальные (кроме последнего, к которому подключаются две части).

При использовании параллельной лучевой модели перегорание одного элемента не мешает работе остальных. Перед тем, как выбрать шлейфную модель, необходимо учесть, что нарушение одного соединения выведет из строя элементы, расположенные после него. Но проблема решается быстро за счет легкого определения проблемного места.

При подключении галогенных источников с трансформатором необходимо учесть, что они присоединяются к вторичной обмотке преобразователя через клеммные колодки.

Главный недостаток люминесцентных ламп – мерцание. От него избавляет пускорегулирующая аппаратура, но она стоит дорого. Для снижения пульсации применяется специальная схема для двух светильников со сдвигом фазы на одном из них. Две лампочки соединяются параллельно, к одной подключается конденсатор, сдвигающий фазу.

Последовательной

  Где плюс и минус: определяем полярность светодиода

Сравнение достоинств и недостатков схем

Преимущества и недостатки последовательного подключения

Вид лампы Преимущества Недостатки
Накаливания, галогеновые, люминесцентные Продлевается срок службыСнижается мерцание люминесцентных ламп Падение напряженияПри выходе из строя отдельного элемента остальные не работаютУ источников света должна быть одинаковая мощность
Светодиодная Оптимальный вариант для обеспечения одинакового тока на всех источниках Для большого количества лампочек требуется источник питания с большой мощностиПри выходе из строя отдельного элемента перестают работать остальные

Преимущества и недостатки параллельного подключения

Вид лампы Преимущества Недостатки
Накаливания галогеновые, люминесцентные Возможно подключить к сети любое количество светильников по щлейфной схеме
  1. Перегорание отдельного элемента лучевой модели не влияет на работу остальных
  2. Накал полный на всех лампочках
  3. Можно подключить люстру с несколькими лампами
  4. Немного соединительных контактов
Повышение стоимости при использовании лучевой схемы за счет большого расхода кабеля и необходимости в клеммной колодкеПри щлейфной модели нарушение одного соединения мешает работе остальных
Светодиодная Можно соединить некоторое количество диодов, если их суммарная мощность не превышает мощность источника питанияПри перегорании отдельного источника остальные работают Схема не работает, если диоды подсоединяются через один резисторКонструкция громоздкая и дорогая из-за большого количества деталейПри выходе из строя отдельного элемента на остальных увеличивается нагрузка

В какой схеме лампочки одинаковой мощности будут светить ярче и почему

При использовании последовательной схемы вольтаж снижается с увеличением количества элементов. Лампочки горят в полнакала или даже меньше, так как напряжение делится равномерно. Общая мощность при последовательном соединении 2-х элементов по 100 Вт ниже, чем у одного (уровень освещенности снижается).

При параллельном соединении двух светильников на каждый подается 220 В, они работают в полный накал. Общая мощность увеличивается в 2 раза (уровень освещенности повышается).

Применение обеих схем в быту

Самые популярные изделия с последовательным соединением – гирлянды.

Эту модель можно использовать и для других целей:

  • сделать дешевую подсветку в длинном коридоре;
  • сэкономить на покупке лампочек из-за частого перегорания подключением дополнительной;
  • продлить срок эксплуатации источников света (если вместо одной на 60 Вт подключить 2 по 100 Вт).

Справка! Опытные электрики данное свойство используют для определения фаз в трехфазной сети.

В мастерских и гаражах мощные лампы накаливания или галогенки используют для обогрева. Два элемента по 1кВт соединяют последовательно и помещают в металлическую емкость, которую устанавливают на кирпич. Температура такого обогревателя примерно 60оС. Но следует учесть минус – лампы перегорают очень скоро.

Параллельная схема используется в помещениях любого назначения (в подсветке, люстрах), на улицах. Она позволяет включать отдельные источники света независимо от работы остальных, достаточно подключить несколько выключателей. Обычно не только светильники, но и все электроприборы в жилых домах соединяются параллельно и подключаются к бытовой сети на 220 В.

Для подключения светодиодных светильников часто используется смешанная модель. Создается несколько последовательных цепочек, которые между собой соединяются параллельно.

Частые ошибки при сборке схемы и подключении выключателя

Неграмотный специалист чаще всего вместо фазы вводит в выключатель ноль. Светильники могут работать, но в выключенном состоянии они будут под напряжением, что опасно при необходимости заменить лампы.

По неопытности заводят в выключатель и фазу, и ноль.

Важно! Ноль всегда уходит на осветительный прибор.

Третья ошибка – присоединение питающего провода на отвод вместо общего контакта. В результате работает только часть люстры.

Случается, что нулевой провод осветительного прибора подключается не к нулю в коробке, а к фазе.

Чтобы избежать ошибок с выключателем, следует внимательно отнестись к проводам. Желательно перед установкой выключателя промаркировать их, чтобы в процессе монтажа соединить одноименные.

Как выполнить фазировку вводов лампочками накаливания

Фазировка выполняется при необходимости параллельно подключить к источнику питания 2 трехфазных ввода. Путать фазы нельзя, чтобы не создалось межфазное короткое замыкание.

Используются 2 лампы накаливания с последовательным соединением. Один конец провода подключается к фазе, вторым нужно коснуться остальных жил. Если фазы одинаковые, лампочки не горят.

Важно! Не стоит подобным образом экспериментировать с одной лампочкой – она в сети 380 В сразу перегорит. Последовательное соединение двух элементов снижает напряжение в 2 раза.

Основные выводы

Некоторые владельцы городских квартир проводят ремонт самостоятельно. В процессе требуется монтаж новой электропроводки. Для проведения этой работы необходимо ориентироваться в основах электрики и уметь определять оптимальные варианты подключения, учитывающие особенности интерьера и предпочтения членов семьи.

Хотя большинства электроприборов в жилых помещениях подключаются параллельно, знания о том, как подключить лампочки последовательно, тоже не помешают. Они помогут, если появится желание устроить дешевую систему освещения в стиле лофт или сэкономить на покупках.

При самостоятельном выполнении работ важно обладать знаниями о видах проводов, кабелей, выключателей, способах их соединения, сферах использования. Если не ни знаний, ни опыта, подключение лампочек лучше доверить специалисту.

ПредыдущаяСледующая

Источник: https://svetilnik.info/lampy-i-svetilniki/parallelnoe-podklyuchenie-lampochek.html

Последовательное и параллельное соединение. Применение и схемы

В электрических цепях элементы могут соединяться по различным схемам, в том числе они имеют последовательное и параллельное соединение.

Последовательное соединение

При таком соединении проводники соединяются друг с другом последовательно, то есть, начало одного проводника будет соединяться с концом другого.

Основная особенность данного соединения заключается в том, что все проводники принадлежат одному проводу, нет никаких разветвлений. Через каждый из проводников будет протекать один и тот же электрический ток.

Но суммарное напряжение на проводниках будет равняться вместе взятым напряжениям на каждом из них.

Рассмотрим некоторое количество резисторов, соединенных последовательно. Так как нет разветвлений, то количество проходящего заряда через один проводник, будет равно количеству заряда, прошедшего через другой проводник. Силы тока на всех проводниках будут одинаковыми. Это основная особенность данного соединения.

Это соединение можно рассмотреть иначе. Все резисторы можно заменить одним эквивалентным резистором.

Ток на эквивалентном резисторе будет совпадать с общим током, протекающим через все резисторы. Эквивалентное общее напряжение будет складываться из напряжений на каждом резисторе. Это является разностью потенциалов на резисторе.

Если воспользоваться этими правилами и законом Ома, который подходит для каждого резистора, можно доказать, что сопротивление эквивалентного общего резистора будет равно сумме сопротивлений. Следствием первых двух правил будет являться третье правило.

Применение

Последовательное соединение используется, когда нужно целенаправленно включать или выключать какой-либо прибор, выключатель соединяют с ним по последовательной схеме. Например, электрический звонок будет звенеть только тогда, когда он будет последовательно соединен с источником и кнопкой.

Согласно первому правилу, если электрический ток отсутствует хотя бы на одном из проводников, то его не будет и на других проводниках. И наоборот, если ток имеется хотя бы на одном проводнике, то он будет и на всех других проводниках. Также работает карманный фонарик, в котором есть кнопка, батарейка и лампочка.

Все эти элементы необходимо соединить последовательно, так как нужно, чтобы фонарик светил, когда будет нажата кнопка.

Иногда последовательное соединение не приводит к нужным целям.

Например, в квартире, где много люстр, лампочек и других устройств, не следует все лампы и устройства соединять последовательно, так как никогда не требуется одновременно включать свет в каждой из комнат квартиры.

Для этого последовательное и параллельное соединение рассматривают отдельно, и для подключения осветительных приборов в квартире применяют параллельный вид схемы.

Параллельное соединение

В этом виде схемы все проводники соединяются параллельно друг с другом. Все начала проводников объединены в одну точку, и все концы также соединены вместе. Рассмотрим некоторое количество однородных проводников (резисторов), соединенных по параллельной схеме.

Этот вид соединения является разветвленным. В каждой ветви содержится по одному резистору. Электрический ток, дойдя до точки разветвления, разделяется на каждый резистор, и будет равняться сумме токов на всех сопротивлениях. Напряжение на всех элементах, соединенных параллельно, является одинаковым.

Все резисторы можно заменить одним эквивалентным резистором. Если воспользоваться законом Ома, можно получить выражение сопротивления. Если при последовательном соединении сопротивления складывались, то при параллельном будут складываться величины обратные им, как записано в формуле выше.

Применение

Если рассматривать соединения в бытовых условиях, то в квартире лампы освещения, люстры должны быть соединены параллельно.

Если их соединить последовательно, то при включении одной лампочки мы включим все остальные.

При параллельном же соединении мы можем, добавляя соответствующий выключатель в каждую из ветвей, включать соответствующую лампочку по мере желания. При этом такое включение одной лампы не влияет на остальные лампы.

Все электрические бытовые устройства в квартире соединены параллельно в сеть с напряжением 220 В, и подключены к распределительному щитку. Другими словами, параллельное соединение используется при необходимости подключения электрических устройств независимо друг от друга. Последовательное и параллельное соединение имеют свои особенности. Существуют также смешанные соединения.

Работа тока

  • Последовательное и параллельное соединение, рассмотренное ранее, было справедливо для величин напряжения, сопротивления и силы тока, являющихся основными. Работа тока определяется по формуле:
  • А = I х U х t, где А – работа тока, t – время течения по проводнику.
  • Для определения работы при последовательной схеме соединения, необходимо заменить в первоначальном выражении напряжение. Получаем:
  • А=I х (U1 + U2) х t
  • Раскрываем скобки и получаем, что на всей схеме работа определяется суммой на каждой нагрузке.

Точно также рассматриваем параллельную схему соединения.

Только меняем уже не напряжение, а силу тока. Получается результат:

А = А1+А2

Мощность тока

  1. При рассмотрении формулы мощности участка цепи снова необходимо пользоваться формулой:
  2. Р=U х I
  3. После аналогичных рассуждений выходит результат, что последовательное и параллельное соединение можно определить следующей формулой мощности:
  4. Р=Р1 + Р2

Другими словами, при любых схемах общая мощность равна сумме всех мощностей в схеме. Этим можно объяснить, что не рекомендуется включать в квартире сразу несколько мощных электрических устройств, так как проводка может не выдержать такой мощности.

Влияние схемы соединения на новогоднюю гирлянду

После перегорания одной лампы в гирлянде можно определить вид схемы соединения. Если схема последовательная, то не будет гореть ни одной лампочки, так как сгоревшая лампочка разрывает общую цепь. Чтобы выяснить, какая именно лампочка сгорела, нужно проверять все подряд. Далее, заменить неисправную лампу, гирлянда будет функционировать.

При применении параллельной схемы соединения гирлянда будет продолжать работать, даже если одна или несколько ламп сгорели, так как цепь не разорвана полностью, а только один небольшой параллельный участок. Для восстановления такой гирлянды достаточно увидеть, какие лампы не горят, и заменить их.

Последовательное и параллельное соединение для конденсаторов

При последовательной схеме возникает такая картина: заряды от положительного полюса источника питания идут только на наружные пластины крайних конденсаторов. Конденсаторы, находящиеся между ними, передают заряд по цепи. Этим объясняется появление на всех пластинах равных зарядов с разными знаками. Исходя из этого, заряд любого конденсатора, соединенного по последовательной схеме, можно выразить такой формулой:

  • qобщ= q1 = q2 = q3
  • Для определения напряжения на любом конденсаторе, необходима формула:
  • U= q/С

Где С — емкость. Суммарное напряжение выражается таким же законом, который подходит для сопротивлений. Поэтому получаем формулу емкости:

  1. С= q/(U1 + U2 + U3)
  2. Чтобы сделать эту формулу проще, можно перевернуть дроби и заменить отношение разности потенциалов к заряду емкости. В результате получаем:
  3. 1/С= 1/С1 + 1/С2 + 1/C3
  4. Немного иначе рассчитывается параллельное соединение конденсаторов.

Общий заряд вычисляется как сумма всех зарядов, накопившихся на пластинах всех конденсаторов. А величина напряжения также вычисляется по общим законам. В связи с этим формула суммарной емкости при параллельной схеме соединения выглядит так:

  • С= (q1 + q2 + q3)/U
  • Это значение рассчитывается как сумма каждого прибора в схеме:
  • С=С1 + С2 + С3

Смешанное соединение проводников

В электрической схеме участки цепи могут иметь и последовательное и параллельное соединение, переплетающихся между собой. Но все законы, рассмотренные выше для отдельных видов соединений, справедливы по-прежнему, и используются по этапам.

Сначала нужно мысленно разложить схему на отдельные части. Для лучшего представления ее рисуют на бумаге. Рассмотрим наш пример по изображенной выше схеме.

Удобнее всего ее изобразить, начиная с точек Б и В. Они расставляются на некотором расстоянии между собой и от края листа бумаги. С левой стороны к точке Б подключается один провод, а справа отходят два провода. Точка В наоборот, слева имеет две ветки, а после точки отходит один провод.

Далее нужно изобразить пространство между точками. По верхнему проводнику расположены 3 сопротивления с условными значениями 2, 3, 4. Снизу будет идти ток с индексом 5. Первые 3 сопротивления включены в схему последовательно, а пятый резистор подключен параллельно.

Остальные два сопротивления (первый и шестой) подключены последовательно с рассматриваемым нами участком Б-В. Поэтому схему дополняем 2-мя прямоугольниками по сторонам от выбранных точек.

Теперь используем формулу расчета сопротивления:

  • Первая формула для последовательного вида соединения.
  • Далее, для параллельной схемы.
  • И окончательно для последовательной схемы.

Аналогичным образом можно разложить на отдельные схемы любую сложную схему, включая соединения не только проводников в виде сопротивлений, но и конденсаторов.

Чтобы научиться владеть приемами расчета по разным видам схем, необходимо потренироваться на практике, выполнив несколько заданий.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrotehnika/raschjoty/posledovatelnoe-i-parallelnoe-soedinenie/

Исследовательская работаПараллельное соединение лампочки и электродвигателя в повседневной жизни и техника безопасности при работе с электроприборами.

Секция Физика

Номинация: Учебные проекты

Параллельное соединение лампочки и электродвигателя в повседневной жизни и техника безопасности при работе с электроприборами.

Автор: Ивонин Глеб Игоревич 2 Г класс

Школа № 38 Октябрьского района ГО г. Уфы

Научный руководитель: Колегойда Е.А., учитель начальных классов

Школа № 38 Октябрьского района ГО г. Уфы

Актуальность: Последовательное соединение ламп накаливания в домашнем быту используется редко.

Ситуация была такая, что подъездная лампа перегорала с периодичностью в один месяц, и надо было что-то делать.

Обычно, в таких случаях лампу включают через диод, чтобы она питалась пониженным напряжением 110В и долго служила. Вариант проверенный, но при этом сама лампа мерцает, да и светит в полнакала.

Когда же стоят две последовательно, то они так же питаются пониженным напряжением 110В, не мерцают, долго служат, светят и потребляют энергии как одна. Причем их можно развести по разным углам помещения, что тоже плюс.

Здесь в линии коричневого цвета, лампы HL1 и HL2 соединены последовательно – одна за другой. Поэтому такое соединение называют последовательным.

Если подать напряжение питания 220В на концы L и N, то загорятся обе лампы, но гореть они будут не в полную силу, а в половину накала. Так как сопротивление нитей ламп рассчитано на питающее напряжение 220В, и когда они стоят в цепи последовательно, одна за другой, то за счет добавления сопротивления нити накала следующей лампы, общее сопротивление цепи будет увеличиваться, а значит, для следующей лампы напряжение всегда будет меньше согласно закону Ома.

Поэтому при последовательном соединении двух ламп напряжение 220В будет делиться пополам, и составит 110В для каждой.

Примером последовательного соединения могут служить новогодние гирлянды. Здесь из миниатюрных лампочек с низким питанием создается одна лампа на напряжение 220В.

Например, берем лампочки, рассчитанные на 6,3 Вольта и делим их на 220 Вольт. Получается 35 штук. То есть, чтобы сделать одну лампу на напряжение 220В, нам нужно соединить последовательно 35 штук с напряжением питания 6,3 Вольта.

Как Вы знаете, у гирлянд есть один недостаток. Перегорает одна из ламп, например, канала зеленого цвета, значит, не горит канал зеленого цвета. Тогда мы идем на рынок, покупаем лампочки зеленого цвета, а потом дома по одной вынимаем, вставляем новую, и пока не заработает канал, перебираем его весь.

Вывод:

Недостатком последовательного соединения является то, что если выйдет из строя хоть одна из ламп, гореть не будут все, так как нарушается электрическая цепь.

А вторым недостатком, является слабое свечение. Поэтому последовательное соединение ламп накаливания на напряжение 220В в домашних условиях практически не применяется.

Параллельным соединением называют такое соединение, где все элементы электрической цепи, в данном случае лампы накаливания, находятся под одним и тем же напряжением. То есть получается, что каждая лампа, своими контактами, подключена и к фазе и к нулю. И если перегорит любая из ламп, то остальные будут гореть. Именно такое соединение ламп, рассчитанных на напряжение питания 220В, используется в домашнем быту, и не только.

На следующем рисунке так же изображено параллельное соединение. Здесь все три лампы соединены в одном месте. Еще такое соединение называют «звезда»

Бывают моменты, что когда именно из одной точки нужно развести проводку в разные направления.

Именно «звездой» делают разводку по квартире при монтаже розеток.

Параллельное включение ламп применяется и при освещении дорог. В частности, электрические лампы и двигатели, предназначенные для работы при определенном напряжении, всегда включают параллельно.
На электровозах постоянного тока и некоторых тепловозах тяговые двигатели в процессе регулирования скорости движения нужно включать под различные напряжения, поэтому они в процессе разгона переключаются с последовательного соединения на параллельное.

Цель моей исследовательской работы : показать преимущества параллельного соединения ламп и предложить рекомендации по технике безопасности при работе с электричеством.

Практическая ценность проделанной работы: при параллельном соединении элементов требуется больше проводов в реальной жизни, но это компенсируется тем, что если ломается один элемент, то все остальные работают. При этом весь ток будет проходить через эту вторую лампу. Это очень удобно. Если елочная гирлянда имеет параллельно включенные лампочки, и одна из них перегорает, то вы можете этого и не заметить. А когда заметите, просто заменить погасшую лампочку.

Так, электроприборы в наших домах включаются в цепь параллельно. И если один из них выходит из строя, то остальные остаются в рабочем состоянии.

Эквивалентным сопротивлением называется сопротивление, которое может заменить все элементы, входящие в данную цепь.

Стоить отметить, что при параллельном соединении эквивалентное сопротивление будет достаточно малым. Соответственно, сила тока будет достаточно большой. Это стоит учитывать при включении в розетки большого количества электрических приборов. Ведь тогда сила тока возрастет, что может привести к перегреванию проводов и пожарам.

Исследования:

1. Для представления проекта параллельного соединения лампочки и электродвигателя я установил пропеллер, затем замкнул выключатель, электродвигатель начнет вращаться, а лампочка загорится. Если выкрутить лампочку, замкнуть выключатель, электродвигатель продолжит работать.

2. Человеческое тело — проводник. Если случайно человек окажется под напряжением, то в большинстве случаев он не избежит травмы и даже смерти. Для этого я собрал конструктор со звуком звездных войн и светом, управляемый сенсором. Заменил кнопку сенсорной пластиной. Прерывистое прикосновение пальцев к пластине позволяет управлять звездными войнами.

Полученные результаты и их оценка:

Первый эксперимент показал, что параллельное соединение имеет существенные преимущества перед последовательным, вследствие чего оно получило наиболее широкое распространение, так если ломается один элемент, то все остальные работают.

Второй эксперимент показывает, что человеческое тело имеет не очень большое сопротивление (1кОм) и обладает свойствами электрического конденсатора (это устройство для накопления заряда и энергии электрического поля) . Человеческое тело — проводник. Если случайно человек окажется под напряжением, то в большинстве случаев он не избежит травмы и даже смерти.

Электричество – друг человечества. Однако, при неправильном обращении к нему, такая дружба может оказаться очень опасной. Чтобы снизить вероятность поражения электрическим током, необходимо соблюдать элементарные правила безопасной работы

Таким образом, я предлагаю рекомендации по технике безопасности при работе с электричеством.

Первая помощь при поражении электрическим током.

Электрический ток ничем не пахнет, не имеет цвета, не издает звуков и не осязается, поэтому предупредить человека о своем присутствии не может. О нем просто надо знать или быть предельно осторожным. При поражении электрическим током опасность усугубляется неспособностью пострадавшего помочь себе.

Обеспечь свою безопасность. Надень сухие перчатки (резиновые, шерстяные, кожаные и т.п.), резиновые сапоги. По возможности отключи источник тока. При подходе к пострадавшему по земле иди мелкими, не более 10 см, шагами. 

Сбрось с пострадавшего провод сухим токонепроводящим предметом (палка, пластик). Оттащи пострадавшего за одежду не менее чем на 10 метров от места касания проводом земли или от оборудования, находящегося под напряжением. 


Вызови (самостоятельно или с помощью окружающих) «скорую помощь». 

Определи наличие пульса на сонной артерии, реакции зрачков на свет, самостоятельного дыхания.

При отсутствии признаков жизни проведи сердечно-легочную реанимацию.

При восстановлении самостоятельного дыхания и сердцебиения придай пострадавшему устойчивое боковое положение. 

Если пострадавший пришел в сознание, укрой и согрей его. Следи за его состоянием до прибытия медицинского персонала, может наступить повторная остановка сердца. 

 

Освобождение пострадавшего от тока.

Прежде всего необходимо быстро освободить пострадавшего от действия электрического тока, т.е. отключить цепь тока с помощью ближайшего штепсельного разъема, выключателя (рубильника) или путем вывертывания пробок на щитке.
В случае отдаленности выключателя от места происшествия можно перерезать провода или перерубить их (каждый провод в отдельности) топором или другим режущим инструментом с сухой рукояткой из изолирующего материала.
При невозможности быстрого разрыва цепи необходимо оттянуть пострадавшего от провода или же отбросить сухой палкой оборвавшийся конец провода от пострадавшего.
Необходимо помнить, что пострадавший сам является проводником электрического тока. Поэтому при освобождении пострадавшего от тока оказывающему помощь необходимо принять меры предосторожности, чтобы самому не оказаться под напряжением: надеть галоши, резиновые перчатки или обернуть свои руки сухой тканью, подложить себе под ноги изолирующий предмет — сухую доску, резиновый коврик или, в крайнем случае, свернутую сухую одежду.
Оттягивать пострадавшего от провода следует за концы его одежды, к открытым частям тела прикасаться нельзя. При освобождении пострадавшего от тока рекомендуется действовать одной рукой.
Если он находится на стремянке, подставке или каком-либо ином приспособлении, надо принять меры, чтобы предотвратить ушибы или переломы при падении.
Если человек попал под напряжение выше 1000 В такие меры предосторожности недостаточны. Необходимо обратиться к специалистам, которые немедленно снимут напряжение.
Первая помощь пострадавшему
Меры первой помощи зависят от состояния пострадавшего после освобождения от тока.
Для определения этого состояния необходимо:
— немедленно уложить пострадавшего на спину;
— расстегнуть стесняющую дыхание одежду;
— проверить по подъему грудной клетки, дышит ли он;
— проверить наличие пульса (на лучевой артерии у запястья или на сонной артерии на шее;
— проверить состояние зрачка (узкий или широкий).
Широкий неподвижный зрачок указывает на отсутствие кровообращения мозга.
Определение состояния пострадавшего должно быть проведено быстро, в течение 15 — 20 секунд.
1. Если пострадавший в сознании, но до того был в обмороке или продолжительное время находился под электрическим шоком, то ему необходимо обеспечить полный покой до прибытия врача и дальнейшее наблюдение в течение 2-3 часов.
2. В случае невозможности быстро вызвать врача необходимо срочно доставить пострадавшего в лечебное учреждение.
3. При тяжелом состоянии или отсутствии сознания нужно вызвать врача (Скорую помощь) на место происшествия.
4. Ни в коем случае нельзя позволять пострадавшему двигаться: отсутствие тяжелых симптомов после поражения не исключает возможности последующего ухудшения его состояния.
5. При отсутствии сознания, но сохранившемся дыхании, пострадавшего надо удобно уложить, создать приток свежего воздуха, давать нюхать нашатырный спирт, обрызгивать водой, растирать и согревать тело. Если пострадавший плохо дышит, очень редко, поверхностно или, наоборот, судорожно, как умирающий, надо делать искусственное дыхание.
6. При отсутствии признаков жизни (дыхания, сердцебиения, пульса) нельзя считать пострадавшего мертвым. Смерть в первые минуты после поражения — кажущаяся и обратима при оказании помощи. Пораженному угрожает наступление необратимой смерти в том случае, если ему немедленно не будет оказана помощь в виде искусственного дыхания с одновременным массажем сердца. Это мероприятие необходимо проводить непрерывно на месте происшествия до прибытия врача.
7. Переносить пострадавшего следует только в тех случаях, когда опасность продолжает угрожать пострадавшему или оказывающему помощь.

Сопротивление тела человека. 
От величины сопротивления зависит величина тока, проходящего через тело человека в случае попадания под напряжение. Чем больше сопротивление, тем лучше. Однако сопротивление тела человека имеет свойство меняться в меньшую или большую сторону. Уменьшение сопротивления зависит от таких факторов, как влажность организма, наличие алкоголя в крови, эмоциональное состояние человека и т.д. Здоровые и физически крепкие люди противостоят электричеству лучше больных и ослабленных, причем степень поражения во многом определяется состоянием человека. Пот, возбудимость или переутомление снижают сопротивляемость организма.

Смертельным фактором является сила тока, а не напряжение, причем в отличие от переменного тока к постоянному человек быстро привыкает, а вот переменный крайне опасен. Существует порогово ощутимый ток — 0,6-1,5 мА. Ток в 10-15 мА приводит к тому, что пострадавший уже не способен убрать руки от провода или электроприбора (неотпускающий ток). При 50 мА повреждаются органы дыхания и сердечно-сосудистая система, 100 мА (промышленный ток, к частным домам не подводящийся) вызывают остановку сердца.

Таким образом, чем дольше длится воздействие тока на человека, тем вероятнее летальный исход, поскольку сопротивляемость тела уменьшается.

Как правило, электрическую разводку делают как можно выше от пола, поэтому, чтобы упростить себе работу, полезно обзавестись складной лестницей.

  • перед началом ремонтных работ, связанных с опасностью получить удар электрическим током, следует выключить групповой автомат на щитке в квартире или на лестничной клетке;

  • надо разместить на электрощите на лестничной клетке предупреждающую табличку, иначе сосед может случайно включить электричество в самый неподходящий момент;

  • перед тем как приступить к работам, с помощью индикаторной отвертки нужно удостовериться в действительном отсутствии электричества в сети;

  • предохранители (пробки), которые сейчас в строительстве не используют, еще установлены в некоторых домах, поэтому следует помнить, что заменяют их только при перегорании. Кустарный ремонт в виде установки проволочек («жучков») может привести к пожару; Использование самодельных предохранителей. 
    В старых жилых домах, где для защиты электрической сети применяются предохранители с плавкой вставкой, очень часто домашние умельцы делают самодельные плавкие вставки. Делать это категорически запрещается. Лучше использовать автоматические выключатели, либо поставить пробку-автомат. 

  • главным условием безопасного использования электроэнергии в быту является хорошее состояние изоляции, электротехники, предохранительных щитков, переключателей, розеток, ламповых патронов, светильников, шнуров. Изоляцию следует регулярно проверять и обновлять при необходимости. Чтобы не повредить ее, не рекомендуется подвешивать провода на гвозди, железные и деревянные предметы, перекручивать их, размещать за газовыми и водосточными трубами, радиаторами, использовать в качестве вешалки, вытаскивать вилку из розетки за шнур, покрывать их краской и белить, укладывать на работающие светильники . Нельзя использовать светильники с поврежденными вилкой, проводом или выключателем;

  • покидая квартиру, не забудьте выключить свет и электроприборы, поскольку так не только экономится электричество, но и существенно уменьшается риск возникновения пожара;

  • не следует пользоваться переносными светильниками в ванной комнате. Покупая светильник для нее, нужно внимательно прочитать инструкцию, поскольку есть светильники для сырых помещений, в конструкции которых использованы специальные элементы, чтобы сделать их безопасными;

  • мощность лампочки в светильнике должна соответствовать допустимому для него пределу. В результате нарушения теплового режима могут произойти короткое замыкание и, как следствие, пожар;

  • поскольку проводка в квартире, как правило, скрытая, нельзя произвольно сверлить отверстия и забивать гвозди. Если вы не уверены в том, что в данной зоне не проходят какие-либо провода, используйте особую электродрель с двойной изоляцией;

  • осветительные устройства не стоит подвешивать на токоведущих проводах — только на специальных приспособлениях.

  • Заземление бытовых приборов. 
    Металлический корпус любой бытовой техники потенциально опасен. Это означает то, что если произойдёт пробой фазы на корпус, то прикосновение к корпусу повлечёт за собой поражение электрическим током. В современной технике вероятность пробоя достаточно мала, но она присутствует и поэтому металлические части необходимо заземлять. Делается это при помощи трёхжильной проводки (фаза, ноль, земля), европейской розетки и европейской вилки. 

  • Эксплуатация мощных потребителей. 
    Если в советские времена нагрузка на проводку была незначительной, то сегодня дела обстоят по-другому. Стиральные машины, пылесосы, постоянно работающие электрические нагреватели воды (бойлеры) приводят к постепенному перегреву старой алюминиевой проводки. Это может привести к повреждению изоляции и возникновению короткого замыкания. Чтобы этого не произошло, можно заменить алюминиевые провода на медные, или увеличить сечение провода. 

  • Электробезопасность во влажных помещениях. 
    Не стоит пользоваться в ванной комнате электрическими приборами, особенно находясь в воде. Влажные помещения особо опасны, т.к. вода – хороший электропроводник. В крайнем случае, необходимо находиться на безопасном расстоянии от воды. Кроме того, обязательно должны использоваться надёжные аппараты защиты сети, которые в случае короткого замыкания или даже маленькой утечки тока отключат напряжение. 

  • Использование инструмента и электроинструмента. 
    Т.к. в большинстве случаев проводка выполняется скрытым способом, то любые работы по сверлению или штроблению стен, выполняемые электроинструментом, необходимо выполнять с особой осторожностью, дабы случайно не повредить провода и самому не попасть под напряжение. 

  • Общие советы по безопасности:
    Следите за целостностью сетевых шнуров бытовой техники, не перегружайте проводку мощными потребителями. Используйте современные комплектующие (выключатели, розетки, щитки). В случае необходимости не поленитесь проконсультироваться по разным электрическим вопросам с опытным электриком.

Какие возражения против последовательного подключения лампочек и ламп?

Недостатки лампочек и ламп, соединенных последовательно?

Последовательное соединение для бытовой электропроводки, такой как вентиляторы, выключатели, лампочки и т. Д., Не является предпочтительным способом вместо параллельной или последовательно-параллельной проводки из-за серьезных недостатков и недостатков, описанных ниже.

  • Если в какой-либо части цепи произойдет обрыв, ток не будет течь, и вся цепь станет бесполезной (все лампы и подключенные устройства выключатся).Недостатки последовательно соединенных лампочек и ламп?
  • Высокое напряжение питания требуется, если лампы (или другие электрические устройства) должны быть подключены последовательно, потому что напряжение на каждой подключенной лампочке складывается (распределяется) в последовательной цепи, то есть V T = V 1 + V 2 + V 3 +…. В н. . Если мы добавим больше лампочек в последовательную цепь, это будет означать большее сопротивление, потому что сопротивление также добавляется в последовательной цепи i.е. рэндов Итого = рэндов T = рэндов 1 + рэндов 2 + рэндов 3 +… рэндов n . Таким образом, лампочки не смогут получить точное номинальное напряжение. Таким образом, нам придется увеличить напряжение питания для эффективной системы. Недостатки последовательной цепи освещения
  • Невозможно выключить или включить лампочку или любые другие приборы, подключенные последовательно. Чтобы выключить одну лампочку, вся цепь будет выключена.
  • Две или более лампы, соединенные последовательно, будут тусклее, чем обычно, потому что увеличивается сопротивление и напряжение распределяется между лампочками (низкое напряжение для других ламп) по сравнению с одной лампой, включенной последовательно, как упоминалось выше. Проще говоря, ток и напряжение снижаются из-за высокого сопротивления и общих напряжений в последовательной цепи.
  • Если мощность ламп различается (например, лампа 1 = 60 Вт и лампа 2 = 100 Вт), лампа с более высоким сопротивлением будет светиться ярче, а другая — тусклее.Так как яркость зависит от силы тока и напряжения. Лампа, которая рассеивает больше мощности, будет ярче, т.е. лампа 1 с высоким сопротивлением будет рассеивать больше мощности, а лампа 2 будет тусклее. (R = V / I = закон Ома).
  • Следовательно, последовательное соединение проводов не подходит и нецелесообразно для цепей освещения.

Полезно знать: Для эффективной работы следует последовательно подключать только те лампы или устройства, которые имеют одинаковый номинальный ток. однако электрические устройства (например,(например, нагреватель, тостер, кофемолка, лампа и т. д.) имеют разные номинальные токи. очевидно, что их нельзя соединить последовательно для эффективной работы.

Связанные сообщения:

Как подключить фары параллельно? Параллельное подключение переключателей и лампочек

Как подключить точки освещения параллельно?

Общие бытовые цепи, используемые при установке электропроводки, параллельны (и должны быть). Чаще всего переключатели, розетки и световые точки подключаются параллельно, чтобы обеспечить подачу питания на другие электрические устройства и приборы через горячий и нейтральный провод в случае выхода из строя одного из них.

В нашем сегодняшнем учебнике по основному электрическому подключению мы покажем, что , как подключить фонари параллельно ?

Как подключить фары параллельно?

На приведенном выше рисунке ясно видно, что все лампочки подключены параллельно, то есть каждая лампочка подключена через отдельную линию (, также известную как фаза ) и нейтральный провод .

В параллельной цепи добавление или удаление одной лампы из цепи не влияет на другие лампы или подключенные устройства и приборы, поскольку напряжение в параллельной цепи одинаково в каждой точке, но протекающий ток отличается.Любое количество точек освещения или нагрузки может быть добавлено (в соответствии с расчетом нагрузки схемы или подсхемы) в такой схеме, просто расширив проводники L и N на другие лампы.

Поскольку каждая лампа или лампочка подключается между линией L и нейтралью N по отдельности, в случае выхода из строя одной из лампочек остальная цепь будет работать плавно, как показано на рисунке ниже. Здесь вы можете увидеть, что на линейном проводе, подключенном к лампе 3, есть перерез, поэтому лампа выключена, а остальная цепь работает правильно i.е. лампочки светятся.

Неисправности в параллельных цепях освещения

Кроме того, если мы будем управлять каждой лампой с помощью одностороннего (SPST = Single Pole Single Through) переключателя в параллельной цепи освещения, мы сможем включать / выключать каждую лампу с помощью отдельного переключателя или если мы Выключите лампочку, остальные точки освещения не пострадают, так как это происходит только при последовательном подключении освещения, когда вся подключенная нагрузка будет отключена, если мы замкнем выключатель.

Лампочки подключены параллельно

Как управлять лампочкой от одностороннего переключателя при параллельном освещении?

На рисунке ниже мы управляли тремя лампочками от трех отдельных односторонних переключателей, подключенных между линейным и нулевым проводами.Первые две лампочки светятся, поскольку переключатели находятся в положении ВКЛ, а третья лампа выключена.

Как управлять каждой лампой отдельно с помощью односторонних переключателей в параллельных цепях освещения

Преимущества параллельной цепи освещения:

  • Каждое подключенное электрическое устройство и прибор независимы от других. Таким образом, включение / выключение устройства не повлияет на другие устройства и их работу.
  • В случае обрыва кабеля или снятия какой-либо лампы все цепи и подключенные нагрузки не разорвутся, другими словами, другие светильники / лампы и электроприборы будут работать без сбоев.
  • Если добавить больше ламп в параллельные цепи освещения, их яркость не будет уменьшаться (как это происходит только в цепях последовательного освещения). Потому что напряжение одинаково в каждой точке параллельной цепи. Короче говоря, они получают такое же напряжение, как и напряжение источника.
  • Можно добавить больше осветительной арматуры и точек нагрузки в параллельных цепях в соответствии с будущими потребностями, если цепь не будет перегружена.
  • Добавление дополнительных устройств и компонентов не приведет к увеличению сопротивления, но уменьшит общее сопротивление цепи, особенно когда используются устройства с высоким номинальным током, такие как кондиционер и электрические нагреватели.
  • параллельная разводка более надежна, безопасна и проста в использовании.

Недостатки :

  • В параллельной схеме подключения освещения используются кабель и провод большего размера.
  • При добавлении дополнительной лампочки в параллельную цепь требуется больше тока.
  • Батарея разряжается быстрее при установке постоянного тока.
  • Конструкция параллельного подключения более сложна по сравнению с последовательным подключением.

Полезно знать:

  • Переключатели и Предохранители должны быть подключены через линию (под напряжением).
  • Параллельное подключение электрических устройств и приборов, таких как вентилятор, розетка, лампочка и т. Д., Предпочтительнее, чем последовательное подключение.
  • Метод параллельного или последовательно-параллельного подключения более надежен, чем последовательный.

Предупреждение:

  • Электричество — наш враг, если вы дадите ему шанс убить вас, помните, они никогда его не упустят. Пожалуйста, прочтите все меры предосторожности и инструкции при выполнении этого руководства на практике.
  • Отключите источник питания перед обслуживанием, ремонтом или установкой электрического оборудования.
  • Никогда не пытайтесь работать от электричества без надлежащего руководства и ухода.
  • Работать с электричеством только в присутствии лиц, имеющих хорошие знания, практическую работу и опыт, знающих, как обращаться с электричеством.
  • Прочтите все инструкции и предупреждения и строго следуйте им.
  • Самостоятельное выполнение электромонтажных работ опасно, а также незаконно в некоторых регионах. Прежде чем вносить какие-либо изменения в подключение электропроводки, обратитесь к лицензированному электрику или в энергоснабжающую компанию.
  • Автор не несет ответственности за какие-либо убытки, травмы или повреждения в результате отображения или использования этой информации, или если вы попробуете какую-либо схему в неправильном формате. Так пожалуйста! Будьте осторожны, потому что все дело в электричестве, а электричество слишком опасно.

Связанные базовые руководства по установке домашней электропроводки:

Проекты электроники: как создавать последовательные и параллельные схемы

  1. Программирование
  2. Электроника
  3. DIY Projects
  4. Проекты электроники: как создавать последовательные и параллельные схемы

Дуг Лоу

Если у вас есть схемы, состоящие из более чем одного электронного компонента, эти электронные компоненты должны быть связаны между собой.Два способа соединения компонентов в цепи — последовательно и параллельно.

В соединении серии компоненты соединены встык, так что ток течет сначала через один, а затем через другой. При последовательном соединении ток проходит через одну лампу, а затем через другую. Лампы нанизываются встык.

Одним из недостатков последовательного соединения является то, что если один из компонентов выходит из строя таким образом, что приводит к разрыву цепи, вся цепь разрывается, и ни один из компонентов не будет работать.Таким образом, если одна из ламп в последовательной цепи перегорит, ни одна из ламп не будет работать. Это потому, что для замыкания цепи через обе лампы должен протекать ток.

При подключении параллельно каждая лампа имеет собственное прямое подключение к батарее. Такая компоновка позволяет избежать того, что последовательные соединения выходят из строя один — все они. При параллельном подключении компоненты не зависят друг от друга при подключении к батарее. Таким образом, если одна лампа перегорит, другая продолжит гореть.

Интересная вещь происходит с напряжением, когда компоненты соединены последовательно: напряжения, присутствующие на каждом компоненте, разделяются. Например, в цепи с батареей на 3 В и двумя одинаковыми лампами, соединенными последовательно, каждая лампа будет видеть только полтора вольта. Если вы подключите последовательно три одинаковые лампы, каждая лампа будет видеть только один вольт.

Вы можете измерить напряжение любого компонента в цепи, установив мультиметр на соответствующий диапазон напряжения и затем прикоснувшись к проводам с обеих сторон компонента.Измеряемое вами напряжение называется падением напряжения компонента .

Как построить последовательную схему лампы

В Проекте 1-3 вы создадите схему, которая последовательно соединяет две лампы — простую схему. Затем вы воспользуетесь мультиметром, чтобы измерить напряжения в различных точках цепи.

Как построить параллельную схему ламп

В этом проекте вы создадите схему, которая соединяет две лампы параллельно, и вы будете использовать мультиметр для измерения напряжения в различных точках цепи.

Об авторе книги
У Дуга Лоу все еще есть набор экспериментатора электроники, который дал ему отец, когда ему было 10 лет. Хотя он стал программистом и написал книги по различным языкам программирования, Microsoft Office, веб-программированию и компьютерам (включая 30+ книг для чайников), Дуг никогда не забывал свою первую любовь: электронику.

ячеек последовательно и параллельно — Учебный материал для IIT JEE

  • Полный курс физики — 11 класс
  • ПРЕДЛАГАЕМАЯ ЦЕНА: Rs.2 968

  • Просмотр подробностей
 


Начало ячеек

Алессандро Вольта изобрел электрическую батарею.Впервые он был назван Voltaic Pile . За его вклад в науку единица электрического потенциала получила название Вольт . Джон Фредерик Даниэлл разработал ячейку Даниэля. Затем Джордж Лекланш изобрел влажную батарею, а доктор Карл Гасснер представил сухую батарею. Гастон Планте представил первую аккумуляторную батарею. Это свинцово-кислотная аккумуляторная батарея, которая снова наиболее часто используется в автомобилях.

Ячейка

Мы знаем, что электрический ток — это поток заряженных частиц.Это поток электронов по цепи.

Набор из двух или более элементов, соединенных последовательно, называется Батарея . Батарея — это источник энергии, преобразующий химическую энергию в электрическую. Он также известен как электрохимическая ячейка . Энергия хранится в форме химической энергии внутри батареи. Аккумуляторы дают нам удобный источник энергии для питания устройств без кабелей и проводов. Когда он подключен к цепи, он производит электрическую энергию.Батарея состоит из двух клемм — положительной и отрицательной. Положительный вывод называется Катод , а отрицательный вывод называется Анод . Их также называют электродами ячейки . Эти электроды будут погружены в раствор под названием Electrolyte . Это жидкость, которая является ионной и проводит электричество.

Когда аккумулятор собирается заряжаться, к нему подключается внешний источник. Анод батареи подключен к отрицательной клемме источника, а катод — к положительной клемме источника.Поскольку внешний источник подключен к батарее, электроны вставляются в анод. Когда элемент или батарея подключены к цепи, происходят химические реакции. Таким образом, химические реакции происходят внутри двух электродов. Здесь происходят реакции окисления и восстановления. Затем на катоде происходит реакция восстановления, а на аноде — процесс окисления.

Сухая камера

Катод действует как окислитель, принимая электроны от отрицательного концевого анода.Анод действует как восстановитель, теряя электроны. Таким образом, из-за этих химических реакций возникает электрическая разница между выводами-анодом и катодом. Когда нет энергии, электролит запрещает движение электронов непосредственно от анода к катоду. Вот почему мы используем внешний источник или подключаемся к цепи. Таким образом, электроны перемещаются от анода к катоду, когда цепь замкнута. Наконец, он дает питание подключенному к нему прибору. Спустя долгое время, когда электрохимический процесс изменяет материалы анода и катода, он перестает выделять электроны.Потом садится аккум.

EMF:

ЭДС или электродвижущая сила определяется как разность потенциалов, которая возникает между двумя выводами батареи в разомкнутой цепи. Мы знаем, что анод имеет положительный потенциал (V + ), а катод — отрицательный потенциал (V ). Таким образом, ЭДС — это разность потенциалов между анодом положительного вывода и катодом отрицательного вывода, когда через него не протекает ток. ЭДС измеряет энергию, передаваемую заряду в элементе или батарее.Это энергия в джоулях, деленная на заряд в кулонах. ЭДС действует как инициирующая сила для протекания тока.

ε = E / Q, где ε — электродвижущая сила, E — энергия, а Q — заряд.

ЭДС, которая обозначается ε, а уравнение определяется как ε = V + — (-V ) = V + + V -. Измеряется в вольтах.

Внутреннее сопротивление:

Внутреннее сопротивление — это сопротивление внутри батареи, которое препятствует прохождению тока при подключении к цепи.Таким образом, он вызывает падение напряжения, когда через него протекает ток. Это сопротивление, обеспечиваемое электролитом и электродами, присутствующими в ячейке. Таким образом, внутреннее сопротивление обеспечивается электродами и электролитом, которые препятствуют прохождению тока внутри ячейки.

Уравнение ЭДС и внутреннего сопротивления:

Рассмотрим схему, приведенную ниже. Ячейка может быть модифицирована с помощью ЭДС ε и внутреннего резистора с сопротивлением r, включенного последовательно. В цепь также включен внешний нагрузочный резистор с сопротивлением R.Разность потенциалов на клеммах, представленная как V, определяется как разность потенциалов, возникающая между положительной и отрицательной клеммами ячейки, когда ток течет по цепи.

В = В + + В — Ir. Это падение напряжения из-за внутреннего сопротивления.

Мы знаем, что ε = V + + V -. = Я (R + r).

ε = ИК + Ir.

= V + Ir

В = ε — Ir.

Итак, V = ε — Ir, где V — разность потенциалов в цепи, ε — ЭДС, I — ток, протекающий по цепи, r — внутреннее сопротивление.

Обычно внутреннее сопротивление ячейки не учитывается, потому что ε >> Ir. Величина внутреннего сопротивления меняется от ячейки к ячейке.


Последовательные и параллельные соединения

В основном есть два типа цепей: последовательные и параллельные. Элементы могут быть подключены последовательно, параллельно или их комбинация. В последовательной цепи электронов движутся только по одному пути. Здесь будет тот же ток, который проходит через каждый резистор.Напряжение на резисторах при последовательном соединении будет другим. Последовательные цепи нелегко перегреть. Конструкция последовательной схемы проста по сравнению с параллельной схемой.

В параллельной цепи электронов проходят через множество ее ветвей. В этом случае напряжение на каждом резисторе в цепи остается неизменным. Здесь ток в цепи делится между каждой ветвью и, наконец, рекомбинирует, когда ветви встречаются в общей точке. Параллельная цепь может быть сформирована разными способами, что означает, что ячейки могут быть расположены в различных формах.Параллельные цепи можно использовать как делители тока. Легко подключить или отключить новую ячейку или другой компонент, не затрагивая другие элементы в параллельной цепи. Но он использует много проводов и, следовательно, становится сложным.

Комбинация ячеек в последовательном соединении

Рассмотрим две ячейки, соединенные последовательно. Положительный вывод одной ячейки подключается к отрицательной клемме следующей ячейки. Здесь один терминал двух ячеек свободен, а другой терминал двух ячеек соединен вместе.ε 1 и ε 2 — ЭДС ячеек, а r 1 и r 2 — внутреннее сопротивление ячеек соответственно. Пусть I будет током, протекающим через ячейки.

Ячейки, соединенные последовательно

Рассмотрим точки A, B и C, и пусть V (A), V (B) и V (C) — потенциалы этих точек соответственно. V (A) — V (B) будет разностью потенциалов между положительной и отрицательной клеммами для первой ячейки.

So V AB = V (A) — V (B) = ε 1 — Ir 1.

V BC = V (B) — V (C) = ε 2 — Ir 2.

Теперь разность потенциалов между клеммами A и C равна

.

В переменного тока = V (A) — V (C) = [V (A) — V (B)] + V (B) — V (C)]

= ε 1 — Ir 1 + ε 2 — Ir 2

= (ε 1 + ε 2 ) — I (r 1 + r 2 ).

Если мы заменим эту комбинацию ячеек на одну ячейку между точками A и C с ЭДС ε экв и внутренним сопротивлением r экв, В AC = ε экв — r экв . и, таким образом, мы обнаружили, что ε экв = ε 1 + ε 2 и r экв = r 1 + r 2 из предыдущего уравнения.

Очевидно, что эквивалентная ЭДС n ячеек в последовательной комбинации является суммой их индивидуальных ЭДС.Эквивалентное внутреннее сопротивление n ячеек в последовательной комбинации является суммой их индивидуального внутреннего сопротивления.

В последовательной комбинации, если ток покидает ячейку через отрицательный электрод, ЭДС ячейки будет, например, V BC = — ε 2 — Ir 2 и, наконец, уравнение для ε eq = ε 1 — ε 2 , (ε 1 > ε 2 ).

Преимущества и недостатки последовательно соединенных ячеек:

Элементы, соединенные последовательно, создают большее результирующее напряжение.Поврежденные элементы можно легко идентифицировать и, следовательно, легко заменить, поскольку они разрывают цепь.

Если в цепи повреждена одна из ячеек, это может повлиять на все соединение. Ячейки, соединенные последовательно, быстро истощаются, и поэтому они не служат дольше. В домашней электропроводке не используется.


Комбинация ячеек при параллельном подключении

Рассмотрим две ячейки, соединенные параллельно. Здесь положительные выводы всех ячеек соединены вместе, а отрицательные выводы всех ячеек соединены вместе.При параллельном включении ток делится между ответвлениями. Таким образом, ток I делится на I 1 и I 2. I = I 1 + I 2. Рассмотрим точки B 1 и B 2 , а затем V (B 1 ) и V (B 2 ) — потенциалы соответственно. Разность потенциалов на выводах первой ячейки.

Ячейки соединены параллельно

V = V (B 1 ) — V (B 2 ) = ε 1 — I 1 r 1. Точка B 1 и B 2 подключаются аналогично второй ячейке.

V = V (B 1 ) — V (B 2 ) = ε 2 — I 2 r 2 . По закону Ома мы знаем, что I = V / R. Теперь подставим эти значения в уравнение

.

Если мы заменим ячейки одной ячейкой, расположенной между точкой B 1 и B 2 с ЭДС ε eq и внутренним сопротивлением r eq , тогда V = ε eq — Ir eq .

Это то же самое, что и при параллельном соединении резисторов.

Для n количества ячеек, включенных параллельно с ЭДС ε 1, ε 2 …… ε n и внутренним сопротивлением r 1 , r 2…. r n

Преимущества и недостатки параллельного подключения ячеек:

Для ячеек, соединенных параллельно, если какая-либо из ячеек в цепи повреждена, это не повлияет на все соединение.Ячейки, соединенные параллельно, не изнашиваются легко и поэтому служат дольше.

Напряжение, развиваемое элементами, подключенными параллельно, не может быть увеличено путем увеличения количества элементов, присутствующих в цепи. Это потому, что у них разные круговые пути. При параллельном подключении подключение обеспечивает питание из расчета на одну ячейку. Так что яркость лампочки не будет высокой.

Сводка

  • Это был Алессандро Вольта, который изобрел электрическую батарею и был впервые назван гальванической батареей.

  • Фредерик Даниэлл разработал ячейку Даниэля, а Джордж Лекланш изобрел влажную ячейку. Доктор Карл Гасснер представил сухую батарею, а Гастон Планте представил первую перезаряжаемую батарею.

  • Элемент или батарея — это источник энергии, преобразующий химическую энергию в электрическую.

  • Батарея состоит из двух клемм. Положительный вывод называется Катод , а отрицательный вывод.называется Анод .

  • ЭДС или электродвижущая сила — это разность потенциалов, возникающая между двумя выводами батареи в разомкнутой цепи. ε = E / Q, где ε — электродвижущая сила, E — энергия, а Q — заряд. Внутреннее сопротивление — это сопротивление внутри батареи, которое препятствует прохождению тока при подключении к цепи. Уравнение, связывающее ЭДС и внутреннее сопротивление: V = ε — Ir, где V — разность потенциалов в цепи, ε — ЭДС, I — ток, протекающий по цепи, r — внутреннее сопротивление

  • Для двух последовательно соединенных ячеек развиваемое напряжение равно V = (ε 1 + ε 2 ) — I (r 1 + r 2 ).V = ε экв — r экв , если мы заменим количество ячеек одной ячейкой.

  • Для двух параллельно соединенных ячеек V = ε 1 r 2 + ε 2 r 1 / r 1 + r 2 — Ir 1 r 2 / r 1 + r 2. Для n количества ячеек, соединенных параллельно ε eq / r eq = ε 1 / r 1 + ε 2 / r 2 + ……………… …….. ε n / r n.


Посмотрите это видео, чтобы получить дополнительную информацию


Дополнительные показания

Ячейки, подключенные последовательно и параллельно


Особенности курса

  • 101 Видеолекция
  • Примечания к редакции
  • Документы за предыдущий год
  • Ментальная карта
  • Планировщик исследования
  • Решения NCERT
  • Обсуждение Форум
  • Тестовая бумага с видео-решением

Verizon: услуги беспроводной связи, Интернета, телевидения и телефона

Центр ресурсов по специальным возможностям Перейти к основному содержанию Получите это быстро с помощью самовывоза в магазине, у обочины или доставки в тот же день.

Делайте покупки в Интернете или через приложение My Verizon и быстро получайте заказы.

Самовывоз из магазина или у обочины:
  • Заказы должны быть размещены с 8:00 до 17:00, с понедельника по субботу и до 14:00 (кроме праздничных дней).
  • Мы сообщим вам по электронной почте, когда ваш заказ будет готов к отправке. Ваш заказ будет удерживаться в течение 3 дней с момента его размещения.
  • Пожалуйста, возьмите с собой удостоверение личности с фотографией и кредитную / дебетовую карту, только если они используются для оплаты.
  • Самовывоз из магазина доступен на всей территории США в участвующих магазинах Verizon Wireless.
  • Curbside Pickup доступен в некоторых магазинах.

Доставка в тот же день:
  • Доставка в тот же день доступна в некоторых регионах.
  • Если для вашего заказа доступна доставка в тот же день, вы сможете выбрать этот вариант при оформлении заказа.
Личное Бизнес Магазин Магазин Магазин Магазин
  • Обзор магазина Обзор магазина
  • Устройства Устройства Устройства
    • Смартфоны Смартфоны
    • Телефоны 5G Телефоны 5G
    • Телефоны с предоплатой Телефоны с предоплатой
    • Другие телефоны Другие телефоны Другие телефоны
      • Обзор других телефонов Обзор других телефонов
      • Базовые телефоны Базовые телефоны
      • Сертифицированный б / у Сертифицированный б / у
      • Разблокированные телефоны Разблокированные телефоны
    • Аксессуары Аксессуары Аксессуары
      • Обзор принадлежностей Обзор принадлежностей
      • Чехлы и защита Чехлы и защита
      • Мощность Мощность
      • Наушники и колонки Наушники и колонки
      • Носимая техника Носимая техника
      • Умный дом Умный дом
      • Работа на дому Работа на дому
      • Просмотреть все Просмотреть все
      • Сделки Сделки
    • Торгуйте в своем телефоне Торгуйте в своем телефоне
    • Принеси свое устройство Принеси свое устройство
    • Планшеты / Ноутбуки Планшеты / Ноутбуки
    • Часы Часы
    • Ракеты и точки доступа Ракеты и точки доступа
    • Рекомендуемые Рекомендуемые Рекомендуемые
      • Apple iPhone 12 Pro Max Apple iPhone 12 Pro Max
      • Samsung Galaxy S21 Ультра 5G Samsung Galaxy S21 Ультра 5G
      • Google Pixel 5 Google Pixel 5
      • 5G по всей стране 5G по всей стране
    • Apple iPhone 12 Pro Max Apple iPhone 12 Pro Max
    • Samsung Galaxy S21 Ультра 5G Samsung Galaxy S21 Ультра 5G
    • Google Pixel 5 Google Pixel 5
    • 5G по всей стране 5G по всей стране
  • Планы Планы Планы
    • Обзор планов Обзор планов
    • Безлимитный Безлимитный
    • Общие данные Общие данные
    • Предоплата Предоплата
    • Подключенные устройства Подключенные устройства
    • Те, кто служат Те, кто служат Те, кто служат
      • Те, кто обслуживает Обзор Те, кто обслуживает Обзор
      • Планы учителя Планы учителя
      • Планы медсестер Планы медсестер
      • Первые респонденты Первые респонденты
      • Военные планы Военные планы
    • Детские планы Детские планы
    • Студенческие планы Студенческие планы
    • Другие планы Другие планы Другие планы
      • Обзор других планов Обзор других планов
      • Международные услуги Международные услуги
      • Планы подключенных автомобилей Планы подключенных автомобилей
      • Скидки для сотрудников Скидки для сотрудников
    • Принеси свое устройство Принеси свое устройство
  • Главная Главная Главная
    • Обзор дома Обзор дома
    • Fios Домашний Интернет Fios Домашний Интернет
    • Домашний Интернет 5G Домашний Интернет 5G
    • LTE Домашний Интернет LTE Домашний Интернет
    • Fios TV Fios TV
    • Переезд Переезд
    • Аксессуары Аксессуары Аксессуары
      • Обзор принадлежностей Обзор принадлежностей
      • Кабели и соединители Кабели и соединители
      • Сеть и Wi-Fi Сеть и Wi-Fi
      • ТВ аксессуары ТВ аксессуары
      • Телефонное оборудование Телефонное оборудование
      • Просмотреть все Просмотреть все
  • Развлечения Развлечения Развлечения
    • Обзор развлечений Обзор развлечений
    • Дисней Дисней
    • открытие + открытие +
    • Apple Музыка Apple Музыка
    • YouTube TV YouTube TV
    • Игры Игры
  • Сделки Сделки Сделки
    • Телефоны Телефоны
    • Fios Домашний Интернет Fios Домашний Интернет
    • Домашний Интернет 5G Домашний Интернет 5G
    • Mobile + Home Mobile + Home
    • Принеси свое устройство Принеси свое устройство
    • Аксессуары Аксессуары
Почему Verizon Почему Verizon Почему Verizon Почему Verizon
  • Почему Verizon Обзор Почему Verizon Обзор
  • Сеть Сеть Сеть
    • Обзор 5G Обзор 5G
    • Карта покрытия беспроводной сети Карта покрытия беспроводной сети
    • Лаборатории 5G Лаборатории 5G
    • Сетевые награды Сетевые награды
    • Fios Fios
    • Глобальное покрытие Глобальное покрытие
  • Получить больше Получить больше Получить больше
    • Устройства и планы Устройства и планы
    • Mobile + Home Mobile + Home
    • Развлечения Развлечения
    • Verizon Up Verizon Up
    • Карта Verizon Visa® Карта Verizon Visa®
    • Защита устройства Защита устройства
    • Verizon Cloud Verizon Cloud
  • Общественное влияние Общественное влияние Общественное влияние
    • Обязанность Обязанность
    • Конфиденциальность Конфиденциальность
Служба поддержки Служба поддержки Служба поддержки Служба поддержки
  • Обзор поддержки Обзор поддержки
  • Мобильный Мобильный Мобильный
    • Счета и платежи Счета и платежи
    • Управление аккаунтом Управление аккаунтом
    • Поддержка и настройка устройства Поддержка и настройка устройства
    • Услуги и приложения Услуги и приложения
    • Планировщик международных поездок Планировщик международных поездок
    • Статус заказа Статус заказа
    • Скачать приложение My Verizon Скачать приложение My Verizon
  • Главная Главная Главная
    • Fios Интернет и ТВ Fios Интернет и ТВ
    • Домашний Интернет 5G Домашний Интернет 5G
  • Связаться с нами Связаться с нами
  • войти в систему войти в систему
магазины Español войти в систему войти в систему
  • Назад к меню
  • Мой счет
  • регистр
  • Предоплата мгновенная оплата
  • Список желаний
  • Бизнес Войти
Закрыть войти в систему войти в систему
  • Мой счет
  • регистр
  • Предоплата мгновенная оплата
  • Список желаний
  • Бизнес Войти
Закрыть

connect lamp — перевод — Англо-французский словарь

en Система задней подсветки управляет несколькими лампами с помощью сбалансированных групп последовательно соединенных трансформаторов ламп.

патент-wipo fr Tout est nouveau

en Светодиодная система управления лампой с параллельным подключением и ее схема управления лампой с параллельным подключением

патент-wipo от Je pense que … qu ‘elle me méprise depuis que. .. depuis que j ‘ai du succès

ru Соединительное кольцо (60) соединяет соединительную секцию головки лампы (11) и абажур.

патент-wipo от Tiens, pour te protéger papa

en Фазовый сдвиг между импедансами гарантирует, что трансформатор не должен подавать удвоенное напряжение зажигания для зажигания последовательно соединенных ламп.

патентов-wipo от Un transporteur peut stipuler que le contrat de transport peut fixer des limites de responsabilité plus élevées que celles qui sont prévues dans la présente Convention, наш поставщик обеспечивает ограничение ответственности

величин и величин Применяемые к параллельно соединенным лампам, можно регулировать, так что уровни освещенности ламп регулируются индивидуально.

Patents-WIPO FR Ils devraient se regarder dans un miroir

en Розетки должны подключаться отдельно; при установке между несколькими последовательно соединенными лампами ток через патрон проходит к следующей лампе.

Common crawl fr Que t ‘en seras dégoûté! C’ est moi qu ‘ai assuré

ru Удлинители балластных проводов (54) соединяют патроны (52) в корпусе светильника (50) с патроном лампы (44 ) в ранее существовавшем потолочном светильнике (32).

патентов-wipo от vu le règlement (CE) no # / # du Conseil du # juin # relatif au financialment de la politique Agricole commune, et notamment son article #, paragraphe

en Для подключения к основному источнику питания 1 или до 10 подключаемых ламп; нажмите переключатель на шнуре, чтобы включить и выключить их все одновременно.

Common crawl fr Dans l’assoupissement de sa совесть, elle prit même les répugnances du mari pour des ampirations vers l’amant, les brlures de la haine pour des réchauffements de la tenresse;

en Ртутная газоразрядная лампа низкого давления и система подключенных таких ламп

патент-wipo от exprime le souhait qu’une action soit menée à l’avenir en faveur des petites agglomérations Традиционные, à l’instar de ce qui s’est fait pour les capitales culturelles

en Подставка лампы (101, 201) электрически соединена с корпусом лампы через соединительную головку (105, 205).

патент-wipo fr J ‘ai rien vu venir

en Соединительное кольцо (60) включает первое соединительное кольцо (61), которое соединяет абажур лампы, и второе соединительное кольцо (62), которое соединяет головку лампы, соединяющую раздел (11).

патентов-wipo от Dans l’article #er de l’Arreté du Gouvernement de la Région de Bruxelles-Capitale portant l’agrément d’entreprises d’insertion или locales de développement de l’emploi du #er septembre #, le nom «Age d’Or Services SCRL à finalité sociale» заменено по номеру «Age d’Or Services Bruxelles scrl à finalité sociale»

en Лампа подключается к держателю лампы.

Patents-WIPO FR Je start à en notir rasleculque t ‘en parles begin

en Контроллер мощности может находиться в основании лампы и подключаться к выводу лампы.

патент-wipo от Un enfant com ça il faut le peaufiner, le terminer …… finir de le cuire, ou comment ça se dit, là, dans la couveuse

en Лампа, содержащая горелку ( 1) и колпачок (2) для соединения лампы с патроном.

патентов-wipo fr Tu l ‘as déjà vu?

en Электродная система, снабженная новым соединением типа «штифт-пленка», соответствующая лампа, содержащая указанное соединение, и способ изготовления указанного соединения. несколько ламп, эл.г. в углу, с одним подключением к электросети.

Common crawl fr Wayne Campbell

en Узел корпуса лампы, функционально соединенный с узлом привода, имеет кожух лампы, соединенный с узлом привода.

Patents-WIPO FR En ce qui Concerne la Communauté Française, l’entrée en vigueur de la loi du # mai # fixant les dispositions générales, применимые к бюджетам, по контролю за субсидиями и à la comptabilité des communautés et des rs qu’à l’organisation du contrôle de la Cour des comptes, est reportée au #er janvier

en Узел кожуха лампы, оперативно соединенный с узлом привода, имеет кожух лампы, соединенный с узлом привода.

патентов-wipo fr Vu la loi du # avril # sur les entreprises de gardiennage, sur les entreprises de sécurité et sur les services internes de gardiennage, modifiée par les lois des # juillet #, # juillet # et # juin #, notamment l’article #, §

en Корпус лампы соединяется с опорой лампы через соединительный элемент лампы (3), а соединительный элемент лампы (3) является прямым или изогнутым. тип соединительный элемент лампы.

patents-wipo fr Pour ce qui est des категории фильмов qui devraient être включает dans la définition de documentaire, и он предлагает вам этот вопрос, который отклоняется от правильного определения приоритетов.

ru Модуль лампы (22) для проектора изображений включает в себя блок лампы (24), соединенный с рамой лампы (26) фиксирующим зажимом (56), имеющим трехточечное защелкивающееся соединение с рамой лампы.

Patents-WIPO FR Une lumière bleue?

ru Наружная оболочка светодиодной лампы состоит из корпуса (01) для соединения головки лампы (20) и абажура (30).

патент-wipo от Accès du public aux documents du Conseil

en КАК ПОДКЛЮЧИТЬ ПОДСВЕТКУ ЛАМПЫ, УСТАНОВЛЕННУЮ НА БАЗЕ MCM?

Common crawl fr Ce serait quand même dommage qu’un médecin ne comprenne pas l’enjeu du risque de la salmonellose.

ru Порты вывода нагрузки подключены к группам пучков ламп, которые состоят из одного или нескольких светодиодов.

Patents-wipo fr Je voudrais dire que le 25 septembre 2003, le Parlement a accepté une resolution require a la Commission de répondre à определенных вопросов, касающихся регулирования и обработки информации за 15 ноября 2003 г.

ru Соединительное кольцо (60) соединяет патрон лампы (10) с абажуром.

Patents-WIPO FR Vu l’urgence, conidérant qu’à la suite de la модификация статьи # de l’arrêté royal du # octobre # déterminant les corps d’officiers des force terrestre, aérienne et navale et du service médical par l’arrêté royal du # juillet # répartissant l’enveloppe en staff pour les militaires du cadre actif en période de paix, il ya lieu de préserver le plus vite possible la sécurité juridique relative à la désignation desger Officiers si Temporaire dans les comités du corps Technique médical

ru Двухжильный провод (22) соединяет корпус лампы (12) с выбранным источником питания.

Patents-WIPO FR ◦ Стратегическое усиление потенциала.