Пуэ повторное заземление нулевого провода: Повторное заземление нулевого провода на вводе в здание, правила ПУЭ, защитное заземление опор

Содержание

Повторное заземление нулевого провода на вводе в здание, правила ПУЭ, защитное заземление опор

В современном мире трудно представить жизнь человека без электроприборов. Количество их в домах велико, и чтобы обеспечить необходимую безопасность их использования, требуется осуществить защитные меры от случайного поражения электрическим током. Одна из таких мер состоит в устройстве повторного заземления.

Основные виды

Защитное заземление позволяет защитить человека от удара током, если на корпусе прибора или установки случайно возникает напряжение. Опасный потенциал снимается либо обеспечивается срабатывание электрических защитных устройств с минимальным запаздыванием.

Естественными заземлителями считаются любые металлические предметы, которые находятся в земле. Устанавливающими норму документами не рекомендуется использование естественных проводников, потому что невозможно учесть такую величину, как сопротивление растеканию тока в грунте от них.

Искусственными заземлителями считаются устройства с заранее рассчитанными параметрами, специально созданные для сооружения заземления.

Глухое погружение нейтрали

Системы заземления разделяют на две большие группы: с глухо заземленной нейтралью и с изолированной. В схеме первого типа нейтральный проводник (обозначается N) всегда заземлен и может быть независимым от защитного PE-проводника, а может соединяться с ним, образуя PEN-проводник.

Если нейтральный провод объединен с защитным проводником, он образует систему TN-C, если проводиться отдельно − систему TN-S, в случае, когда объединен на подстанции с защитным проводником, а при входе в здание разделяется на два проводника – защитный PE и функциональный N, образуется система TN-C-S. Еще одним видом является система, при которой нейтральный проводник заземляется на подстанции и к потребителю трехфазный ток поступает по четырем проводам, одним из которых является ноль N. Это − система TT.

Применение системы TN-C

Система TN-C широко использовалась ранее при так называемой двухпроводной сети. В этом случае в розетках отсутствовал заземленный контакт. В сетях, сконструированных по этой системе, заземлялся нулевой провод, но при обрыве его, все приборы оставались под напряжением. Это вынуждало заземлять корпуса каждого отдельного электроприбора. В современных строящихся зданиях эта система не проектируется. Используется только в старых зданиях.

Применение системы TN-S

Система TN-S более совершенна, обладает высокой степенью электробезопасности, так как имеет отдельный заземленный проводник, но стоимость ее неоправданно высока. При трехфазном питании приходится прокладывать от источника пять проводов – три фазы, нейтраль и защитный проводник PE.

Для устранения недостатка системы TN-S была создана TN-C-S. Она предусматривает один проводник PEN, который представляет собой общий провод, заземленный по всей длине от источника питания до ввода в здание, а перед вводом разделяется на нейтраль N и защитный проводник PE. Эта система тоже имеет весомый недостаток. При повреждении проводника PEN на протяжении участка от подстанции до здания, все подключенные внутри здания приборы остаются под опасным напряжением. Для этой системы ПУЭ (Правила устройства электроустановок) требуют проведения мероприятий по устройству дополнительной защиты проводника PEN от механических повреждений.

Тип заземления ТТ

Система ТТ используется для подачи электричества за городом и в сельской местности по линиям электропередач, устанавливаемым на опорах. Подключение электроустановок по этой системе разрешается лишь в том случае, если невозможно обеспечить все условия электробезопасности в системе TN и избежать при этом неоправданных материальных затрат. При контакте с электроприборами защита от тока должна осуществляться путем отключения питания в цепи. Для этого правилами предписываются специальные изделия – устройства защитного отключения – УЗО.

Изолированный нейтральный проводник

Во втором варианте нейтральный провод совершенно не заземлен, или может быть связан с землей через установочные устройства, имеющие очень большое сопротивление. Такие системы применяют для ответственных объектов, например в медучреждениях для питания оборудования, используемого при поддержании жизнеобеспечения, на энергетических и нефтеперерабатывающих предприятиях. Нейтраль, изолированная от заземляющего провода, защищена от возникновения наведенных токов. Заземление идет по отдельной шине, к которой подключены все заземляющие контакты в розетках.

Назначение и устройство

При изготовлении заземления по принципам вышеописанных систем, при обрыве заземленных проводников на корпусах электроприборов всегда существует возможность возникновения опасного напряжения, поэтому в таких системах ПУЭ регламентируют обязательное наличие повторного заземления в сетях.

Главной задачей, которая стоит при монтаже повторного заземления, является понижение напряжения, возникающего при касании открытых токопроводящих элементов электроприборов. Вследствие этого при замыкании на землю или на токопроводящие элементы корпуса, уменьшается вероятность получить травму от действия электрического тока.

Если смонтировано повторное заземление, то происходит следующее. При замыкании на корпусе отдельного электроприбора ток частично проходит в земле. В результате разность потенциалов между корпусом и землей уменьшается, и пользователь становится защищенным от удара током.

При реализации системы TN-C выполняется повторное заземление нулевого провода. Оно производится путем связывания проводника с землей через определенные интервалы и применяется вместе с основным контуром заземления.

В системе TN-C-S оно представляет собой повторное заземление нулевого защитного проводника PEN перед вводом в здание. Получается, что при обрыве проводника на участке «источник-здание» эффект заземления осуществляется через заземленный PE провод.

На вводе в электроустановку напряжением до 1 кВ обязательно монтируют повторное заземление, чтобы увеличить степень безопасности.

Повторное заземление на вводе в здание, независимо от его устройства, устанавливают еще и для того, чтобы исключить занос в цепи электротехники дома наведенных токов через внешние коммуникации. К тому же оно уменьшает потенциал на корпусе электроприборов, если вдруг оборвался N-проводник.

Линии электропередач

При использовании системы ТТ принцип повторного заземления реализуется путем соединения нулевого провода, расположенного на опоре линии электропередач с землей. Осуществляется заземление всех опор. Одновременно заземляются все стальные кронштейны, на которых закреплены изоляторы фазных проводов.

Необходимо устраивать повторное заземление на концах линий электропередач или на ответвлениях длиною 200 и больше метров. Для создания контура в первую очередь применяют естественные заземлители.

Совместимость с устройствами отключения

Все сказанное выше о повторном заземлении, как об одной из мер для повышения уровня безопасности при эксплуатации электроустановок, будет справедливо в том случае, если цепи в электроустановках защищены автоматами и предохранителями. При этом характеристики устройств отключения должны выбираться в соответствии с параметрами сети, полезной нагрузки.

Важно правильно выбрать материал и сечение проводников, как нулевого, так и заземляющего. Если в них возникнет ток короткого замыкания, то он должен минимум в 3 раза превышать порог срабатывания автоматики или других защитных приспособлений.

Нулевой провод делают непрерывным по всей длине от каждого корпуса до нейтрали источника питания. Для соединения всех деталей этом участке применяют сварку. Присоединение к нейтрали допускается при помощи сварки или на болтах.

Важная характеристика – сопротивление

Контур повторного заземления обеспечивает в морозы и жару, в сухую и дождливую погоду сопротивление растеканию тока. Данное сопротивление не должно превышать 30 Ом при межфазном напряжении 380 В. Если напряжение 220 В, то сопротивление увеличивается до 60 Ом. Противодействие растекающемуся току должно быть максимум 10 Ом и 20 Ом соответственно для трехфазной и двухфазной сети.

При вводе в строение сопротивление у повторного заземления должно быть максимум 30 Ом.

Конструкция и материалы, используемые для контура повторного заземления одинаковы с применяемыми материалами для устройства основного заземляющего контура.

Качественное, выполненное с учетом всех норм и правил, повторное заземление обеспечит не только безопасность использования электроустановок, но и нормальный режим работы электроприборов, что позволит эксплуатировать их в соответствии с заявленными техническими характеристиками, повысить их функциональность и увеличить срок службы.

Для чего нужно повторное заземление ВЛИ?

Схема повторного заземления PEN-проводника. Узнайте, что собой представляет повторное заземление и для чего оно предназначено.


Повторное заземление ВЛИ – это заземление PEN-проводника от комплексной трансформаторной подстанции 10 кВ/0,4 кВ. Его основное назначение — повышение безопасности участков ЛЭП. ВЛИ расшифровывается как воздушная линия электропередач с изолированной проводкой СИП. Прокладываются ВЛ (воздушные линии) от трансформаторной станции, имеющей глухозаземленную нейтраль, на опорах из дерева или железобетона. Содержание:

Виды опор


Для чего это нужно?

Что такое повторное заземление ВЛИ и почему оно так называется? Дело в том, что проводной кабель уже заземлен на комплексную трансформаторную подстанцию. Система TN–C–S (трансформаторная подстанция с глухозаземленной нейтралью) представляет собой 2 или 4 провода СИП, которые проводят по ВЛИ. Один из кабельных проводников считается основным – PEN проводник, остальные – фазные. В свою очередь PEN-проводник делится на N (нулевой рабочий) и РЕ (нулевой защитный). Это в случае, если он находится на подпоре и на устройстве стоит вводное устройство (ВУ) или в щитке в помещении.

Схема выглядит следующим образом:

В ПУЭ указывается, что повторное заземление ВЛИ означает погружение в грунт PEN или РЕ проводника в воздушной электрической линии с изолированными проводами.

Важно! Повторный заземляющий контур осуществляется на подпоре без вводного приспособления или вводного щитка (ВЩ). Оно присоединяется к вводному автомату или к совместному рубильнику.

Защитный и рабочий нулевые провода подключаются вверху ЖБ (железобетонного столба) к арматурному выпуску. Если есть подкосной столб, то присоединять необходимо и к нему, а не только к основному.

На фото ниже изображено, как нужно соорудить повторное заземление ВЛИ основного проводника с использованием прокалывающего зажима на проходном столбе, без отвода. Осуществлять подобное необходимо на каждой третьей опоре ВЛ и на столбе, который ведет к жилому зданию.

На опоре из дерева устанавливается заземляющий спуск (на схеме ниже обозначен цифрой 3). Как правило, он вырабатывается из металлической проволоки. Все это прикрепляется к штырьевому электроду, который вбивается в грунт. В случае если проволока больше 6 мм, то желательно чтобы он был сделан из оцинкованного металла, а если меньше 6 мм – из черного металла с нанесенным антикоррозийным средством.

Для чего нужно повторное заземление ВЛИ?
  • 1 – место сварки;
  • 2 – заземлители;
  • 3 — спуск.

Подобным образом осуществляется повторное заземление ВЛИ для ЖБ столба только без арматурного выпуска.

Согласно правилам устройства электроустановок, если на деревянной конструкции было выполнено повторное заземление PEN-проводников, то необходимо заземлить полностью все штыри и крюки опоры из металла. Если же на столбе из дерева или железобетона не организовывают повторный заземляющий контур, то ничего делать не нужно (ПУЭ 2.4.41).

Электрооборудование из металла, которое находится на опорах, в обязательном порядке должно заземляться индивидуальными проводами. Это такое оборудование как щиты ВУ, молниезащита или защита от высокого напряжения. В случае ТП с глухозаземленной нейтралью сопротивление вторичного заземлителя должно быть 30 Ом или меньше.

Учтите! Для частного жилья повторная защита PEN-проводников ВЛИ не освобождает от установки специального заземляющего контура. О том, как сделать заземление в доме своими руками, мы рассказывали в соответствующей статье!

Полезные рекомендации

Если необходимо сделать повторное заземление ВЛИ от трансформаторной подстанции до жилого помещения на расстояние 800 м, его следует выполнить в следующих местах:

  • на столбах ВЛ, которые размещаются возле трансформаторной подстанции и возле дома;
  • на анкерных столбах ВЛ;
  • на опоре с дистанцией 100 метров от основной опоры, имеющей заземление.

Также рекомендуем просмотреть видео, на котором показывается, как сделать повторное заземление, а точнее — без особых проблем забить штыри в землю:

Полезное по теме:

  • Причины потерь электроэнергии в воздушных линиях
  • Как сделать громоотвод своими руками
  • Какие бывают системы заземления


НравитсяДля чего нужно повторное заземление ВЛИ?0)Не нравитсяДля чего нужно повторное заземление ВЛИ?0)

Повторное заземление нулевого защитного проводника

Автор DUNDUK На чтение 4 мин. Опубликовано

Повторное заземление нулевого защитного проводника — это заземление, выполненное через определенные промежутки по всей длине нулевого провода. Повторное заземление позволяет снизить напряжение нулевого провода и зануленного оборудования относительно земли при замыкании фазы на корпус как при нормальном режиме, так и при обрыве нулевого провода.

При занулении фазные и нулевые защитные проводники должны быть выбраны таким образом, чтобы при замыкании на корпус или на нулевой проводник возникал ток короткого замыкания, обеспечивающий отключение автомата или плавление плавкой вставки ближайшего предохранителя.

Согласно ПУЭ, проводники зануления должны выбираться так, чтобы при замыкании на корпус или на нулевой провод возникал ток короткого замыкания, превышающий не менее чем в 3 раза номинальный ток плавкой вставки ближайшего предохранителя или номинальный ток расцепителя автоматического теплового выключателя, имеющего обратнозависимую от тока характеристику. При защите сети автоматическими выключателями с электромагнитными расцепителями кратность тока принимается равной 1,1; при отсутствии заводских данных — 1,4 для автоматов с номинальным током до 100 А, а для прочих автоматов 1,25. Во взрывоопасных установках кратность тока должна быть не менее 4 при защите предохранителями, не менее 6 при защите автоматами с обратнозависимой от тока характеристикой и аналогично предыдущему при автоматах, имеющих только электромагнитный расцепитель. Полная проводимость нулевого провода во всех случаях должна быть не менее 50 % проводимости фазного провода.

Должна обеспечиваться непрерывность нулевого провода от каждого корпуса до нейтрали источника питания. Поэтому все соединения нулевого провода выполняются сварными. Присоединение нулевого провода к корпусам электроприемников осуществляется сваркой или с помощью болтов.

В цепи нулевых защитных проводников не должно быть разъединяющих приспособлений и предохранителей.
замыкание на корпус
При замыкании фазы на корпус в сети, не имеющей повторного заземления нулевого защитного проводника (см. рис.), участок нулевого защитного проводника, находящийся за местом замыкания, и все присоединенные к нему корпуса окажутся под напряжением относительно земли Uк, равным:
повторное заземление
где Iк – ток КЗ, проходящий по петле фаза-нуль, А; zPEN– полное сопротивление участка нулевого защитного проводника, обтекаемого током Iк, Ом (т. е. участка АВ).

Используйте на своих сайтах и блогах или на YouTube кликер для adsense

Напряжение Uк будет существовать в течение аварийного периода, т. е. с момента замыкания фазы на корпус до автоматического отключения поврежденной установки от сети.

Если для упрощения пренебречь сопротивлением обмоток источника тока и индуктивным сопротивлением петли фаза-нуль, а также считать, что фазный и нулевой защитный проводники обладают лишь активными сопротивлениями RL1 и RPE, то (4.3) примет вид:
повторное заземление
Если нулевой защитный проводник будет иметь повторное заземление с сопротивлением rП (на рис. 4.9 это заземление показано пунктиром), то Uк снизится до значения, определяемого формулой:
повторное заземление
где Iз – ток, стекающий в землю через сопротивление rп, А; Uав – падение напряжения в нулевом защитном проводнике на участке АВ; r0– сопротивление заземления нейтрали источника тока, Ом.

Итак, повторное заземление нулевого защитного проводника снижает напряжение на зануленных корпусах в период замыкания фазы на корпус.

При случайном обрыве нулевого защитного проводника и замыкании фазы на корпус за местом обрыва (при отсутствии повторного заземления) напряжение относительно земли участка нулевого защитного проводника за местом обрыва и всех присоединенных к нему корпусов, в том числе корпусов исправных установок, окажется близким по значению фазному напряжению сети (рис. 4.10, а). Это напряжение будет существовать длительно, поскольку поврежденная установка автоматически не отключится, и ее будет трудно обнаружить среди исправных установок, чтобы отключить вручную.
обрыв нулевого проводника
Если же нулевой защитный проводник будет иметь повторное заземление, то при обрыве его сохранится цепь тока Iз, А, через землю (рис 4.10, б), благодаря чему напряжение зануленных корпусов, находящихся за местом обрыва, снизится до значений, определяемых формулой
повторное заземление
При этом корпуса установок, присоединенных к нулевому защитному проводнику до места обрыва, приобретут напряжение относительно земли:
повторное заземление
где r0 – сопротивление заземления нейтрали источника тока, Ом.

Итак, повторное заземление нулевого защитного проводника значительно уменьшает опасность поражения током, возникающую в результате обрыва нулевого защитного проводника и замыкания фазы на корпус за местом обрыва, но не может устранить ее полностью, т. е. не может обеспечить тех условий безопасности, которые существовали до обрыва.

Общие требования / ПУЭ 7 / Библиотека / Элек.ру

1.7.49. Токоведущие части электроустановки не должны быть доступны для случайного прикосновения, а доступные прикосновению открытые и сторонние проводящие части не должны находиться под напряжением, представляющим опасность поражения электрическим током как в нормальном режиме работы электроустановки, так и при повреждении изоляции.

1.7.50. Для защиты от поражения электрическим током в нормальном режиме должны быть применены по отдельности или в сочетании следующие меры защиты от прямого прикосновения:

  • основная изоляция токоведущих частей;
  • ограждения и оболочки;
  • установка барьеров;
  • размещение вне зоны досягаемости;
  • применение сверхнизкого (малого) напряжения.

Для дополнительной защиты от прямого прикосновения в электроустановках напряжением до 1 кВ, при наличии требований других глав ПУЭ, следует применять устройства защитного отключения (УЗО) с номинальным отключающим дифференциальным током не более 30 мА.

1.7.51. Для защиты от поражения электрическим током в случае повреждения изоляции должны быть применены по отдельности или в сочетании следующие меры защиты при косвенном прикосновении:

  • защитное заземление;
  • автоматическое отключение питания;
  • уравнивание потенциалов;
  • выравнивание потенциалов;
  • двойная или усиленная изоляция;
  • сверхнизкое (малое) напряжение;
  • защитное электрическое разделение цепей;
  • изолирующие (непроводящие) помещения, зоны, площадки.

1.7.52. Меры защиты от поражения электрическим током должны быть предусмотрены в электроустановке или ее части либо применены к отдельным электроприемникам и могут быть реализованы при изготовлении электрооборудования, либо в процессе монтажа электроустановки, либо в обоих случаях.

Применение двух и более мер защиты в электроустановке не должно оказывать взаимного влияния, снижающего эффективность каждой из них.

1.7.53. Защиту при косвенном прикосновении следует выполнять во всех случаях, если напряжение в электроустановке превышает 50 В переменного и 120 В постоянного тока.

В помещениях с повышенной опасностью, особо опасных и в наружных установках выполнение защиты при косвенном прикосновении может потребоваться при более низких напряжениях, например, 25 В переменного и 60 В постоянного тока или 12 В переменного и 30 В постоянного тока при наличии требований соответствующих глав ПУЭ.

Защита от прямого прикосновения не требуется, если электрооборудование находится в зоне системы уравнивания потенциалов, а наибольшее рабочее напряжение не превышает 25 В переменного или 60 В постоянного тока в помещениях без повышенной опасности и 6 В переменного или 15 В постоянного тока во всех случаях.

Примечание. Здесь и далее в главе напряжение переменного тока означает среднеквадратичное значение напряжения переменного тока; напряжение постоянного тока — напряжение постоянного или выпрямленного тока с содержанием пульсаций не более 10% от среднеквадратичного значения.

1.7.54. Для заземления электроустановок могут быть использованы искусственные и естественные заземлители. Если при использовании естественных заземлителей сопротивление заземляющих устройств или напряжение прикосновения имеет допустимое значение, а также обеспечиваются нормированные значения напряжения на заземляющем устройстве и допустимые плотности токов в естественных заземлителях, выполнение искусственных заземлителей в электроустановках до 1 кВ не обязательно. Использование естественных заземлителей в качестве элементов заземляющих устройств не должно приводить к их повреждению при протекании по ним токов короткого замыкания или к нарушению работы устройств, с которыми они связаны.

1.7.55. Для заземления в электроустановках разных назначений и напряжений, территориально сближенных, следует, как правило, применять одно общее заземляющее устройство.

Заземляющее устройство, используемое для заземления электроустановок одного или разных назначений и напряжений, должно удовлетворять всем требованиям, предъявляемым к заземлению этих электроустановок: защиты людей от поражения электрическим током при повреждении изоляции, условиям режимов работы сетей, защиты электрооборудования от перенапряжения и т.д. в течение всего периода эксплуатации.

В первую очередь должны быть соблюдены требования, предъявляемые к защитному заземлению.

Заземляющие устройства защитного заземления электроустановок зданий и сооружений и молниезащиты 2-й и 3-й категорий этих зданий и сооружений, как правило, должны быть общими.

При выполнении отдельного (независимого) заземлителя для рабочего заземления по условиям работы информационного или другого чувствительного к воздействию помех оборудования должны быть приняты специальные меры защиты от поражения электрическим током, исключающие одновременное прикосновение к частям, которые могут оказаться под опасной разностью потенциалов при повреждении изоляции.

Для объединения заземляющих устройств разных электроустановок в одно общее заземляющее устройство могут быть использованы естественные и искусственные заземляющие проводники. Их число должно быть не менее двух.

1.7.56. Требуемые значения напряжений прикосновения и сопротивления заземляющих устройств при стекании с них токов замыкания на землю и токов утечки должны быть обеспечены при наиболее неблагоприятных условиях в любое время года.

При определении сопротивления заземляющих устройств должны быть учтены искусственные и естественные заземлители.

При определении удельного сопротивления земли в качестве расчетного следует принимать его сезонное значение, соответствующее наиболее неблагоприятным условиям.

Заземляющие устройства должны быть механически прочными, термически и динамически стойкими к токам замыкания на землю.

1.7.57. Электроустановки напряжением до 1 кВ жилых, общественных и промышленных зданий и наружных установок должны, как правило, получать питание от источника с глухозаземленной нейтралью с применением системы TN.

Для защиты от поражения электрическим током при косвенном прикосновении в таких электроустановках должно быть выполнено автоматическое отключение питания в соответствии с 1.7.78-1.7.79.

Требования к выбору систем TN-C, TN-S, TN-C-S для конкретных электроустановок приведены в соответствующих главах Правил.

1.7.58. Питание электроустановок напряжением до 1 кВ переменного тока от источника с изолированной нейтралью с применением системы IT следует выполнять, как правило, при недопустимости перерыва питания при первом замыкании на землю или на открытые проводящие части, связанные с системой уравнивания потенциалов. В таких электроустановках для защиты при косвенном прикосновении при первом замыкании на землю должно быть выполнено защитное заземление в сочетании с контролем изоляции сети или применены УЗО с номинальным отключающим дифференциальным током не более 30 мА. При двойном замыкании на землю должно быть выполнено автоматическое отключение питания в соответствии с 1.7.81.

1.7.59. Питание электроустановок напряжением до 1 кВ от источника с глухозаземленной нейтралью и с заземлением открытых проводящих частей при помощи заземлителя, не присоединенного к нейтрали (система TT), допускается только в тех случаях, когда условия электробезопасности в системе TN не могут быть обеспечены. Для защиты при косвенном прикосновении в таких электроустановках должно быть выполнено автоматическое отключение питания с обязательным применением УЗО. При этом должно быть соблюдено условие:

где Ia — ток срабатывания защитного устройства;

Ra — суммарное сопротивление заземлителя и заземляющего проводника, при применении УЗО для защиты нескольких электроприемников — заземляющего проводника наиболее удаленного электроприемника.

1.7.60. При применении защитного автоматического отключения питания должна быть выполнена основная система уравнивания потенциалов в соответствии с 1.7.82, а при необходимости также дополнительная система уравнивания потенциалов в соответствии с 1.7.83.

1.7.61. При применении системы TN рекомендуется выполнять повторное заземление PE- и PEN-проводников на вводе в электроустановки зданий, а также в других доступных местах. Для повторного заземления в первую очередь следует использовать естественные заземлители. Сопротивление заземлителя повторного заземления не нормируется.

Внутри больших и многоэтажных зданий аналогичную функцию выполняет уравнивание потенциалов посредством присоединения нулевого защитного проводника к главной заземляющей шине.

Повторное заземление электроустановок напряжением до 1 кВ, получающих питание по воздушным линиям, должно выполняться в соответствии с 1.7.102-1.7.103.

1.7.62. Если время автоматического отключения питания не удовлетворяет условиям 1.7.78-1.7.79 для системы TN и 1.7.81 для системы IT, то защита при косвенном прикосновении для отдельных частей электроустановки или отдельных электроприемников может быть выполнена применением двойной или усиленной изоляции (электрооборудование класса II), сверхнизкого напряжения (электрооборудование класса III), электрического разделения цепей изолирующих (непроводящих) помещений, зон, площадок.

1.7.63. Система IT напряжением до 1 кВ, связанная через трансформатор с сетью напряжением выше 1 кВ, должна быть защищена пробивным предохранителем от опасности, возникающей при повреждении изоляции между обмотками высшего и низшего напряжений трансформатора. Пробивной предохранитель должен быть установлен в нейтрали или фазе на стороне низкого напряжения каждого трансформатора.

1.7.64. В электроустановках напряжением выше 1 кВ с изолированной нейтралью для защиты от поражения электрическим током должно быть выполнено защитное заземление открытых проводящих частей.

В таких электроустановках должна быть предусмотрена возможность быстрого обнаружения замыканий на землю. Защита от замыканий на землю должна устанавливаться с действием на отключение по всей электрически связанной сети в тех случаях, в которых это необходимо по условиям безопасности (для линий, питающих передвижные подстанции и механизмы, торфяные разработки и т.п.).

1.7.65. В электроустановках напряжением выше 1 кВ с эффективно заземленной нейтралью для защиты от поражения электрическим током должно быть выполнено защитное заземление открытых проводящих частей.

1.7.66. Защитное зануление в системе TN и защитное заземление в системе IT электрооборудования, установленного на опорах ВЛ (силовые и измерительные трансформаторы, разъединители, предохранители, конденсаторы и другие аппараты), должно быть выполнено с соблюдением требований, приведенных в соответствующих главах ПУЭ, а также в настоящей главе.

Сопротивление заземляющего устройства опоры ВЛ, на которой установлено электрооборудование, должно соответствовать требованиям гл.2.4 и 2.5.

Повторное заземление ВЛИ | ehto.ru

Что такое повторное заземление ВЛИ?

Повторное заземление ВЛИ подразумевает заземление PEN проводника от трансформатора КТП 10/0,4, на опорах воздушных линий электропередач.

Аббревиатура ВЛИ подразумевает воздушную линию электропередач, выполненную самонесущими изолированными проводами СИП, от трансформатора с глухозаземленной нейтралью.

Выполняются воздушные линии на деревянных или железобетонных опорах. Остановимся на опорах подробнее.

Деревянные опоры линий электропередач

повторное-заземление-18повторное-заземление-18

повторное-заземление-17повторное-заземление-17

  • Деревянные опоры делаются из бревен (круглого леса без коры) длинной 5-13 метров с шагом 50 см и толщиной 12-26 см с шагом 20 мм.
  • Деревянные опоры покрываются антисептиком, чтобы замедлить гниение древесины.
  • Типы деревянных опор С1 и С2.

Железобетонные опоры

Железобетонные опоры это прямоугольные или трапециевидные конструкции из арматуры и бетона. Маркируются железобетонные опоры, как СВ. Далее идет номер маркировки, который обозначает длину опоры. Например, опора СВ 95 имеет длину 9,5 метров.

Применяются следующие железобетонные опоры:

  • СВ 85;
  • СВ 95
  • СВ 110;
  • СВ 105.

На опорах СВ сверху и снизу приварена арматура для осуществления повторного заземления PEN проводника.

повторное-заземление-20повторное-заземление-20

повторное заземление ВЛИповторное заземление ВЛИ

повторное-заземление-19повторное-заземление-19

Но вернемся к повторному заземлению.

Повторное заземление, называется повторным, потому что этот провод уже заземлен на КТП.

Трансформатор с глухозаземленной нейтралью (TN-C-S) предполагает, что по ВЛИ тянутся два или четыре провода СИП. Один или три провода фазные, плюс PEN проводник (он несущий). Разделяется PEN проводник на нулевой рабочий провод (N) и нулевой защитный провод (PE)  проводник на столбе, если на нем вы ставите ВУ (вводное устройство) или в щите в доме.

Напомню, что разделяется PEN проводник на нулевой рабочий провод (N) и нулевой защитный провод (PE)  проводник на столбе, если на нем вы ставите ВУ (вводное устройство) или в щите в доме.

повторное-заземление-15повторное-заземление-15

Согласно ПУЭ повторное заземление ВЛИ это заземление PEN или PE проводника ВЛИ электропередач.

Как делается повторное заземление ВЛИ.

Повторное заземление ВЛИ на бетонной опоре

Повторное заземление делается на столбе или опоре вне ВУ (вводного устройства) или ВЩ (вводного щита), до вводного автомата или общего рубильника.

PEN проводник следует подсоединять к арматурному выпуску вверху железобетонной опоры, как основной, так и подкосной (если она есть). На следующем фото показано, как делается повторное заземление несущего PEN проводника, прокалывающим зажимом (4) на проходной опоре, без отвода. Такое заземление делается на каждой третьей опоре ВЛ и на опоре отвода к вашему дому.

повторное-заземление-14повторное-заземление-14

повторное-заземление-12повторное-заземление-12

Повторное заземление на деревянной опоре

Для повторного заземления на деревянной опоре монтируется заземляющий спуск. Заземляющий спуск делается, из металлического прута по опоре, который приваривается к штыревому электроду, вбитому в землю. Прут лучше взять из оцинкованной стали, если он толще 6 мм или из черной стали с антикоррозийным слоем, если он тоньше 6 мм.

Для работ понадобится сам прут, кувалда для его забивания, набор гаечных ключей (или сварка), отрезная болгарка на аккумуляторах. Выбрать болгарку на аккумуляторе нужно по диаметру отрезного круга и наличию двух зарядных батарей. Для работы вам не понадобиться электрическое подключение, что очень удобно в данном контексте.

повторное-заземление-на-деревянной-опоре-1повторное-заземление-на-деревянной-опоре-1

Аналогично делается повторное заземления железобетонного столба без арматурного выпуска.

повторное-заземление-22-1повторное-заземление-22-1

На деревянной опоре, где выполнено повторное заземление PEN проводника, нужно заземлить все металлические крюки и штыри опоры. Если на деревянной или железобетонной опоре нет повторного заземления PEN проводника, то крюки и штыри заземлять не нужно (2-4-41 ПУЭ).

повторное-заземление-13повторное-заземление-13

Всё металлическое электрооборудование, расположенное на столбах (молниезащита, шиты ВУ, защита от перенапряжений и т.п.) должны заземляться отдельными проводами. Сопротивление повторного заземления не должно превышать 30 Ом (в варианте глухозаземленной нейтрали трансформатора).

Повторное заземление PEN проводника ВЛИ не отменяет устройство заземления частного дома с монтажом контура заземления возле или вокруг дома.

Советы практика

В завершении приведу предписание технического надзора. Где нужно сделать повторное заземление на участке ВЛИ от ТП до дома, длинной 800 метров.

В этом варианте, повторное заземление нужно сделать:

  • На последнем (у дома) и первом (у подстанции) столбах линии;
  • На анкерных опорах ВЛИ;
  • На опорах с шагом 100± метров от первой опоры, с заземлением.

анкерная-опораанкерная-опора

©Ehto.ru

Полезно почитать

  • Записи не найдены

Похожие посты:

Повторное заземление ВЛИ: схема, видео, нормы ПУЭ

Повторное заземление ВЛИ — это преднамеренное соединение нулевого провода с заземляющим устройством в в электроустановках до 1 кВ, которое может иметь электрическую связь с заземляющим устройством источника электропитания. ВЛИ представляет собой воздушную линию на опорах из железобетона или дерева с самонесущими изолированными проводами (СИП). Ниже мы расскажем читателям сайта Сам Электрик, как правильно сделать повторное заземление воздушных линий электропередач и для чего это нужно.

Виды опор

Деревянные

Деревянные опоры применяются в настоящее время ограниченно, основном в малонаселенных пунктах. Они обладают такими преимуществами, как низкая себестоимость изготовления и простота установки, легкий вес, высокая устойчивость к нагрузкам. К тому же древесина является хорошим диэлектриком, что увеличивает безопасность эксплуатации. К недостаткам деревянных опор можно отнести необходимость подбора бревен для одной ВЛ с одинаковыми диаметрами для обеспечения одинакового распределения нагрузки, высокую подверженность механическим повреждениям и быстрому износу древесины при эксплуатации. Чтобы устранить негативное влияние окружающей среды и уменьшить процессы гниения, деревянные опоры пропитывают или покрывают специальными составами.

Изготавливают опоры из дерева хвойных пород. Диаметр бревен и длина подбирается по классу опоры. Классификация опор составлена таким образом, бревно определенного диаметра верхнего торца и определенной длины должны иметь соответствующий вес или объем. Деревянные опоры могут относиться к классу L, M или S

Опоры для ВЛ до 1 кВ должны иметь диаметр не менее 14 см. Высота опор — от 6 до 13 метров. В зависимости от класса древесины и ее кубатуры опоры могут весить от 180 до 350 кг.

Столб из дерева

Железобетонные

Железобетонные опоры более прочные и устойчивые, чем деревянные. Срок их износа существенно больше, чем у деревянных опор, поэтому они получили наибольшее распространение при строительстве ВЛ разного уровня напряжения.

Железобетонные опоры производят из армированного бетона, перед изготовлением их рассчитывают в зависимости от того, какую роль будет выполнять опора в воздушной линии. Требования по распределению нагрузки устанавливаются ГОСТ И ПУЭ.

Классифицируются железобетонные опоры в следующем порядке:

  • специальные — предназначены для определенных условий: климатических, при переходах через препятствия, при пересечениях ВЛ и других;
  • концевые — устанавливаются в конце ВЛ;
  • угловые — используют на поворотах ВЛ;
  • анкерные — осуществляют натяжение проводов на прямых участках;
  • промежуточные — поддерживают, но не натягивают провода.

Применяются железобетонные опоры во всех ВЛ — как с обычными проводами, так и с СИП.

На фото ниже показан внешний вид железобетонной опоры.

Железобетонный столб

Используются такие ЖБ конструкции:

  • CВ 105;
  • CВ 110;
  • CВ 95;
  • CВ 85.

Для того чтобы осуществлять вторичное заземление PEN проводника, с двух сторон опоры приваривают арматуру. Это делается для выполнения требований ПУЭ (п. 2.4.40, см. Главу 2.4): «РЕN-проводник следует присоединять к арматуре железобетонных стоек и подкосов».

Назначение повторного заземления

Повторное заземление ВЛИ нужно для того, чтобы обеспечить нормальную электробезопасность при эксплуатации ВЛ. Согласно п. 2.4.38 ПУЭ «На опорах ВЛ должны быть выполнены заземляющие устройства, предназначенные для повторного заземления, защиты от грозовых перенапряжений, заземления электрооборудования, установленного на опорах ВЛ. Сопротивление заземляющего устройства должно быть не более 30 Ом».

Если в системе электроснабжения установлена трансформаторная подстанция с глухозаземленной нейтралью, то для того, чтобы обеспечить требуемую электробезопасность требуется создать электрическую связь с заземлением по всей системе. Для опор выполняется повторное заземление нулевого провода — таким образом обеспечивается надежная связь РЕN проводника с заземляющим устройством. Схема выглядит следующим образом:

Схема повторного заземления нулевого провода в системе электроснабжения

В ПУЭ указывается, что повторное заземление ВЛИ означает погружение в грунт PEN или РЕ проводника в воздушной электрической линии с изолированными проводами.

Важно! Повторный заземляющий контур осуществляется на подпоре без вводного приспособления или вводного щитка (ВЩ). Оно присоединяется к вводному автомату или к совместному рубильнику.

Защитный и рабочий нулевые провода подключаются вверху ЖБ (железобетонного столба) к арматурному выпуску. Если есть подкосной столб, то присоединять необходимо и к нему, а не только к основному.

На фото ниже изображено, как нужно соорудить повторное заземление ВЛИ основного проводника с использованием прокалывающего зажима на проходном столбе, без отвода. Осуществлять подобное необходимо на каждой третьей опоре ВЛ и на столбе, который ведет к жилому зданию.

Использование прокалывающего зажима

На опорах при монтаже может быть сделан заземляющий спуск из проволоки или катанной стали. Он также может отсутствовать. На рисунке ниже показана конструкция опоры с заземляющим спуском.

Заземление опоры

  • 1 – место сварки;
  • 2 – заземлители;
  • 3 — спуск.

Как правило, он изготавливается из металлической проволоки. Все это прикрепляется к штыревому электроду, который вбивается в грунт. В случае если проволока больше по диаметру, чем 6 мм, то желательно чтобы он был сделан из оцинкованного металла, а если меньше 6 мм – из черного металла с нанесенным антикоррозийным средством.

Согласно правилам устройства электроустановок, если на деревянной конструкции было выполнено повторное заземление PEN-проводников, то необходимо заземлить полностью все штыри и крюки опоры из металла. Если же на столбе из дерева или железобетона не организовывают повторный заземляющий контур, то ничего делать не нужно (ПУЭ 2.4.41).

Электрооборудование из металла, которое находится на опорах, в обязательном порядке должно заземляться индивидуальными проводами. Это такое оборудование как щиты ВУ, молниезащита или защита от высокого напряжения. В случае ТП с глухозаземленной нейтралью сопротивление вторичного заземлителя должно быть 30 Ом или меньше.

Учтите! Для частного жилья повторная защита PEN-проводников ВЛИ не освобождает от установки специального заземляющего контура. О том, как сделать заземление в доме своими руками, мы рассказывали в соответствующей статье!

Полезные рекомендации

Если необходимо сделать повторное заземление ВЛИ от трансформаторной подстанции до жилого помещения на расстояние 800 м, его следует выполнить в следующих местах:

  • на столбах ВЛ, которые размещаются возле трансформаторной подстанции и возле дома;
  • на анкерных столбах ВЛ;
  • на опоре с дистанцией 100 метров от основной опоры, имеющей заземление.

Также рекомендуем просмотреть видео, на котором показывается, как сделать повторное заземление, а точнее — без особых проблем забить штыри в землю:

Полезное по теме:

ПУЭ 7. Правила устройства электроустановок. Издание 7

1.7.100. В электроустановках с глухозаземленной нейтралью нейтраль генератора или трансформатора трехфазного переменного тока, средняя точка источника постоянного тока, один из выводов источника однофазного тока должны быть присоединены к заземлителю при помощи заземляющего проводника.

Искусственный заземлитель, предназначенный для заземления нейтрали, как правило, должен быть расположен вблизи генератора или трансформатора. Для внутрицеховых подстанций допускается располагать заземлитель около стены здания.

Если фундамент здания, в котором размещается подстанция, используется в качестве естественных заземлителей, нейтраль трансформатора следует заземлять путем присоединения не менее чем к двум металлическим колоннам или к закладным деталям, приваренным к арматуре не менее двух железобетонных фундаментов.

При расположении встроенных подстанций на разных этажах многоэтажного здания заземление нейтрали трансформаторов таких подстанций должно быть выполнено при помощи специально проложенного заземляющего проводника. В этом случае заземляющий проводник должен быть дополнительно присоединен к колонне здания, ближайшей к трансформатору, а его сопротивление учтено при определении сопротивления растеканию заземляющего устройства, к которому присоединена нейтраль трансформатора.

Во всех случаях должны быть приняты меры по обеспечении непрерывности цепи заземления и защите заземляющего проводника от механических повреждений.

Если в PEN-проводнике, соединяющем нейтраль трансформатора или генератора с шиной PEN распределительного устройства напряжением до 1 кВ, установлен трансформатор тока, то заземляющий проводник должен быть присоединен не к нейтрали трансферматора или генератора непосредственно, а к PEN-проводнику, по возможности сразу за трансформатором тока. В таком случае разделение PEN-проводника на PE— и N-проводники в системе TN-S должно быть выполнено также за трансформатором тока. Трансформатор тока следует размещать как можно ближе к выводу нейтрали генератора или трансформатора.

1.7.101. Сопротивление заземляющего устройства, к которому присоединены нейтрали генератора или трансформатора или выводы источника однофазного тока, в любое время года должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. Это сопротивление должно быть обеспечено с учетом использования естественных заземлителей, а также заземлителей повторных заземлений PEN— или PE-проводника ВЛ напряжением до 1 кВ при количестве отходящих линий не менее двух. Сопротивление заземлителя, расположенного в непосредственной близости от нейтрали генератора или трансформатора или вывода источника однофазного тока, должно быть не более 15, 30 и 60 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока.

При удельном сопротивлении земли þ>100 Ом•м допускается увеличивать указанные нормы в 0,01 þ раз, но не более десятикратного.

1.7.102. На концах ВЛ или ответвлений от них длиной более 200 м, а также на вводах ВЛ к электроустановкам, в которых в качестве защитной меры при косвенном прикосновении применено автоматическое отключение питания, должны быть выполнены повторные заземления PEN-проводника. При этом в первую очередь следует использовать естественные заземлители, например, подземные части опор, а также заземляющие устройства, предназначенные для грозовых перенапряжений (см. гл.2.4).

Указанные повторные заземления выполняются, если более частые заземления по условиям защиты от грозовых перенапряжений не требуются.

Повторные заземления PEN-проводника в сетях постоянного тока должны быть выполнены при помощи отдельных искусственных заземлителей, которые не должны иметь металлических соединений с подземными трубопроводами.

Заземляющие проводники для повторных заземлений PEN-проводника должны иметь размеры не менее приведенных в табл.1.7.4.

Таблица 1.7.4. Наименьшие размеры заземлителей и заземляющих проводников, проложенных в земле.

Материал

Профиль сечения

Диаметр, мм

Площадь поперечного сечения, мм2

Толщина стенки, мм

Сталь черная

Круглый:

– для вертикальных заземлителей;

16

– для горизонтальных заземлителей

10

Прямоугольный

100

4

Угловой

100

4

Трубный

32

3,5

Сталь оцинкованная

Круглый:

– для вертикальных заземлителей;

12

– для горизонтальных заземлителей

10

Прямоугольный

75

3

Трубный

25

2

Медь

Круглый

12

Прямоугольный

50

2

Трубный

20

2

Канат многопроволочный

1,8*

35

* Диаметр каждой проволоки.

1.7.103. Общее сопротивление растеканию заземлителей (в том числе естественных) всех повторных заземлений PEN-проводника каждой ВЛ в любое время года должно быть не более 5, 10 и 20 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. При этом сопротивление растеканию заземлителя каждого из повторных заземлений должно быть не более 15, 30 и 60 Ом соответственно при тех же напряжениях. При удельном сопротивлении земли þ>100 Ом•м допускается увеличивать указанные нормы в 0,01 þ раз, но не более десятикратного.

Переменный ток в электронике: горячие, нейтральные и заземляющие провода

  1. Программирование
  2. Электроника
  3. Компоненты
  4. Переменный ток в электронике: горячие, нейтральные и заземляющие провода

Автор: Дуг Лоу

До Если вы начинаете работать с линейным напряжением в ваших электронных схемах, вам необходимо понимать некоторые детали того, как устроено большинство жилых и коммерческих зданий. Следующее описание относится только к США; если вы находитесь в другой стране, вам нужно будет определить стандарты электропроводки в вашей стране.

Стандартная разводка сетевого напряжения в США выполняется кабелями в пластиковой оболочке, которые обычно имеют три проводника. Этот тип кабеля технически называется кабелем NMB, , но большинство электриков называют его, используя его наиболее популярную торговую марку Romex.

Два проводника кабеля NMB покрыты пластиковой изоляцией (один белый, другой черный). Третий провод — неизолированная медь. Эти проводники имеют следующие обозначения:

  • Горячий: Черный провод — это горячий провод , который обеспечивает источник тока 120 В переменного тока.

  • Нейтраль: Белый провод называется нулевым проводом . Он обеспечивает обратный путь для тока, обеспечиваемого горячей проволокой. Нейтральный провод подсоединяется к заземлению.

  • Заземление: Оголенный провод называется проводом заземления . Как и нейтральный провод, заземляющий провод также подключен к заземлению. Однако нейтральный и заземляющий провод служат двум разным целям.

    Нейтральный провод вместе с горячим проводом составляет часть цепи под напряжением.Напротив, заземляющий провод подключается к любым металлическим частям в приборе, например, к микроволновой печи или кофейнику. Это мера безопасности на случай, если горячий или нейтральный провод каким-то образом соприкоснется с металлическими частями.

    Подключение металлических частей к заземлению исключает опасность поражения электрическим током в случае короткого замыкания.

Обратите внимание, что для некоторых цепей требуется четвертый провод. Когда используется четвертый провод, он покрыт красной изоляцией и также является горячим проводом.

Три провода в стандартном кабеле NMB подключены к трем выводам стандартной электрической розетки (правильное название — розетка ). Как вы можете видеть, нейтральный и горячий провода подключены к двум вертикальным контактам в верхней части розетки (нейтраль слева, горячий справа), а заземляющий провод подключен к круглому контакту в нижней части розетки. ,

Вы можете вставить двух- или трехконтактную вилку в стандартную трехконтактную розетку.Двухконтактные вилки предназначены для приборов, не требующих заземления.

Большинство незаземленных приборов имеют двойную изоляцию , что означает, что существует два слоя изоляции между любыми проводами под напряжением и любыми металлическими частями внутри прибора. Первый слой — это изоляция на самом проводе; второй обычно выполнен в виде пластикового корпуса, изолирующего проводку под напряжением от других металлических частей.

Трехконтактные вилки предназначены для приборов, которым в целях безопасности требуется заземление.Для большинства приборов, в которых используется металлический корпус, требуется отдельное заземление.

Есть только один способ вставить вилку с тремя контактами в розетку с тремя контактами. Но обычные двухконтактные вилки, у которых нет заземляющего контакта, можно подключить к любому контакту на горячей стороне.

.

В чем разница между соединением, заземлением и заземлением?

Соединение, заземление и заземление

Одна из самых неправильно понимаемых и запутанных концепций — это разница между соединением, заземлением и заземлением. Связывание — это более ясное слово по сравнению с заземлением и заземлением, но между заземлением и заземлением есть небольшая разница. Заземление и заземление — это на самом деле разные термины для выражения одной и той же концепции.

What is the difference between Bonding, Grounding and Earthing? What is the difference between Bonding, Grounding and Earthing? В чем разница между соединением, заземлением и заземлением?

Содержание:


Вводная земля или земля

Заземление в системе электропроводки сети — это проводник, который обеспечивает путь с низким импедансом к земле. для предотвращения появления опасного напряжения на оборудовании.Заземление чаще используется в стандартах Великобритании, Европы и большинства стран Содружества (IEC, IS), а термин «заземление» используется в стандартах Северной Америки (NEC, IEEE, ANSI, UL).

Мы понимаем, что заземление необходимы, и знаем, как это сделать, но у нас нет кристально четкой концепции для этого. Нам нужно понимать, что на самом деле есть две разные вещи, которые мы делаем для одной и той же цели, которую мы называем заземлением или заземлением.

Заземление — , чтобы связать наш источник электричества с землей (обычно через соединение с каким-то стержнем, вбитым в землю, или другим металлом, который имеет прямой контакт с землей).

Заземленные цепи машин должны иметь эффективный обратный путь от машин к источнику питания, чтобы функционировать должным образом (здесь — нейтральная цепь).

The earthing connection to switchboard rear door (metal parts) The earthing connection to switchboard rear door (metal parts) Заземление задней двери распределительного щита (металлические детали)

Кроме того, нетоковедущие металлические компоненты в системе, такие как шкафы для оборудования, корпуса и конструкционная сталь, должны быть электрически соединены между собой и должным образом заземлены, чтобы между ними не могло существовать потенциальное напряжение.Однако проблемы могут возникнуть, когда термины, такие как «соединение», «заземление» и «заземление», меняются местами или путаются в определенных ситуациях.

В системе распределения питания типа TN , в США NEC (и, возможно, другое) использование: оборудование заземлено для пропускания тока повреждения и отключения защитного устройства без электризации корпуса устройства. Нейтраль — это путь возврата тока для фазы. Эти заземляющий провод и нейтральный провод соединены вместе и заземлены на распределительном щите, а также на улице, но цель состоит в том, чтобы ток не протекал по заземленной земле, за исключением кратковременных аварийных состояний.

Здесь мы можем сказать, что на практике заземление почти одинаковы.

Но в системе распределения питания типа TT (в Индии) нейтраль заземляется только (здесь это фактически называется заземлением) на источнике распределения (на распределительном трансформаторе), а четыре провода (нейтральный и трехфазный) передаются потребителю. На стороне потребителя все корпуса электрооборудования подключаются и заземляются в помещениях потребителя (здесь это называется Заземление).

Потребитель не имеет разрешения. смешивать нейтраль с землей в своих помещениях. Заземление и заземление отличаются на практике.

В обоих вышеупомянутых случаях Заземление и Заземление используются для одной и той же цели . Давайте попробуем разобраться в этой терминологии по очереди.

Перейти к содержанию ↑


Склеивание

Соединение — это просто действие соединения двух электрических проводников вместе . Это могут быть два провода, провод и труба, или это могут быть два Оборудования.Соединение должно выполняться путем соединения всех металлических частей, которые не должны пропускать ток во время нормальной работы, с приведением их к одинаковому электрическому потенциалу.

Связывание гарантирует, что эти две соединенные детали будут иметь одинаковый электрический потенциал. Это означает, что мы не сможем накапливать электроэнергию в одном оборудовании или между двумя разными устройствами. Между двумя соединенными телами не может быть тока, поскольку они имеют одинаковый потенциал.

Сама по себе склейка, ничего не защищает. Однако, если одна из этих коробок заземлена, не может быть накопления электроэнергии. Если заземленная коробка соединена с другой коробкой, другая коробка также имеет нулевой электрический потенциал.

Защищает оборудование и человека, уменьшая ток между частями оборудования при различных потенциалах.

Основная причина для соединения — безопасность персонала, поэтому кто-то, коснувшись двух частей оборудования одновременно, не получит шока, став путем выравнивания, если они окажутся под разными потенциалами. Вторая причина связана с тем, что происходит, если фазовый провод может коснуться внешней металлической части.

Соединение помогает создать обратный путь к источнику с низким сопротивлением. Это вызовет протекание большого тока, что, в свою очередь, вызовет срабатывание прерывателя.

Другими словами, соединение позволяет выключателю отключиться и, таким образом, устранить неисправность .

Typical bonding connection Typical bonding connection Типичное соединение

Соединение с заземлением широко используется для обеспечения того, чтобы все проводники (человек, поверхность и продукт) имели одинаковый электрический потенциал .Когда все проводники имеют одинаковый потенциал , разряд не может произойти .

Перейти к содержанию ↑


Заземление

Заземление означает , соединяющее мертвую часть (то есть часть, которая не проводит ток при нормальных условиях) с землей, например, рамы электрооборудования, корпуса, опоры и т. Д.

Цель заземления — минимизировать риск поражения электрическим током. при прикосновении к металлическим частям при наличии неисправности.Обычно для этого используется зеленый провод в качестве обозначения.

В условиях неисправности нетоковедущие металлические части электроустановки, такие как рамы, ограждения, опоры, ограждения и т. Д., Могут иметь высокий потенциал по отношению к земле, так что любой человек или бродячие животные, прикоснувшись к ним или приблизившись к ним, будут подвергается воздействию разности потенциалов, которая может привести к протеканию тока через тело человека или животного такой ценности, которая может оказаться фатальной.

Чтобы избежать этого, нетоковедущие металлические части электрической системы подключаются к общей массе земли с помощью системы заземления, состоящей из заземляющих проводов для безопасного отвода токов замыкания на землю.

Заземление выполнено путем соединения металлической системы с землей. Обычно это достигается путем введения заземляющих стержней или других электродов глубоко внутрь земли.

Заземление

предназначено для обеспечения безопасности или защиты электрического оборудования и человека путем разряда электрической энергии на землю. .

Перейти к содержанию ↑


Заземление

Заземление означает , соединяющее токоведущую часть (то есть часть, которая проводит ток в нормальных условиях) с землей, например нейтралью силового трансформатора. Это сделано для защиты оборудования энергосистемы и обеспечения эффективного обратного пути от машины к источнику питания.

Например, заземление нейтральной точки трансформатора, подключенного звездой.

Заземление относится к токоведущей части системы, такой как нейтраль (трансформатора или генератора).

Из-за молнии, скачков напряжения в сети или непреднамеренного контакта с другими линиями высокого напряжения в проводах системы распределения электроэнергии может возникнуть опасно высокое напряжение. Заземление обеспечивает безопасный альтернативный путь вокруг электрической системы вашего дома, что сводит к минимуму ущерб от таких происшествий.

Обычно для обозначения этого используется черный провод.

Все электрические / электронные схемы (AC & DC) нужен опорный потенциал (ноль вольт), который называется основанием для того, чтобы сделать возможным протекание тока от генератора к нагрузке. Земля может или не может быть заземлена. При распределении электроэнергии он заземляется либо в точке распределения, либо на стороне потребителя, но не заземлен в автомобиле (например, все электрические цепи транспортных средств имеют заземление, подключенное к шасси и металлическому корпусу, которые изолированы от земли через шины).

Может существовать напряжение между нейтралью и землей из-за падения напряжения в проводке, поэтому нейтраль не обязательно должна иметь потенциал земли.

В правильно сбалансированной системе фазные токи уравновешивают друг друга, так что общий ток нейтрали также равен нулю.Для отдельных систем это невозможно, но мы стремимся приблизиться к совокупности.

Эта балансировка обеспечивает максимальную эффективность вторичной обмотки распределительного трансформатора.

Перейти к содержанию ↑


Микроразница между заземлением и заземлением

Нет большой разницы между заземлением и заземлением, оба значения означают « Подключение электрической цепи или устройства к земле » . Это служит различным целям как стекать нежелательные токи, чтобы обеспечить опорное напряжение для цепей, нуждающихся в один, чтобы свинцовой молнии от хрупкого оборудования.

Даже несмотря на небольшую разницу между заземлением и заземлением:


1. Разница в терминологии

В США используется термин Заземление , но в Великобритании используется термин Заземление .


2. Балансировка нагрузки и безопасность

Земля — ​​это источник для нежелательных токов , а также иногда как обратный путь для основного тока. При этом заземление делается не для обратного пути, а только для защиты чувствительного оборудования.Это альтернативный путь с низким сопротивлением для тока.

Когда мы вынимаем нейтраль для трехфазного несимметричного соединения и отправляем ее на землю, это называется заземлением. Заземление выполняется для уравновешивания несбалансированной нагрузки. Между оборудованием и заземляющей ямой используется заземление, чтобы избежать поражения электрическим током и повреждения оборудования.


3. Защита оборудования против безопасности человека

Заземление предназначено для защиты элементов схемы всякий раз, когда высокое напряжение передается громом или любыми другими источниками, в то время как заземление является общей точкой в ​​цепи для поддержания уровней напряжения.

Земля используется для безопасности человеческого тела в условиях неисправности. , в то время как заземление (как нейтральное заземление) используется для защиты оборудования . Заземление — это профилактическая мера, а заземление — это просто обратный путь.

Заземляющий провод обеспечивает обратный путь для тока короткого замыкания, когда фазный провод случайно касается заземленного объекта. Это элемент безопасности системы электропроводки, и мы никогда не ожидаем увидеть протекание тока через заземляющий проводник во время нормальной работы.

ВАЖНО: Не заземляйте нейтраль второй раз, когда она заземлена либо на распределительном трансформаторе, либо на главной сервисной панели со стороны потребителя. Заземление действует как нейтраль. Но нейтраль не может действовать как земля.


4. Нулевой потенциал системы против нулевого потенциала цепи

Заземление и заземление относятся к нулевому потенциалу , но система, подключенная к нулевому потенциалу, отличается от оборудования, подключенного к нулевому потенциалу.Если нейтральная точка генератора или трансформатора подключена к нулевому потенциалу, то это называется , заземление .

В то же время, если корпус трансформатора или генератора подключен к нулевому потенциалу, это называется заземлением .

Термин «Заземление» означает, что цепь физически соединена с землей и имеет нулевой потенциал относительно земли (земли), но в случае «заземления» цепь физически не подключена к земле, но ее потенциал равен нулю (где токи алгебраически равны нулю) относительно другой точки, которая также известна как « Virtual Grounding ».

Земля с нулевым потенциалом, тогда как нейтраль может иметь некоторый потенциал. Это означает, что нейтраль не всегда имеет нулевой потенциал по отношению к земле. При заземлении у нас есть опорный потенциал нулевого напряжения относительно земли, в то время как при заземлении у нас есть местных опорных потенциалов нулевого напряжения для цепи . Когда мы подключаем два различных силовых цепей в системе распределения электроэнергии, мы хотим иметь тот же ноль вольт ссылку, чтобы мы соединить их и основания вместе.

Эта общая ссылка может отличаться от потенциала земли.

Перейти к содержанию ↑

Незаконная практика взаимозаменяемости Назначение заземляющего провода

Нейтральный провод при подключении к сети является обязательным в целях безопасности. Представьте, что человек с 4-го этажа здания использует заземляющий провод (, заземленный в подвале в подвале) в качестве нейтрального для питания своих фонарей. Другой человек со 2-го этажа имеет обычную настройку и использует нейтраль для той же цели.Нейтральный провод также заземляется на уровне земли (согласно практике США нейтраль заземляется (заземляется) в здании, а согласно индийской практике она заземляется (заземляется) на распределительном трансформаторе).

Однако заземляющий провод (нейтральный провод) имеет гораздо более низкое электрическое сопротивление, чем заземляющий провод ( заземление ), что приводит к разнице электрических потенциалов (т. Е. Напряжений) между ними. Это напряжение представляет серьезную опасность для любого, кто прикасается к заземляющему проводу (металлический корпус оборудования), поскольку он может составлять несколько десятков вольт.

Вторая проблема законность . Использование заземляющего провода вместо нейтрали делает вас вором энергии, так как счетчик использует только фазу и нейтраль для регистрации потребления энергии. Многие потребители совершают кражу энергии, используя заземляющий провод в качестве нейтрального провода в счетчике энергии.

Перейти к содержанию ↑

Заключение

Земля — ​​это источник нежелательных токов, а также обратный путь для основного тока. При этом заземление делается не для обратного пути, а только для защиты чувствительного оборудования.Это альтернативный путь с низким сопротивлением для тока.

Земля используется для обеспечения безопасности человеческого тела в условиях неисправности, в то время как заземление (как нейтральное заземление) используется для защиты оборудования.

Перейти к содержимому ↑

,

6 проблем с проводкой и заземлением, которые приводят к низкому качеству электроэнергии

Проблемы с проводкой и заземлением

В этой технической статье представлены типичные проблемы с проводкой и заземлением, связанные с качеством электроэнергии. Приведены возможные решения этих проблем, а также возможные причины проблем, наблюдаемых в системе заземления. (См. Таблицу 2 в конце статьи)

6 wiring and grounding problems that lead to low power quality 6 Проблемы с проводкой и заземлением, которые приводят к низкому качеству электроэнергии

Следующий список представляет собой лишь образец проблем, которые могут возникнуть в системе заземления.

  1. Изолированная территория
  2. Контуры заземления
  3. Отсутствует защитное заземление
  4. Множественные заземления нейтрали
  5. Дополнительные стержни заземления
  6. Недостаточно нейтральных проводов

1. Изолированная площадка

Изолированные заземления сами по себе не являются проблемой заземления. Однако неправильно использованное изолированное заземление может быть проблемой. Изолированные заземления используются для контроля шума в системе заземления.Это достигается за счет использования изолированных розеток заземления, которые обозначены знаком «∆» на лицевой стороне розетки .

Изолированные розетки заземления часто имеют оранжевый цвет. На рисунке 1 показана правильно подключенная изолированная цепь заземления.

Properly wired isolated ground circuit Properly wired isolated ground circuit Рисунок 1 — Правильно подключенная изолированная цепь заземления

У NEC есть указание на изолированные земли.

NEC 250-74 Подключение клеммы заземления розетки к коробке

Перемычка для подключения оборудования должна использоваться для подключения клеммы заземления розетки заземляющего типа к заземленной коробке.

Исключение № 4. Там, где это требуется для уменьшения электрического шума (электромагнитных помех) в цепи заземления, должна быть разрешена розетка, в которой вывод заземления специально изолирован от средств крепления розетки. Клемма заземления розетки должна быть заземлена изолированным заземляющим проводом оборудования, проложенным с проводниками цепи. Этому заземляющему проводнику должно быть разрешено проходить через один или несколько щитовых щитов без подключения к зажиму заземления щитового щита , как разрешено в Разделе 384-20, Исключение, так чтобы он заканчивался в том же здании или структуре непосредственно на зажиме заземляющего провода оборудования применимая производная система или источник.

(FPN): Использование изолированного заземляющего провода оборудования не отменяет требования по заземлению системы кабельных каналов и розеточной коробки.

NEC 517-16 Розетки с изолированными клеммами заземления

Розетки с изолированными заземляющими клеммами, как это разрешено в Разделе 250-74, Исключение № 4, должны быть идентифицированы. Такая идентификация должна быть видна после установки.

(FPN): При выборе такой системы с розетками, имеющими изолированные заземляющие клеммы, важно соблюдать осторожность, поскольку полное сопротивление заземления контролируется только заземляющими проводниками и не имеет функциональной выгоды от каких-либо параллельных путей заземления.

Ниже приводится список ошибок, которых следует избегать при установке изолированных цепей заземления:

  • Подключение изолированной цепи заземления к обычной розетке.
  • Совместное использование кабелепровода изолированной цепи заземления с другой цепью.
  • Установка изолированной розетки заземления в двухконтактной коробке с другой цепью.
  • Отсутствует изолированный контур заземления в металлической кабельной броне или кабелепроводе.
  • Не предполагайте, что изолированная розетка заземления имеет действительно изолированное заземление.

Вернуться к «Проблемы с проводкой и заземлением» ↑


2. Контуры заземления

Контуры заземления могут возникать по нескольким причинам. Первый — это когда два или более единиц оборудования используют общую цепь, такую ​​как цепь связи, , но имеют отдельные системы заземления (рисунок 2).

Circuit with a ground loop Circuit with a ground loop Рисунок 2 — Цепь с контуром заземления

Чтобы избежать этой проблемы, следует использовать только одно заземление для систем заземления в здании. Можно использовать более одного заземляющего электрода, но они должны быть связаны вместе (NEC 250-81, 250-83 и 250-84), как показано на Рисунке 3 ниже.

Grounding electrodes must be bonded together Grounding electrodes must be bonded together Рисунок 3 — Заземляющие электроды должны быть соединены вместе

Вернитесь к Проблемы с подключением и заземлением ↑


3. Отсутствует защитное заземление

Отсутствие защитного заземления представляет собой серьезную проблему . Отсутствие заземления обычно происходит из-за обхода защитного заземления. Это типично для зданий, в которых розетки на 120 В имеют только два провода.

Современное оборудование обычно оснащается вилкой с тремя контактами, один из которых является заземляющим.При использовании этого оборудования в двухконтактной розетке можно использовать переходник заземляющей вилки или «читерскую вилку» при условии, что в розетке имеется заземление оборудования.

Это устройство позволяет использовать устройство с тремя контактами в розетке с двумя контактами. При правильном подключении защитное заземление остается неизменным. На рисунке 4 показано правильное использование вилки читера.

Proper use of a grounding plug adapter or “cheater plug” Proper use of a grounding plug adapter or “cheater plug” Рисунок 4 — Правильное использование адаптера заземляющей вилки или «вилки читера»

Если в розетке нет заземления оборудования, то переходник вилки заземления использовать нельзя.При наличии заземляющего провода оборудования предпочтительным методом решения проблемы отсутствия защитного заземления является установка новой трехконтактной розетки в розетке .

Этот метод гарантирует, что заземляющий провод не будет шунтирован. NEC подробно обсуждает заземляющие провода оборудования в Раздел 250 — Заземление .

Вернуться к Проблемы с проводкой и заземлением ↑


4. Множественные заземления нейтрали

Еще одно заблуждение при заземлении оборудования — это то, что нейтраль должна быть связана с заземляющим проводом .В системе или подсистеме допускается только одно соединение нейтрали с землей. Обычно это происходит на служебном входе в объект, если нет отдельно созданной системы.

Отдельно производная система определяется как система , которая получает энергию от обмоток трансформатора, генератора или преобразователя какого-либо типа. Отдельно производные системы должны быть заземлены в соответствии с NEC 250-26.

Нейтраль должна находиться отдельно от заземляющего провода во всех панелях и распределительных коробках, расположенных ниже служебного входа.Дополнительное соединение нейтрали с землей в энергосистеме вызовет протекание нейтральных токов по системе заземления.

Этот ток в системе заземления возникает из-за параллельных путей. Рисунки 5 и 6 иллюстрируют этот эффект.

Neutral current flow with one neutral-to-ground bond Neutral current flow with one neutral-to-ground bond Рисунок 5 — Поток нейтрального тока с одним соединением нейтраль-земля
Neutral current flow with and extra neutral-to-ground bond Neutral current flow with and extra neutral-to-ground bond Рисунок 6. Поток нейтрального тока с дополнительным соединением нейтраль-земля

Как видно на Рисунке 6, ток нейтрали может проникнуть в систему заземления из-за дополнительной связи нейтрали с землей на вторичной панели управления.Обратите внимание, что не только ток будет течь в заземляющем проводе для системы питания, но токи могут течь в экранированном проводе для коммуникационного кабеля между двумя ПК.

Если необходимо восстановить соединение нейтрали с землей (высокое напряжение нейтрали относительно земли), это может быть выполнено путем создания отдельно производной системы , как определено выше. На рисунке 7 показана отдельно производная система.

Example of the use of a separately derived system Example of the use of a separately derived system Рисунок 7 — Пример использования отдельно производной системы

Вернуться к проблемам с проводкой и заземлением ↑


5.Дополнительные стержни заземления

Дополнительные заземляющие стержни — еще одна распространенная проблема в системах заземления . Стержни заземления для объекта или здания должны быть частью системы заземления. Заземляющие стержни следует подключать там, где все заземляющие электроды здания соединены вместе.

Изолированное заземление можно использовать, как описано в разделе «Изолированное заземление NEC», но не следует путать его с изолированными заземляющими стержнями, что недопустимо.

Основная проблема с дополнительными заземляющими стержнями заключается в том, что они создают вторичные пути для протекания переходных токов, таких как удары молнии, .Когда объект включает использование одного заземляющего стержня, любые токи, вызванные молнией, попадут в систему заземления здания в одной точке. Потенциал заземления всего объекта будет расти и падать вместе.

Однако, если для объекта имеется более одного заземляющего стержня, переходный ток входит в систему заземления объекта более чем в одном месте, и часть переходного тока будет протекать по системе заземления, вызывая повышение потенциала заземления оборудования на разные уровни.

Это, в свою очередь, может вызвать серьезные проблемы с переходным напряжением и возможные условия перегрузки проводов !

Вернуться к Проблемы с проводкой и заземлением ↑


6. Недостаточный нейтральный проводник

С увеличением использования электронного оборудования в коммерческих зданиях растет беспокойство по поводу повышенного тока, налагаемого на заземленный провод (нейтральный провод) . При типичной трехфазной нагрузке, которая уравновешена, теоретически в нейтральном проводе нет тока, как показано на рисунке 8.

A balanced three-phase system A balanced three-phase system Рисунок 8 — Сбалансированная трехфазная система

Однако ПК, лазерные принтеры и другое электронное офисное оборудование используют одну и ту же базовую технологию для получения энергии, необходимой для работы. На рисунке 9 показан типичный блок питания ПК . Входная мощность обычно составляет 120 вольт переменного тока, однофазный.

Для работы внутренних электронных компонентов требуется различных уровней постоянного напряжения (например, ± 5, 12 В постоянного тока) .

The basic one-line for a SMPS The basic one-line for a SMPS Рисунок 9 — Базовая однолинейная схема для ИИП

Это постоянное напряжение получается путем преобразования переменного напряжения через выпрямительную схему определенного типа, как показано на рисунке.Конденсатор используется для фильтрации и сглаживания выпрямленного сигнала переменного тока. Эти типы источников питания называются импульсными источниками питания (SMPS).

Проблема с устройствами, которые включают использование SMPS, , что они вносят тройные гармоники в систему питания .

Тройные гармоники — это гармоники, которые являются нечетными кратными основной частотной составляющей (h = 3, 9, 15, 21,…) . В системе со сбалансированными однофазными нагрузками, как показано на рисунке 10, присутствуют составляющие основной гармоники и третьей гармоники.

Применение текущего закона Кирхгофа в узле N показывает, что основная составляющая тока в нейтрали должна быть равна нулю. Но когда нагрузки сбалансированы, составляющие третьей гармоники в каждой фазе совпадают. Следовательно, величина тока третьей гармоники в нейтрали должна быть в три раза больше тока фазы третьей гармоники.

Balanced single-phase loads Balanced single-phase loads Рис. 10 — Сбалансированные однофазные нагрузки

Это становится проблемой в офисных зданиях, когда от трехфазной системы питаются несколько однофазных нагрузок.С каждой цепью проходят отдельные нейтральные провода, поэтому ток нейтрали будет эквивалентен току в линии.

Однако, когда множественные токи нейтрали возвращаются к панели или трансформатору, обслуживающему нагрузку, тройные токи добавляются к общей нейтрали для панели , и это может вызвать перегрев и, в конечном итоге, даже вызвать отказ нейтрального проводника !

Если используются офисные перегородки, то в перегородке с трехфазными проводниками проложен такой же нейтральный провод, зачастую меньшего размера.Каждая розетка питается от отдельной фазы, чтобы сбалансировать ток нагрузки.

ВНИМАНИЕ! Однако одна нейтраль обычно используется всеми тремя фазами. Это может привести к плачевным результатам , если электрические розетки перегородки используются для питания нелинейных нагрузок, богатых тройными гармониками . В наихудших условиях ток нейтрали никогда не превысит 173% фазного тока.

На рис. 10 показан случай, когда трехфазная панель используется для обслуживания нескольких однофазных ПК SMPS.

Вернуться к Проблемы с проводкой и заземлением ↑


Сводка

Как обсуждалось выше, тремя основными причинами заземления в электрических системах являются:

  1. Личная безопасность
  2. Правильная работа защитного устройства
  3. Шумоподавление

Следуя приведенным ниже инструкциям, можно достичь целей по заземлению:

  • Все оборудование должно иметь защитное заземление.Провод защитного заземления
  • Избегайте токов нагрузки в системе заземления.
  • Поместите все оборудование в системе на одной и той же эквипотенциальной ссылки.

В таблице 1 приведены типичные проблемы с проводкой и заземлением.


Таблица 1 — Краткое изложение вопросов электропроводки и заземления

Общие вопросы
Хорошее качество электроэнергии и методы контроля шума не противоречат требованиям безопасности.
Проблемы с проводкой и заземлением вызывают большинство проблем, связанных с помехами оборудования.
Постарайтесь подключить чувствительное оборудование к выделенным цепям.
Заземленный проводник, нейтральный проводник, должен быть соединен с землей на трансформаторе или главной панели, но не на другой линии ниже панели, за исключением случаев, когда это разрешено отдельно производными системами.

Таблица 2 — Типичные проблемы с проводкой и заземлением и причины

Наблюдаемое состояние или проблема проводки Возможная причина
Импульс, падение напряжения Ослабленные соединения
Импульс, падение напряжения Неисправен прерыватель
Наземные токи Дополнительное соединение нейтрали с землей
Наземные токи Разворот нейтрали относительно земли
Сильные колебания напряжения Высокое сопротивление в цепи нейтрали
Колебания напряжения Заземление нейтрали с высоким импедансом
Высокое напряжение нейтрали относительно земли Заземление с высоким сопротивлением
Запах гари на панели, распределительной коробке или нагрузке Поврежденный провод, плохое соединение, дуга или перегрузка проводки
Панель или распределительная коробка теплые на ощупь Неисправен автоматический выключатель или плохое соединение
Жужжащий звук Искра
Пригоревшая изоляция Перегрузка проводки, неисправный провод или плохое соединение
Обгоревшая панель или соединительная коробка Плохое соединение, неисправный провод
Нет напряжения на нагрузочном оборудовании Сработал прерыватель, плохое соединение или неисправный провод
Прерывистое напряжение на нагрузочном оборудовании Плохое соединение или дуга

Вернуться к «Проблемы с проводкой и заземлением» ↑

Ссылка // Halpin, S.М. «Качество электроэнергии»; Справочник по электроэнергетике под ред. Л.Л. Григсби (покупка в твердом переплете на Amazon)

,

В чем разница между двух- и трехконтактными вилками?

Объявление

Начнем с того, что делают отверстия в розетке. Если вы посмотрите на обычную розетку на 120 В в США, то увидите два вертикальных паза и круглое отверстие с центром под ними. Левый слот немного больше правого. Левый слот называется « нейтральный », правый слот называется « hot », а отверстие под ними называется « заземление ».»Штыри вилки вставляются в эти гнезда розетки.

Если вы читали «Как работают батареи», то знаете, что электричество должно течь в цепи . В батарее электричество течет от одного вывода батареи к другому. В домашней розетке мощность перетекает с горячего на нейтральный. Устройство, которое вы подключаете к розетке, замыкает цепь от горячего разъема к нейтральному, и электричество проходит через устройство, чтобы запустить двигатель, нагреть некоторые катушки или что-то еще.Допустим, вы вставили лампочку в розетку. Энергия будет течь от горячего контакта через нить накала и обратно к нейтральному контакту, создавая при этом свет.

Что, если бы вы вставили толстую жилу провода прямо из горячего гнезда в нейтральное гнездо розетки? В отличие от прибора, который ограничивает количество электричества, которое может протекать до 60 Вт (для лампочки) или 500 Вт (для тостера), провод пропускает через него невероятное количество электричества.Вернувшись в коробку выключателя, автоматический выключатель для розетки обнаружит этот огромный скачок напряжения и отключит подачу электричества. Автоматический выключатель предотвращает перегрев проводов в стене или самой розетки и возгорание.

Гнездо заземления и гнездо нейтрали розетки идентичны. То есть, если вы вернетесь к коробке выключателя, вы обнаружите, что нейтральный и заземляющий провода от всех розеток идут в одно и то же место. Все они подключаются к земле (подробности о заземлении см. В разделе «Как работают распределительные сети»).Поскольку они оба отправляются в одно и то же место, зачем вам оба?

Если вы осмотритесь в своем доме, то обнаружите, что почти каждый прибор с металлическим корпусом имеет трехконтактную розетку. Это также может включать некоторые вещи, такие как ваш компьютер, внутри которых есть блок питания в металлическом корпусе, даже если само устройство поставляется в пластиковом корпусе. Идея заземления заключается в защите людей, использующих приборы в металлическом корпусе, от поражения электрическим током. Корпус подключается непосредственно к заземляющему контакту.

Допустим, провод выходит из незаземленного металлического корпуса, и незакрепленный провод касается металлического корпуса. Если незакрепленный провод горячий, значит, металлический корпус теперь горячий, и любой, кто прикоснется к нему, получит смертельный удар. Когда корпус заземлен, электричество от горячего провода течет прямо на землю, и это срабатывает выключатель в коробке выключателя. Теперь прибор работать не будет, но и вас не убьет.

Что произойдет, если отрезать заземляющий контакт или использовать вилку cheater , чтобы можно было подключить прибор с тремя контактами к розетке с двумя контактами? Ничего особенного — прибор продолжит работать.Однако вы отключили важную функцию безопасности, которая защищает вас от поражения электрическим током в случае отсоединения провода.

,