Защита от импульсных перенапряжений схема подключения: Схема подключения УЗИП — 3 ошибки и правила монтажа. Защита от импульсных перенапряжений.

Содержание

Схема подключения УЗИП — 3 ошибки и правила монтажа. Защита от импульсных перенапряжений.

Для всех нас стало нормой, что в распределительных щитках жилых домов, обязательна установка вводных автоматических выключателей, модульных автоматов отходящих цепей, УЗО или дифф.автоматов на помещения и оборудование, где критичны возможные утечки токов (ванные комнаты, варочная панель, стиральная машинка, бойлер).

Помимо этих обязательных коммутационных аппаратов, практически никому не требуется объяснять, зачем еще нужно реле контроля напряжения.

УЗИП или реле напряжения

Устанавливать их начали все и везде. Грубо говоря оно защищает вас от того, чтобы в дом не пошло 380В вместо 220В. При этом не нужно думать, что повышенное напряжение попадает в проводку по причине недобросовестного электрика.

Вполне возможны природные явления, не зависящие от квалификации электромонтеров. Банально упало дерево и оборвало нулевой провод.

Также не забывайте, что любая ВЛ устаревает. И даже то, что к вашему дому подвели новую линию СИПом, а в доме у вас смонтировано все по правилам, не дает гарантии что все хорошо на самой питающей трансформаторной подстанции – КТП.

Там также может окислиться ноль на шинке или отгореть контакт на шпильке трансформатора. Никто от этого не застрахован.

Именно поэтому все новые электрощитки уже не собираются без УЗМ или РН различных модификаций.

Что же касается устройств для защиты от импульсных перенапряжений, или сокращенно УЗИП, то у большинства здесь появляются сомнения в необходимости их приобретения. А действительно ли они так нужны, и можно ли обойтись без них?

Подобные устройства появились достаточно давно, но до сих пор массово их устанавливать никто не спешит. Мало кто из рядовых потребителей понимает зачем они вообще нужны.

Первый вопрос, который у них возникает: ”Я же поставил реле напряжения от скачков, зачем мне еще какой-то УЗИП?”

Запомните, что УЗИП в первую очередь защищает от импульсов вызванных грозой. Здесь речь идет не о банальном повышении напряжения до 380В, а о мгновенном импульсе в несколько киловольт!

Никакое реле напряжения от этого не спасет, а скорее всего сгорит вместе со всем другим оборудованием. В то же самое время и УЗИП не защищает от малых перепадов в десятки вольт и даже в сотню.

Например устройства для монтажа в домашних щитках, собранные на варисторах, могут сработать только при достижении переменки до значений свыше 430 вольт.

Поэтому оба устройства РН и УЗИП дополняют друг друга.

Защита дома от грозы

Гроза это стихийное явление и просчитать его до сих пор не особо получается. При этом молнии вовсе не обязательно попадать прямо в линию электропередач. Достаточно ударить рядышком с ней.

Даже такой грозовой разряд вызывает повышение напряжения в сети до нескольких киловольт. Кроме выхода из строя оборудования это еще чревато и развитием пожара.

Даже когда молния ударяет относительно далеко от ВЛ, в сетях возникают импульсные скачки, которые выводят из строя электронные компоненты домашней техники. Современный электронный счетчик с его начинкой, тоже может пострадать от этого импульса.

Общая длина проводов и кабелей в частном доме или коттедже достигает нескольких километров.

Сюда входят как силовые цепи так и слаботочка:

  • интернет 
  • TV 
  • видеонаблюдение 
  • охранная сигнализация 

Все эти провода принимают на себя последствия грозового удара. То есть, все ваши километры проводки получают гигантскую наводку, от которой не спасет никакое реле напряжения.

Единственное что поможет и защитит всю аппаратуру, стоимостью несколько сотен тысяч, это маленькая коробочка называемая УЗИП.

Монтируют их преимущественно в коттеджах, а не в квартирах многоэтажек, где подводка в дом выполнена подземным кабелем. Однако не забывайте, что если ваше ТП питается не по кабельной линии 6-10кв, а воздушной ВЛ или ВЛЗ (СИП-3), то влияние грозы на среднем напряжении, также может отразиться и на стороне 0,4кв.

Поэтому не удивляйтесь, когда в грозу в вашей многоэтажке, у многих соседей одновременно выходят из строя WiFi роутеры, радиотелефоны, телевизоры и другая электронная аппаратура.

Молния может ударить в ЛЭП за несколько километров от вашего дома, а импульс все равно прилетит к вам в розетку. Поэтому не смотря на их стоимость, задуматься о покупке УЗИП нужно всем потребителям электричества.

Цена качественных моделей от Шнайдер Электрик или ABB составляет примерно 2-5% от общей стоимости черновой электрики и средней комплектации распредщитка. В общей сумме это вовсе не такие огромные деньги.

На сегодняшний день все устройства от импульсных перенапряжений делятся на три класса. И каждый из них выполняет свою роль.

Модуль первого класса гасит основной импульс, он устанавливается на главном вводном щите.

После погашения самого большого перенапряжения, остаточный импульс принимает на себя УЗИП 2 класса. Он монтируется в распределительном щитке дома.

Если у вас не будет устройства I класса, высока вероятность что весь удар воспримет на себя модуль II. А это может для него весьма печально закончится.

Поэтому некоторые электрики даже отговаривают заказчиков ставить импульсную защиту. Мотивируя это тем, что раз вы не можете обеспечить первый уровень, то не стоит вообще на это тратить денег. Толку не будет.

Однако давайте посмотрим, что говорит об этом не знакомый электрик, а ведущая фирма по системам грозозащиты Citel:

То есть в тексте прямо сказано, класс II монтируется либо после класса 1, либо КАК САМОСТОЯТЕЛЬНОЕ УСТРОЙСТВО.

Третий модуль защищает уже непосредственно конкретного потребителя.

Если у вас нет желания выстраивать всю эту трехступенчатую защиту, приобретайте УЗИП, которые изначально идут с расчетом работы в трех зонах 1+2+3 или 2+3.

Такие модели тоже выпускаются. И будут наиболее универсальным решением для применения в частных домах. Однако стоимость их конечно отпугнет многих.

Схема электрощита с УЗИП

Схема качественно укомплектованного с точки зрения защиты от всех скачков и перепадов напряжения распределительного щита, должна выглядеть примерно следующим образом.

На вводе перед счетчиком — вводной автоматический выключатель, защищающий прибор учета и цепи внутри самого щитка. Далее счетчик.

Между счетчиком и вводным автоматом — УЗИП со своей защитой. Электроснабжающая организация конечно может запретить такой монтаж. Но вы можете обосновать это необходимостью защиты от перенапряжения и самого счетчика.

В этом случае потребуется смонтировать всю схемку с аппаратами в отдельном боксе под пломбой, дабы предотвратить свободный доступ к оголенным токоведущим частям до прибора учета.

Однако здесь остро встанет вопрос замены сработавшего модуля и срыва пломб. Поэтому согласовывайте все эти моменты заранее.

После прибора учета находятся:

  • реле напряжения УЗМ-51 или аналог 
  • УЗО 100-300мА – защита от пожара
  • УЗО или дифф.автоматы 10-30мА – защита человека от токов утечки
  • простые модульные автоматы

Если с привычными компонентами при комплектации такого щитка вопросов не возникает, то на что же нужно обратить внимание при выборе УЗИП?

На температуру эксплуатации. Большинство электронных видов рассчитано на работу при окружающей температуре до -25С. Поэтому монтировать их в уличных щитках не рекомендуется.

Второй важный момент это схемы подключения. Производители могут выпускать разные модели для применения в различных системах заземления.

Например, использовать одни и те же УЗИП для систем TN-C или TT и TN-S уже не получится. Корректной работы от таких устройств вы не добьетесь.

Схемы подключения

Вот основные схемы подключения УЗИП в зависимости от исполнения систем заземления на примере моделей от Schneider Electric. Схема подключения однофазного УЗИП в системе TT или TN-S:

Здесь самое главное не перепутать место подключения вставного картриджа N-PE. Если воткнете его на фазу, создадите короткое замыкание.

Схема трехфазного УЗИП в системе TT или TN-S:

Схема подключения 3-х фазного устройства в системе TN-C:

На что нужно обратить внимание? Помимо правильного подключения нулевого и фазного проводников немаловажную роль играет длина этих самых проводов.

От точки подключения в клемме устройства до заземляющей шинки, суммарная длина проводников должны быть не более 50см!

А вот подобные схемы для УЗИП от ABB OVR. Однофазный вариант:

Трехфазная схема:

Давайте пройдемся по некоторым схемкам отдельно. В схеме TN-C, где мы имеем совмещенные защитный и нулевой проводники, наиболее распространенный вариант решения защиты – установка УЗИП между фазой и землей.

Каждая фаза подключается через самостоятельное устройство и срабатывает независимо от других.

В варианте сети TN-S, где уже произошло разделение нейтрального и защитного проводника, схема похожа, однако здесь монтируется еще дополнительный модуль между нулем и землей. Фактически на него и сваливается весь основной удар.

Именно поэтому при выборе и подключении варианта УЗИП N-PE, указываются отдельные характеристики по импульсному току. И они обычно больше, чем значения по фазному.
Помимо этого не забывайте, что защита от грозы это не только правильно подобранный УЗИП. Это целый комплекс мероприятий.

Их можно использовать как с применением молниезащиты на крыше дома, так и без нее.

Особое внимание стоит уделить качественному контуру заземления. Одного уголка или штыря забитого в землю на глубину 2 метра здесь будет явно не достаточно. Хорошее сопротивление заземления должно составлять 4 Ом.

Принцип действия

Принцип действия УЗИП основан на ослаблении скачка напряжения до значения, которое выдерживают подключенные к сети приборы. Другими словами, данное устройство еще на вводе в дом сбрасывает излишки напряжения на контур заземления, тем самым спасая от губительного импульса дорогостоящее оборудование.

Определить состояние устройства защиты достаточно просто:

  • зеленый индикатор – модуль рабочий
  • красный – модуль нужно заменить

При этом не включайте в работу модуль с красным флажком. Если нет запасного, то лучше его вообще демонтировать.

УЗИП это не всегда одноразовое устройство, как некоторым кажется. В отдельных случаях модели 2,3 класса могут срабатывать до 20 раз!

Автоматы или предохранители перед УЗИП

Чтобы сохранить в доме бесперебойное электроснабжение, необходимо также установить автоматический выключатель, который будет отключать узип. Установка этого автомата обусловлена также тем, что в момент отвода импульса, возникает так называемый сопровождающий ток.

Он не всегда дает возможность варисторному модулю вернуться в закрытое положение. Фактически тот не восстанавливается после срабатывания, как по идее должен был.

В итоге, дуга внутри устройства поддерживается и приводит к короткому замыканию и разрушениям. В том числе самого устройства.

Автомат же при таком пробое срабатывает и обесточивает защитный модуль. Бесперебойное электроснабжение дома продолжается.

Запомните, что этот автомат защищает в первую очередь не разрядник, а именно вашу сеть.

При этом многие специалисты рекомендуют ставить в качестве такой защиты даже не автомат, а модульные предохранители.

Объясняется это тем, что сам автомат во время пробоя оказывается под воздействием импульсного тока. И его электромагнитные расцепители также будут под повышенным напряжением.

Это может привести к пробою отключающей катушки, подгоранию контактов и даже выходу из строя всей защиты. Фактически вы окажетесь безоружны перед возникшим КЗ.



Поэтому устанавливать УЗИП после автомата, гораздо хуже, чем после предохранителей.

Есть конечно специальные автоматические выключатели без катушек индуктивности, имеющие в своей конструкции только терморасцепители. Например Tmax XT или Formula A.

Однако рассматривать такой вариант для коттеджей не совсем рационально. Гораздо проще найти и купить модульные предохранители. При этом можно сделать выбор в пользу типа GG.

Они способны защищать во всем диапазоне сверхтоков относительно номинального. То есть, если ток вырос незначительно, GG его все равно отключит в заданный интервал времени.

Есть конечно и минус схемы с автоматом или ПК непосредственно перед УЗИП. Все мы знаем, что гроза и молния это продолжительное, а не разовое явление. И все последующие удары, могут оказаться небезопасными для вашего дома.

Защита ведь уже сработала в первый раз и автомат выбил. А вы об этом и догадываться не будете, потому как электроснабжение ваше не прерывалось.

Поэтому некоторые предпочитают ставить УЗИП сразу после вводного автомата. Чтобы при срабатывании отключалось напряжение во всем доме.

Однако и здесь есть свои подводные камни и правила. Защитный автоматический выключатель не может быть любого номинала, а выбирается согласно марки применяемого УЗИП. Вот таблица рекомендаций по выбору автоматов монтируемых перед устройствами защиты от импульсных перенапряжений:

Если вы думаете, что чем меньше по номиналу автомат будет установлен, тем надежнее будет защита, вы ошибаетесь. Импульсный ток и скачок напряжения могут быть такой величины, что они приведут к срабатыванию выключателя, еще до момента, когда УЗИП отработает.

И соответственно вы опять останетесь без защиты. Поэтому выбирайте всю защитную аппаратуру с умом и по правилам. УЗИП это тихая, но весьма своевременная защита от опасного электричества, которое включается в работу мгновенно.

Ошибки при подключении

1Самая распространенная ошибка — это установка УЗИП в электрощитовую с плохим контуром заземления.

Толку от такой защиты не будет никакого. И первое же “удачное” попадание молнии, сожгет вам как все приборы, так и саму защиту.

2Не правильное подключение исходя из системы заземления.

Проверяйте техдокументацию УЗИП и проконсультируйтесь с опытным электриком ответственным за электрохозяйство, который должен быть в курсе какая система заземления используется в вашем доме.

3Использование УЗИП не соответствующего класса.

Как уже говорилось выше, есть 3 класса импульсных защитных устройств и все они должны применяться и устанавливаться в своих щитовых.

Статьи по теме

УЗИП и предохранители — проблема защиты и схемы подключения.

УЗИП — это относительно новое устройство, которое в последнее время начали массово устанавливать как в электрощитках частных загородных домов, так и в щитовых крупных предприятий.

Основное его предназначение – защита от импульсных перенапряжений при грозе (но не только). Более подробно о разновидностях, отличиях УЗИП по классам можете прочитать в отдельной статье.

Для тех, кто уже более-менее знаком с этой темой не секрет, что само УЗИП необходимо также защищать. Причем делать это все рекомендуют не автоматическими выключателями, а только плавкими вставками (предохранителями).

И вот тут-то и возникает основная дилемма, о которой многие и не задумываются. Во-первых, как правильно подобрать и рассчитать эту вставку. И во-вторых, а действительно ли она защитит и не приведет ли к еще худшим последствиям?

Давайте разбираться.

Схемы подключения УЗИП

Вот две упрощенные схемы подключения УЗИП, которые приводятся во многих нормативных документах.


На первой, аппарат защиты ставится последовательно перед самим УЗИП. Он главным образом нужен для работы в аварийном режиме, когда на УЗИП происходит короткое замыкание.

Данный аппарат срабатывает на это, своевременно отсекая поврежденный участок цепи. Электроснабжение объекта не прерывается. Более подробно про все схемы подключения читайте по ссылке ниже.

При этом везде говорится, что ни в коем случае нельзя последовательно с УЗИП ставить автоматический выключатель, а нужно использовать только предохранители. Почему так?

Автомат в своей конструкции имеет соленоид (катушку), через которую проходит ток, создающий магнитное поле для срабатывания механизма и разрыва цепи. Но индуктивность катушки, помноженная на производную от тока молнии — это дополнительное напряжение, которое возникнет на самой катушке.

Представьте себе, что у вас мизерная катушка, имеющая индуктивность в 1мкГн/м. При огромной крутизне тока молнии, на этой самой катушке может появиться напряжение до 100кВ!

Кроме того, по правилам не рекомендуется, чтобы от точки подключения УЗИП до места заземления было больше 0,5м. Лишнее расстояние здесь также критично. А катушка это опять же дополнительные витки.



И это еще не учитывая воздействие импульсного тока на элементы выключателя.



Хорошо, если ставить непосредственно перед УЗИП нельзя, давайте разместим автоматический выключатель соответствующей величины параллельно. УЗИП мы “врезаем” в цепь напряжения напрямую, а защиту обеспечиваем в «голове».

Однако и здесь возникает проблема. При повреждении УЗИП вводной выключатель обесточит полностью весь объект, что опять же недопустимо на ответственных нагрузках.

Поэтому все как один и рекомендуют схему с предохранителями.

Предохранитель или выключатель?

Плавкая вставка имеет мизерную индуктивность. На ней не наблюдается никакого падения напряжения, а значит поврежденный УЗИП в случае чего отключится как положено.



Вроде бы все правильно, в чем же здесь подвох? Представим, что при попадании молнии и импульсном перенапряжении дугогасительная камера УЗИП не справилась с сопровождающим током и устройство просто сгорело, создав короткое замыкание.

Естественно, в этот момент должна сработать плавкая вставка. О каких величинах токовых нагрузок здесь идет речь?

При выборе такого предохранителя говорится, что он должен беспрепятственно пропустить через себя импульсный ток молнии и сопровождающий его ток, до момента его гашения в УЗИП. И только потом происходит сработка, если УЗИП развалилось и не справилось со своей задачей.

Вот один из графиков номинальных токов плавкой вставки и импульсного тока молнии в кА. На нем показана величина сгорания и взрыва предохранителя при тех или иных значениях.

Что нам предлагают производители? Они говорят, самостоятельно рассчитайте ток, который пройдет через ваш УЗИП и подберите соответствующий предохранитель, чтобы он при этом сгорел.

Если в ваших условиях максимальный ток 10кА, то вам можно взять предохранитель номиналом 100А. При таком токе (10кА) или меньше, он спокойно пропустит эту величину, чтобы УЗИП воспринял весь удар на себя.

Если же УЗИП не сработает и замкнет, то плавкая вставка при этом сгорит. И вот тут-то и появляется основная проблема. За какое время она сгорит?

Защита от молний и быстродействие

Оказывается, этот вопрос обделен вниманием практически во всех руководствах и учебниках.

Если воспользоваться стандартными кривыми времятоковых характеристик, то можно выяснить, что при больших токах КЗ предохранители сгорают очень быстро – от 0,01сек до 1 миллисекунды. А это время значительно меньше, чем полная вспышка тока молнии.

Полная вспышка тока молнии может содержать в себе несколько импульсов (до 6шт!). При этом общая их длительность по времени близка к 0,1сек. Что в итоге мы имеем?

А имеем следующую ситуацию. Допустим, попала многокомпонентная молния в ЛЭП или рядом, УЗИП не спасло и замкнуло.

Через 0,01сек сгорела вставка, а еще через 0,02сек прибежали оставшиеся 5 импульсов в несколько кА и ваш щиток и все оборудование превратилось в “угольки”.

Защиты то уже никакой нет.

Именно исходя из этого и приходится идти на некоторый компромисс. А именно, возвращаться к схеме №2 с защитным автоматом в общей цепи.

Если у вас оборудование не 1-й категории, а простой жилой дом, то вполне реально отказаться от предохранителей и поставить выключатель соответствующего номинала.

Да, при грозе вы останетесь без света, зато спасете все дорогостоящие приборы и технику.

Молниеотвод – один или несколько?

Кроме защиты от непосредственного попадания молнии в ЛЭП, УЗИПы спасают от наводок и импульсов в низковольтных цепях, когда молния ударила рядом с объектом или в молниеотвод.

Однако в первую очередь для снижения таких негативных последствий от грозы нужно все же делать упор на традиционные методы (молниеотводы и качественно выполненное заземление).

Нельзя полагаться только на УЗИП, не имея хорошего молниеотвода и контура заземления. Устанавливать их нужно в случаях, когда другие средства оказываются, либо не дееспособны и через чур дорогими, либо попросту физически отсутствует возможность для их монтажа.

Что нам дает традиционная молниезащита? Молниеотводы перехватывая молнию, не устраняют полностью воздействие эл.магнитного поля.

При этом забудьте здесь про правило – “чем выше, тем лучше.” Излишне высокий молниеотвод, только увеличивает число проблем.

Ваша задача – обеспечить достаточный уровень защиты при минимально возможной высоте.

Как известно, радиус притяжения молнии равняется трем высотам молниеотвода. При снижении его габарита вы автоматически уменьшите радиус стягивания молний.



Все это говорит о том, что на крупных объектах нужно отказываться от одиночных молниеотводов и переходить к мультиэлектродным. Именно это и не любят как проектировщики, так и исполнители.

Для них гораздо проще (но не надежнее), просчитать что-то одно, чем распыляться на несколько элементов системы.

Экранирование кабеля и контур заземления

Какие еще не совсем очевидные факторы, помогают снизить наводки и последствия воздействия молнии? К примеру, экранирование коммуникаций.

То есть, элементарное применение металлорукава или защита кабеля стальной трубой, раз в 10 уменьшают эл.магнитные воздействия.

Одной из ошибок при защите своего оборудования от последствий грозы является манипуляции с заземлением. Кто-то наивно полагает, что многократно снизив сопротивление заземления на своем объекте, он тем самым добьется 100% защиты (иногда даже без УЗИП).

Якобы, улучшив сопротивление в разы от нормы, при попадании молнии в молниеотвод весь заряд моментально уйдет в землю, а оборудованию ничего не достанется.

Такие люди делают супер-пупер заземляющий контур, вбухивают в это дело кучу бабла, а желаемого эффекта так и не получают.

Запомните раз и навсегда – для эл.цепей 380/220в опасен практически любой ток молнии в заземлителе.

Допустим, вы добились сопротивления в 1 Ом и при очередной грозе ударила самая слабая молния. Кривая распределения молний, которую рисуют все нормативные документы, начинается, как правило с 3кА.

Ориентируясь на эти данные, при такой грозе мы будем иметь у себя на объекте потенциал равный 3кВ. При этом электрическая прочность сети 220В составляет около 2,5кВ.

Вот и получается, что вы никакими обстоятельствами и затратами не сможете убрать наводки до безопасного уровня. Без УЗИП все равно не обойтись.

Поэтому просто делайте контур согласно действующих норм и не тратьте лишние деньги.

Статьи по теме

УЗИП для частного дома: 6 схем подключения

Парадокс наших дней — задал простой вопрос десятку знакомых: вы понимаете, что от удара молнии может сгореть стиралка, холодильник, морозильник и дорогая электроника: компьютер, телевизор, домашний кинотеатр?

Спастись от этой беды можно. Достаточно подключить УЗИП для частного дома в отдельном щитке и возложить на него защиту от случайной аварии.

Только один человек сказал, что планирует решить этот вопрос. Остальные же отложили его рассмотрение до лучших времен. Вот я и решил объяснить его подробнее.

Содержание статьи

Для чего предназначены внутренние устройства молниезащиты и как они работают при разрядах

Стихийное возникновение молнии происходит внезапно, создавая огромные разрушения.

Защитить дом от него позволяет внешняя молниезащита, состоящая из молниеприемника, распложенного над крышей, а также молниеотвода и контура заземления.

Ток разряда, проникающий кратковременным импульсом по подготовленной цепи, имеет очень большую величину. Он наводит в близкорасположенной проводке здания и токопроводящих частях перенапряжения, способные сжечь изоляцию, повредить бытовые приборы.

Предотвратить опасные последствия грозового разряда предназначены внутренние устройства молниезащиты, представляющие собой комплекс технических устройств и приборов на основе модулей УЗИП с подключением их к системе заземления.

Они надежно работают не только при непосредственном ударе молнии по дому, но и гасят разряды, попадающие в:

  1. питающую ЛЭП;
  2. близлежащие деревья и строения;
  3. почву, расположенную рядом со зданием.

Если с ударом по ЛЭП обычно вопросов не возникает, то в последних двух случаях перенапряжение способно импульсом проникнуть в домашнюю проводку по контуру земли, трубам водопровода, канализации, другим металлическим магистралям, как показано на самой первой картинке

Работа внутренней молниезащиты происходит за счет подключения проникшего высоковольтного импульса на специально подобранный разрядник или электронный элемент — варистор.

Он включается на разность двух потенциалов и для обычного напряжения обладает очень большим сопротивлением, когда токи через него ограничиваются, не превышают нескольких миллиампер.

При попадании на схему варистора аварийный импульс открывает полупроводниковый переход, замыкая его накоротко. Через него начинает стекать опасный потенциал на защитное заземление.

После варистора опасное напряжение значительно ограничивается. На базе этих электронных компонентов созданы современные модули защиты — УЗИП.

Устройство защиты от импульсных перенапряжений: как правильно выбрать и установить модуль

Представьте картинку, когда накопленная энергия статического электричества между движущимися на больших расстояниях облаками разряжается молниеносным ударом по зданию или питающей его ЛЭП.

Усредненная форма импульса тока приведена ниже. Она вначале круто возрастает примерно за 10 микросекунд, а затем, достигнув своего апогея, начинает плавно снижаться. Причем спад до середины максимального значения тока происходит через 350 мкс и продолжается дальше до нуля.

Этот импульс грозового разряда создает перенапряжение в сети, которое примерно повторяет форму тока, но может отличаться за счет работы ограничителей перенапряжения, установленных на воздушной ЛЭП.

Форма такого импульса, обработанного разрядниками, показана чуть правее, а обычная синусоида частотой 50 герц для сравнения ниже.

Ограничители перенапряжения ЛЭП работают за счет пробивания калиброванного воздушного зазора повышенным импульсом разряда. В обычном состоянии его сопротивление исключает протекание токов от напряжения нормальной величины.

У высоковольтных линий электропередач ограничители имеют довольно внушительные размеры.

На воздушных ЛЭП 0,4 кВ их габариты значительно меньше. Они располагаются на опоре рядом с изоляторами.

Ограничители перенапряжения ВЛ способны погасить очень высокое напряжение разряда молнии только до 6 киловольт. Такой импульс имеет измененную форму нарастания и спада напряжения с характеристикой 8/20 мкс. Он поступает на вводные устройства вашего дома.

Защита перенапряжения ЛЭП его сильно урезала и преобразовала. Но этого явно недостаточно для обеспечения безопасности оборудования и жильцов.

Бытовая проводка 220/380 вольт выпускается с изоляцией, способной противостоять импульсам 1,5÷2,5 кВ. Все, что больше, ее пробивает. Поэтому требуется использовать дополнительное устройство защиты от импульсных перенапряжений для частного дома.

Ассортимент таких конструкций обширен. Их необходимо уметь правильно выбирать и монтировать.

УЗИП для сети 0,4 кВ выпускаются на 2 режима возможной аварии для гашения:

  1. тока разряда с формой 10/350мкс, который не претерпел изменений от ОПН воздушной ЛЭП;
  2. импульса перенапряжения с характеристикой 8/20мкс.

По этим факторам удобно при выборе УЗИП пользоваться алгоритмом, который я показал картинкой ниже.

Однако следует представлять, что практически нет устройств, способных разово погасить импульс 6 киловольт до безопасной для бытовой проводки величины в 1,5 кВ.

Этот процесс происходит в три этапа. Под каждый из них используется свой класс УЗИП, хотя есть небольшие исключения из этого правила.

Модули класса 1 способны снизить импульс перенапряжения с 6 до 4 кВ, который проникает:

  • после ограничителей ЛЭП;
  • или наводится от тока разряда молнии, стекающего по молниеотводу;
  • либо ее удара в близко расположенные строения, деревья, почву.

УЗИП класса 1 устанавливают во вводном щиту здания внутри отдельной герметичной пожаробезопасной ячейки. Пренебрегать этим правилом опасно.

При монтаже следует правильно прокладывать защищаемые кабели. Они не должны пересекаться с отводом аварийных токов на контур земли и приходящими, не подвергнутыми защите магистралями.

От сверхтоков модули спасают силовыми предохранителями с плавкими вставками.

Автоматические выключатели для этих целей не приспособлены. Их контакты не выдерживают создаваемые импульсные перегрузки. Они привариваются, а повреждение продолжает развиваться.

Следующий класс УЗИП №2 снижает импульс перенапряжения с четырех до 2,5 кВ. Его ставят в следующем по иерархии распределительном щите, например, квартирном. Он дополняет работу предшествующего модуля, но может использоваться и автономно.

Класс №3 устройства защиты от импульсных перенапряжений может выполняться модулями, устанавливаемыми на DIN-рейку или комплектами, встраиваемыми в бытовые приборы, удлинители, сетевые фильтры.

УЗИП класса 3 способен обеспечивать безопасность только после срабатывания защиты класса №2. Он ставится последовательно за ней потому, что от 4-х киловольт сгорает.

Производители побеспокоились о сложности выбора правильной конструкции УЗИП и предлагают комплексное решение этого вопроса общим модулем, называемым 1+2+3.

Он ставится в отдельном боксе. Однако, цена такой разработки не всем по карману.

Защита от импульсного перенапряжения: частный дом с однофазным питанием

Монтаж электропроводки в частном доме, особенно выполненном из древесины и горючих материалов, требует тщательного соблюдения правил электрической безопасности.

Необходимо учесть, что здание может быть запитано по разным схемам заземления:

  • типовой старой TN-C;
  • либо современной, более безопасной TN-S или ее модификациям.

Разберем оба случая.

Схема подключения УЗИП: 2 варианта по системе заземления TN-S

На картинке ниже представлена развернутая схема с защитой комбинированного класса 1+2, которое используется для установки после вводного автоматического выключателя.

Варистор ограничителя перенапряжения встроен в корпус модуля, защищает электрическую схему от прямых или удаленных атмосферных разрядов молний.

Традиционный для всех УЗИП сигнальный флажок имеет два цвета:

  1. зеленое положение свидетельствует об исправности устройства и готовности к работе;
  2. красное — о необходимости замены в случае срабатывания или перегорания.

Такой модуль может применяться во всех системах заземления, а не только TN-S. Он имеет 3 клеммы подключения:

  1. сверху слева L — фазный провод;
  2. сверху справа PE — защитный проводник заземления;
  3. снизу N — нулевой провод.

УЗИП защищает электросчетчик и все цепи после него.

На очередной схеме показан вариант использования защиты с УЗО. После него создается дополнительная шинка рабочего нуля N1, от которой запитаны все потребители квартиры.

Схема вроде понятна, вопросов не должно возникнуть.

Для дополнительных систем заземления TN-C-S и ТТ предлагаю к изучению и анализу еще две схемы. У них УЗИП монтируется тоже во вводном устройстве.

Цепи подключения счетчика, реле контроля напряжения РКН и УЗО, а также потребители подробно не показываю. Но принцип понятен: используется защитная шина PE.

А вот в старой системе заземления ее нет, за счет чего снижается надежность и безопасность. Но все же она осуществляет защиту, поэтому и рассматривается.

Схема подключения УЗИП по системе заземления TN-C

Отсутствие шины РЕ диктует необходимость подключения УЗИП только между потенциалами фазного провода и PEN. Других вариантов просто нет.

Слева показан способ монтажа защиты для однофазной проводки, а справа — трехфазной.

Импульс перенапряжения снимается по принципу создания искусственного короткого замыкания в питающей цепи.

Защита от импульсного перенапряжения: частный дом с трехфазным питанием

Разбираю принципы подключения УЗИП на примере разных систем заземления.

Схема подключения УЗИП для трехфазного питания дома по системе TN-S

Защита проводки возложена на:

  • трехполюсный вводной автоматический выключатель;
  • однополюсные и трехполюсные автоматы отходящих линий;
  • устройство защиты от импульсных перенапряжений комбинированного типа 1+2+3.

Учетом электроэнергии занимается трехфазный электросчетчик. После него в цепях рабочего нуля образована дополнительная шинка N1. От нее запитываются все потребители.

Шинки N и РЕ, модуль УЗИП подключены стандартным образом.

При раздельном использовании защит классов №1, 2, 3 следует распределять их по зонам I, II, III.

Проникновение импульсов перенапряжения со всех сторон потенциалов фаз, рабочего нуля и соединенного с контуром земли оборудования блокирует включение модулей между шинами фаз, нуля и РЕ.

Схема подключения УЗИП: 2 варианта для трехфазного питания дома по системе TN-C

В предлагаемой разработке показан не чистый вариант подключения защит под систему заземления TN-C, а рекомендуемая современными требованиями модификация перехода на TN-C-S с выполнением повторного заземления.

Проводник PEN по силовому кабелю от питающей трансформаторной подстанции подается на свою шинку, которая подключается перемычкой к сборке рабочего нуля и шине повторного заземления.

Трехполюсный УЗИП, включенный после вводного автомата, защищает электрический счетчик и все его цепи, включая УЗО, от импульсов перенапряжения. Напоминаю, что он должен монтироваться в отдельном несгораемом боксе.

При отсутствии повторного заземления нижняя клемма модуля УЗИП подключается на шину PEN проводника отдельной жилой, а проводка работает чисто по старой системе TN-C.

Еще одна методика снижения нарастающего фронта броска импульса перенапряжения показана ниже. Здесь работают специальные реактивные сопротивления — дросселя LL1-3 с индуктивностью от 6 до 15 микрогенри, подбираемые расчетным путем.

Они используются при близком расположении оборудования для создания небольшой задержки срабатывания защиты, необходимой по условиям селективности.

Их монтируют в отдельном защитном щитке совместно с УЗИП. Так проще выполнять настройки и периодические обслуживания, профилактические работы.

Считаю, что необходимо указать еще на один вариант использования ограничителей перенапряжения и разрядников, которым иногда пренебрегают владельцы сложной электронной техники.

В отдельных ситуациях, как было у меня в электротехнической лаборатории на подстанции 330 кВ. Настольный компьютер подвергался различным видам облучения электромагнитных полей с частотами низкого и высокого диапазонов. Это сказывалось на отображении информации и даже быстродействии.

Выход был найден за счет создания мощного экранирующего чехла и подключения его к отдельному функциональному заземлению.

Однако при ударе молнии в рядом расположенную почву или молниезащиту такой путь может стать источником опасности. Исправить ситуацию позволяет метод создания дополнительной гальванической развязки.

Ее создают подключением разрядника. У меня использовалась разработка компании Hakel, как показано на картинке выше.

3 главных ошибки электрика в схемах молниезащиты

Отвод случайного разряда молнии от здания и ликвидация опасных последствий перенапряжения — это сложная и ответственная техническая задача, требующая:

  1. тщательного инженерного расчета;
  2. надежного монтажа;
  3. своевременного профилактического обслуживания.

Три перечисленных пункта требуют профессиональных знаний и опыта, которыми обладает далеко не каждый специалист.

Отличает профессионала от других электриков не наличие диплома об образовании, количество сертификатов или положительных отзывов, а готовность взять на себя всю полноту материальной ответственности за проделанную работу и причиненный ущерб в случае допущения ошибки на любом вышеперечисленном этапе.

Расчет проекта молниезащиты

Он должен выполняться по двум направлениям:

  1. внешней схеме отвода тока разряда;
  2. внутренней ликвидации импульса перенапряжения с полным учетом местных условий.

На расчет конструкции влияют характеристики грунтов, форма и габариты здания, условия подключения электроэнергии и многие другие факторы.

Их требуется просчитать, смоделировать, подвергнуть испытаниям специализированными компьютерными программами и внести необходимые усовершенствования.

Но есть и другой путь — собрать доступную информацию самостоятельно, например, с интернета и рискнуть безопасностью дома и жильцов: вдруг пронесет. Грозы то бывают не каждый день, авось… (Так поступает большинство, причем часто по незнанию.)

Монтаж внутренней и внешней молниезащиты

Попробуйте ответить на простой вопрос: можно ли изготовить надежно работающую систему без точного проекта, учитывающего аварийные и эксплуатационные режимы?

А ведь так поступают многие владельцы домов. В итоге создаются контуры заземления с завышенным электрическим сопротивлением, ненадежные молниеотводы, что превращает задуманную защиту в ловушку молний, когда молниеприемник притягивает на себя грозовой разряд, а его энергия не отводится на потенциал земли, а прикладывается к зданию.

Ошибки монтажа внутренней молниезащиты ведут к выгоранию бытовой проводки, повреждению дорогого оборудования, бесполезной трате денег, времени.

Профилактическое обслуживание систем молниезащиты

Здесь надо учитывать, что любая техника не только морально изнашивается, но и естественно стареет.

Электрические характеристики грунта меняются в зависимости от погоды, сезона, влажности. Электронные защиты на УЗИП при срабатывании, как и их предохранители могут выгореть. Контактные соединения собранных цепочек со временем увеличивают сопротивление.

Все эти процессы требуется контролировать внешним и внутренним осмотром, выполнением электротехнических измерений точными специализированными приборами.

Внутри многоэтажного здания вопросами внутренней и внешней молниезащиты занимается эксплуатирующая организация ЖКХ со своими работниками. Владелец частного дома решает их самостоятельно и выполнить их обязан надежно и качественно привлечением специалистов лабораторий.

В статье я привел типовые схемы, показывающие как подключить УЗИП для частного дома и постарался кратко объяснить принципы их работы.

Дополняет этот материал видеоролик владельца Василия Юферева. Обратите внимание на комментарии: отдельные люди так и не поняли роль этой защиты.

Если у вас возникли вопросы по изложенной теме, то воспользуйтесь разделом комментариев. Обсудим.

Работа, принципиальная схема, типы и применение

В настоящее время растет количество жалоб на потерю электроники, используемой в домах, из-за внезапного напряжения или возгорания. Таким образом, приборы не будут работать должным образом из-за внезапных колебаний входного напряжения. Поскольку напряжение резко возрастает до чрезвычайно высокого значения за короткий промежуток времени, это называется скачками напряжения. Для решения этой проблемы доступно стандартное оборудование, а именно сетевой фильтр. Обычно это устройство подключается к компьютерной системе.Доступны разные конструкции протекторов. Они позволяют нам подключать множество гаджетов или устройств к одной розетке. Это абсолютно полезное устройство.

Что такое сетевой фильтр?

Устройство защиты от перенапряжения — это электрическое устройство, которое защищает компьютерную систему, а также различные электронные устройства от внезапных скачков напряжения в пределах электрической мощности, в противном случае переходного напряжения, которое подается от источника питания. В Индии предел стандартного напряжения, используемого для дома, офиса или зданий, составляет 230 вольт.Если напряжение увеличивается более чем на эту величину, это считается переходным напряжением. Это напряжение может повредить все электронные устройства, подключенные к каналу. Хотя всплески такие короткие, они рассчитываются в наносекундах. Это может нанести огромный вред электронным устройствам.


сетевой фильтр

К счастью, сетевой фильтр защищает электронные устройства от скачков напряжения. Хотя эти устройства не всегда защищают от скачков напряжения из-за молнии. Они определенно защищают устройства от скачков напряжения, которые могут быть вызваны многими причинами.

Как работает сетевой фильтр?

Принцип работы устройства защиты от перенапряжения заключается в том, что дополнительное напряжение направляется в заземляющий провод розеток, предотвращая его прохождение через устройства, и в то же время разрешая обычное напряжение для поддержания вдоль его полосы. Скачки могут повредить компьютерную систему из-за воспламенения проводов, иначе со временем постепенно изнашиваются внутренние компоненты оборудования, а также уничтожаются все сохраненные данные. Эти протекторы также используются для защиты кабелей и телефонных линий, поскольку они также задерживают электрический ток.

Эти устройства защиты обычно служат для защиты устройств от скачков напряжения. Эти типы скачков часто возникают в токовой электропроводке. Например, электронные устройства, такие как кондиционеры и холодильники, требуют использования большего количества энергии для управления двигателями, а также компрессорами, создавая скачки мощности, которые могут нарушить стабильный поток напряжения.

Скачки напряжения могут быть вызваны дефектной проводкой, неисправными устройствами и отключением линий электропередачи у источника питания, что также может вызвать скачки напряжения.Альтернативные названия устройств защиты от перенапряжения: ограничители перенапряжения, удлинители и ограничители переходных процессов.


Схема цепи устройства защиты от перенапряжения

Принципиальная схема устройства защиты от перенапряжения показана ниже. Эта схема помогает защитить оборудование от повреждений, вызванных переходными импульсными перенапряжениями, такими как удары молнии и переключение устройств.

Эта схема может быть построена с помощью GDT (газоразрядная трубка), которая эффективно переключается в состояние малого импеданса для перенаправления энергии от оборудования при обнаружении перенапряжения.Эта газоразрядная трубка имеет вносимые потери, а также низкую емкость за счет высокоточной искры, превышающей напряжение, и используется для высокоточных конструкций.

принципиальная электрическая схема устройства защиты от перенапряжения

Подключение этой цепи может быть выполнено между проводом под напряжением и сетевым проводом, по которому обычно не протекает ток. Но когда напряжение между клеммами выше, чем номинальное напряжение GDT и варистора, то ток будет проходить через используемые компоненты. Текущий ток никогда не будет превышать установленное значение, в противном случае предохранитель сломается, и эта цепь будет защищена.Когда ток становится обычным, предохранители настраиваются и сохраняют свою функцию.

Эта схема в основном предназначена для защиты чувствительных электронных устройств от перегрузки, короткого замыкания, переходных процессов перенапряжения при стандартном сетевом напряжении. Две лампы, такие как неоновая пилотная лампа, расположены, чтобы показать состояние нагрузки и входа. Варистор защищает схему от перенапряжений, включая их в цепь.

Всякий раз, когда цепь активируется, они заставляют протекать ток, который образуется из-за перенапряжения, находящегося вдали от чувствительных компонентов.Эта схема в основном защищает чувствительные компоненты от переходных процессов перенапряжения, не контролируя нормальную работу устройства. Эта схема используется в различных приложениях, таких как линии электропередачи, безопасность моторных устройств и телефонная линия.

Типы устройств защиты от перенапряжения

Устройства защиты от перенапряжения подразделяются на четыре типа, включая следующие.

  • Тип служебного входа
  • Панели перенапряжения ответвления
  • Тип служебного входа
  • Модули защиты от перенапряжения
Разветвители питания

Как правило, этот тип защиты от перенапряжения размещается над основным служебным входом среди опорных столбов со стороны линии , где бы ваша электрическая энергия ни поступала в вашу сервисную панель.

Этот тип устройства защиты от перенапряжения защищает от внешнего скачка напряжения. Как правило, этот тип скачков напряжения возникает при переключении батареи конденсаторов электросети, в противном случае — при молнии. Этот тип сетевого фильтра не используется для защиты вашего дома. Но они рассчитаны на использование вне помещений, и некоторые защитные устройства имеют встроенную систему сигнализации, которая подает сигнал тревоги, когда жизненный цикл устройства заканчивается и его необходимо заменить.

Панели перенапряжения ответвления

Устройства защиты от перенапряжения этого типа устанавливаются на стороне нагрузки у входа в главное обслуживание для защиты входа в электрические сети от поисков с помощью двигателя, энергии молнии и других скачков напряжения, производимых внутри.

Основное назначение этого устройства защиты — защита чувствительной электроники, а также различных нагрузок на базе микропроцессора посредством ограничения переходного напряжения. Эти панели используются в различных приложениях, таких как коммерческое, остаточное и промышленное.

Разветвители питания

Это вторичные сетевые фильтры. Разветвитель питания используется для подключения к любому электрическому каналу. Эти полоски доступны с множеством каналов, поэтому к ним можно подключать несколько электрических устройств.Если произойдет скачок напряжения, удлинитель отключит питание. Это наиболее полезная функция для защиты устройств от повреждений.

Модули защиты от перенапряжения

Этот вид защиты обеспечивает другой тип защиты от перенапряжения, чем удлинители. Эти протекторы предлагают защиту для промышленных приложений, таких как ПЛК, автоматизация производства, приводы двигателей, которые доступны в обеих конфигурациях, таких как монтаж на DIN-рейку и стандартная настенная.Эти протекторы также обеспечивают защиту от перенапряжения для устройств, используемых в шкафах коммерческого и промышленного оборудования. На рынке доступно несколько типов устройств защиты от перенапряжения, которые могут защитить несколько устройств в доме, а также коммерческие услуги во всей электрической системе.

Преимущества и недостатки

К преимуществам устройств защиты от перенапряжения можно отнести следующее.

  • Эти устройства защищают электрооборудование от скачков напряжения
  • Они контролируют напряжение в вашем электрооборудовании, чтобы поддерживать оборудование на безопасном уровне
  • Это доступные
  • Расходы на техническое обслуживание будут снижены
  • Затраты на ремонт и замену будут уменьшенный

К недостаткам устройств защиты от перенапряжения можно отнести следующие.

  • Сетевой фильтр для дома совы стоит дорого
  • Стоимость установки для дома совы также является дорогостоящей
  • Его использование ограничено, и полосовые устройства защиты от перенапряжения не должны использоваться с машинами с жесткой проводкой, такими как плита, в противном случае посудомоечная машина.

Области применения / применения

Устройства защиты от перенапряжения используются для защиты электронного оборудования от скачков напряжения. Оборудование, подвергающееся риску, включает следующее.

  • Динамики
  • ТВ-приемник
  • Компьютерные системы
  • ЖК и плазменные телевизоры
  • Маршрутизатор
  • Телефонная система
  • Игровые приставки

Итак, это все о сетевом фильтре.Наконец, исходя из приведенной выше информации, мы можем сделать вывод, что с помощью этих защитных устройств электронные устройства, используемые в домах, такие как холодильники, стиральные машины, посудомоечные машины, также будут защищены от повреждений. Это обеспечивает целесообразность, открывая вам дополнительные доступные торговые точки; однако они также могут сэкономить ваши деньги, если вы управляете несколькими устройствами только одним движением ручки. Вот вам вопрос, какова функция сетевого фильтра?

Руководство Eaton по подавлению скачков напряжения

% PDF-1.3 % 138 0 объект >>> endobj 166 0 объект > поток 11.08.5282018-11-15T07: 55: 07.620-05: 00 Acrobat Distiller 9.0.0 (Macintosh) Zoltun Design Co. 2009dab75e986a50aa07332d69a48c15cf6edd608574528469Adobe InDesign CS4 (6.0) 2009-03-20T11: 002009-04-2010 58: 32.000-04: 002009-03-20T11: 56: 56.000-04: 00application / pdf2018-11-15T07: 56: 43.120-05: 00

  • Zoltun Design Co. 2009
  • Это руководство включает в себя примечания по применению с подробным описанием приложений защиты от перенапряжения и часто задаваемые вопросы (FAQ).
  • Руководство Eaton по подавлению скачков напряжения
  • uuid: 3d5cc72e-d5d6-4941-b1b8-b33c9c7ecaeduuid: 9fcc6825-c022-3b4f-a7c9-a69d5d16c058 Acrobat Distiller 9.0.0 (Macintosh)
  • Eaton: ресурсы / технические ресурсы
  • eaton: вкладки поиска / тип содержимого / ресурсы
  • eaton: страна / северная америка / сша
  • eaton: language / en-us
  • eaton: классификация продукции / системы управления-распределения-низкого напряжения / заземление-низкое напряжение-высокое сопротивление
  • конечный поток endobj 139 0 объект > endobj 163 0 объект > endobj 126 0 объект > endobj 128 0 объект > endobj 129 0 объект > endobj 130 0 объект > endobj 131 0 объект > endobj 61 0 объект > endobj 64 0 объект > endobj 67 0 объект > endobj 74 0 объект > endobj 77 0 объект > endobj 80 0 объект > endobj 83 0 объект > endobj 86 0 объект > endobj 88 0 объект > поток h [ے Ǒ} Wphv ݫ O2Evm٢ + i

    Тиристор цепи защиты от перенапряжения TIC126

    Конструкция упомянутой защиты от перенапряжения me помимо того факта, что большинство электронных компонентов (активных полупроводниковых компонентов) выходит из строя из-за слишком высокого напряжения питания.Следовательно, безопасность дорогих электронных систем или устройств должна защищать от напряжения … Проекты в области электроники, Схема защиты от перенапряжения Тиристор TIC126 «Power electronic projects», Дата 2019/08/03

    Конструкция упомянутой защиты от перенапряжения Помимо того, что большинство электронных компонентов ( активных полупроводниковых компонентов, ) слишком высокое напряжение питания, разрушается. Следовательно, безопасность дорогих электронных систем или устройств — это защита от скачков напряжения, а не ненужная роскошь.Обязательным условием эффективности такой защиты является скорость реакции. Не имеет смысла использовать сетевой фильтр с медленными реле для отключения скачков напряжения, потому что уже слишком поздно, когда реле отключается. Поэтому для защиты от скачков напряжения используется тиристор TIC126, который намного быстрее обычного реле. Если скачок и тиристор загорается и замыкает напряжение питания. Это подключенное устройство защищено. В результате короткого замыкания плавится предохранитель F1 и прекращается подача питания.Пороговое напряжение может быть установлено потенциометром P1 между 5В и 25В 5А.

    Принципиальная схема защиты от перенапряжения

    Во-первых, необходимо заменить перемычку для плавких предохранителей, которая при постоянной регулировке не разрушает предохранитель. После этого установите потенциометр P1 на максимальное значение сопротивления (максимальное пороговое напряжение). подключитесь к управляемому источнику напряжения и установите ограничение тока на 1 А. Источник Установите необходимое значение напряжения, при котором будет срабатывать протектор. Он также контролирует ограничение тока для контролируемого ресурса и также поворачивает потенциометр P1 до тех пор, пока не будет активирован ограничение тока.На этом настройка завершена. Удалите проволочную перемычку над предохранителем, и он заполнится предохранителем в диапазоне 0 — 5А. После того, как устройство будет готово к использованию.

    Скачать файлы схемы печатной платы защиты от перенапряжения:

    СПИСОК ССЫЛКИ ДЛЯ ЗАГРУЗКИ ФАЙЛОВ (в формате TXT): LINKS-25352.zip

    % PDF-1.6 % 9124 0 объект > / Outlines 8647 0 R / Metadata 9121 0 R / AcroForm 9125 0 R / Pages 9046 0 R / Type / Catalog / PageLabels 9041 0 R >> endobj 8647 0 объект > endobj 9121 0 объект > поток 2008-11-17T18: 19: 32 + 01: 002008-11-17T18: 19: 32 + 01: 002007-12-20T22: 21: 12ZAdobe InDesign CS3 (5.0.1)

  • JPEG256256 / 9j / 4AAQSkZJRgABAgEASABIAAD / 7QAsUGhvdG9zaG9wIDMuMAA4QklNA + 0AAAAAABAASAAAAAEA AQBIAAAAAQAB / + 4AE0Fkb2JlAGQAAAAAAQUAAkaI / 9sAhAAMCAgICAgMCAgMEAsLCxAUDg0NDhQY EhMTExIYFBIUFBQUEhQUGx4eHhsUJCcnJyckMjU1NTI7Ozs7Ozs7Ozs7AQ0LCxAOECIYGCIyKCEo MjsyMjIyOzs7Ozs7Ozs7Ozs7Ozs7OztAQEBAQDtAQEBAQEBAQEBAQEBAQEBAQEBAQED / wAARCAEA AM4DAREAAhEBAxEB / 8QBQgAAAQUBAQEBAQEAAAAAAAAAAwABAgQFBgcICQoLAQABBQEBAQEBAQAA AAAAAAABAAIDBAUGBwgJCgsQAAEEAQMCBAIFBwYIBQMMMwEAAhEDBCESMQVBUWETInGBMgYUkaGx QiMkFVLBYjM0coLRQwclklPw4fFjczUWorKDJkSTVGRFwqN0NhfSVeJl8rOEw9N14 / NGJ5SkhbSV xNTk9KW1xdXl9VZmdoaWprbG1ub2N0dXZ3eHl6e3x9fn9xEAAgIBAgQEAwQFBgcHBgI7AQACEQMh MRIEQVFhcSITBTKBkRShsUIjwVLR8DMkYuFygpJDUxVjczTxJQYWorKDByY1wtJEk1SjF2RFVTZ0 ZeLys4TD03Xj80aUpIW0lcTU5PSltcXV5fVWZnaGlqa2xtbm9ic3R1dnd4eXp7fh2 + f3 / 9oADAMB AAIRAxEAPwDrfqx9WPq3kfVvpN9 / ScG223Bxn2WPxqnOc51TC5znFkkkpKdL / mn9Vf8Aym6f / wCw tP8A6TSUr / mn9Vf / ACm6f / 7C0 / 8ApNJSv + af1V / 8pun / APsLT / 6TSUr / AJp / VX / ym6f / AOwtP / pN JSv + af1V / wDKbp // ALC0 / wDpNJSv + af1V / 8AKbp // sLT / wCk0lK / 5p / VX / ym6f8A + wtP / pNJSv8A mn9Vf / Kbp / 8A7C0 / + k0lK / 5p / VX / AMpun / 8AsLT / AOk0lK / 5p / VX / wApun / + wtP / AKTSUr / mn9Vf / Kbp / wD7C0 / + k0lK / wCaf1V / 8pun / wDsLT / 6TSUr / mn9Vf8Aym6f / wCwtP8A6TSUr / mn9Vf / ACm6 f / 7C0 / 8ApNJSv + af1V / 8pun / APsLT / 6TSUr / AJp / VX / ym6f / AOwtP / pNJSv + af1V / wDKbp // ALC0 / wDpNJSv + af1V / 8AKbp // sLT / wCk0lK / 5p / VX / ym6f8A + wtP / pNJSv8Amn9Vf / Kbp / 8A7C0 / + k0l K / 5p / VX / AMpun / 8AsLT / AOk0lK / 5p / VX / wApun / + wtP / AKTSUr / mn9Vf / Kbp / wD7C0 / + k0lK / wCa f1V / 8pun / wDsLT / 6TSU5vVvqx9W68 / orK + k4LG3Zz2WNbjVAPaMPNftcAzUbmA / EJKdL6p / + JXo3 / pvxf / PNaSnWSUpJSklKSUpJSklKSUpJSklKSUpJSklKSUpJSklKSUpJSklKSUpJSklKSUpJSklO T1n / AJR6F / 6cLP8A2xz0lK + qf / iV6N / 6b8X / AM81pKdZJSklKSUpJSklKSUpJSklKSUpJSklKSUp JSklKSUpJSklKSUpJSklKSUpJSklKSU5PWf + Uehf + nCz / wBsc9JSvqn / AOJXo3 / pvxf / ADzWkp1k lKSUpJSklKSUpJSklNDrHWMbomM3Kym2PY + wVAVAEyQ535zm / upKcf8A8cDo3 + hyv81n / pVJSv8A xwOjf6HK / wA1n / pVJSv / ABwOjf6HK / zWf + lUlK / 8cDo3 + hyv81n / AKVSUr / xwOjf6HK / zWf + lUlK / wDHA6N / ocr / ADWf + lUlK / 8AHA6N / ocr / NZ / 6VSUr / xwOjf6HK / zWf8ApVJTsdH6xjdbxnZWK2xj GWGoi0AGQGu / Nc795JTfSUpJSklKSUpJSklKSU5PWf8AlHoX / pws / wDbHPSUr6p / + JXo3 / pvxf8A zzWkp1klKSUpJSklKSUpJSklMX112jbY1rxMw4AifmkpH9kxf9DX / mD + 5JSvsmL / AKGv / MH9ySlf ZMX / AENf + YP7klK + yYv + hr / zB / ckpX2TF / 0Nf + YP7klK + yYv + hr / AMwf3JKV9kxf9DX / AJg / uSUr 7Ji / 6Gv / ADB / ckpIyuuoba2tYJmGgAT8klMklKSUpJSklKSUpJSklOT1n / lHoX / pws / 9sc9JSvqn / wCJXo3 / AKb8X / zzWkp1klKSUpJSklKSUpJSklKSUpJTmdUz + l1udi5mQ7HtqaLmBjnNc6dwG0DS w6fRIPwU2LHM6gWwZsmMaSNfy / FrdL6pj + iMnNsBy7bG0WV0OdZUC5wDNgb7Ihw3O + U6Qn5cRuhs sw5hVyOu2jRtyx / zh6pTljqF9dX2f0WYbr9te6qXyKHtA3FSCH6qJHD13r9rFKf6 + YPEdtr7eDdw WO63mZ1 + RdeyjEyh5dNFVr6R + iDd73GpzS4uJ0nhRzPtRiABZFsmMe9KRJNA1WyfqznV1YfR8a59 VmZYK / V3n1W01D1LXB7tx3QNsnxTcQsmZGy / MaEYA7 / l1SdAybbsH7Pkv9TJwnuxb3yTudX9F8nU 7mkFNzxAlY2OqeWmTCjuNC6SiZ1JKUkpSSlJKUkpSSlJKUkpyes / 8o9C / wDThZ / 7Y56SlfVP / wAS vRv / AE34v / nmtJTrJKUkpSSlJKUkpSSlJKUkpSSmlmYJuvZfWRrsbfW8EtsZW7e3jgtJMfj5SQyU KYp47Nj6sbMA25 / 2lz9tMVl1TW / zj6i5zHPJH5pPbwGukJDJUa6qOK530ar + j59fU8zqODnNo + 2 + lvrfj + pHpM2CHeq38ieM0DARlHbxYzgmMkpRlV + H9qW3pWQzMszum5ZxX5EevW + v1anuaNoeGbmF ro8CgMoMeGQul0sMhIyjKr3Wb0Wu / KOX1ZzM8illNbLKQGNIk2PDXF4lxPyGmqXvkRqOivu4lK5 + rTslw + lUYGddk4QZRRfW1r8Zle1u9hMWNIIA0dBG1CeUziAd + 66GEY5kx0B6OgomVSSlJKUkpSSl JKUkpSSlJKcnrP8Ayj0L / wBOFn / tjnpKV9U // Er0b / 034v8A55rSU6ySlJKUkpSSlJKUkpSSlJKU kpy88Xsyg + tma9rnVtIodX6fI1hzg4D94pKRNoyXAMLeojZtO51tQmHRHtfrxPw + 5JS + PVkex / 6 + 8OLXD1HsZtFu0Frm7p / Rhuunc / JKU2vKM3ennhzi / wDRutq03hx0AcWw381JS0XOPqMr6i42hzC3 fW0VmmWAw97RL9sg6gzKSk + DVazMLrPtgArc3be9jqp3N1G2XbvDySU6SSlJKUkpSSlJKUkpSSlJ KUkpyes / 8o9C / wDThZ / 7Y56SlfVP / wASvRv / AE34v / nmtJTrJKUkpSSlJKUkpSSlJKUkpSSlJKUk pSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSnJ6z / AMo9C / 8AThZ / 7Y56SlfVP / xK9G / 9N + L / AOea 0lOskpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKcnrP / ACj0 L / 04Wf8AtjnpKV9U / wDxK9G / 9N + L / wCea0lOskpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJK UkpSSlJKUkpSSlJKUkpSSlJKcnrP / KPQv ​​/ ThZ / 7Y56SlfVP / AMSvRv8A034v / nmtJTrJKUkpSSlJ KUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSnJ6z / yj0L / ANOFn / tjnpKV 9U // ABK9G / 8ATfi / + ea0lOskpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSl JKUkpSSlJKcnrP8Ayj0L / wBOFn / tjnpKV9U // Er0b / 034v8A55rSU6ySlJKUkpSSlJKUkpSSlJKU kpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpyes / 8AKPQv / ThZ / wC2OekpX1T / APEr0b / 0 34v / AJ5rSU6ySlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpy es / 8o9C / 9OFn / tjnpKV9U / 8AxK9G / wDTfi / + ea0lOskpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkp SSlJKUkpSSlJKUkpSSlJKUkpSSlJKcnrP / KPQv8A04Wf + 2OekpX1T / 8AEr0b / wBN + L / 55rSU6ySl JKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpyes / wDKPQv / AE4W f + 2OekpX1T / 8SvRv / Tfi / wDnmtJTrJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSS lJKUkpSSlJKUkpSSnJ6z / wAo9C / 9OFn / ALY56SlfVP8A8SvRv / Tfi / 8AnmtJTrJKUkpSSlJKUkpS SlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSnJ6z / yj0L / 04Wf + 2OekpX1T / wDE r0b / ANN + L / 55rSU6ySlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJ KUkpyes / 8o9C / wDThZ / 7Y56SlfVP / wASvRv / AE34v / nmtJTrJKUkpSSlJKUkpSSlJKUkpSSlJKUk pSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSnJ6z / AMo9C / 8AThZ / 7Y56SlfVP / xK9G / 9N + L / AOea 0lOskpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKcnrP / ACj0 L / 04Wf8AtjnpKV9U / wDxK9G / 9N + L / wCea0lOskpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJK UkpSSlJKUkpSSlJKUkpSSlJKcnrP / KPQv ​​/ ThZ / 7Y56SlfVP / AMSvRv8A034v / nmtJTrJKUkpSSlJ KUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSnJ6z / yj0L / ANOFn / tjnpKV 9U // ABK9G / 8ATfi / + ea0lOskpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSl JKUkpSSlJKcnrP8Ayj0L / wBOFn / tjnpKV9U // Er0b / 034v8A55rSU6ySlJKUkpSSlJKUkpSSlJKU kpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpyes / 8AKPQv / ThZ / wC2OekpX1T / APEr0b / 0 34v / AJ5rSU6ySlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpy es / 8o9C / 9OFn / tjnpKV9U / 8AxK9G / wDTfi / + ea0lOskpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkp SSlJKUkpSSlJKUkpSSlJKUkpSSlJKcnrP / KPQv8A04Wf + 2OekpX1T / 8AEr0b / wBN + L / 55rSU6ySl JKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpyes / wDKPQv / AE4W f + 2OekpX1T / 8SvRv / Tfi / wDnmtJTrJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSS lJKUkpSSlJKUkpSSnJ6z / wAo9C / 9OFn / ALY56SlfVP8A8SvRv / Tfi / 8AnmtJTrJKUkpSSlJKUkpS SlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSlJKUkpSSnJ6z / yj0L / 04Wf + 2Oekpzfqx9Z / q3j / AFb6TRf1bBqtqwcZllb8mprmubUwOa5pfIIKSnS / 52fVX / y56f8A + xVP / pRJSv8AnZ9Vf / Ln p / 8A7FU / + lElK / 52fVX / AMuen / 8AsVT / AOLELK / 52fVX / wAuen / + xVP / AKUSUr / nZ9Vf / Lnp / WD7 FU / + lelK / wCdn1V / 8uen / wDsVT / 6USUr / nZ9Vf8Ay56f / wCxVP8A6USUr / nZ9Vf / AC56f / 7FU / 8A pRJSv + dn1V / 8uen / APsVT / 6USUr / AJ2fVX / y56f / AOxVP / pRJSv + dn1V / wDLnp // ALFU / wDpRJSv + dn1V / 8ALnp // sVT / wClElK / 52fVX / y56f8A + xVP / pRJSv8AnZ9Vf / Lnp / 8A7FU / + lELK / 52fVX / AMuen / 8AsVT / AOlElK / 52fVX / wAuen / + xVP / AKUSUr / nZ9Vf / Lnp / wD7FU / + lElK / wCdn1V / 8uen / wDsVT / 6USUr / nZ9Vf8Ay56f / wCxVP8A6USUr / nZ9Vf / AC56f / 7FU / 8ApRJSv + dn1V / 8uen / APsV T / 6USUr / AJ2fVX / y56f / AOxVP / pRJSv + dn1V / wDLnp // ALFU / wDpRJSv + dn1V / 8ALnp // sVT / wCl ElOb1b6z / VuzP6K + vq2C9tOc99jm5NRDGnDzWbnEP0G54HxKSn // 2Q ==
  • 1uuid: f31e9b75-5f8d-4ac4-BD21-ade75014c29eadobe: DocId: INDD: d7db965d-8bb0-11dc-8c07-c2fb968e01e5proof: pdfd7db965c-8bb0-11dc-8c07-c2fb968e01e5adobe: DocId: INDD: 7bb66a0e-8b8b-11dc-8c07-c2fb968e01e51
  • СсылкаStream72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E3DFD09E3677DC119D118794E712FE95uuid: DFDFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Артикул72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Артикул72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Артикул72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E3DFD09E3677DC119D118794E712FE95uuid: DFDFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Артикул72.0072.00 Inchesuuid: E3DFD09E3677DC119D118794E712FE95uuid: DFDFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Артикул72.0072.00 Inchesuuid: E3DFD09E3677DC119D118794E712FE95uuid: DFDFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E3DFD09E3677DC119D118794E712FE95uuid: DFDFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Артикул72.0072.00Inchesuuid: F51708925BA2DC1181B3FB92511015E3uuid: 6567a3fe-6f93-11dc-a3dd-00306570b472
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Артикул 72.0072.00 Inchesuuid: F81708925BA2DC1181B3FB92511015E3uuid: f6bbd6b5-6ba6-11dc-9f89-00306570b472
  • Артикул72.0072.00Inchesuuid: 3987408a-725c-11dc-80ff-00306570b472uuid: f6bbd6b5-6ba6-11dc-9f89-00306570b472
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Артикул 72.0072.00 Inchesuuid: 1022136BF9AEDC1180C885DD03EFA53 Fuuid: 5cb88aae-263e-11dc-9d42-00306570b472
  • Артикул72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Артикул72.0072.00 Inchesuuid: E3DFD09E3677DC119D118794E712FE95uuid: DFDFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Артикул72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • ReferenceStream72.0072.00Inchesuuid: 1d39f6ce-6f94-11dc-a3dd-00306570b472uuid: f6bbd6b5-6ba6-11dc-9f89-00306570b472
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Артикул72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E3DFD09E3677DC119D118794E712FE95uuid: DFDFD09E3677DC119D118794E712FE95
  • Артикул72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E37EF42860A2DC1181B3FB92511015E3uuid: dee61e50-4142-11dc-8899-00306570b472
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Артикул72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Артикул 72.0072.00 Inchesuuid: 74E1E838ADA9DC118C2B9BE43658CCFFuuid: c0da9d45-270e-11dc-8f7d-00306570b472
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Артикул72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Артикул 72.0072.00Inchesuuid: e1af4b50-6fa2-11dc-a3dd-00306570b472uuid: dee61e50-4142-11dc-8899-00306570b472
  • Артикул72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Артикул 72.0072.00Inchesuuid: 06DB307237AADC1189158D9419E9AD88uuid: dee61e50-4142-11dc-8899-00306570b472
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Артикул 72.0072.00Inchesuuid: 722015d4-725c-11dc-80ff-00306570b472uuid: dee61e50-4142-11dc-8899-00306570b472
  • Артикул72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Артикул 72.0072.00Inchesuuid: 90e1455a-725c-11dc-80ff-00306570b472uuid: 3b779d3a-4a4e-11dc-b228-00306570b472
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Артикул72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Артикул 72.0072.00 Inchesuuid: E67EF42860A2DC1181B3FB92511015E3uuid: 3b779d3a-4a4e-11dc-b228-00306570b472
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Артикул72.0072.00Inchesuuid: 726a3770-6f97-11dc-a3dd-00306570b472uuid: e3d4f10c-4a7b-11dc-b228-00306570b472
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Артикул 72.0072.00 Inchesuuid: c1e80016-264d-4ab0-b53b-1c8e23b28be7uuid: d4963808-f5e9-4df2-806d-45975769489c
  • Артикул72.0072.00Inchesuuid: c1e80016-264d-4ab0-b53b-1c8e23b28be7uuid: d4963808-f5e9-4df2-806d-45975769489c
  • Номер по каталогу72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Артикул 72.0072.00Inchesuuid: 56953d3f-3f49-43f0-8f9f-658124bb346buuid: 4825d881-17a7-49af-b50c-abf0a2455086
  • Артикул 72.0072.00Inchesuuid: 56953d3f-3f49-43f0-8f9f-658124bb346buuid: 4825d881-17a7-49af-b50c-abf0a2455086
  • Артикул72.0072.00 Inchesuuid: E2DFD09E3677DC119D118794E712FE95uuid: E1DFD09E3677DC119D118794E712FE95
  • Артикул 72.0072.00Inchesuuid: 591d4187-877d-4c85-814f-5f6804373dcduuid: 2561862e-223d-43e4-9278-e6cd9402dd85
  • Артикул 72.0072.00Inchesuuid: 591d4187-877d-4c85-814f-5f6804373dcduuid: 2561862e-223d-43e4-9278-e6cd9402dd85
  • Артикул 72.0072.00Inchesuuid: 591d4187-877d-4c85-814f-5f6804373dcduuid: 2561862e-223d-43e4-9278-e6cd9402dd85
  • Артикул72.